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Abstract. We study the metastability of the stochastic three dimensional Ising model on a
finite torus under a small positive magnetic field at very low temperatures.

1. Introduction

The theoretical study of metastability has become a field of active research during the
last years [2,12,13,16,17,19,20]. The crucial problem is to understand the exit path of
a system close to a phase transition relaxing from a metastable state towards a stable
state. For the physical motivation of this problem, we refer the reader to [19,20]. The
basic situation to investigate the metastability is the stochastic Ising model evolving ac-
cording to a Glauber or Metropolis dynamics. The first step was accomplished by Neves
and Schonmann [16,17,20] who studied the case of the two dimensional Ising model in a
finite volume at very low temperatures. They put forward the essential role played by
the droplets: small droplets are likely to shrink and disappear whereas big ones tend to
grow. The threshold between these opposite behaviours corresponds to the critical droplets
whose energy is exactly the energy barrier the system has to overcome to escape from the
metastable state. The nucleation occurs through the formation of such a critical droplet.
Several more complicated models have also been investigated in the regime of low temper-
atures, but still in dimension two: an anisotropic case [12] and a case with second nearest
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neighbours interactions [13]. It became progressively clear that all the relevant information
to describe the exit path was to be found in the energy landscape associated to the model.

In fact, these Metropolis dynamics at very low temperatures have been thoroughly stud-
ied in a more abstract setting in the context of stochastic optimization. Large deviations
techniques and the Wentzell–Freidlin theory provide the most powerful tools to analyze
these dynamics depending upon a small parameter. The central idea is to decompose the
space into a hierarchy of particular subsets called cycles [11]. Roughly speaking, the cycles
are the most stable sets we can build for the perturbed process. Their fundamental prop-
erty is that the process can’t escape from a cycle without having forgotten its entrance
point. The limiting dynamics is completely determined by the cycle decomposition. For
simulated annealing, the best way to cool down the temperature schedule heavily depends
upon some quantities associated to the cycle decomposition [3,4,5]. For parallel simulated
annealing and generalizations, see also [21,22,23,24]. For genetic algorithms, the cycle
decomposition is the key for understanding the behaviour of the process and for control-
ling the algorithm in order to ensure the convergence towards the global maxima [7,8,9].
For the study of metastability, a general model independent analysis of the exit path for
reversible processes was proposed in [18]. In [6] we handled the general case of Markov
chains with rare transitions and developed a general method to search efficiently for the
exit path. Our technique focuses on the crucial elements of the cycle decomposition neces-
sary to find the exit path. More precisely, we seek only the sequence of cycles the system
might visit during the exit. Such a precise and economical method is indispensable to deal
with the three dimensional Ising model: the energy landscape is so huge and complex that
the least inaccuracy, the least deviation from the metastable path is disastrous and leads
to inextricable problems. To apply our general method to a particular model, we need to
solve some global and local variational problems. This combinatorial part for the three
dimensional Ising model was handled in [1]. Notice that one has to piece together carefully
the variational results in order to find the exit path.

Neves has obtained the first important results concerning the d–dimensional case in [14].
Using an induction on the dimension, he proves the d–dimensional discrete isoperimetric
inequality from which he deduces the asymptotic behaviour of the relaxation time. He
analyzes also the behaviours of regular droplets in dimension three [15]. However to ob-
tain full information on the exit path one needs more refined variational statements (for
instance uniqueness of some minimal shapes) together with a precise investigation of the
energy landscape near these minimal shapes. We examine all the configurations which
communicate with the metastable state under the global energy barrier (i.e. the greatest
cycle containing the metastable state and not the stable state). The configurations of the
principal boundary of this cycle which lead to the stable state are the critical droplets, the
others are dead–ends: although they are likely to be visited before the relaxation time,
they are not likely to be visited during the exit path. This notion of dead–ends was not
explicitly apparent in the treatment of the two dimensional case by Neves and Schonmann
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[16,17] because they managed in fact to characterize completely the basins of attraction of
the metastable state and the stable state. We do not know how to achieve a corresponding
result in dimension three and therefore we analyze only the set of configurations visited
by the process before relaxation.

This paper is organized as follows. We first describe the model and we recall the main
definitions concerning the cycle decomposition. We describe the general method for finding
the exit path. We prove some essential facts for the cycles of the Ising model which are
valid in any dimension. We then handle the two dimensional case. All the important
results of this section have already been proved by Neves and Schonmann [16,17,20]. We
reprove them using a technique which will also work in dimension three, for two main
reasons: we need to state these results in the language of the cycles in order to understand
the dimension three (where the droplets grow by following the two dimensional nucleation
mechanism) and moreover we hope that it will make the reading of the three dimensional
case easier (especially since there are much more cycles to analyze). We finally handle
the three dimensional situation. Synthetic descriptions of the exit path in two and three
dimensions are given in theorems 6.32 and 7.36.

2. Description of the model

We consider a finite box Λ = {1 · · ·N}d of sideN in the d–dimensional integer lattice Zd.
We will work either in dimension two (d = 2) or dimension three (d = 3). A point of this
box is called a site. Sites will be denoted by the letters x, y, z. We wrap this box into a
torus and we define a neighbourhood relation on Λ by: x ∼ y if all the coordinates of x
and y are equal except one which differs by 1 or N − 1. At each site x of Λ there is a spin
taking the values −1 or +1. The set of all possible spins configurations is X = {−1,+1}Λ.
Configurations of spins will be denoted by the letters η, σ, ξ. The value of the spin at site x
for a configuration σ is denoted by σ(x).

We might see a configuration as a subset of points of the integer lattice Zd, these points
being the sites of the configurations having a positive spin. The inclusion relation is then
defined on the configurations by

η ⊂ σ ⇐⇒ ∀x ∈ Λ η(x) = +1⇒ σ(x) = +1 .

The elementary sets operations ∩, ∪, \ are defined by

∀x ∈ Λ (σ ∪ η)(x) =

{
+1 if σ(x) = +1 or η(x) = +1

−1 if σ(x) = η(x) = −1

∀x ∈ Λ (σ ∩ η)(x) =

{
+1 if σ(x) = η(x) = +1

−1 if σ(x) = −1 or η(x) = −1

∀x ∈ Λ (σ \ η)(x) =

{
+1 if σ(x) = +1 and η(x) = −1

−1 if σ(x) = −1 or η(x) = +1
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There is a natural correspondence between configurations and polyominoes. To a config-
uration we associate the polyomino which is the union of the unit cubes centered at the
sites having a positive spin. The main difference between configurations and polyominoes
is that the polyominoes are defined up to translations. We will constantly use the notation
introduced in [1] for polyominoes: the relevant definitions are summed up at the beginning
of the sections 6 and 7. When we say that a polyomino is included in a configuration,
we mean that one of its representative is included in it. For instance, the square l × l is
included in σ if σ(x) = +1 for all x belonging to some square of side l (equivalently, the
polyomino associated to σ contains l × l).

The energy of a configuration σ is

E(σ) = −1

2

∑
{x,y}:x∼y

σ(x)σ(y) − h

2

∑
x∈Λ

σ(x)

where h > 0 is the external magnetic field.
The Gibbs probability measure µ at inverse temperature β is

∀σ ∈ X µ(σ) =
1

Z
exp−βE(σ)

where Z is the partition function.
We build the stochastic Ising model by letting the spins evolve randomly in time. The
spin at site x flips with the rate c(x, σ) when the system is in the configuration σ. The
standard construction yields a continuous time Markov process (σt)t≥0 with state space X
and infinitesimal generator L defined by

∀f : Λ→ R (Lf)(σ) =
∑
x∈Λ

c(x, σ)
(
f(σx)− f(σ)

)
where σx is the configuration σ flipped at x i.e.

σx(y) =

{
+σ(y) if y 6= x

−σ(y) if y = x

We will consider the Metropolis dynamics associated to the rates

c(x, σ) = exp−β(∆xE(σ))+

where ( )+ denotes the positive part and

∆xE(σ) = E(σx)−E(σ) = σ(x)
( ∑
y:y∼x

σ(y) + h
)
.
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Since these rates satisfy the detailed balance condition µ(σ)c(x, σ) = µ(σx)c(x, σx), we
know that the Gibbs measure µ is the only invariant measure for the process (σt).
Here we will deal with the equivalent discrete time version of the Metropolis dynamics.
We first define a kernel q on X by q(η, σ) = N−d if there exists x in Λ such that ηx = σ
(i.e η and σ differ by one spin flip) and q(η, σ) = 0 otherwise. The kernel q is irreducible
and symmetric. The transition kernel pβ at inverse temperature β is the Markov kernel
on X defined by

∀η 6= σ pβ(η, σ) = q(η, σ) exp−β
(
E(σ)−E(η)

)+
∀η pβ(η, η) = 1−

∑
σ 6=η

pβ(η, σ).

We will study the time homogeneous Markov chain (σn)n∈N having for transition proba-
bilities the Markov kernel pβ .
We denote by −1 (respectively +1) the configuration with all spins down (resp. up).
For D an arbitrary subset of X we define the time τ (D,m) of exit from D after time m

τ (D,m) = min{n ≥m : σn 6∈ D }

(we make the convention that τ (D) = τ (D, 0)).
For instance, τ (+1c) is the hitting time of the ground state +1.
We define also the time θ(D,m) of the last visit to the set D before time m

θ(D,m) = max{n ≤ m : σn ∈ D }

(if the chain has not visited D before m, we take θ(D,m) = 0).
For instance, θ(−1, τ (+1c)) is the last visit to the metastable state −1 before reaching +1.
We are interested in the laws of τ (+1c) starting from −1 (time of the relaxation to equi-
librium) and of the way of escaping from the metastable state −1 to reach +1, that is
the law of the exit path ((σn), θ(−1, τ (+1c)) ≤ n ≤ τ (+1c)), in the limit of vanishing
temperature β →∞.

3. Decomposition into cycles

The most efficient tool to analyze the dynamical behaviour of a Markov chain with
exponentially vanishing transition probabilities is the hierarchical decomposition of the
state space into cycles. This fundamental notion is due to Freidlin and Wentzell [10] and
was sharpened by Hwang and Sheu for discrete spaces [11]. Here we will deal with an
energy landscape (X, q,E) (that is a finite set X equipped with a communication kernel q
and the energy E), as in the case of the simulated annealing. We recall here briefly the
main definitions introduced by Catoni in this context [3].
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Definition 3.1. (communication at level λ)
Let λ be a real number. The communication relation at level λ on the landscape (X, q,E)
is the equivalence relation Rλ defined by σRλ η if and only if either σ = η or there exists
a sequence ξ0, · · · , ξr of points in X such that

ξ0 = σ, ξr = η, ∀i ∈ {0 · · · r − 1} q(ξi, ξi+1) > 0, ∀i ∈ {0 · · · r} E(ξi) ≤ λ.

Definition 3.2. (cycles)
A cycle π is a subset of X which is an equivalence class of a relation Rλ for some λ in R.
The smallest such λ is denoted by λ(π) and is called the level of the cycle π. For σ in X
and λ in R we denote by π(σ, λ) the equivalence class of σ for the relation Rλ.
Proposition 3.3. Two cycles are either disjoint or comparable for the inclusion relation.

Notation 3.4. Since X is finite, the set {E(σ) : σ ∈ X } is also finite. For λ in R we set

predλ = max{E(σ) : E(σ) < λ, σ ∈ X } ,
succλ = min{E(σ) : E(σ) > λ, σ ∈ X } .

Definition 3.5. (maximal partition)
Let D be a subset of X. A subcycle of D is a cycle which is included in D. The partition
of D into its maximal subcycles is denoted byM(D). For σ in D we denote by π(σ,D) the
unique cycle ofM(D) containing σ. For σ in Dc we set by convention that π(σ,D) = {σ}.
Remark. In case D is a cycle, we haveM(D) = {D}.
Remark. There is no ambiguity between the two notations π(σ, λ) and π(σ,D), since λ
and D are different objects.

Definition 3.6. (communication altitude)
The communication altitude between two points σ and η of X is the smallest λ such
that σRλ η. It is denoted by E(σ, η). Equivalently, it is the level of the smallest cycle
containing the points σ and η. The communication altitude between two sets A and B is
defined by E(A,B) = min{E(a, b) : a ∈ A, b ∈ B }.
Definition 3.7. Let π be a cycle. We define
• its energy E(π) = min{E(σ) : σ ∈ π },
• its bottom F (π) = {σ ∈ π : E(σ) = E(π) },
• its boundary B(π) = {σ 6∈ π : ∃ η ∈ π q(η, σ) > 0 },
• its height H(π) = min{ (E(σ)− E(π))+ : σ ∈ B(π) },
• its principal boundary B̃(π) = {σ ∈ B(π) : E(σ) ≤ E(π) +H(π) }.

Remark. If the height H(π) is positive, then the principal boundary B̃(π) is exactly the
set {σ ∈ B(π) : E(σ) = E(π)+H(π) }. The height H(π) can vanish only in the case when
the cycle π is a singleton.
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The main part of the work here consists in analyzing the specific energy landscape of
the Ising model and some crucial facts concerning its cycle decomposition.

4. The exit saddle path

In this section, we make a summary of the general strategy devised in [6] in order to
describe the exit path of the process. We take into account the simplifications induced by
the reversibility of the process and just state the essential points. A good way to describe
the exit path is to look at the points of entrance and exit of the cycles ofM({−1,+1}c) the
system visits during the exit path. The knowledge of this sequence of points includes the
knowledge of the sequence of the cycles visited by the process. Our work will consists in
finding the most probable of these sequences i.e. those whose probability does not vanish
as β goes to infinity.

Definition 4.1. (saddle path)
We define recursively a sequence of random times and points:

τ0 = θ(−1, τ (+1c)) + 1 s0 = στ0−1 s1 = στ0
τ1 = τ (π(s1, {−1,+1}c), τ0) s2 = στ1−1 s3 = στ1

...
...

...
τk = τ (π(s2k−1, {−1,+1}c), τk−1) s2k = στk−1 s2k+1 = στk

...
...

...
τr = τ (+1c) s2r = στr−1 s2r+1 = στr .

Clearly we have s0 = −1 and s2r+1 = +1. The sequence (−1, s1, · · · , s2r ,+1) is called
the saddle path of (σn) relative to +1c,−1. We define a cost function V on the set of the
saddle paths:

V (s0, · · · , s2r+1) = −H(π(−1,+1c)) +
(
E(s1)− E(s0)

)+
+

r∑
k=1

(
E(s2k) +

(
E(s2k+1)−E(s2k)

)+ −H(π(s2k , {−1,+1}c))− E(π(s2k, {−1,+1}c))
)
.

We proved in [6] that the law of the saddle path satisfies a large deviation principle with
rate function V . As a consequence, with a probability converging to one exponentially fast
as β goes to infinity, the exit saddle path follows a saddle path of null cost. What we have
to do is to search for all these saddle paths. Because we are working with the maximal
subcycles of {−1,+1}c, the saddles of the saddle path are min-max points between the
cycles visited and {−1,+1} (see [18]). The task of determining the set of all the saddle
paths of null V –cost can be performed in the following way.
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General strategy to find the exit path.

i) find the points σ′ of the principal boundary of the cycle π(−1,+1c);

ii) for each such point σ′ in B̃(π(−1,+1c)), determine all the sequences of cycles π0 · · · πr
inM({−1,+1}c) such that σ′ ∈ π0, B̃(πk) ∩ πk+1 6= ∅ for k in {0 · · · r − 1}, +1 ∈ B̃(πr).

iii) for each such cycle path π0, · · · , πr determine all the saddle paths (σ′, s1, · · · , s2r ,+1)
such that (s2k−1, s2k) ∈ πk × πk for k in {1 · · · r}, and (s2k, s2k+1) is an optimal saddle

exiting from πk for all k in {0 · · · r} i.e. s2k ∈ πk, s2k+1 ∈ B̃(πk), q(s2k, s2k+1) > 0.

iv) for each point σ′ in B̃(π(−1,+1c)) such that step ii) has succeeded, determine all the

sequences of cycles π′0 · · · π′r′ in M({−1,+1}c) such that σ′ ∈ π′0, B̃(π′k) ∩ π′k+1 6= ∅ for k

in {0 · · · r′ − 1}, −1 ∈ B̃(πr′ ).

v) for each such cycle path π′0, · · · , π′r′ determine all the saddle paths (σ′, s′1, · · · , s′2r′ ,−1)
such that (s′2k−1, s

′
2k) ∈ π′k × π′k for k in {1 · · · r′}, and (s′2k , s

′
2k+1) is an optimal saddle

exiting from π′k for all k in {0 · · · r′} i.e. s′2k ∈ π′k, s′2k+1 ∈ B̃(π′k), q(s
′
2k, s

′
2k+1) > 0.

vi) the set of all the saddle paths of null V –cost passing trough σ′ is the set of the saddle
paths (s′2r′+1, · · · , s′1, σ′, σ′, s1, · · · , s2r+1) obtained by glueing together a reversed saddle
path obtained at step v) with a saddle path obtained at step iii).

The global variational problem consists in finding the principal boundary of the cycle
π(−1,+1c). The local variational problems consist in finding the principal boundaries of
the cycles appearing in the cycle paths starting at the points of this principal boundary.
Notice that we took advantage of the reversibility of the process to complete steps iv)
and vi). We used the fact that the portion of the saddle path between −1 and σ′ in

B̃(π(−1,+1c)) can be obtained by reversing a saddle path starting at σ′ and reaching
−1 (see last section of [6] as well as [20]). In the general case, the variational condition
imposed on this portion of the saddle path is not easy to manipulate.

Remark that step ii) may fail: it might happen that there is no cycle path of null cost
in M({−1,+1}c) starting at σ′ reaching +1. In that case, there is no saddle path of null
cost passing through σ′ and it is not necessary to perform the step v): such a point σ′ is
a dead–end.

Definition 4.2. A point σ is a dead–end to go from−1 to +1 if σ belongs to B̃(π(−1,+1c))
and there does not exist a sequence of cycles π0 · · · πr inM({−1,+1}c) such that σ ∈ π0,

B̃(πk) ∩ πk+1 6= ∅ for k in {0 · · · r− 1}, +1 ∈ B̃(πr).

Our strategy to discover the exit path is aimed at analyzing only the relevant features
of the energy landscape. However it seems to us that it is impossible to avoid considering
the dead–ends, if one wishes to determine completely the points the process is likely to
visit during the exit path.
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Let us describe more formally this strategy. On the set of all the cycles, we consider
the graph G defined by

(π1 → π2) ∈ G ⇐⇒ π1 ∩ π2 = ∅, B̃(π1) ∩ π2 6= ∅.

We denote by G+ the restriction of G to π(−1,+1c)c obtained by deleting all the arrows
whose starting cycle is included in π(−1,+1c) i.e.

(π1 → π2) ∈ G+ ⇐⇒ (π1 → π2) ∈ G, π1 ∩ π(−1,+1c) = ∅.

Symmetrically we denote by G− the restriction of G to π(+1,−1c)c obtained by deleting
all the arrows whose starting cycle is included in π(+1,−1c) i.e.

(π1 → π2) ∈ G− ⇐⇒ (π1 → π2) ∈ G, π1 ∩ π(+1,−1c) = ∅.

Definition 4.3. Let I be a graph over the set of cycles and let π be a vertex of I.
The orbit O(π, I) of π in I is the set

O(π, I) = {π′ : ∃π1, · · · , πr cycles, π1 = π, πr = π′, (πk → πk+1) ∈ I, 1 ≤ k < r }.

We denote by I(π) the minimal stable subgraph of I containing π; it is the restriction of I
to the orbit of π in I i.e.

(π1 → π2) ∈ I(π) ⇐⇒ (π1 → π2) ∈ I, π1 ∈ O(π, I).

Step ii) consists in determining the graph G+({σ′}) for each point σ′ in the principal
boundary of π(−1,+1c). If {+1} does not belong to O({σ′}, G+), then σ′ is a dead–
end and the last exit from π(−1,+1c) before reaching +1 won’t take place through σ′,
although σ′ is likely to be visited before relaxation. Otherwise, σ′ is a possible global
saddle between −1 and +1 and we determine all the paths in G+({σ′}) leading from {σ′}
to {+1}. Then we must search for all the cycle paths in {−1,+1}c of null cost realizing
the exit of π(−1,+1c) at σ′. More precisely, in step iv) we determine all the paths in the
graph G−({σ′}) starting at {σ′} and ending at {−1}.

To achieve these goals, we will describe a list of relevant cycles, which are included
in {−1,+1}c and we will precise their principal boundaries. Notice that we don’t know a
priori that these cycles are inM({−1,+1}c). We will then use the following simple result.

Lemma 4.4. Let π0, · · · , πr be a sequence of cycles included in {−1,+1}c such that

(πi → πi+1) ∈ G for i in {0 · · · r − 1} and B̃(πr) ∩ {−1,+1} 6= ∅. Then all the cycles
π0, · · · , πr are maximal cycles in {−1,+1}c.
Proof. It is enough to prove that π0 is a maximal cycle of {−1,+1}c, since π1, · · · , πr
satisfy a similar hypothesis. Let π be a cycle containing strictly π0. Necessarily, π con-

tains B̃(π0) (the principal boundary B̃(π0) is the set of the points of the boundary of π0
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which have a minimal energy, see definition 3.7). Since B̃(π0)∩π1 6= ∅, then π∩π1 6= ∅. By
proposition 3.3, we have either π ⊂ π1 or π1 ⊂ π. However π0 and π1 are disjoint so that
we can’t have π ⊂ π1. Therefore π1 ⊂ π, and the inclusion is strict since π contains π0.

By induction, we obtain that πr is also strictly contained in π. It follows that B̃(πr) ⊂ π,
implying that {−1,+1} ∩ π 6= ∅. Thus π is not a subcycle of {−1,+1}c. �

This result will yield ”instantaneously” the list of the relevant cycles and will designate
those cycles of the list which are inM({−1,+1}c). Our list of cycles will be large enough

to ensure that for each configuration σ′ in B̃(π(−1,+1c)), it includes all the vertices of
the minimal stable subgraph of G containing {σ′}. We will therefore use lemma 4.4 as a
basic tool to find some maximal subcycles of {−1,+1}c. We will not find all the cycles
of M({−1,+1}c), which is a formidable task compared to the problem of describing the
first passage from−1 to +1. For instance we do not investigate the cycles containing several
large subcritical droplets close enough to interact instead of disappearing separately.

Step vi) consists in doing the synthesis of all the results gathered in the previous steps
i)−v). The set of all the cycle paths of null cost is obtained by glueing together an ascending
part and a descending part. We define a graph G over the cycles of M({−1,+1}c) by

(π1 → π2) ∈ G ⇐⇒ ∃σ′ ∈ B̃(π(−1,+1c)), (π1 → π2) ∈ G+(σ′) or (π2 → π1) ∈ G−(σ′)

i.e. the graph G is the union for σ′ in B̃(π(−1,+1c)) of the graphsG+(σ′) and the reversed
graphs G−(σ′). The set of the cycle paths of null cost is the set of all the paths in the
graph G joining {−1} to {+1}. Thus the graph G contains all the information necessary
to obtain the set of the cycle paths of null cost between −1 and +1.

5. The bottom of the cycles

The results of this section are valid in any dimension d. They describe some essential
facts concerning the geometry of the cycles of the energy landscape of the Ising model.
Theorem 5.3 concerns the points of the cycle we might reach starting from a configuration
belonging to the bottom of the cycle. Theorem 5.5 gives a condition implying that the
bottom of the cycle is reduced to one point. These theorems will be crucial to handle the
two and three dimensional cases. Their proofs rely heavily on the following inequality.

Theorem 5.1. (an energy inequality)
For any configurations η, σ, ξ of X such that η ⊂ σ ⊂ ξ, we have (for positive h)

E(σ \ η) − E(σ) ≤ E(ξ \ η) − E(ξ).

Proof. The statement can be checked by a direct computation. �
Remark. This inequality might be interpreted as follows. The variation of energy when we
turn down a fixed set of spins of a configuration σ increases when we enlarge σ.
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Notation 5.2. Let x be a site in Λ. We define the spin flip operator T (x) : X → X
by T (x)(σ) = σx where we recall that

σx(y) =

{
+σ(y) if y 6= x

−σ(y) if y = x

Let x1, · · · , xr be a sequence of sites in Λ. We define the operator T (x1, · · · , xr) : X → X
by T (x1, · · · , xr) = T (xr) ◦ · · · ◦ T (x1).
Let σ belong to X. To σ we associate two operators S+(σ) and S−(σ) on the sequences
of sites. The sequence S−(σ)(x1 , · · · , xr) (respectively S+ · · · ) is the subsequence of
(x1, · · · , xr) consisting of the sites xi such that σ(xi) = −1 (resp. σ(xi) = +1).

Remark. When we speak of a sequence of sites (x1, · · · , xr) without further precision, the
sites do not have to be distinct. For any sequence of sites (x1, · · · , xr) and any configura-
tion σ we have T (S+(σ)(x1 , · · · , xr))(σ) ⊂ σ ⊂ T (S−(σ)(x1, · · · , xr))(σ).

Theorem 5.3. Let π be a cycle and let σ be a configuration of the bottom F (π) of π.
Let (x1, · · · , xr) be a sequence of sites such that T (x1, · · · , xj)(σ) belongs to π for all j
in {1 · · · r}. Then T (S−(σ)(x1 , · · · , xr))(σ) and T (S+(σ)(x1, · · · , xr))(σ) also belong to π.
Equivalently, if we let η = T (x1, · · · , xr)(σ), then η ∪ σ and η ∩ σ are in π.

Proof. We prove the result by induction on the length r of the sequence of sites (x1, · · · , xr).
The result is obviously true for r = 0 and r = 1. Assume it is true at rank r and let
(x1, · · · , xr+1) be a sequence of sites such that T (x1, · · · , xj)(σ) belongs to π for all j
in {1 · · · r + 1}. Let ξ = T (S−(σ)(x1, · · · , xr+1))(σ) and let η be the unique configuration
included in σ such that σ \ η = T (S+(σ)(x1, · · · , xr+1))(σ). We have η ⊂ σ ⊂ ξ. By
hypothesis, ξ \ η = T (x1, · · · , xr+1)(σ) ∈ π whence E(ξ \ η) ≤ λ(π).
• First case: σ(xr+1) = −1. In this situation, we have

S−(σ)(x1 , · · · , xr+1) = (S−(σ)(x1 , · · · , xr), xr+1),

S+(σ)(x1 , · · · , xr+1) = S+(σ)(x1, · · · , xr).

By the induction hypothesis, we know that

T (S−(σ)(x1, · · · , xr))(σ) ∈ π, σ \ η = T (S+(σ)(x1, · · · , xr+1))(σ) ∈ π.

Now ξ = T (xr+1) ◦ T (S−(σ)(x1, · · · , xr))(σ) i.e. ξ communicates by one spin flip with a
configuration of π. Moreover σ\η belongs to π whence E(σ) ≤ E(σ\η) (because σ ∈ F (π)).
By theorem 5.1 we have E(ξ) ≤ E(ξ \ η) + E(σ) − E(σ \ η). Therefore E(ξ) is less than
the level of π so that ξ is in π.
• Second case: σ(xr+1) = +1. In this situation, we have

S−(σ)(x1, · · · , xr+1) = S−(σ)(x1 , · · · , xr),
S+(σ)(x1, · · · , xr+1) = (S+(σ)(x1, · · · , xr), xr+1).

12



By the induction hypothesis, we know that

ξ = T (S−(σ)(x1, · · · , xr+1))(σ) ∈ π, T (S+(σ)(x1, · · · , xr))(σ) ∈ π.

By theorem 5.1 we haveE(σ\η) ≤ E(ξ\η)+E(σ)−E(ξ). Therefore E(σ\η) is less than the
level of π. Since σ \ η differs by one spin flip (at site xr+1) from T (S+(σ)(x1, · · · , xr))(σ)
which is in π, σ \ η is also in π.
Thus the induction is completed. �
Corollary 5.4. Let π be a cycle an let σ be an element of F (π). If η is a minimal (respec-
tively maximal) element of π with respect to the inclusion, then there exists a sequence of
sites (x1, · · · , xr) such that η = T (x1, · · · , xr)(σ), T (x1, · · · , xj)(σ) ∈ π and σ(xj) = +1
(resp. σ(xj) = −1) for all j in {1 · · · r}. In particular, η ⊂ σ (resp. σ ⊂ η).
Theorem 5.5. Let π be a cycle and let σ be a configuration of π satisfying:
for each ε in {−1,+1} and each sequence of sites (x1, · · · , xl) in Λl such that

T (x1, · · · , xl)(σ) 6= σ, ∀j ∈ {1 · · · l} σ(xj) = ε, T (x1, · · · , xj)(σ) ∈ π,

we have E(T (x1, · · · , xl)(σ)) > E(σ).
Then the configuration σ also satisfies:
for each sequence of sites (x1, · · · , xr) in Λr such that T (x1, · · · , xj)(σ) belongs to π for
all j in {1 · · · r}, the configurations T (S−(σ)(x1, · · · , xr))(σ) and T (S+(σ)(x1, · · · , xr))(σ)
are in π and

E(T (x1, · · · , xr)(σ)) ≥ E(T (S−(σ)(x1 , · · · , xr))(σ)) ≥ E(σ),

E(T (x1, · · · , xr)(σ)) ≥ E(T (S+(σ)(x1, · · · , xr))(σ)) ≥ E(σ),

E(T (x1, · · · , xr)(σ)) = E(σ) =⇒ T (x1, · · · , xr)(σ) = σ.

The bottom F (π) of the cycle π is then reduced to this single configuration σ.

Proof. We prove the result by induction on the length r of the sequence of sites (x1, · · · , xr)
appearing in the conclusion of the theorem. For r = 0 and r = 1 it is true. Assume it is
true until rank r and let (x1, · · · , xr+1) be a sequence of sites such that T (x1, · · · , xj)(σ)
belongs to π for all j in {1 · · · r + 1}. The induction hypothesis yields that for all j
in {1 · · · r} the configurations T (S−(σ)(x1, · · · , xj))(σ), T (S+(σ)(x1, · · · , xj))(σ) are in π
and moreover

E(T (x1, · · · , xj)(σ)) ≥ E(T (S−(σ)(x1 , · · · , xj))(σ)) ≥ E(σ),

E(T (x1, · · · , xj)(σ)) ≥ E(T (S+(σ)(x1, · · · , xj))(σ)) ≥ E(σ),

E(T (x1, · · · , xj)(σ)) = E(σ) =⇒ T (x1, · · · , xj)(σ) = σ.
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By hypothesis, T (x1, · · · , xr+1)(σ) is in π so that E(T (x1, · · · , xr+1)(σ)) ≤ λ(π).
• First case: σ(xr+1) = −1. In this situation, we have

S−(σ)(x1 , · · · , xr+1) = (S−(σ)(x1 , · · · , xr), xr+1),

S+(σ)(x1 , · · · , xr+1) = S+(σ)(x1, · · · , xr).

By the induction hypothesis, we know that T (S+(σ)(x1, · · · , xr+1))(σ) is in π. Since for
all j in {1 · · · r + 1}, T (S+(σ)(x1, · · · , xj))(σ) is in π, the hypothesis on σ implies that
E(T (S+(σ)(x1, · · · , xr+1))(σ)) ≥ E(σ). Now theorem 5.1 yields

E(T (S−(σ)(x1 , · · · , xr+1))(σ)) ≤ E(T (x1, · · · , xr+1)(σ)) + E(σ)−
E(T (S+(σ)(x1, · · · , xr+1))(σ))

≤ E(T (x1, · · · , xr+1)(σ)) ≤ λ(π)

and T (S−(σ)(x1, · · · , xr+1))(σ) is in π, since its energy is less than the level of π and it
differs by one spin flip (at site xr+1) from a configuration of π. The hypothesis on σ finally
implies that E(T (S−(σ)(x1, · · · , xr+1))(σ)) ≥ E(σ).
• Second case: σ(xr+1) = +1. In this situation, we have

S−(σ)(x1, · · · , xr+1) = S−(σ)(x1 , · · · , xr),
S+(σ)(x1, · · · , xr+1) = (S+(σ)(x1, · · · , xr), xr+1).

By the induction hypothesis, we know that T (S−(σ)(x1, · · · , xr+1))(σ) is in π. Since for
all j in {1 · · · r + 1}, T (S−(σ)(x1, · · · , xj))(σ) is in π, the hypothesis on σ implies that
E(T (S−(σ)(x1, · · · , xr+1))(σ)) ≥ E(σ). Now theorem 5.1 yields

E(T (S+(σ)(x1, · · · , xr+1))(σ)) ≤ E(T (x1, · · · , xr+1)(σ)) + E(σ)−
E(T (S−(σ)(x1, · · · , xr+1))(σ))

≤ E(T (x1, · · · , xr+1)(σ)) ≤ λ(π)

and T (S+(σ)(x1 , · · · , xr+1))(σ) is in π, since its energy is less than the level of π and it
differs by one spin flip (at site xr+1) from a configuration of π. The hypothesis on σ finally
implies that E(T (S+(σ)(x1, · · · , xr+1))(σ)) ≥ E(σ).
In both cases, equality can occur only if

E(T (S−(σ)(x1, · · · , xr+1))(σ)) = E(T (S+(σ)(x1, · · · , xr+1))(σ)) = E(σ).

The hypothesis on σ then implies that

T (S−(σ)(x1 , · · · , xr+1))(σ) = T (S+(σ)(x1, · · · , xr+1))(σ) = σ

or equivalently T (x1, · · · , xr+1)(σ) = σ. The induction is completed. �
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6. Dimension two

A polyomino associated to a configuration is a finite union of unit squares. For σ
a configuration we will denote by p(σ) the perimeter of the associated polyomino and
by a(σ) its area. We will rely heavily on the notation and results of [1]. Let us recall some
essential points.

Summary of the combinatorial results.

The rectangle of sides l1 and l2 is denoted by l1× l2. A quasisquare is a rectangle l1× l2
with |l1− l2| ≤ 1. By l1 × l2 +1 k (resp. l1× l2 +2 k) we denote the rectangle l1× l2 plus a
vertical (resp. horizontal) bar of length k sticked against the side l2 (resp. l1) starting from
the bottom (resp. from the left). When we speak of l1× l2 +1 k, we assume implicitly that
the length of the bar is less than l2. We use the operators +i

1,+
i
2 to specify the position

of the bar: l1× l2 +i
1 k means that the bar starts at the (i+ 1)–th square along the side of

l1 × l2. By l1 × l2 ⊕1 k (respectively l1 × l2 ⊕2 k) we denote the set of all the polyominoes
obtained by sliding the bar of length k along the side l2 (resp. l1) of the rectangle in such
a way that the polyomino is always included in (l1 + 1)× l2 (resp. l1 × (l2 + 1)). Because
of the context, there should be no ambiguity between the + operator for integers and
polyominoes. Moreover the latter will always have a subscript (i.e. +1, +2).

8× 2 +2 5 3× 3 +1
1 1

figure 1: the poloyminoes 8× 2 +2 5, 3× 3 +1
1 1

For A a set of polyominoes, we denote by A its orbit under the action of the planar
isometries which leave the integer lattice Z2 invariant. By A

12
we denote its orbit under

the action of the two symmetries with respect to the axis.

Proposition 6.1. For each integer n there exists a unique 3–uple (l, k, ε) such that

ε ∈ {0, 1}, 0 ≤ k < l+ ε and n = l(l + ε) + k.

The set of the polyominoes of area n is Cn; the set Mn of the minimal polyominoes of area
n is the set of the polyominoes of Cn having minimal perimeter. Let n = l(l + ε) + k be
the decomposition of n. The canonical polyomino of area n is

mn =

{
l × l +1 k if ε = 0

(l + 1)× l +2 k if ε = 1

15



figure 2: the canonical polyominoes m28,m23

Theorem 6.2. The canonical polyomino mn is minimal.

This theorem is the key for determining the energy barrier the system has to overcome to
travel from −1 to +1. It simultaneously gives a lower bound for this energy barrier and
exhibits a growing sequence of polyominoes realizing this lower bound. This energy barrier
gives the constant characterizing the asymptotic behaviour of the relaxation time.

We define several important subsets of Mn. The set Sn of the standard polyominoes is

Sn =

{
l × l ⊕1 k if ε = 0

(l + 1)× l ⊕2 k if ε = 1

The set M̃n of the principal polyominoes is

M̃n = l × (l + ε)⊕1 k
⋃

l × (l + ε)⊕2 k.

The sets Sn and M̃n coincide only when ε is zero. Clearly {mn} ⊂ Sn ⊂ M̃n ⊂ Mn.
Figure 3 shows that the inclusions may be strict.

figure 3: elements of {m13}, S13 \ {m13}, M̃13 \ S13, M13 \ M̃13

In general, the set Mn is much larger than M̃n. It turns out that it is not the case for
specific values of n.

Theorem 6.3. The set Mn is reduced to {mn } if and only if n is of the form l2.
The set Mn coincides with Sn if and only if n is of the form l2, l(l + 1) − 1, l(l + 1), in

which case Sn = mn. The set Mn coincide with M̃n if and only if the integer n is of the
form l2, l(l + 1)− 1, l(l + 1), (l + 1)2 − 1.

This theorem will be crucial to determine precisely the set of the critical droplets. It gives
the uniqueness results associated to the discrete isoperimetric inequality. In fact, it will
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turn out that we do not have uniqueness of the isoperimetric problem for the area of the
critical droplet. Luckily enough, there is uniqueness for the area preceding it. We will
therefore rely on the following lemma.

Lemma 6.4. For n of the form l2, l(l + 1), we have

{ c ∈Mn−1 : q(Mn, c) > 0 } = Sn−1,

{ c ∈Mn+1 : q(Mn, c) > 0 } = M̃n+1

(where q(Mn, c) = min{q(d, c) : d ∈Mn}).
Proposition 6.5. The principal polyominoes can be completely shrunk through the

principal polyominoes: for any integer n and for any principal polyomino c in M̃n, there
exists an increasing sequence c0, · · · , cn of principal polyominoes such that c0 = ∅, cn = c
and q(ci−1, ci) > 0 for i in {1 · · · n}.
A consequence of this proposition is that the set of the principal polyominoes associated
to the critical volume is contained in the principal boundary of the greatest cycle contain-
ing −1 and not +1. Let us remark that it is not possible to grow arbitrarily far through
the minimal polyominoes a principal polyomino which is not standard: such a polyomino
can only grow until a rectangle l× (l + 2) and is a dead–end.

Proposition 6.6. The standard polyominoes can be grown or shrunk arbitrarily far
through the standard polyominoes: for any integers m ≤ n and for any standard poly-
omino c in Sm, there exists an increasing sequence c0, · · · , cn of standard polyominoes such
that c0 = ∅, cm = c and q(ci−1, ci) > 0 for i in {1 · · ·n}.
The statement of proposition 6.6 concerns the set of the standard polyominoes, which (ex-
cept for specific values of the area) is a strict subset of the set of the principal polyominoes
considered in proposition 6.5. The nice feature of the standard polyominoes is that they
can be grown arbitrarily far through the minimal polyominoes (proposition 6.6 asserts that
a standard polyomino of area m can be grown until any area n ≥m).

Notation 6.7. We have also some results concerning the best way to shrink or to grow
a rectangle. Let l1, l2, k be three positive integers. We define

M(l1 × l2,−k) = { c ∈ Cl1l2−k : c ⊂ l1 × l2, p(c) minimal}.

More precisely, a polyomino c belongs to M(l1 × l2,−k) if and only if

c ∈ Cl1l2−k, c ⊂ l1 × l2, p(c) = min{ p(d) : d ∈ Cl1l2−k, d ⊂ l1 × l2 }.

Similarly, we define

M(l1 × l2, k) = { c ∈ Cl1l2+k : l1 × l2 ⊂ c, p(c) minimal} ,
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i.e. a polyomino c belongs to M(l1 × l2, k) if and only if

c ∈ Cl1l2+k, l1 × l2 ⊂ c, p(c) = min{ p(d) : d ∈ Cl1l2+k, l1 × l2 ⊂ d }.

Notice that the elements of M(l1 × l2, k) (respectively M(l1 × l2,−k)) all have the same
energy, since they all have the same area and perimeter. We denote by E(l1 × l2, k)
(respectively E(l1× l2,−k)) the energy of an element of M(l1× l2, k) (resp. M(l1× l2,−k)).
A natural way to remove (add) k squares (for k < l1, k < l2) is to remove (add) a line on
a side of the rectangle; thus we define

S(l1 × l2,−k) = (l1 − 1)× l2 ⊕1 (l2 − k)
12 ⋃

l1 × (l2 − 1)⊕2 (l1 − k)
12
,

S(l1 × l2, k) = { l1 × l2 ⊕2 k, l1 × l2 ⊕1 k }
12
.

Proposition 6.8. Let l1, l2, k be positive integers such that k < l1, k < l2.
The set M(l1 × l2,−k) is the set of the polyominoes obtained by removing successively k
corner squares from l1 × l2. In particular, S(l1 × l2,−k) is included in M(l1 × l2,−k).
Proposition 6.9. Let l1, l2, k be positive integers such that k < l1, k < l2.
The set M(l1 × l2, k) is equal to the set S(l1 × l2, k).
These propositions will be the key to find the principal boundaries of the cycles around
the supercritical rectangles, around the subcritical quasisquares and around the dead–ends
i.e. the principal non standard polyominoes.

Application to the two dimensional Ising model.

We first express the energy of the Ising model with the help of the perimeter and the
area of the polyomino associated to the configuration.

Lemma 6.10. For any configuration σ in X, we have

E(σ) = −1

2

∑
{x,y}:x∼y

σ(x)σ(y) − h

2

∑
x∈Λ

σ(x) = p(σ) − ha(σ) + N2(h/2− 1) .

We do not change the dynamics nor the cycle decomposition by adding a constant to the
energy E. In dimension two, we will work with the energy E(σ) = p(σ)−ha(σ). We denote
by E(n) the minimal energy of a configuration of Cn (so that E(n) = E(σ) = p(σ) − hn
for any σ in Mn).

Hypothesis on the magnetic field h and the size N . We suppose that h is small compared
to the unity and that for any configurations η, σ, the equality E(η) = E(σ) implies a(η) =
a(σ) and p(η) = p(σ). Whenever we take the integral part of a quantity involving h, we
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assume that this quantity is not an integer. For instance 2/h is not an integer. Finally,
N is large enough to ensure that the combinatorial results proved on the infinite lattice
Z2 remain valid on the torus until the critical area 2/h(2/h+ 1). This is obviously true if
h2N > 6.

Remark. A careful study would yield the weaker condition h2N2 > K for some constant
K: this would require to push further the techniques used in [1].

We now follow the general strategy outlined in section 4. Our first aim is to determine
the communication altitude between −1 and +1 (corollary 6.14) and to compute it explic-
itly (proposition 6.15). We start by giving a lower bound on the communication altitude
between the sets of configurations of volume m and n (proposition 6.11) and then exhibit
a particular sequence of configurations realizing precisely the value of this lower bound
(proposition 6.12).

Proposition 6.11. Let m ≤ n be two integers. The communication altitude between
the sets Cm and Cn is greater or equal than max{ E(r) : m ≤ r ≤ n }.
Proof. Let σ0, · · · , σs be a sequence of configurations such that σ0 ∈ Cm, σs ∈ Cn and
q(σi, σi+1) > 0 for i in {0 · · · s− 1}. Necessarily we have |a(σi)− a(σi+1)| ≤ 1 so that the
sequence of integers a(σ0), · · · , a(σs) takes all the values between m = a(σ0) and n = a(σs).
Henceforth

max
0≤i≤s

E(σi) ≥ max
0≤i≤s

E(a(σi)) ≥ max
m≤r≤n

E(r) . �

Proposition 6.12. Let σ belong to Sm and let m1, m2 in N be such that m1 ≤ m ≤ m2.
There exist σ1, σ2 in Sm1 , Sm2 satisfying

E(σ1, σ) = max{ E(n) : m1 ≤ n ≤ m } ,
E(σ, σ2) = max{ E(n) : m ≤ n ≤m2 } .

Remark. Let us note that the statement of the proposition 6.12 concerns only the standard
configurations and does not hold for any configuration σ in Cn.

Proof. We only deal with σ1 and Sm1 , the other case being similar. Proposition 6.6 yields
the existence of a sequence σm1 , · · · , σm−1, σm such that

σm = σ , ∀j ∈ {m1 · · ·m− 1} σj ∈ Sj , q(σj , σj+1) > 0 .

Taking σ1 = σm1 we have

E(σ1, σ) ≤ max
m1≤n≤m

E(σn) ≤ max
m1≤n≤m

E(n).

The reverse inequality is a consequence of proposition 6.11. �
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Corollary 6.13. Let m ≤ n be two integers. The communication altitude between the
sets Cm and Cn (or Sm and Sn) is

E(Cm, Cn) = E(Sm, Sn) = max{ E(r) : m ≤ r ≤ n } = E(mm,mn).

Proof. This is a straightforward consequence of propositions 6.11 and 6.12. �
Corollary 6.14. E(−1,+1) = max{ E(n) : 0 ≤ n ≤ N2 }.

The figure below shows a graph of E(n) for h = 0.21.
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figure 4: the two dimensional minimal energy E(n)

To compute E(n) we apply theorem 6.2. The minimal perimeter of a polyomino of
area n is

min
σ∈Cn

p(σ) =

{
2(2l + ε) if k = 0

2(2l + ε) + 2 if k > 0

where (l, k, ε) is the unique 3–uple in N3 satisfying n = l(l + ε) + k, ε ∈ {0, 1}, k < l + ε.
Let E1 be the corresponding one dimensional energy i.e. E1(k) = 2 · 1(k > 0) − hk
(where 1(A) denotes the characteristic function of A). We have E(n) = E(l(l+ ε))+ E1(k).
Starting with E1 we find

max
k1≤k≤k2

E1(k) =


2− hk1 if k1 ≥ 2

0 if k2 < 1

2− h if k1 ≤ 1 ≤ k2
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We next compute the energy barrier between two consecutive quasisquares:

max
l2≤n≤l(l+1)

E(n) = E(l2) + max
0≤k≤l

E1(k) = E(l2) + 2− h ,

max
l(l+1)≤n≤(l+1)2

E(n) = E(l(l + 1)) + 2− h .

Thus

max
l(l+1)≤n≤(l+1)2

E(n) − max
l2≤n≤l(l+1)

E(n) = 2− hl ,

max
l2≤n≤l(l+1)

E(n) − max
l(l−1)≤n≤l2

E(n) = 2− hl .

Putting lc = d2/he, we see that these energy variations are negative for l ≥ lc and positive
for l < lc. From this, we deduce the energy barrier between two remote quasisquares:

max
l1(l1+ε1)≤n≤l2(l2+ε2)

E(n) =


E(l2(l2 + ε2 − 1) + 1) if (l2, ε2) ≤ (lc − 1, 1)

E((lc − 1)lc + 1) if (l1, ε1) ≤ (lc − 1, 1) < (l2, ε2)

E(l1(l1 + ε1) + 1) if (lc − 1, 1) < (l1, ε1)

(we use the lexicographical order on the pairs (l, ε)).
We finally obtain the global energy barrier.

Proposition 6.15. The altitude of communication between −1 and +1 is equal to

E(−1,+1) = E(nc) = E((lc − 1)lc + 1) = 4d2/he − hd2/he2 + hd2/he − h

where the critical length lc is d2/he and the critical area nc is (lc − 1)lc + 1.

Remark. In particular, E(−1,+1) ∼ 4/h when h goes to zero: the energy barrier the
system has to overcome goes to infinity like h−1.

From this we deduce the level of the greatest cycle containing −1 and not +1.

Corollary 6.16. The level of the cycle π(−1,+1c) is predE(nc).
Remark. We recall that predλ = max{E(σ) : E(σ) < λ, σ ∈ X }, see notation 3.4.

Notation 6.17. If Y is a subset of X, its minimal and maximal areas a(Y ) and a(Y ) are

a(Y ) = min{ a(σ) : σ ∈ Y } , a(Y ) = max{ a(σ) : σ ∈ Y } .

Since E(−1, Cn) = E(nc) for any n ≥ nc (by corollary 6.13 and proposition 6.15),
then all the configurations of the cycle π(−1,+1c) have an area less than nc − 1 i.e.
a(π(−1,+1c)) ≤ nc − 1. To complete step i) of the general strategy, we determine the
configurations of the principal boundary of the cycle π(−1,+1c).
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Theorem 6.18. The principal boundary B̃(π(−1,+1c)) of the cycle π(−1,+1c) is the
set M̃nc of the principal configurations of area nc. For σ in M̃nc there exists a unique
configuration in π(−1,+1c) communicating with σ, which is the quasisquare (lc − 1)× lc
or lc × (lc − 1) included in σ.

Proof. Let σ belong to M̃nc . Then E(σ) = E(nc) and proposition 6.5 yields the existence
of a sequence σ0, · · · , σnc such that

σ0 = −1, σnc = σ, ∀j ∈ {0 · · · nc − 1} σj ∈Mj , q(σj , σj+1) > 0.

In particular, we have max{E(σn) : 0 ≤ n < nc } < E(nc) so that σnc−1 belongs
to π(−1,+1c). Since q(σnc−1, σnc) > 0, the configuration σnc is in the principal boundary

of π(−1,+1c). Thus M̃nc ⊂ B̃(π(−1,+1c)).

Conversely, let σ belong to B̃(π(−1,+1c)). Necessarily E(σ) = E(nc) so that σ is of area nc
and it is a minimal configuration. In addition there must exist η in π(−1,+1c) communi-
cating with σ. This η is in Cnc−1 and satisfies E(η) < E(σ). Thus p(η) ≤ p(σ)−h = 4lc−h
and p(η) ≥ min{ p(ξ) : ξ ∈ Cnc−1 } = 4lc − 2. However the perimeter is an even integer.
The only possibility is p(η) = 4lc − 2 whence η is minimal. Yet nc − 1 = (lc − 1)lc and by
theorem 6.3, Mnc−1 = Snc−1 so that η belongs to Snc−1 and it is a quasisquare (lc−1)× lc
or lc × (lc − 1). Lemma 6.4 shows that the only points of Mnc which communicate with

Mnc−1 are the configurations of M̃nc . Thus σ is a principal configuration of area nc and

B̃(π(−1,+1c)) ⊂ M̃nc . �
We now proceed to steps ii) and iii) of the general strategy. Moreover, we will han-

dle separately the case of the configurations in Snc and in M̃nc \ Snc: it turns out that
step ii) succeeds for the standard configurations and fails for the principal non standard
configurations. The latter are dead–ends.

The standard configurations. We start by describing the relevant list of cycles for
determining the minimal stable subgraph of G+ containing the standard configurations of
area nc. These are the cycles around the supercritical rectangles l1 × l2 and the cycles
{l1 × l2 +i

1 k}, {l1 × l2 +i
2 k}, with l1 ≥ lc, l2 ≥ lc.

Theorem 6.19. Let l1, l2 be two integers greater or equal than lc.
The cycle π(l1 × l2,predE(l1 × l2 +1 1)) does not contain −1 and +1. Moreover

a(π(l1 × l2,predE(l1 × l2 +1 1))) = l1l2 − lc + 2 ,

∀k ∈ {1 · · · lc − 2} M(l1 × l2,−k) ⊂ π(l1 × l2,predE(l1 × l2 +1 1)) ,

a(π(l1 × l2,predE(l1 × l2 +1 1))) = l1l2 .

The bottom of this cycle is {l1 × l2} and its principal boundary is l1 × l2 ⊕ 1
12

.

Proof. We check that the rectangle l1 × l2 and the cycle π(l1 × l2,predE(l1 × l2 +1 1))
satisfy the hypothesis of theorem 5.5. Let x1, · · · , xr be a sequence of sites such that

22



T (x1, · · · , xj)(l1 × l2) is in π(l1 × l2,predE(l1 × l2 +1 1)) for j in {1 · · · r} (i.e. these
configurations have an energy less or equal than predE(l1 × l2 +1 1)). We put ηj =
T (x1, · · · , xj)(l1 × l2) for j in {0 · · · r}.
• First case: all the sites (x1, · · · , xr) are outside l1 × l2. We have that l1 × l2 ⊂ ηj
whence E(ηj) ≥ E(l1 × l2, a(ηj)− l1l2) and (see notation 6.7)

predE(l1 × l2 +1 1) ≥ max
0≤j≤r

E(ηj) ≥ max
0≤j≤r

E(l1 × l2, a(ηj)− l1l2).

Since the sequence η0, · · · , ηr is a sequence of spin flips we have |a(ηj+1)− a(ηj)| ≤ 1 and
(a(ηj), 0 ≤ j ≤ r) takes all the values between l1l2 and a(ηr). Henceforth

max
0≤j≤r

E(l1 × l2, a(ηj)− l1l2) ≥ max{ E(l1 × l2, k) : 0 ≤ k ≤ a(ηr)− l1l2 }

and the area of ηr must satisfy

max{ E(l1 × l2, k) : 0 ≤ k ≤ a(ηr)− l1l2 } ≤ predE(l1 × l2 +1 1).

By proposition 6.9, we have E(l1 × l2, 1) = E(l1 × l2 +1 1) > predE(l1 × l2 +1 1) so that
a(ηr) = l1l2 and ηr = l1 × l2.
• Second case: all the sites are inside l1 × l2. Now ηj ⊂ l1 × l2 so that

predE(l1 × l2 +1 1) ≥ max
0≤j≤r

E(ηj) ≥ max
0≤j≤r

E(l1 × l2, a(ηj)− l1l2)

≥ max{ E(l1 × l2,−k) : 0 ≤ k ≤ l1l2 − a(ηr) }.

Proposition 6.8 shows that for 0 ≤ k ≤ l1, E(l1 × l2,−k) = E(l1 × (l2 − 1)⊕2 (l1 − k)) so
that E(l1 × l2 +1 1)− E(l1 × l2,−k) = 2 − h(k + 1). For this quantity to be positive, we
must have k ≤ lc − 2 whence a(ηr) ≥ l1l2 − (lc − 2). In addition for any k, 0 ≤ k ≤ lc − 2,
E(l1 × l2,−k)− E(l1 × l2) = hk > 0 so that E(ηr) > E(l1 × l2) whenever ηr 6= l1 × l2.
We have proved that l1×l2 and the cycle π(l1×l2,predE(l1×l2+11)) satisfy the hypothesis
of theorem 5.5. Thus the bottom of the cycle is {l1 × l2}. That M(l1 × l2,−k) is included
in the cycle for 0 ≤ k ≤ lc − 2 is obvious: each configuration of this set communicates
with l1× l2 under the level predE(l1× l2 +1 1) (by proposition 6.8, these configurations are
obtained by deleting successively k corner squares from l1 × l2). Finally a configuration ξ
of the principal boundary of this cycle is of energy E(ξ) = E(l1× l2 +1 1) so that its area is
equal to l1l2+1, and its perimeter to 2(l1+l2)+2. Let η be a configuration of the cycle such
that q(η, ξ) > 0. Necessarily, the area of η is l1l2. Thus η is a configuration of maximal area
of the cycle and as such it is a maximal configuration of the cycle for the inclusion relation.
By theorem 5.3 the rectangle l1 × l2 is included in η so that in fact η = l1 × l2. Thus ξ
belongs to M(l1 × l2, 1), which is equal to l1 × l2 ⊕ 1

12
(proposition 6.9). Conversely each

configuration of this set communicates with l1 × l2 and belongs to the principal boundary
of the cycle. �
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Lemma 6.20. Let l1, l2, k, i be integers with l1 > 0, l2 > 0, k > 1, i ≥ 0, l1 ≥ k + i.

The cycle {l1 × l2 +i
2 k} has one or two configurations in its principal boundary B̃:

• if i = 0 then B̃ = {l1 × l2 +i
2 (k + 1)},

• if i = l1 − k then B̃ = {l1 × l2 +i−1
2 (k + 1)},

• if 0 < i < l1 − k then B̃ = {l1 × l2 +i−1
2 (k + 1), l1 × l2 +i

2 (k + 1)}.
Lemma 6.21. Let l1, l2, i be integers with l1 > 0, l2 > 0, i ≥ 0, l1 ≥ i+ 1.

The cycle {l1 × l2 +i
2 1} has two or three configurations in its principal boundary B̃:

• if i = 0 then B̃ = {l1 × l2, l1 × l2 +i
2 2},

• if i = l1 − 1 then B̃ = {l1 × l2, l1 × l2 +i−1
2 2},

• if 0 < i < l1 − 1 then B̃ = {l1 × l2, l1 × l2 +i−1
2 2, l1 × l2 +i

2 2}.
Remark. Results similar to those stated in lemmas 6.20 and 6.21 hold for the configura-
tions l1 × l2 +i

1 k and also for any configuration in l1 × l2 ⊕1 k ∪ l1 × l2 ⊕2 k.

Corollary 6.22. The following cycles are maximal cycles of {−1,+1}c: (with l1 ≥ lc
and l2 ≥ lc)

{η} , η ∈ l1 × l2 ⊕2 k, 0 < k < l1 − lc + 2 ,

{η} , η ∈ l1 × l2 ⊕1 k, 0 < k < l2 − lc + 2 ,

π(l1 × l2,predE(l1 × l2 +1 1)) .

Proof. This corollary is a consequence of lemma 4.4 together with theorem 6.19 and lem-
mas 6.20 and 6.21. Notice that we have to put together the descriptions of the cycles of
theorem 6.19, lemmas 6.20, 6.21 in order to check that for each cycle π in the above list,

there is a sequence of cycles π0, · · · , πr such that π0 = π, B̃(πi) ∩ πi+1 6= ∅, 0 ≤ i < r and

+1 ∈ B̃(πr). �
Corollary 6.23. Let σ belong to Snc+1. The minimal stable subgraph G+(σ) of G+

containing σ is the restriction of G to the vertices listed in corollary 6.22. The arrows
of G+(σ) are (in the following list, the rectangles l1 × l2 are configurations containing σ)

{l1 × l2 +i
2 k} → {l1 × l2 +i

2 k + 1}, 0 ≤ i < l1 − k, 0 < k ≤ l1 − lc ,
{l1 × l2 +i

2 k} → {l1 × l2 +i−1
2 k + 1}, 0 < i ≤ l1 − k, 0 < k ≤ l1 − lc ,

{l1 × l2 +i
1 k} → {l1 × l2 +i

1 k + 1}, 0 ≤ i < l2 − k, 0 < k ≤ l2 − lc ,
{l1 × l2 +i

1 k} → {l1 × l2 +i−1
1 k + 1}, 0 < i ≤ l2 − k, 0 < k ≤ l2 − lc ,

{l1 × l2 +i
2 l1 − lc + 1} → π(l1 × (l2 + 1),predE(l1 × (l2 + 1) +1 1)), 0 ≤ i ≤ lc − 1 ,

{l1 × l2 +i
1 l2 − lc + 1} → π((l1 + 1)× l2,predE((l1 + 1)× l2 +1 1)), 0 ≤ i ≤ lc − 1 ,

π(l1 × l2,predE(l1 × l2 +1 1))↔ {η} , η ∈ l1 × l2 ⊕1 1 ,

π(l1 × l2,predE(l1 × l2 +1 1))↔ {η} , η ∈ l1 × l2 ⊕2 1 .

24



The symbol ↔ means that both arrows → and ← are present. The above list should be
completed with all the isometric arrows (obtained by applying the same isometry to both
ends of an arrow).

The only loops in the graph G+(σ) are

π(l1 × l2,predE(l1 × l2 +1 1))↔ {η} , η ∈ l1 × l2 ⊕1 1 ∪ l1 × l2 ⊕2 1 .

Any other arrow π1 → π2 of G+(σ) satisfies a(π1) < a(π2). As a consequence a path in
G+(σ) starting at {σ} with no loop ends in {+1}.

We are done with the standard configurations. We have to examine the remaining
configurations of the principal boundary of the cycle π(−1,+1c) i.e. the principal non
standard configurations.

The principal non standard configurations. We now do the same work for the con-

figurations in M̃nc \ Snc . The relevant cycles are the cycles around the rectangles (lc −
1)× (lc + 1) and around the configurations of M̃nc+1 \ Snc+1.

Theorem 6.24. The cycle π((lc−1)×(lc+1),predE(nc)) is the greatest cycle containing
(lc − 1)× (lc + 1) included in {−1,+1}c. Moreover,

a(π((lc − 1)× (lc + 1),predE(nc))) = (lc − 1)lc + 2 ,

∀k ∈ {1 · · · lc − 3} M((lc − 1)× (lc + 1),−k) ⊂ π((lc − 1)× (lc + 1),pred E(nc)) ,
a(π((lc − 1)× (lc + 1),predE(nc))) = (lc − 1)(lc + 1) .

The bottom of this cycle is {(lc − 1) × (lc + 1)}; its principal boundary is M((lc − 1) ×
(lc + 1),−(lc − 2)) and thus contains M̃nc = (lc − 1)× lc ⊕2 1

12
.

Remark. Obviously, similar statements are true for the rectangle (lc + 1)× (lc − 1).

Proof. We check that the rectangle (lc − 1) × (lc + 1) and the cycle π((lc − 1) × (lc +
1),pred E(nc)) satisfy the hypothesis of theorem 5.5. Let x1, · · · , xr be a sequence of sites
such that T (x1, · · · , xj)((lc − 1) × (lc + 1)) is in π((lc − 1) × (lc + 1),pred E(nc)) for j
in {1 · · · r} (i.e. these configurations have an energy less or equal than predE(nc)). We
put ηj = T (x1, · · · , xj)((lc − 1)× (lc + 1)) for j in {0 · · · r}.
• First case: all the sites are outside (lc−1)×(lc+1). We have that (lc−1)×(lc+1) ⊂ ηj
whence E(ηj) ≥ E((lc − 1)× (lc + 1), a(ηj)− (lc − 1)(lc + 1)) and

predE(nc) ≥ max
0≤j≤r

E(ηj) ≥ max
0≤j≤r

E((lc − 1)× (lc + 1), a(ηj)− (lc − 1)(lc + 1)).

Since the sequence η0, · · · , ηr is a sequence of spin flips we have |a(ηj+1)− a(ηj)| ≤ 1 and
(a(ηj), 0 ≤ j ≤ r) takes all the values between (lc − 1)(lc + 1) and a(ηr). Henceforth

max
0≤j≤r

E((lc − 1)× (lc + 1), a(ηj)− (lc − 1)(lc + 1)) ≥

max{ E((lc − 1)× (lc + 1), k) : 0 ≤ k ≤ a(ηr)− (lc − 1)(lc + 1) }
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and the area of ηr must satisfy

max{ E((lc − 1)× (lc + 1), k) : 0 ≤ k ≤ a(ηr)− (lc − 1)(lc + 1) } ≤ predE(nc).
By proposition 6.9, we have E((lc − 1)× (lc + 1), 1) = E((lc − 1)× (lc + 1) +1 1) whence
E((lc − 1) × (lc + 1), 1) − E(nc) = 2 + h − hlc which is strictly positive since lc = d2/he.
Thus a(ηr) = (lc − 1)(lc + 1) and ηr = (lc − 1)× (lc + 1).
• Second case: all the sites are inside (lc − 1)× (lc + 1). Now ηj ⊂ (lc − 1)× (lc + 1) so
that

predE(nc) ≥ max
0≤j≤r

E(ηj) ≥ max
0≤j≤r

E((lc − 1)× (lc + 1), a(ηj)− (lc − 1)(lc + 1))

≥ max{ E((lc − 1)× (lc + 1),−k) : 0 ≤ k ≤ (lc − 1)(lc + 1)− a(ηr) }.
Proposition 6.8 shows that for 0 ≤ k ≤ lc−1, E((lc−1)× (lc+1),−k) = E((lc−1)× lc⊕2

(lc − 1− k)) so that E(nc)− E((lc − 1)× (lc + 1),−k) = h(lc − k− 2). For this quantity to
be positive, we must have k < lc − 2 whence a(ηr) ≥ (lc − 1)(lc + 1)− (lc− 3). In addition
for any k, 0 ≤ k ≤ lc − 3, E((lc − 1) × (lc + 1),−k) − E((lc − 1) × (lc + 1)) = hk > 0 so
that E(ηr) > E((lc − 1)× (lc + 1)) whenever ηr 6= (lc − 1)× (lc + 1).
We have proved that (lc−1)× (lc+1) and the cycle π((lc−1)× (lc+1),predE(nc)) satisfy
the hypothesis of theorem 5.5. It follows that the bottom of the cycle is {(lc−1)×(lc+1)}.
That M((lc − 1)× (lc + 1),−k) is included in the cycle for 0 ≤ k ≤ lc − 3 is obvious: each
configuration of this set communicates with (lc − 1) × (lc + 1) under the level predE(nc)
(proposition 6.8 shows that all these configurations are obtained by deleting successively k
corner squares from (lc−1)× (lc+1)). Finally a configuration ξ of the principal boundary
of this cycle is of energy E(ξ) = E(nc) so that its area is equal to nc, and its perimeter
to min{ p(σ) : σ ∈ Cnc }. Let η be a configuration of the cycle such that q(η, ξ) > 0.
Necessarily, the area of η is nc+1. Thus η is a configuration of minimal area of the cycle and
as such it is a minimal configuration of the cycle for the inclusion relation. By theorem 5.3 it
is included in the rectangle (lc−1)×(lc+1). Thus ξ belongs toM((lc−1)×(lc+1),−(lc−2)).
Conversely each configuration of this set communicates with M((lc−1)×(lc+1),−(lc−3))
and belongs to the principal boundary of the cycle. Finally, proposition 6.8 shows that

this set contains M̃nc . �
Corollary 6.25. Let σ belong to M̃nc+1 \ Snc+1. Suppose (lc − 1)× lc ⊂ σ ⊂ (lc − 1)×
(lc + 1). Let G+(σ) be the minimal stable subgraph of G+ containing π(σ, {−1,+1}c).
The only arrows of G+(σ) entering π(−1,+1c) are

{ξ} → π((lc − 1)× lc, {−1,+1}c), ξ ∈ M̃nc \ Snc, (lc − 1)× lc ⊂ ξ.
The remaining arrows of G+(σ) are

π(σ, {−1,+1}c)↔ {η}, η ∈M((lc − 1)× (lc + 1),−(lc − 2)).

There is no arrow in G+(σ) ending at {+1}.
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Remark. In this statement, the rectangle (lc − 1) × lc should be understood as a config-
uration and not as a polyomino. That is, (lc − 1) × lc ⊂ ξ means that the same (fixed)
rectangle is included in σ and ξ.

Proof. That these arrows belong to G+(σ) is a straightforward consequence of theorem 6.24
which implies in particular that π(σ, {−1,+1}c) = π((lc − 1)× (lc + 1), {−1,+1}c). We
have to check that there are no other arrow. Let η belong to the principal boundary

of π((lc − 1) × (lc + 1),pred E(nc)). If η is in M̃nc , then all arrows of G starting at the

cycle {η} are present in the above list (lemma 6.21). If η is not in M̃nc , we claim that

{η} → π((lc − 1)× (lc + 1),pred E(nc))

is the unique arrow of G starting at {η}. Let ξ be a point such that q(η, ξ) > 0 and E(ξ) ≤
E(η). Since a(η) = nc, then a(ξ) is equal to nc − 1 or nc + 1. Moreover η is minimal, and
the inequality E(ξ) ≤ E(η) implies in both cases that ξ is also minimal and that E(ξ) ≤
predE(nc). Thus ξ cannot be of area nc−1 (by lemma 6.4, the only configurations of Mnc

communicating with Mnc−1 are the principal configurations M̃nc). Thus a(ξ) = nc + 1.
We next show that ξ belongs to π((lc − 1) × (lc + 1),pred E(nc)). Let x1, · · · , xr be a
sequence of sites inside σ such that T (x1, · · · , xj)((lc − 1) × (lc + 1)) is in π((lc − 1) ×
(lc + 1),pred E(nc)) for j in {1 · · · r − 1} and η = T (x1, · · · , xr)((lc − 1) × (lc + 1)). We
put ηj = T (x1, · · · , xj)((lc − 1)× (lc + 1)), 0 ≤ j ≤ r. Since η is in the boundary of the
cycle, we have E(ηr−1) < E(ηr). Moreover ηr−1 is a minimal configuration of the cycle, of
area nc+1, so that the last spin flip at site xr has decreased the area. Let xr+1 be the unique
site such that ξ = T (xr+1)(η). Suppose ξ 6= ηr−1 so that xr+1 6= xr (and η(xr+1) = −1).
We have ξ = T (xr+1)(ηr) = T (xr+1, xr)(ηr−1) = T (xr , xr+1)(ηr−1) = T (xr)(η′r) where
η′r = T (xr+1)(ηr−1). The energy inequality 5.1 yields E(η′r) − E(ηr−1) ≤ E(ξ) − E(η)
whence E(η′r) ≤ E(ηr−1). It follows that η′r is in the cycle, as well as ξ (their energies are
less or equal than predE(nc) and they communicate with a configuration of the cycle). �

Corollary 6.26. The principal non standard configurations of area nc (i.e. the set M̃nc \
Snc) are dead–ends: there is no saddle path of null cost between −1 and +1 passing
through them.

Corollary 6.27. The set of the global saddle points between −1 and +1 is exactly Snc.
These configurations are the critical two dimensional configurations.

Steps ii) and iii) are now completed and we proceed to steps iv) and v).

The ascending part. For each configuration σ′ in Snc, we must determine the minimal
stable subgraph of G− containing σ′ and all the paths in this graph starting at {σ′} and
ending at −1. Our exposition is similar as before: we first list the set of the relevant cycles
and we use lemma 4.4 to find those belonging toM({−1,+1}c). We finally check that we
have in hand all the vertices of G−.
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Theorem 6.28. Let l be an integer strictly less than lc.
The cycle π(l × l,predE(l(l − 1) + 1)) does not contain −1 and +1. Moreover

a(π(l × l,predE(l(l − 1) + 1))) = l(l − 1) + 2 ,

∀k ∈ {1 · · · l − 2} M(l × l,−k) ⊂ π(l × l,predE(l(l − 1) + 1)) ,

a(π(l × l,predE(l(l − 1) + 1))) = l2 .

The bottom of this cycle is {l × l}; its principal boundary is M(l × l,−(l − 1)) and thus
contains Sl(l−1)+1.

Proof. We apply corollary 6.13. For any n greater than l2, we have

E(l × l, Cn) ≥ E(l2 + 1) ≥ E(l(l − 1) + 1)

whence a(π(l × l,predE(l(l − 1) + 1))) = l2. Analogously, for any n strictly smaller than
l(l − 1) + 2, we have E(l × l, Cn) ≥ E(l(l − 1) + 1); moreover,

E(l × l, Cl(l−1)+2) = E(l(l − 1) + 2) < E(l(l − 1) + 1)

so that a(π(l × l,predE(l(l − 1) + 1))) = l(l − 1) + 2. To prove that the bottom of
the cycle is {l × l}, we could proceed as before and use theorem 5.5. However, a direct
application of our geometrical results (theorem 6.2) yields that the minimum min{ E(n) :
l(l − 1) + 2 ≤ n ≤ l2 } is equal to E(l2); the unique configuration of energy E(l2) is the
square l × l. Theorem 5.3 implies also that the altitude of communication between two
different squares l × l is greater than E(l2 + 1) (one has to make a spin–flip outside the
initial square to create another square). The statement concerning the principal boundary
is a consequence of proposition 6.8. �
Theorem 6.29. Let l be an integer strictly less than lc.
The cycle π(l × (l + 1),pred E(l2 + 1)) does not contain −1 and +1. Moreover

a(π(l × (l + 1),pred E(l2 + 1))) = l2 + 2 ,

∀k ∈ {1 · · · l − 2} M(l × (l + 1),−k) ⊂ π(l × (l + 1),predE(l2 + 1)) ,

a(π(l × (l + 1),pred E(l2 + 1))) = l(l + 1) .

The bottom of this cycle is {l× (l+ 1)}; its principal boundary is M(l × (l+ 1),−(l − 1))
and thus contains Sl2+1.

Proof. The proof is similar as the proof of theorem 6.28.

Remark. Similar statements hold for the quasisquares (l + 1)× l.
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Corollary 6.30. Suppose l < lc. The following cycles are maximal cycles of {−1,+1}c:

{η}, η ∈M(l × (l + 1),−(l − 1)) ,

{η}, η ∈M((l + 1)× l,−(l − 1)) ,

{η}, η ∈M(l × l,−(l − 1)) ,

π(l × l,predE(l(l − 1) + 1)) ,

π(l × (l + 1),pred E(l2 + 1)) ,

π((l + 1)× l,predE(l2 + 1)) .

Proof. This corollary is a consequence of lemma 4.4 together with theorems 6.28 and 6.29.
Notice that we have to put together the descriptions of the cycles of theorems 6.28, 6.29 in
order to check that for each cycle π in the above list, there is a sequence of cycles π0, · · · , πr
such that π0 = π, B̃(πi) ∩ πi+1 6= ∅, 0 ≤ i < r and −1 ∈ B̃(πr). �
Corollary 6.31. Let σ belong to Snc−1. The minimal stable subgraph G−(σ) of G−

containing σ is the restriction of G to the vertices listed in corollary 6.30. The arrows
of G−(σ) are (in the following list, each square l × l or quasisquare l × (l + 1) must be
included in σ):

{η} ↔ π(l × (l + 1),predE(l2 + 1)) , η ∈M(l × (l + 1),−(l − 1)) ,

{η} ↔ π((l + 1)× l,predE(l2 + 1)) , η ∈M((l + 1)× l,−(l − 1)) ,

{η} ↔ π(l × l,pred E(l(l − 1) + 1)) , η ∈M(l × l,−(l − 1)) ,

{η} → π(l × l,pred E(l(l − 1) + 1)) , η ∈ M̃l2+1 ,

{η} → π(l × (l + 1),predE(l2 + 1)) , η ∈ l × (l + 1)⊕1 1 ,

{η} → π((l + 1)× l,predE(l2 + 1)) , η ∈ (l + 1)× l ⊕2 1 .

The only loops in the graph G−(σ) are loops around two cycles (corresponding to the
arrows described in the first three lines of the list). Any other arrow π1 → π2 of G−(σ)
satisfies a(π1) > a(π2). As a consequence a path in G−(σ) starting at {σ} with no loop
ends in {−1}.
The exit path. We have finally reached the last step vi). We notice at this point that
there exists only one optimal saddle between two cycles associated to each arrow of the
graph G. Thus the graph G contains all the information necessary to obtain the set of
the saddle paths of null cost between −1 and +1. We describe for instance the canonical
saddle path, which follows the sequence of the canonical configurations:

−1→m1, m1 →m2, m2 →m3, m3 →m4, m4 → m5, m5 → m6, m6 → m7,
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m7 → m8, m9 → m10, m10 →m11, m12 →m13, m13 → m14, m16 → m17, · · · ,
mk2 → mk2+1, mk2+1 → mk2+2, mk(k+1)→ mk(k+1)+1, · · · ,

m(lc−1)2 → m(lc−1)2+1, m(lc−1)2+1 → m(lc−1)2+2, m(lc−1)lc → m(lc−1)lc+1,

m(lc−1)lc+1 →m(lc−1)lc+2, ml2c
→ ml2c+1, · · · , mN2−1 → mN2.

We state here some consequences of the information provided by the graph G which
describes the set of all the saddle paths of null cost. Most of them had already been proved
by Neves and Schonmann with completely different methods (mainly coupling techniques).
We stress that the graph G provides the most complete information available on the limiting
dynamics. Once we know this graph, the results obtained in a general framework [6] may
be applied in a systematic fashion to obtain various estimates. We let the process (σn)n∈N
start from −1. We recall that τ (+1c) is the hitting time of the ground state +1 and
θ(−1, τ (+1c)) is the last visit to the metastable state −1 before reaching +1.

Theorem 6.32. (the exit path)
For any positive ε, the following events take place with probability converging to one ex-
ponentially fast as β goes to infinity:
• expβ(E(nc)− ε) ≤ τ (+1c) ≤ expβ(E(nc) + ε) ;
• expβ(2− h− ε) ≤ τ (+1c)− θ(−1, τ (+1c)) ≤ expβ(2− h+ ε) ;
• during the exit path (σn, θ ≤ n ≤ τ ), the process crosses the set Snc of the critical
configurations at exactly one point σc; it does not cross Cnc \ Snc;
• if we let n∗ = min{n ≥ θ : a(σn) = nc}, n∗ = max{n ≤ τ : a(σn) = nc}, we have that
σn = σn∗ = σn∗ for all n in {n∗ · · ·n∗} and n∗ − n∗ ≤ exp(βε);
• all the configurations of the exit path before time n∗ are of area less than nc, all the
configurations after n∗ are of area greater than nc;
• during the whole exit path, the configuration stays connected i.e. there is only one
cluster of spins in the system; this cluster is a quasisquare l × (l + ε) minus at most l − 1
corner squares before n∗ and a rectangle l1× l2 minus at most lc−2 corner squares or plus
a line after n∗;
• during the ascending part, the process goes through an increasing sequence of qua-
sisquares (l× (l+ ε), l < lc), and visits a quasisquare l× (l+ ε) approximately exp β(l−1)h
times; when it leaves definitely a quasisquare l × (l + 1), it makes a spin flip along the
largest side of the quasisquare in order to create a square (l + 1)× (l + 1) and it does not
create a rectangle l× (l + 2);
• during the descending part, the process goes through an increasing sequence of rect-
angles (l1 × l2, min(l1, l2) ≥ lc); he visits each of them approximately exp β(2− h) times;
when it leaves definitely a rectangle, he choses randomly the next rectangle it creates,
either (l1 + 1)× l2 or l1 × (l2 + 1);
• the process reaches the thermal equilibrium within each cycle of M({−1,+1}c) it
crosses: the distribution of the process before the exit of a cycle is very close to the
Gibbs distribution at inverse temperature β restricted to this cycle.
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7. Dimension three

A polyomino associated to a configuration is a finite union of unit cubes. For σ a
configuration we will denote by a(σ) the area of the associated polyomino and by v(σ) its
volume. We will rely heavily on the notation and results of [1]. Let us recall some essential
points.

Summary of the combinatorial results.

The parallelepiped of sides j1, j2, j3 is denoted by j1 × j2 × j3. A quasicube is a paral-
lelepiped j1 × j2 × j3 with |j1 − j2| ≤ 1, |j2 − j3| ≤ 1, |j3 − j1| ≤ 1. We describe next a
simple mechanism for adding a polyomino to a parallelepiped. For the sake of clarity, we
need to work here with instances of the polyominoes having a definite position on the lat-
tice Z3. Let c be a polyomino. By c(x1, x2, x3) we denote the unique polyomino obtained
by translating c in such a way that

min{ y1 : ∃ (y2, y3) (y1, y2, y3) ∈ c(x1, x2, x3) } = x1,

min{ y2 : ∃ (y1, y3) (y1, y2, y3) ∈ c(x1, x2, x3) } = x2,

min{ y3 : ∃ (y1, y2) (y1, y2, y3) ∈ c(x1, x2, x3) } = x3.

Let e1, e2, e3 be the standard basis of Z3. We define an operator +1 which adds a poly-
omino c to a parallelepiped j1 × j2 × j3 in the direction of e1 by

j1 × j2 × j3 +1 c = j1 × j2 × j3(0, 0, 0) ∪ c(j1, 0, 0).

The operators +2 and +3 are defined similarly, working with the vectors e2 and e3:

j1 × j2 × j3 +2 c = j1 × j2 × j3(0, 0, 0) ∪ c(0, j2, 0) ,

j1 × j2 × j3 +3 c = j1 × j2 × j3(0, 0, 0) ∪ c(0, 0, j3) .

Let now c be a two dimensional polyomino. We define the three dimensional polyomino j1×
j2×j3+1c as follows. First, we transform c into a planar three dimensional polyomino c′ by
replacing its squares by unit cubes. We rotate c′ so that its normal unit vector becomes e1

(as if the two dimensional polyomino c was initially included in the plane (e2, e3)). Then
we use the previous definition to set j1 × j2 × j3 +1 c = j1 × j2 × j3 +1 c

′. We make
the following convention: when we speak of j1 × j2 × j3 +3 c, we assume implicitly that
the two dimensional polyomino c is included in the rectangle j1 × j2 so that the resulting
polyomino is included in j1 × j2 × (j3 + 1). Most often, c will be a two dimensional
polyomino like l1× l2 +1 k. Because of the context, there should be no ambiguity between
the + operator for integers and polyominoes. Moreover, the latter will always have a
subscript (i.e. +1, +2 +3).
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figure 5: the polyominoes 5× 4× 3 +3 3× 2 +1 1, 3× 2× 4 +2 3× 2 +2 2

By j1× j2× j3⊕1 c (respectively j1× j2× j3⊕2 c, j1× j2× j3⊕3 c), we denote the set of
all the polyominoes obtained by translating the polyomino c along the side j2 × j3 (resp.
j1 × j3, j1 × j2) in such a way that the polyomino is always included in (j1 + 1)× j2 × j3
(resp. j1 × (j2 + 1)× j3, j1 × j2 × (j3 + 1)). We set also

j1 × j2 × j3 ⊕ c =
⋃

i∈{1,2,3}
j1 × j2 × j3 ⊕i c.

For A a set of polyominoes, we denote by A its orbit under the action of the spatial
isometries which leave the integer lattice Z3 invariant. By A

123
we denote its orbit under

the action of the three symmetries with respect to the planes (e1, e2), (e2, e3), (e1, e3).

Proposition 7.1. For each integer n there exists a unique 6–uple (j, l, k, δ, γ, ε) such that
δ, γ, ε ∈ {0, 1}, δ ≤ γ, k < l+ε, l(l+ε)+k < (j+δ)(j+γ) and n = j(j+δ)(j+γ)+l(l+ε)+k.

The set of the polyominoes of volume n is Cn; the setMn of the minimal polyominoes of
volume n is the set of the polyominoes of Cn having minimal area. Let n = j(j+δ)(j+γ)+
l(l+ε)+k be the decomposition of n. We put r = l(l+ε)+k. The canonical polyomino mn
of volume n is obtained by adding the two dimensional canonical polyominomr to the right
side of a quasicube of volume j(j + δ)(j + γ). The general formula is

mn = (j + γ)× (j + δ)× j +1+δ+γ

(
(l + ε)× l +1+ε k

)
.

Theorem 7.2. The canonical polyomino mn is minimal.

This theorem is the key for determining the energy barrier the system has to overcome to
travel from −1 to +1. It simultaneously gives a lower bound for this energy barrier and
exhibits a growing sequence of polyominoes realizing this lower bound. This energy barrier
gives the constant characterizing the asymptotic behaviour of the relaxation time. Neves
has obtained the corresponding result for any dimension d [14].
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figure 6: the canonical polyominoes m194,m230,m266

We define several important subsets ofMn. The set Sn of the standard polyominoes is

Sn = (j + γ)× (j + δ)× j ⊕1+δ+γ (l + ε)× l ⊕1+ε k

and the set M̃n of the principal polyominoes is

M̃n =
⋃

t=1,2,3
u=1,2

(j + γ)× (j + δ)× j ⊕t (l + ε)× l ⊕u k

The sets Sn and M̃n coincide if δ = γ = ε = 0. Moreover we have {mn} ⊂ Sn ⊂ M̃n ⊂
Mn. However, the inclusions might be strict, as shown by the examples of figures 7, 8.

figure 7: polyominoes in {m112}, S112 \ {m112}.
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figure 8: polyominoes in M̃112 \ S112, M112 \ M̃112.

Theorem 7.3. The setMn is reduced to {mn} if and only if n is of the form j3.
The set Mn is equal to Sn if and only if n is of the form j3, j2(j + 1), j(j + 1)2 or
j3 − 1, j2(j + 1)− 1, j(j + 1)2 − 1 (in which case Sn = mn), or j3 + l2, j3 + l(l + 1).

The setMn coincides with M̃n if and only if n is of the form j3−1, j2(j+1)−1, j(j+1)2−1
or

j3 j3 + l2 j3 + l(l + 1)
j2(j + 1) j2(j + 1) + l2 j2(j + 1) + l(l + 1)
j(j + 1)2 j(j + 1)2 + l2 j(j + 1)2 + l(l + 1)

(where in an expression j(j + δ)(j + γ) + l(l + ε), we have l(l + ε) < (j + δ)(j + γ)).

This theorem will be crucial to determine precisely the set of the critical droplets. It gives
the uniqueness results associated to the discrete isoperimetric inequality. In fact, it will
turn out that we do not have uniqueness of the isoperimetric problem for the volume of
the critical droplet. Luckily enough, there is uniqueness for the volume preceding it. We
will therefore rely on the following lemma.

Lemma 7.4. For n the volume of a quasicube plus a quasisquare i.e. of the form j(j +
δ)(j + γ) + l(l + ε) (where 0 < l(l + ε) < (j + δ)(j + γ)) we have

{ c ∈Mn−1 : q(M̃n \ Sn, c) = 1 } ⊃ M̃n−1 \ Sn−1,

{ c ∈Mn−1 : q(Sn, c) > 0 } ⊃ Sn−1,

{ c ∈Mn+1 : q(Mn, c) > 0 } = M̃n+1,

where q(A, c) = min{q(d, c) : d ∈ A}.
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Proposition 7.5. The principal polyominoes can be completely shrunk through the

principal polyominoes: for any integer n and for any principal polyomino c in M̃n, there
exists an increasing sequence c0, · · · , cn of principal polyominoes such that c0 = ∅, cn = c
and q(ci−1, ci) > 0 for i in {1 · · · n}.
A consequence of this proposition is that the set of the principal polyominoes associ-
ated to the critical volume is contained in the principal boundary of the greatest cycle
containing −1 and not +1. Let us remark that it is not possible to grow arbitrarily far
through the minimal polyominoes a principal polyomino which is not standard. The growth
will be stopped at either a quasicube plus a rectangle l × (l + 2) or at a parallelepiped
j × j × (j + 2), j × (j + 1)× (j + 2). Such a polyomino is a dead–end.

Proposition 7.6. The standard polyominoes can be grown or shrunk arbitrarily far
through the standard polyominoes: for any integers m ≤ n and for any standard poly-
omino c in Sm, there exists an increasing sequence c0, · · · , cn of standard polyominoes such
that c0 = ∅, cm = c and q(ci−1, ci) > 0 for i in {1 · · ·n}.
The statement of proposition 7.6 concerns the set of the standard polyominoes, which
(except for specific values of the volume) is a strict subset of the set of the principal
polyominoes considered in proposition 7.5. The nice feature of the standard polyominoes
is that they can be grown arbitrarily far through the minimal polyominoes (proposition 7.6
asserts that a standard polyomino of volume m can be grown until any volume n ≥ m).

Notation 7.7. We have also some results concerning the best way to shrink or to grow
a parallelepiped plus a rectangle. Let c be either a parallelepiped or a parallelepiped plus
a rectangle and let k be a positive integer. We define

M(c,−k) = { d ∈ Cv(c)−k : d ⊂ c, a(d) minimal} ,

i.e. a polyomino d belongs to M(c,−k) if and only if

d ∈ Cv(c)−k, d ⊂ c, a(d) = min{ a(d′) : d′ ∈ Cv(c)−k, d
′ ⊂ c }.

Similarly, we define

M(c, k) = { d ∈ Cv(c)+k : c ⊂ d, a(d) minimal} ,

i.e. a polyomino d belongs to M(c, k) if and only if

d ∈ Cv(c)+k, c ⊂ d, a(d) = min{ a(d′) : d′ ∈ Cv(c)+k, c ⊂ d′ }.

Notice that the elements ofM(c, k) (respectivelyM(c,−k)) all have the same energy, since
they all have the same volume and area. We denote by E(c, k) (respectively E(c,−k)) the
energy of an element of M(c, k) (resp. M(c,−k)).

The next two results are restatements of Proposition 3.25, Corollary 3.26, 3.27 and
Proposition 3.28 of [1].
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Proposition 7.8. Let j1, j2, j3, r be positive integers such that r < min(j1j2, j2j3, j3j1).
The setM(j1× j2× j3,−r) is the set of the polyominoes obtained by removing from j1×
j2 × j3 as many bars as possible, and then removing a succession of corner cubes until
reaching the volume j1j2j3 − r. In particular, a polyomino obtained from j1 × j2 × j3 by
the successive removal of r cubes in such a way that each cube removal takes place on a
bar of minimal length is in M(j1 × j2 × j3,−r).

Proposition 7.9. Let j1, j2, j3, r be positive integers such that r < min(j2
1 , j

2
2, j

2
3). The

best way to add r cubes to the parallelepiped j1×j2×j3 is to add a minimal two dimensional
polyomino of Mr on one side of the parallelepiped. Equivalently, we have

M(j1 × j2 × j3, r) = { j1 × j2 × j3 ⊕i d, 1 ≤ i ≤ 3, d ∈Mr }
123
.

In particular, j1 × j2 × j3 ⊕i mr ⊂M(j1 × j2 × j3, r) for any i in {1, 2, 3}.

These propositions will be the key to find the principal boundary of the cycles around the
supercritical parallelepipeds, around the subcritical quasicubes and around the dead–ends
i.e. the principal non standard polyominoes.

Proposition 7.10. Let j1, j2, j3, l1, l2, r be integers. We consider a polyomino c of the
set j1×j2×j3⊕l1×l2. We suppose that r < min(l1, l2) ≤ min(j1, j2, j3). The setM(c,−r)
is the set of the polyominoes obtained by removing successively r corner cubes from c. The
set M(c, r) is equal to the set of the polyominoes obtained by adding a bar of length r
against a compatible side of the rectangle l1 × l2 (in such a way that l1 × l2 ⊕ r fits into
the side of the parallelepiped).

This proposition will be the key to find the principal boundary of the cycles around the
configurations which are parallelepipeds plus rectangles.

Application to the three dimensional Ising model.

We first express the energy of the Ising model with the help of the area and the volume
of the polyomino associated to the configuration.

Lemma 7.11. For any configuration σ in X, we have

E(σ) = −1

2

∑
{x,y}:x∼y

σ(x)σ(y) − h

2

∑
x∈Λ

σ(x) = a(σ) − hv(σ) + N3(h− 3)/2 .

We do not change the dynamics nor the cycle decomposition by adding a constant to
the energy E. In dimension three, we will work with the energy E(σ) = a(σ) − hv(σ).
We denote by E(n) the minimal energy of a configuration of Cn (so that E(n) = E(σ) =
a(σ)− hn for any σ inMn).
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Hypothesis on the magnetic field h and the size N . We suppose that h is small compared
to the unity and that for any configurations η, σ, the equality E(η) = E(σ) implies v(η) =
v(σ) and a(η) = a(σ). Whenever we take the integral part of a quantity involving h, we
assume that this quantity is not an integer. For instance 4/h is not an integer. Finally, N
is large enough to ensure that the combinatorial results proved on the infinite lattice Z3

remain valid on the torus until the critical volume 4/h(4/h+ 1)2 + 2/h(2/h+ 1). This is
obviously true if h3N > 106.

Remark. We believe that a careful study would yield the weaker condition h3N3 > K for
some constant K. However this seems to require lengthy extensions of the techniques used
in [1].

As we did in dimension two, we follow the general strategy outlined in section 4. Our
first aim is to determine the communication altitude between −1 and +1 (corollary 7.13)
and to compute it explicitly (proposition 7.14).

Proposition 7.12. (communication altitude between configurations of different volumes)
Let m ≤ n be two integers. The communication altitude between the sets Cm and Cn (or
Sm and Sn) is

E(Cm, Cn) = E(Sm,Sn) = max{ E(r) : m ≤ r ≤ n } = E(mm,mn).

Proof. This result might be proven in exactly the same way as in dimension two (see
propositions 6.11 and 6.12, corollary 6.13). �
Corollary 7.13. E(−1,+1) = max{ E(n) : 0 ≤ n ≤ N3 }.
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figure 9: the three dimensional minimal energy E(n)
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To compute E(n) we apply theorem 7.2. For each integer n there exists a unique 6–uple
(j, l, k, δ, γ, ε) such that δ, γ, ε ∈ {0, 1}, δ ≤ γ, k < l + ε, l(l + ε) + k < (j + δ)(j + γ) and
n = j(j + δ)(j + γ) + l(l + ε) + k. The minimal area of a polyomino of volume n is then

min
σ∈Cn

a(σ) = 2(j(j + δ) + j(j + γ) + (j + δ)(j + γ)) + 2(2l + ε) + 2×1{k>0}.

Figure 9 shows a graph of E(n) for h = 0.34. Let us point out that each arch corresponds
to a two dimensional energy curve. Figure 10 is a narrow view of the graph around its
maximum.
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figure 10: E(n) around the maximum

Proposition 7.14. We set δc = 1 if 4+
√

16 + h2 < h(2d4/he−1) and δc = 0 otherwise.
The communication altitude between −1 and +1 is

E(−1,+1) = E(nc) = E((jc − 1)(jc − δc)jc) + E2((lc − 1)lc + 1)

where lc = d2/he is the two dimensional critical length, jc = d4/he is the three dimensional
critical length, nc = (jc − 1)(jc − δc)jc + (lc − 1)lc + 1 is the critical volume.

Remark. We have E(−1,+1) ∼ 32/h2 as h→ 0: the global energy barrier goes to infinity
like h−2 as h goes to zero.

Proof. We denote by E2 the two dimensional energy, so that E(n) = E(j(j + δ)(j + γ)) +
E2(l(l+ ε) + k). We first compute the energy barrier between two consecutive quasicubes:

max
j3≤n≤j2(j+1)

E(n) = E(j3) + max
0≤n≤j2

E2(n) ,

max
j2(j+1)≤n≤j(j+1)2

E(n) = E(j2(j + 1)) + max
0≤n≤j(j+1)

E2(n) ,

max
j(j+1)2≤n≤(j+1)3

E(n) = E(j(j + 1)2) + max
0≤n≤(j+1)2

E2(n) .
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We next compare these quantities. Let

∆1 = max
j3≤n≤j2(j+1)

E(n) − max
(j−1)j2≤n≤j3

E(n) = j(4− hj) ,

∆2 = max
j2(j+1)≤n≤j(j+1)2

E(n) − max
j3≤n≤j2(j+1)

E(n) = j(4− hj) + max
0≤n≤j(j+1)

E2(n) − max
0≤n≤j2

E2(n) ,

∆3 = max
j(j+1)2≤n≤(j+1)3

E(n) − max
j2(j+1)≤n≤j(j+1)2

E(n) = j(4− hj) + 2− hj + max
0≤n≤(j+1)2

E2(n)

− max
0≤n≤j(j+1)

E2(n) .

The unique positive root of 4j − hj2 + 2 − hj is j′c = 2/h(1 +
√

1 + h2/16) − 1/2 which
is less than j′′c = 4/h, but greater than lc. For j < j′′c , ∆1 is positive, and for j > j′′c , ∆1

is negative. For j < j′′c , ∆2 is positive. For j > j′′c , we have j > lc (the two dimensional
critical length) so that the two dimensional maxima are equal and ∆2 = j(4 − hj) which
is negative. Finally, ∆3 is positive for j < j′c and negative for j > j′c.
We have shown that the quantity

max{ E(n) : j(j + δ)(j + γ) ≤ n ≤ (j + 1)(j + δ)(j + γ) }−
max{ E(n) : j(j + δ)(j + γ − 1) ≤ n ≤ j(j + δ)(j + γ) }

is positive for
• δ = 0, γ = 0, j < j ′′c (case of ∆1)
• δ = 0, γ = 1, j < j′′c (case of ∆2)
• δ = 1, γ = 1, j < j′c (case of ∆3)

and negative for
• δ = 0, γ = 0, j > j′′c (case of ∆1)
• δ = 0, γ = 1, j > j′′c (case of ∆2)
• δ = 1, γ = 1, j > j′c (case of ∆3)

We now define the critical length.
• If dj′ce = dj′′c e we put jc = dj′ce and δc = 0.
• If dj′ce < dj′′c e we put jc = dj′′c e and δc = 1.

The volume of the critical quasicube is (jc−1)(jc−δc)jc. We can now compute the energy
barrier between two remote quasicubes.

max{ E(n) : j1(j1 + δ1)(j1 + γ1) ≤ n ≤ j2(j2 + δ2)(j2 + γ2) } =

E((jc − 1)(jc − δc)jc) + E2((lc − 1)lc + 1)

if j1(j1 + δ1)(j1 + γ1) ≤ (jc − 1)(jc − δc)jc < j2(j2 + δ2)(j2 + γ2)

E(j2(j2 + δ2)(j2 + γ2 − 1)) + E2((lc − 1)lc + 1)

if j2(j2 + δ2)(j2 + γ2) ≤ (jc − 1)(jc − δc)jc, j2 ≥ lc
E(j1(j1 + δ1)(j1 + γ1)) + E2((lc − 1)lc + 1)

if (jc − 1)(jc − δc)jc < j1(j1 + δ1)(j1 + γ1)
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We finally obtain the value of the global energy barrier stated in the proposition by choosing
j1 = δ1 = γ1 = 0 and j2 = N, δ2 = γ2 = 0. �

From this we deduce the level of the greatest cycle containing −1 and not +1.

Corollary 7.15. The level of the cycle π(−1,+1c) is predE(nc).
Notation 7.16. If Y is a subset of X, its minimal and maximal volumes v(Y ) and v(Y )
are

v(Y ) = min{ v(σ) : σ ∈ Y } , v(Y ) = max{ v(σ) : σ ∈ Y } .

Since E(−1, Cn) = E(nc) for any n ≥ nc (by propositions 7.12 and 7.14), then all the
configurations of the cycle π(−1,+1c) have a volume less than nc− 1 i.e. v(π(−1,+1c)) ≤
nc− 1. To complete step i) of the general strategy, we determine the configurations of the
principal boundary of the cycle π(−1,+1c).

Theorem 7.17. The principal boundary B̃(π(−1,+1c)) of the cycle π(−1,+1c) is the
set M̃nc of the principal configurations of volume nc. For σ in M̃nc there exists a unique
configuration in π(−1,+1c) communicating with σ, which is the quasicube plus a qua-

sisquare of the set (jc − 1)× (jc − δc)× jc ⊕ (lc − 1)× lc included in σ.

Proof. Let σ belong to M̃nc. Then E(σ) = E(nc) and proposition 7.5 yields the existence
of a sequence σ0, · · · , σnc such that

σ0 = −1, σnc = σ, ∀j ∈ {0 · · · nc − 1} σj ∈Mj, q+(σj , σj+1) = 1.

In particular, we have max{E(σn) : 0 ≤ n < nc } < E(nc) so that σnc−1 belongs
to π(−1,+1c). Since q(σnc−1, σnc) > 0, the configuration σnc is in the principal boundary

of π(−1,+1c). Thus M̃nc ⊂ B̃(π(−1,+1c)).

Conversely, let σ belong to B̃(π(−1,+1c)). Necessarily E(σ) = E(nc) so that σ is of vol-
ume nc and it is a minimal configuration. In addition there must exist η in π(−1,+1c)
communicating with σ. This η is in Cnc−1 and satisfies E(η) < E(σ). Thus

min{ a(ξ) : ξ ∈ Cnc−1 } ≤ a(η) ≤ a(σ)− h < a(σ) = min{ a(ξ) : ξ ∈ Cnc−1 }+ 2.

However the area is an even integer. The only possibility is a(η) = min{ a(ξ) : ξ ∈ Cnc−1 }
whence η is minimal. Yet nc−1 = (jc−1)(jc−δc)jc+(lc−1)lc is the volume of a quasicube

plus a quasisquare; by theorem 7.3, Mnc−1 = M̃nc−1 so that η belongs to M̃nc−1 and it
is a quasicube plus a quasisquare j × (j − δc) × j ⊕ (lc − 1)× lc. Lemma 7.4 shows that

the only points of Mnc which communicate with Mnc−1 are the configurations of M̃nc.

Thus σ is a principal configuration of volume nc and B̃(π(−1,+1c)) ⊂ M̃nc . �
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We now proceed to steps ii) and iii) of the general strategy. Moreover, we will handle

separately the case of the configurations in Snc and in M̃nc \ Snc : it turns out that
step ii) succeeds for the standard configurations and fails for the principal non standard
configurations. The latter are dead–ends.

The standard configurations. We start by describing the relevant list of cycles for
determining the minimal stable subgraph of G+ containing the standard configurations of
volume nc. These are the cycles around a parallelepiped j1× j2× j3, a parallelepiped plus
a rectangle j1 × j2 × j3 ⊕ l1 × l2 and finally a parallelepiped plus a rectangle plus a bar
j1× j2× j3⊕ l1 × l2⊕k, where each configuration contains strictly a critical configuration.

Theorem 7.18. Let j1, j2, j3 be three integers such that the parallelepiped j1 × j2 × j3
contains a configuration of Snc . The cycle

π = π(j1 × j2 × j3,predE(j1 × j2 × j3 ⊕ (lc − 1)× lc ⊕ 1))

does not contain −1 and +1. Moreover

v(π) > j1j2j3 −min(j1j2, j1j3, j2j3) + (lc − 1)lc + 1 ,

v(π) = j1j2j3 + (lc − 1)lc .

The bottom of this cycle is {j1 × j2 × j3} and its principal boundary is

B̃(π) = j1 × j2 × j3 ⊕ (lc − 1)× lc ⊕ 1
123

.

Proof. We check that the parallelepiped j1× j2× j3 and the cycle π satisfy the hypothesis
of theorem 5.5. Let x1, · · · , xr be a sequence of sites such that T (x1, · · · , xs)(j1 × j2× j3)
is in π for s in {1 · · · r} (i.e. these configurations have an energy less or equal than
predE(j1 × j2 × j3 ⊕ (lc − 1)× lc ⊕ 1)). We put ηs = T (x1, · · · , xs)(j1 × j2 × j3) for s in
{0 · · · r}.
• First case: all the sites (x1, · · · , xr) are outside j1×j2×j3. We have that j1×j2×j3 ⊂ ηs
whence E(ηs) ≥ E(j1 × j2 × j3, v(ηs)− j1j2j3) (see notation 7.7) and

predE(j1 × j2 × j3 ⊕ (lc − 1)× lc ⊕ 1) ≥ max
0≤s≤r

E(j1 × j2 × j3, v(ηs)− j1j2j3).

Since the sequence η0, · · · , ηr is a sequence of spin flips we have |v(ηs+1)− v(ηs)| ≤ 1 and
(v(ηs), 0 ≤ s ≤ r) takes all the values between j1j2j3 and v(ηr). Henceforth

max
0≤s≤r

E(j1 × j2 × j3, v(ηs)− j1j2j3) ≥ max{ E(j1 × j2 × j3, k) : 0 ≤ k ≤ v(ηr)− j1j2j3 }
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and the volume of ηr must satisfy

max{ E(j1× j2× j3, k) : 0 ≤ k ≤ v(ηr)− j1j2j3 } ≤ predE(j1× j2× j3⊕ (lc− 1)× lc⊕ 1).

By proposition 7.9, we have

E(j1 × j2 × j3, (lc − 1)lc + 1) = E(j1 × j2 × j3 ⊕ (lc − 1)× lc ⊕ 1)

so that v(ηr) < j1j2j3 + (lc − 1)lc + 1.
• Second case: all the sites are inside j1 × j2 × j3. Now ηs ⊂ j1 × j2 × j3 so that

predE(j1 × j2 × j3 ⊕ (lc − 1)× lc ⊕ 1) ≥ max
0≤s≤r

E(j1 × j2 × j3, v(ηs)− j1j2j3)

≥ max{ E(j1 × j2 × j3,−k) : 0 ≤ k ≤ j1j2j3 − v(ηr) }.

Suppose for instance that j1j2 is the smallest side of the parallelepiped. Proposition 7.8
shows that for j1(j2 − j1) ≤ k < j1j2,

E(j1 × j2 × j3,−k) = E(j1 × j2 × (j3 − 1)⊕3 mj1j2−k).

However, E(j1 × j2 × (j3 − 1)⊕3 (lc − 1)× lc ⊕1 1) > E(j1 × j2 × j3 ⊕ (lc − 1)× lc ⊕ 1)
whence necessarily j1j2 − k > (lc − 1)lc + 1 and v(ηr) > j1j2j3 − j1j2 + (lc − 1)lc + 1.
In addition, we have that E(j1 × j2 × j3, k) > E(j1 × j2 × j3) for all k such that

−j1j2 + (lc − 1)lc + 1 < k ≤ (lc − 1)lc, k 6= 0.

We have thus proved that j1×j2×j3 and the cycle π satisfy the hypothesis of theorem 5.5.
Thus the bottom of the cycle is {j1 × j2 × j3}. That M(j1 × j2 × j3, k) is included in
the cycle for 0 ≤ k ≤ (lc − 1)lc is obvious: each configuration of this set communicates
with j1× j2× j3 under the level predE(j1× j2× j3⊕ (lc− 1)× lc⊕ 1) (by proposition 7.9).
Finally a configuration ξ of the principal boundary of this cycle is of energy E(ξ) =
E(j1 × j2 × j3⊕ (lc − 1)× lc ⊕ 1) so that its volume is equal to j1j2j3 + (lc − 1)lc + 1, and
its area is 2(j1j2 + j2j3 + j1j3) + 2(2lc − 1) + 2. Let η be a configuration of the cycle such
that q(η, ξ) > 0. Necessarily, the volume of η is j1j2j3+(lc−1)lc. Thus η is a configuration
of maximal volume of the cycle π and as such it is a maximal configuration of the cycle
for the inclusion relation. By theorem 5.3 the parallelepiped j1 × j2 × j3 is included in η.
In addition E(η) < E(ξ) implies that a(η) ≤ 2(j1j2 + j2j3 + j1j3) + 2(2lc − 1) whence
in fact η belongs to M(j1 × j2 × j3, (lc − 1)lc). Thus η is the sum of j1 × j2 × j3 and a
quasisquare (lc− 1)× lc (proposition 7.9). Also ξ belongs toM(j1× j2× j3, (lc− 1)lc+1).
The only configurations of this set which communicate withM(j1× j2× j3, (lc− 1)lc) are
the configurations of

j1 × j2 × j3 ⊕ (lc − 1)× lc ⊕ 1
123

.

Conversely, it is clear that all these configurations belong to the principal boundary of the
cycle. �
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Theorem 7.19. Let j1, j2, j3, l1, l2 be integers such that the parallelepiped j1 × j2 × j3
contains a critical quasicube and the rectangle l1 × l2 contains a critical two dimensional
configuration. The cycle

π = π(j1 × j2 × j3 +1 l1 × l2,predE(j1 × j2 × j3 +1 l1 × l2 ⊕ 1))

does not contain −1 and +1. Moreover

v(π) = j1j2j3 + l1l2 − lc + 2 , v(π) = j1j2j3 + l1l2 .

The bottom of this cycle is {j1 × j2 × j3 +1 l1 × l2} and its principal boundary is

B̃(π) = j1 × j2 × j3 +1 l1 × l2 ⊕ 1.

Proof. This theorem might be proved in the same way as theorem 7.18, using the varia-
tional results of proposition 7.10. In fact it is the three dimensional counterpart of the two
dimensional theorem 6.19. �
Remark. Similar results hold for any parallelepiped plus rectangle j1 × j2 × j3 ⊕ l1 × l2
satisfying the requirements of the theorem.

Theorem 7.20. Let j1 × j2 × j3 be a parallelepiped containing a three dimensional
critical configuration. The cycle

π = π(j1 × j2 × j3 +1 (lc − 1)× (lc + 1),predE(j1 × j2 × j3 +1 (lc − 1)× lc +2 1))

is included in {−1,+1}c. Moreover,

v(π) = j1j2j3 + (lc − 1)lc + 2 , v(π) = j1j2j3 + (lc − 1)(lc + 1) .

∀k ∈ {1 · · · lc − 3} M(j1 × j2 × j3 +1 (lc − 1)× (lc + 1),−k) ⊂ π .

The bottom of this cycle is {j1 × j2 × j3 +1 (lc − 1)× (lc + 1)}; its principal boundary is

B̃(π) = M(j1 × j2 × j3 +1 (lc − 1)× (lc + 1),−(lc − 2))

and thus contains j1 × j2 × j3 +1 (lc − 1)× lc ⊕2 1
12

.

Proof. These results are the three dimensional counterpart of the two dimensional theo-
rem 6.24 and can be proved as usual with the help of the variational results of proposi-
tion 7.10. �
Remark. Similar statements hold for any configuration in j1 × j2 × j3 ⊕ (lc + 1)× (lc − 1).
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Lemma 7.21. Let j1, j2, j3, l1, l2 be positive integers with l1 × l2 ⊂ j2 × j3 and let k, i
be such that k > 1, i ≥ 0, l1 ≥ k + i. The cycle {j1 × j2 × j3 +1 l1 × l2 +i

2 k} has one or

two configurations in its principal boundary B̃:

• if i = 0 then B̃ = {j1 × j2 × j3 +1 l1 × l2 +i
2 (k + 1)},

• if i = l1 − k then B̃ = {j1 × j2 × j3 +1 l1 × l2 +i−1
2 (k + 1)},

• if 0 < i < l1 − k then B̃ = {j1 × j2 × j3 +1 l1 × l2 +i−1
2 (k + 1), l1 × l2 +i

2 (k + 1)}.
Proof. The configuration σ = j1 × j2 × j3 +1 l1 × l2 +i

2 k communicates with at least one
configuration of lower energy, so that the height of the cycle {σ} is zero, and its principal
boundary consists exactly of the configurations communicating with σ and having and
energy less or equal than σ. �
Lemma 7.22. Let j1, j2, j3, l1, l2 be positive integers with l1 × l2 ⊂ j2 × j3 and let i
be such that i ≥ 0, l1 ≥ i + 1. The cycle {j1 × j2 × j3 +1 l1 × l2 +i

2 1} has two or three

configurations in its principal boundary B̃:

• if i = 0 then B̃ = {j1 × j2 × j3 +1 l1 × l2, j1 × j2 × j3 +1 l1 × l2 +i
2 2},

• if i = l1 − 1 then B̃ = {j1 × j2 × j3 +1 l1 × l2, j1 × j2 × j3 +1 l1 × l2 +i−1
2 2},

• if 0 < i < l1 − 1 then B̃ = {j1 × j2 × j3 +1 l1 × l2, j1 × j2 × j3 +1 l1 × l2 +i−1
2 2,

j1 × j2 × j3 +1 l1 × l2 +i
2 2}.

Proof. The proof is based on the same argument as the proof of lemma 7.21. �
Remark. Lemmas 7.21, 7.22 are the three dimensional counterparts of lemmas 6.20, 6.21.
Results similar to those stated in lemmas 7.21 and 7.22 hold for the configurations in
j1 × j2 × j3 ⊕ l1 × l2 ⊕ 1.

Corollary 7.23. Suppose j1×j2×j3 contains a configuration of Snc (i.e. a critical three
dimensional configuration) and l1 × l2 contains a critical two dimensional configuration.
The following cycles are maximal cycles of {−1,+1}c:

1) π(j1 × j2 × j3,predE(j1 × j2 × j3 +1 (lc − 1)× lc +2 1)) ,

2) π(j1 × j2 × j3 +1 (lc − 1)× (lc + 1),predE(j1 × j2 × j3 +1 (lc − 1)× lc +1 1)) ,

3) π(j1 × j2 × j3 +1 l1 × l2,predE(j1 × j2 × j3 +1 l1 × l2 ⊕ 1)) ,

and this cycle is not included in a cycle of type 1),

4) π((jc − 1)× (jc − δc)× jc +1 l1 × l2,predE((jc − 1)× (jc − δc)× jc +1 l1 × l2 ⊕ 1)) ,

and this cycle is not included in a cycle of type 1),

5) {η} , η ∈M(j1 × j2 × j3 +1 (lc − 1)× (lc + 1),−(lc − 2)) ,

6) {η} , η ∈ j′1 × j′2 × j′3 ⊕ l′1 × l′2 ⊕ k where j′1 × j′2 × j′3 contains a quasicube

(jc − 1)× (jc − δc)× jc, l′1 × l′2 contains a quasisquare (lc − 1)× lc, k is positive,

and this cycle is not included in a cycle of type 1), 2), 3), 4), 5).
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The list should be completed with all the isometric cycles (obtained by applying an isom-
etry) as well as all the cycles whose bottom is obtained by translating the rectangle l1× l2
along the side of the parallelepiped (i.e. the configurations in j1 × j2 × j3 ⊕ l1 × l2).

Proof. This corollary is a consequence of lemma 4.4 together with theorems 7.18, 7.19, 7.20
and lemmas 7.21, 7.22. Notice that we have to put together the descriptions of the cycles
of theorems 7.18, 7.19, 7.20, lemmas 7.21, 7.22 in order to check that for each cycle π in

the above list, there is a sequence of cycles π0, · · · , πr such that π0 = π, B̃(πi)∩ πi+1 6= ∅,
0 ≤ i < r, and +1 ∈ B̃(πr). Formally, this would require a tedious induction. For instance,
the following arrows are in the graph G: π(j1 × j2 × j3,predE(j1 × j2 × j3 +1 (lc − 1)×
lc +1 1))→ { j1 × j2 × j3 +1 (lc − 1)× lc +1 1 } → { j1 × j2 × j3 +1 (lc − 1)× lc +1 2 } →
· · · → π(j1 × j2 × j3 +1 lc × lc,predE(j1 × j2 × j3 +1 lc × lc +1 1)) → · · · → π(j1 × j2 ×
j3 +1 l1× l2,predE(j1× j2× j3 +1 l1× l2 +1 1))→ · · · → π((j1 + 1)× j2× j3,predE((j1 +
1)× j2 × j3 +1 (lc − 1)× lc +1 1))→ · · · → {+1}. �

Corollary 7.24. Let σ belong to Snc+1. The minimal stable subgraph G+(σ) of G+

containing σ is the restriction of G to the vertices listed in corollary 7.23. The arrows
of G+(σ) are (we denote by η the parallelepiped j1 × j2 × j3 and the cycles which are the
starting point of the arrows belong to the list of cycles of corollary 7.23; the rectangles
l1×l2 contain a critical two dimensional configuration; the rectangles l′1×l′2 are very large):

1) around the parallelepipeds:

π(η,predE(η ⊕ (lc − 1)× lc ⊕ 1))↔ {ξ}, ξ ∈ η ⊕ (lc − 1)× lc ⊕ 1
123

;

2) growing in the direction of e1:

π(η +1 (lc − 1)× (lc + 1),predE(η +1 (lc − 1)× lc ⊕ 1))↔ {ξ},
ξ ∈ M(η +1 (lc − 1)× (lc + 1),−(lc − 2)) ,

π(η +1 l1 × l2,predE(η +1 l1 × l2 ⊕ 1))↔ {ξ}, ξ ∈ η +1 l1 × l2 ⊕ 1 ,
{η +1 l1 × l2 +1 k} → {η +1 l1 × l2 +1 (k + 1)}, 0 < k ≤ l2 − lc ,
{η +1 l1 × l2 +2 k} → {η +1 l1 × l2 +2 (k + 1)}, 0 < k ≤ l1 − lc ,
{η +1 l1 × l2 +2 l1 − lc + 1} → π(η +1 l1 × (l2 + 1),predE(η +1 l1 × (l2 + 1) + 1)) ,
{η +1 l1 × l2 +1 l2 − lc + 1} → π(η +1 (l1 + 1)× l2,predE(η +1 (l1 + 1)× l2 + 1)) ,
{η+1 l

′
1×l′2+2 l

′
1−lc+1} → π((j1+1)×j2×j3,predE((j1+1)×j2×j3+1 (lc−1)×lc+11)) ,

{η+1 l
′
1×l′2+1 l

′
2−lc+1} → π((j1+1)×j2×j3,predE((j1+1)×j2×j3+1 (lc−1)×lc+11)) ;

3) growing in the direction of e2:

π(η +2 (lc − 1)× (lc + 1),predE(η +2 (lc − 1)× lc ⊕ 1))↔ {ξ},
ξ ∈ M(η +2 (lc − 1)× (lc + 1),−(lc − 2)) ,

π(η +2 l1 × l2,predE(η +2 l1 × l2 ⊕ 1))↔ {ξ}, ξ ∈ η +2 l1 × l2 ⊕ 1 ,
{η +2 l1 × l2 +1 k} → {η +2 l1 × l2 +1 (k + 1)}, 0 < k ≤ l2 − lc ,
{η +2 l1 × l2 +2 k} → {η +2 l1 × l2 +2 (k + 1)}, 0 < k ≤ l1 − lc ,
{η +2 l1 × l2 +2 l1 − lc + 1} → π(η +2 l1 × (l2 + 1),predE(η +2 l1 × (l2 + 1) + 1)) ,
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{η +2 l1 × l2 +1 l2 − lc + 1} → π(η +2 (l1 + 1)× l2,predE(η +2 (l1 + 1)× l2 + 1)) ,
{η+2 l

′
1×l′2+2 l

′
1−lc+1} → π(j1×(j2+1)×j3,predE(j1×(j2+1)×j3+2 (lc−1)×lc+11)) ,

{η+2 l
′
1×l′2+1 l

′
2−lc+1} → π(j1×(j2+1)×j3,predE(j1×(j2+1)×j3+2 (lc−1)×lc+11)) ;

4) growing in the direction of e3:

π(η +3 (lc − 1)× (lc + 1),predE(η +3 (lc − 1)× lc ⊕ 1))↔ {ξ},
ξ ∈ M(η +3 (lc − 1)× (lc + 1),−(lc − 2)) ,

π(η +3 l1 × l2,predE(η +3 l1 × l2 ⊕ 1))↔ {ξ}, ξ ∈ η +3 l1 × l2 ⊕ 1 ,
{η +3 l1 × l2 +1 k} → {η +3 l1 × l2 +1 (k + 1)}, 0 < k ≤ l2 − lc ,
{η +3 l1 × l2 +2 k} → {η +3 l1 × l2 +2 (k + 1)}, 0 < k ≤ l1 − lc ,
{η +3 l1 × l2 +2 l1 − lc + 1} → π(η +3 l1 × (l2 + 1),predE(η +3 l1 × (l2 + 1) + 1)) ,
{η +3 l1 × l2 +1 l2 − lc + 1} → π(η +3 (l1 + 1)× l2,predE(η +3 (l1 + 1)× l2 + 1)) ,
{η+3 l

′
1×l′2+2 l

′
1−lc+1} → π(j1×j2×(j3+1),predE(j1×j2×(j3+1)+3 (lc−1)×lc+11)) ,

{η+3 l
′
1×l′2+1 l

′
2−lc+1} → π(j1×j2×(j3+1),predE(j1×j2×(j3+1)+3 (lc−1)×lc+11)) .

The symbol↔ means that both arrows→ and← are present. The above list should be
completed with all the isometric arrows (obtained by applying the same isometry to both
ends of an arrow), as well as all the arrows obtained by sliding either the bar along the
rectangle (i.e. the configurations in l1 × l2 ⊕1 k) or by translating the rectangle l1 × l2 on
the side of the parallelepiped η (i.e. the configurations in η ⊕ l1 × l2).

The loops in the graph G+(σ) are

π(η,predE(η ⊕ (lc − 1)× lc ⊕ 1))↔ {ξ}, ξ ∈ η ⊕ (lc − 1)× lc ⊕ 1
123

,

π(η +1 (lc − 1)× (lc + 1),predE(η +1 (lc − 1)× lc ⊕ 1))↔ {ξ} ,
ξ ∈M(η +1 (lc − 1)× (lc + 1),−(lc − 2)) ,

π(η +1 l1 × l2,predE(η +1 l1 × l2 ⊕ 1))↔ {ξ}, ξ ∈ η +1 l1 × l2 ⊕ 1,

π(η +2 (lc − 1)× (lc + 1),predE(η +2 (lc − 1)× lc ⊕ 1))↔ {ξ} ,
ξ ∈M(η +2 (lc − 1)× (lc + 1),−(lc − 2)) ,

π(η +2 l1 × l2,predE(η +2 l1 × l2 ⊕ 1))↔ {ξ}, ξ ∈ η +2 l1 × l2 ⊕ 1,

π(η +3 (lc − 1)× (lc + 1),predE(η +3 (lc − 1)× lc ⊕ 1))↔ {ξ} ,
ξ ∈M(η +3 (lc − 1)× (lc + 1),−(lc − 2)) ,

π(η +3 l1 × l2,predE(η +3 l1 × l2 ⊕ 1))↔ {ξ}, ξ ∈ η +3 l1 × l2 ⊕ 1.

All these loops are of length two. Any other arrow π1 → π2 of G+(σ) satisfies v(π1) <
v(π2). As a consequence a path in G+(σ) starting at {σ} with no loop ends in {+1}.

We are done with the standard configurations. We have to examine the remaining
configurations of the principal boundary of the cycle π(−1,+1c) i.e. the principal non
standard configurations.
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The principal non standard configurations. We now do the same work for the con-

figurations in M̃nc \ Snc . The relevant cycles are the cycles around the parallelepipeds
(jc − 1) × (jc − δc) × (jc + 1), around the quasicubes plus rectangles (jc − 1) × (jc −
δc) × jc +1 (lc − 1) × (lc + 1), and around the configurations of M̃nc+1 \ Snc+1. We

handle first the case of the configurations of M̃nc \ Snc which lead to a parallelepiped
(jc − 1)× (jc − δc) × (jc + 1) and then those which lead to a quasicube plus a rectangle
(jc − 1)× (jc − δc)× jc +1 (lc − 1)× (lc + 1).

Theorem 7.25. The cycle π = π((jc−1)× (jc− δc)× (jc+1),predE(nc)) is the greatest
cycle containing (jc − 1)× (jc − δc)× (jc + 1) included in {−1,+1}c. Moreover,

v(π) = nc + 1 , v(π) < (jc − 1)(jc − δc)(jc + 1) + (lc − 1)lc + 1 .

The bottom of this cycle is {(jc− 1)× (jc− δc)× (jc+1)}; its principal boundary contains

{ ξ : ξ ⊂ (jc − 1)× (jc − δc)× (jc + 1), ξ ∈ M̃nc }

and is included inM((jc − 1)× (jc − δc)× (jc + 1), nc − (jc − 1)(jc − δc)(jc + 1)).

Remark. Obviously, similar statements are true for the parallelepipeds isometric to (jc −
1)× (jc − δc)× (jc + 1).

Proof. We check that the parallelepiped (jc − 1) × (jc − δc) × (jc + 1) and the cycle
π satisfy the hypothesis of theorem 5.5. Let x1, · · · , xr be a sequence of sites such that
T (x1, · · · , xs)((jc−1)×(jc−δc)×(jc+1)) is in π for s in {1 · · · r} (i.e. these configurations
have an energy less or equal than predE(nc)). We put ηs = T (x1, · · · , xs)((jc − 1)× (jc −
δc)× (jc + 1)) for s in {0 · · · r}.
• First case: all the sites are outside (jc − 1) × (jc − δc) × (jc + 1). We have that
(jc− 1)× (jc− δc)× (jc +1) ⊂ ηs whence E(ηs) ≥ E((jc− 1)× (jc− δc)× (jc +1), v(ηs)−
(jc − 1)(jc − δc)(jc + 1)) and

pred E(nc) ≥ max
0≤s≤r

E((jc − 1)× (jc − δc)× (jc + 1), v(ηs)− (jc − 1)(jc − δc)(jc + 1)).

Since the sequence η0, · · · , ηr is a sequence of spin flips we have |v(ηs+1) − v(ηs)| ≤ 1
and (v(ηs), 0 ≤ s ≤ r) takes all the values between (jc − 1)(jc − δc)(jc + 1) and v(ηr).
Henceforth

max
0≤s≤r

E((jc − 1)× (jc − δc)× (jc + 1), v(ηs)− (jc − 1)(jc − δc)(jc + 1)) ≥

max{ E((jc − 1)× (jc − δc)× (jc + 1), k) : 0 ≤ k ≤ v(ηr)− (jc − 1)(jc − δc)(jc + 1) }

and the volume of ηr must satisfy

max{ E((jc−1)×(jc−δc)×(jc+1), k) : 0 ≤ k ≤ v(ηr)−(jc−1)(jc−δc)(jc+1) } ≤ predE(nc).
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By proposition 7.9, we have E((jc − 1)× (jc − δc)× (jc + 1), (lc − 1)lc + 1) = E((jc − 1)×
(jc−δc)× (jc+1)+1 (lc−1)× lc+1 1) which is strictly greater than predE(nc). Thus v(ηr)
is strictly less than (jc − 1)× (jc − δc)× (jc + 1) + (lc − 1)lc + 1.
• Second case: all the sites are inside (jc − 1)× (jc − δc)× (jc + 1). Now ηs ⊂ (jc − 1)×
(jc − δc)× (jc + 1) so that

predE(nc) ≥ max
0≤s≤r

E((jc − 1)× (jc − δc)× (jc + 1), v(ηs)− (jc − 1)(jc − δc)(jc + 1))

≥ max{ E((jc − 1)× (jc − δc)× (jc + 1),−k) : 0 ≤ k ≤ (jc − 1)(jc − δc)(jc + 1)− v(ηr) }.

Proposition 7.8 shows that E((jc−1)× (jc−δc)× (jc+1),−(jc−1)(jc−δc)+(lc−1)lc+1)
is equal to E(nc). Necessarily, v(ηr) is strictly greater than nc.
In addition, we have that E((jc−1)×(jc−δc)×(jc+1), k) > E((jc−1)×(jc−δc)×(jc+1))
for all k such that

v(π)− (jc − 1)(jc − δc)(jc + 1) ≤ k ≤ v(π)− (jc − 1)(jc − δc)(jc + 1), k 6= 0.

We have thus proved that (jc−1)×(jc−δc)×(jc+1) and the cycle π satisfy the hypothesis
of theorem 5.5. It follows that the bottom of the cycle is {(jc − 1)× (jc − δc)× (jc + 1)}.
Moreover the set { ξ : ξ ⊂ (jc − 1) × (jc − δc) × (jc + 1), ξ ∈ M̃nc+1 } is included in
the cycle: each configuration of this set communicates with (jc − 1)× (jc − δc)× (jc + 1)

under the level predE(nc). Thus { ξ : ξ ⊂ (jc − 1) × (jc − δc) × (jc + 1), ξ ∈ M̃nc }
is included in the principal boundary of π. Finally a configuration ξ of the principal
boundary of this cycle is of energy E(ξ) = E(nc) so that its volume is equal to nc, and its
area to min{ a(σ) : σ ∈ Cnc }. Let η be a configuration of the cycle such that q(η, ξ) > 0.
Necessarily, the volume of η is nc + 1. Thus η is a configuration of minimal volume of
the cycle and as such it is a minimal configuration of the cycle for the inclusion relation.
By theorem 5.3 it is included in the parallelepiped (jc − 1)× (jc − δc)× (jc + 1). Thus ξ
belongs to M((jc − 1)× (jc − δc)× (jc + 1), nc − (jc − 1)(jc − δc)(jc + 1)). �

Corollary 7.26. Let σ belong to M̃nc+1 \Snc+1. Suppose (jc−1)× (jc− δc)× jc+3 (lc−
1)× lc ⊂ σ. Let G+(σ) be the minimal stable subgraph of G+ containing π(σ, {−1,+1}c).
The only arrows of G+(σ) entering π(−1,+1c) are

{ξ} → π((jc − 1)× (jc − δc)× jc +3 (lc − 1)× lc, {−1,+1}c),
ξ ∈ M̃nc \ Snc , (jc − 1)× (jc − δc)× jc +3 (lc − 1)× lc ⊂ ξ.

The remaining arrows of G+(σ) are

π(σ, {−1,+1}c)↔ {η}, η ∈ B̃(π(σ, {−1,+1}c)).

There is no arrow in G+(σ) ending at {+1}.
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Remark. We have proved in theorem 7.25 that

B̃(π(σ, {−1,+1}c)) ⊂M((jc − 1)× (jc − δc)× (jc + 1), nc − (jc − 1)(jc − δc)(jc + 1)).

Proof. That these arrows belong to G+(σ) is a straightforward consequence of theo-
rem 7.25 which implies in particular that π(σ, {−1,+1}c) = π((jc − 1) × (jc − δc) ×
(jc + 1), {−1,+1}c). We have to check that there is no other arrow. Let η belong to the

principal boundary of π((jc − 1) × (jc − δc) × (jc + 1),pred E(nc)). If η is in M̃nc , then
all arrows of G starting at the cycle {η} are present in the above list (lemma 7.22). If η is

not in M̃nc, we claim that

{η} → π((jc − 1)× (jc − δc)× (jc + 1),pred E(nc))

is the unique arrow of G starting at {η}. Let ξ be a point such that q(η, ξ) > 0 and E(ξ) ≤
E(η). Necessarily E(ξ) ≤ predE(nc). Since v(η) = nc, then v(ξ) is equal to nc−1 or nc+1.
Moreover η is minimal, and the inequality E(ξ) ≤ E(η) implies in both cases that ξ is also
minimal. Thus ξ cannot be of volume nc−1 (by lemma 7.4, the only configurations ofMnc

communicating with Mnc−1 are the principal configurations M̃nc). Thus v(ξ) = nc + 1.
We next show that ξ belongs to π((jc−1)× (jc− δc)× (jc+1),pred E(nc)). Let x1, · · · , xr
be a sequence of sites inside σ such that T (x1, · · · , xs)((jc − 1)× (jc − δc)× (jc + 1)) is in
π((jc−1)× (jc−δc)× (jc+1),predE(nc)) for s in {1 · · · r−1} and η = T (x1, · · · , xr)((jc−
1) × (jc − δc) × (jc + 1)). We put ηs = T (x1, · · · , xj)((jc − 1) × (jc − δc) × (jc + 1)),
0 ≤ s ≤ r. Since η is in the boundary of the cycle, we have E(ηr−1) < E(ηr). Moreover
ηr−1 is a minimal configuration of the cycle, of volume nc + 1, so that the last spin flip at
site xr has decreased the volume. Let xr+1 be the unique site such that ξ = T (xr+1)(η).
If xr = xr+1 then ξ = ηr−1. Suppose xr 6= xr+1 (so that ηr−1(xr+1) = −1). We
have ξ = T (xr+1)(ηr) = T (xr+1, xr)(ηr−1) = T (xr , xr+1)(ηr−1) = T (xr)(η′r) where η′r =
T (xr+1)(ηr−1). The energy inequality 5.1 yields E(η′r) − E(ηr−1) ≤ E(ξ)− E(η) whence
E(η′r) ≤ E(ηr−1). It follows that η′r is in the cycle, as well as ξ (their energies are less or
equal than predE(nc) and they both communicate with a configuration of the cycle). �

We deal now with the principal non standard configurations which lead to a quasicube
plus a rectangle (jc − 1)× (jc − δc)× jc +1 (lc − 1)× (lc + 1). This situation corresponds
to the presence of a two dimensional principal non standard configuration on the side of
the critical quasicube.

Theorem 7.27. The cycle π((jc−1)×(jc−δc)×jc+1 (lc−1)×(lc+1),predE(nc)) is the
greatest cycle containing (jc−1)× (jc− δc)× jc+1 (lc−1)× (lc+1) included in {−1,+1}c.
Moreover,

v(π) = (jc − 1)(jc − δc)jc + (lc − 1)lc + 2 ,

v(π) = (jc − 1)(jc − δc)jc + (lc − 1)(lc + 1) ,

∀k ∈ {1 · · · lc − 3} M((jc − 1)× (jc − δc)× jc +1 (lc − 1)× (lc + 1),−k) ⊂ π .
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The bottom of this cycle is {(jc − 1)× (jc − δc) × jc +1 (lc − 1) × (lc + 1)}; its principal
boundary is

B̃(π) = M((jc − 1)× (jc − δc)× jc +1 (lc − 1)× (lc + 1),−(lc − 2))

and thus contains (jc − 1)× (jc − δc)× jc +1 (lc − 1)× lc ⊕2 1
12

(which belong to M̃nc).

Proof. The proof is similar as for theorem 6.24. �
Remark. Obviously, similar statements are true for the configurations in the set

(jc − 1)× (jc − δc)× jc ⊕1 (lc − 1)× (lc + 1) .

Corollary 7.28. Let σ belong to M̃nc+1 \ Snc+1. Suppose (jc − 1) × (jc − δc) × jc +1

(lc − 1) × lc ⊂ σ ⊂ (jc − 1) × (jc − δc) × jc +1 (lc − 1) × (lc + 1). Let G+(σ) be the
minimal stable subgraph of G+ containing π(σ, {−1,+1}c). The only arrows of G+(σ)
entering π(−1,+1c) are

{ξ} → π((jc − 1)× (jc − δc)× jc +1 (lc − 1)× lc, {−1,+1}c),
ξ ∈ M̃nc \ Snc , (jc − 1)× (jc − δc)× jc +1 (lc − 1)× lc ⊂ ξ.

The remaining arrows of G+(σ) are

π(σ, {−1,+1}c)↔ {η}, η ∈ B̃(π(σ, {−1,+1}c)).

There is no arrow in G+(σ) ending at {+1}.
Proof. The proof is similar as for corollary 6.25. �

We sum up the consequences of the previous results in the next corollaries.

Corollary 7.29. The principal non standard configurations of volume nc (i.e. the set

M̃nc \Snc) are dead–ends: there is no saddle path of null cost between −1 and +1 passing
through them.

Corollary 7.30. The set of the global saddle points between −1 and +1 is exactly Snc .
These configurations are the critical three dimensional configurations.

Steps ii) and iii) are now completed and we proceed to steps iv) and v).

The ascending part. We now proceed to the last part of the program: for each configu-
ration σ′ in Snc, we must determine the minimal stable subgraph of G− containing σ′ and
all the paths in this graph starting at {σ′} and ending at −1. Our exposition is similar
as before: we first list the set of the relevant cycles and we use lemma 4.4 to find those
belonging toM({−1,+1}c). We finally check that we have in hand all the vertices of G−.
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Theorem 7.31. Let j be an integer strictly less than jc and greater or equal than lc.
Let δ ≤ γ belong to {0, 1}. The cycle π = π(j × (j + δ)× (j + γ),predE(j(j + δ)(j + γ −
1) + (lc − 1)lc + 1)) does not contain −1 and +1. Moreover

v(π) = j(j + δ)(j + γ − 1) + (lc − 1)lc + 2 , v(π) < j(j + δ)(j + γ) + (lc − 1)lc + 1 .

The bottom of this cycle is {j × (j + δ)× (j + γ)}; its principal boundary contains the set

{ ξ : ξ ⊂ j × (j + δ)× (j + γ), ξ ∈ Sj(j+δ)(j+γ−1)+(lc−1)lc+1 }
and is included inM(j × (j + δ)× (j + γ), (lc − 1)lc + 1− j(j + δ)).

Proof. We apply proposition 7.12. For any n greater than j(j + δ)(j + γ) + (lc − 1)lc + 1,

E(j × (j + δ)× (j + γ), Cn) ≥ E(j(j + δ)(j + γ − 1) + (lc − 1)lc + 1)

whence v(π) < j(j+ δ)(j+γ)+(lc−1)lc+1. Analogously, for any n strictly smaller than
j(j + δ)(j + γ − 1) + (lc − 1)lc + 2 we have E(j(j + δ)(j + γ), Cn) ≥ E(j(j + δ)(j + γ −
1) + (lc − 1)lc + 1); moreover,

E(j(j + δ)(j + γ), Cj(j+δ)(j+γ−1)+(lc−1)lc+2) < E(j(j + δ)(j + γ − 1) + (lc − 1)lc + 1)

so that v(π) = j(j + δ)(j + γ − 1) + (lc − 1)lc + 2. To prove that the bottom of the cycle
is {j × (j + δ) × (j + γ)}, we could proceed as before and use theorem 5.5. However,
a direct application of our geometrical results (theorem 7.2) yields that the minimum
min{ E(n) : j(j + δ)(j + γ − 1) + (lc − 1)lc + 2 ≤ n < j(j + δ)(j + γ) + (lc − 1)lc + 1 }
is equal to E(j(j + δ)(j + γ)); the unique configurations of energy E(j(j + δ)(j + γ)) are
the quasicubes isometric to j × (j + δ) × (j + γ). Theorem 5.3 implies also that the
altitude of communication between two different quasicubes of this set is greater than
E(j(j+ δ)(j+γ−1)+(lc−1)lc+1) (one has to fill a face of the initial quasicube to create
another quasicube). The statement concerning the principal boundary is a consequence of
proposition 7.8. �
Theorem 7.32. Let j be an integer strictly less than lc. Let δ ≤ γ belong to {0, 1}. The
cycle

π = π(j × (j + δ)× (j + γ),pred E(j(j + δ)(j + γ)− j + 1))

does not contain −1 and +1. Moreover

v(π) = j(j + δ)(j + γ)− j + 2 , v(π) = j(j + δ)(j + γ) ,

∀k ∈ {1 · · · j − 2} M(j × (j + δ)× (j + γ),−k) ⊂ π .

The bottom of this cycle is {j × (j + δ)× (j + γ)}; its principal boundary is

B̃(π) = M(j × (j + δ)× (j + γ),−j + 1)

and thus contains { ξ : ξ ⊂ j × (j + δ)× (j + γ), ξ ∈ Sj(j+δ)(j+γ)−j+1 }.
Proof. The proof is similar as for theorem 7.31. �
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Theorem 7.33. Let j be an integer strictly less than jc. Let δ ≤ γ belong to {0, 1}. Let
l × (l + ε) be a quasisquare strictly included in j × (j + δ), where l < lc. The cycle

π = π(j × (j + δ)× (j + γ) +3 l × (l + ε),pred E(j(j + δ)(j + γ) + l(l + ε)− l + 1))

does not contain −1 and +1. Moreover

v(π) = j(j + δ)(j + γ) + l(l + ε)− l + 2 , v(π) = j(j + δ)(j + γ) + l(l + ε) ,

∀k ∈ {1 · · · l − 2} M(j × (j + δ)× (j + γ) +3 l × (l + ε),−k) ⊂ π .

The bottom of this cycle is {j × (j + δ)× (j + γ) +3 l × (l + ε)}; its principal boundary is

B̃(π) = M(j × (j + δ)× (j + γ) +3 l × (l + ε),−l + 1)

and thus contains { ξ : ξ ⊂ j × (j + δ)× (j + γ), ξ ∈ Sj(j+δ)(j+γ)+l(l+ε)−l+1}.

Remark. This theorem cover the cases j ≤ lc and j > lc, which are of slightly different
natures. When j ≤ lc, the system does not have to create a two dimensional critical droplet
in order to fill a face of the quasicube.

Corollary 7.34. Suppose j < jc. The following cycles are maximal cycles of {−1,+1}c:

π(j × (j + δ)× (j + γ),pred E(j(j + δ)(j + γ − 1) + (lc − 1)lc + 1)), lc ≤ j ,
{η}, η ∈ B̃(π(j × (j + δ)× (j + γ),predE(j(j + δ)(j + γ − 1) + (lc − 1)lc + 1))), lc ≤ j,
π(j × (j + δ)× (j + γ),pred E(j(j + δ)(j + γ)− j + 1)), j < lc ,

{η}, η ∈M(j × (j + δ)× (j + γ),−j + 1), j < lc ,

π(j × (j + δ)× (j + γ) +3 l × (l + ε),pred E(j(j + δ)(j + γ) + l(l + ε)− l+ 1)), l < lc,

{η}, η ∈M(j × (j + δ)× (j + γ) +3 l × (l + ε),−l + 1), l < lc .

Proof. This corollary is a consequence of lemma 4.4 together with theorems 7.31, 7.32, 7.33.
Notice that we have to put together the descriptions of the cycles of these theorems in order
to check that for each cycle π in the above list, there is a sequence of cycles π0, · · · , πr
such that π0 = π, B̃(πi) ∩ πi+1 6= ∅, 0 ≤ i < r, and −1 ∈ B̃(πr). �

Corollary 7.35. Suppose σ is a configuration of Snc−1. The minimal stable sub-
graph G−(σ) of G− containing σ is the restriction of G to the vertices listed in corol-
lary 7.34. The arrows of G−(σ) are (in the following list, the starting cycles belong to the
list given in corollary 7.34):
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π(j × (j + δ)× (j + γ),pred E(j(j + δ)(j + γ − 1) + (lc − 1)lc + 1))↔ {η} ,
η ∈ B̃(π) , lc ≤ j < jc ,

{j × (j + δ)× (j + γ − 1) +3 (lc − 1)× lc +1 1} →
π(j × (j + δ)× (j + γ − 1) +3 (lc − 1)× lc, {−1,+1}c) , lc ≤ j < jc ,

π(j × (j + δ)× (j + γ),pred E(j(j + δ)(j + γ)− j + 1))↔ {η} ,
η ∈M(j × (j + δ)× (j + γ),−j + 1) , j < lc ,

{j × (j + δ)× (j + γ − 1) +3 j × (j + δ − 1) +1 1} →
π(j × (j + δ)× (j + γ − 1) +3 j × (j + δ − 1), {−1,+1}c) , j < lc ,

π(j × (j + δ)× (j + γ) +3 l × (l + ε),pred E(j(j + δ)(j + γ) + l(l + ε)− l + 1))↔ {η} ,
η ∈M(j × (j + δ)× (j + γ) +3 l × (l + ε),−l + 1) , l < lc,

{j × (j + δ)× (j + γ) +3 l × (l + ε− 1) +1 1} →
π(j × (j + δ)× (j + γ) +3 l × (l + ε− 1), {−1,+1}c) , l < lc .

As usual, this list should be completed with all the isometric arrows as well as with the
arrows between configurations where the quasisquares l × (l + ε) are slid against the side
of the quasicubes, and the unit cube 1 is slid against the side of the quasisquare (i.e. the
configurations in j × (j + δ)× (j + γ)⊕3 l × (l + ε)⊕ 1).

The only loops in the graph G−(σ) are loops around two cycles. Any other arrow
π1 → π2 of G−(σ) satisfies v(π1) > v(π2). As a consequence a path in G−(σ) starting
at {σ} with no loop ends in {−1}.
The exit path. We have finally reached the last step vi). We notice at this point that
there exists only one optimal saddle between two cycles associated to each arrow of the
graph G. Thus the graph G contains all the information necessary to obtain the set of
the saddle paths of null cost between −1 and +1. We describe for instance the canonical
saddle path, which follows the sequence of the canonical configurations:

−1→ m1, m1 → m2, m2 → m3, m3 → m4, m4 → m5, m5 → m6, m6 → m7, m7 → m8,

m8 → m9, m9 → m10, m10 → m11, m11 → m12, m12 → m13, m13 → m14, m14 → m15,

m15 → m16, m16 → m17, m18 → m19, m19 → m20, m20 → m21, m22 → m23, m24 → m25,

m25 → m26, m27 → m28, · · · , mj3+(lc−1)lc → mj3+(lc−1)lc+1, mj3+(lc−1)lc+1 → mj3+(lc−1)lc+2,

mj2(j+1)+(lc−1)lc → mj2(j+1)+(lc−1)lc+1, mj2(j+1)+(lc−1)lc+1 → mj2(j+1)+(lc−1)lc+2,

mj(j+1)2+(lc−1)lc → mj(j+1)2+(lc−1)lc+1, mj(j+1)2+(lc−1)lc+1 → mj(j+1)2+(lc−1)lc+2,

m(j+1)3+(lc−1)lc → m(j+1)3+(lc−1)lc+1, · · · , m(jc−1)(jc−δc)jc+(lc−1)lc → m(jc−1)(jc−δc)jc+(lc−1)lc+1,

m(jc−1)(jc−δc)jc+(lc−1)lc+1 → m(jc−1)(jc−δc)jc+(lc−1)lc+2, · · · , mN3−1 → mN3.
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We state here some consequences of the information provided by the graph G which
describes the set of all the saddle paths of null cost. We stress once more that the graph G
provides the most complete information available on the limiting dynamics. Once we know
this graph, the results obtained in a general framework [6] may be applied in a systematic
fashion to obtain various estimates. We let the process (σn)n∈N start from −1. We recall
that τ (+1c) is the hitting time of the ground state +1 and θ(−1, τ (+1c)) is the last visit
to the metastable state −1 before reaching +1.

Theorem 7.36. (the exit path)
For any positive ε, the following events take place with probability converging to one ex-
ponentially fast as β goes to infinity:
• expβ(E(nc)− ε) ≤ τ (+1c) ≤ expβ(E(nc) + ε) ;
• expβ(E2c − ε) ≤ τ (+1c) − θ(−1, τ (+1c)) ≤ expβ(E2c + ε) , where E2c is the two
dimensional global energy barrier given in proposition 6.15;
• during the exit path (σn, θ ≤ n ≤ τ ), the process crosses the set Snc of the critical
configurations at exactly one point σc; it does not cross Cnc \ Snc ;
• if we let n∗ = min{n ≥ θ : v(σn) = nc}, n∗ = max{n ≤ τ : v(σn) = nc}, we have that
σn = σn∗ = σn∗ for all n in {n∗ · · ·n∗} and n∗ − n∗ ≤ exp(βε);
• all the configurations of the exit path before time n∗ are of volume less than nc, all the
configurations after n∗ are of volume greater than nc;
• during the ascending part, the process goes through an increasing sequence of qua-
sicubes (j×(j+δ)×(j+γ), j < jc). It visits a quasicube j×(j+δ)×(j+γ) approximately
expβ(j−1)h times if j < lc and exp β(E2((lc−1)lc+1)−E2(j(j+δ))) times if j ≥ lc. When
it definitely leaves a quasicube, it fills the right side of the quasicube in order to obtain
the next larger quasicube, this filling occurs according to the two dimensional nucleation
mechanism; in particular, it does not make a parallelepiped which is not a quasicube;
• during the descending part, the process goes through an increasing sequence of par-
allelepipeds (j1 × j2 × j3, min(j1, j2, j3) ≥ jc). It visits a parallelepiped j1 × j2 × j3
approximately exp βE2c times. When it definitely leaves a parallelepiped it fills a side of
the parallelepiped chosen at random in order to obtain a larger parallelepiped, this filling
occurs by following the two dimensional nucleation mechanism;
• the process reaches the thermal equilibrium within each cycle of M({−1,+1}c) it
crosses: the distribution of the process before the exit of a cycle is very close to the
Gibbs distribution at inverse temperature β restricted to this cycle.

Let us notice a new phenomenon occurring in dimension three. Before growing a qua-
sicube or a parallelepiped whose sides are larger than lc, the system will build every
configuration reachable below the energy barrier E2c. This energy barrier goes to infinity
like 4/h and can thus be terribly high. The system will form small clusters very far from
the main cluster. There will be small sparks appearing everywhere on the torus. It will
try to build very strange shapes around the main cluster, like small antennae and wires.
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