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Abstract

Viruses present an amazing genetic variability. An ensemble of infect-
ing viruses, also called a viral quasispecies, is a cloud of mutants cen-
tered around a specific genotype. The simplest model of evolution, whose
equilibrium state is described by the quasispecies equation, is the Moran-
Kingman model. For the sharp peak landscape, we perform several exact
computations and we derive several exact formulas. We obtain also an
exact formula for the quasispecies distribution, involving a series and the
mean fitness. A very simple formula for the mean Hamming distance is
derived, which is exact and which does not require a specific asymptotic
expansion (like sending the length of the macromolecules to ∞ or the mu-
tation probability to 0). With the help of these formulas, we present an
original proof for the well-known phenomenon of the error threshold. We
recover the limiting quasispecies distribution in the long chain regime. We
try also to extend these formulas to a general fitness landscape. We ob-
tain an equation involving the covariance of the fitness and the Hamming
class number in the quasispecies distribution. We go beyond the sharp
peak landscape and we consider fitness landscapes having finitely many
peaks and a plateau-type landscape. We finally prove rigorously within
this framework the possible occurrence of the survival of the flattest, a
phenomenon which has been previously discovered by Wilke, Wang, Ofria,
Lenski and Adami [21] and which has been investigated in several works
[6, 14, 19, 20].
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1 Introduction

Some viruses are very hard to fight because of their genetic diversity: they
mutate constantly and this allows them to escape the attacks of the immune
system of their host. At the same time, the genotypes of an infecting population
of viruses are strongly correlated, they look like a cloud of mutants centered
around a specific genotype. This population structure, called a quasispecies,
can be observed experimentally for viruses (in vivo studies have been conducted
for the HIV [17] and the hepatitis C virus [12]). Nowadays, deep sequencing
techniques allow to collect data on the structure of viral quasispecies. Yet
the various biological mechanisms involved in the creation and the evolution of
quasispecies are far from being understood (see [9] for a recent review or the
book [8] for a more comprehensive account). The design of simple mathematical
models of quasispecies might help to develop efficient antiviral therapies. In
principle, a quasispecies can occur in any biological population whose evolution
is driven by mutation and selection. In the next subsection, we present a very
simple model for the evolution of a population under mutation and selection.
We write then the equations describing the equilibrium of this model, thereby
recovering directly the quasispecies equations associated with the equilibrium
of Eigen’s model. All the results presented afterwards concern the solutions of
these equations.

1.1 The quasispecies equations

We consider a population of haploid individuals evolving under the conjugate
effects of mutation and selection. We suppose that the population has reached an
equilibrium around a specific well adapted individual, called the wild type, and
denoted by w∗. Individuals reproduce, yet the reproduction mechanism is error-
prone, and mutations occur constantly. These mutations drive the genotypes
away from w∗. Yet w∗ has a selective advantage because it reproduces faster.

We would like to characterize mathematically this kind of equilibrium. We
denote by E the set of possible genotypes, which we assume to be finite. Generic
elements of E are denoted by the letters u, v. The Darwinian fitness of an
individual having genotype u is denoted by f(u), it can be thought of as its
mean number of offspring. In addition, mutations occur in each reproduction
cycle, an individual of type u might appear as the result of mutations from
offspring of other types. Let us denote by M(v, u) the probability that the
offspring of an individual of type v is of type u. For simplicity, we will assume
that all the coefficients of the mutation matrix M are positive. Of course, we
have

∀ v ∈ E
∑
u∈E

M(v, u) = 1 .

We introduce next the linear model, one of the simplest models for the
evolution of a population with selection and mutation. We suppose that the
successive generations do not overlap and we denote by Nn(u) the number of
individuals of type u in the generation n. The linear model assumes that an
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individual of type v produces a number of offspring proportional to its fitness
f(v), and that a proportion M(v, u) of the offspring mutates and becomes of
type u, thus Nn+1(u) is given by the formula

∀u ∈ E Nn+1(u) =
∑
v∈E

Nn(v)f(v)M(v, u) .

The trouble with this formula is that the sum is not necessarily an integer. To go
around this problem, a natural way is to develop stochastic population models,
in such a way that the above formula describes the evolution of the mean number
of individuals. The archetype of this kind of models is the Galton-Watson
branching process. If we introduce in addition a constraint on the total size
of the population, then we would consider the classical Wright-Fisher model.
Yet the randomness adds an extra layer of complexity and stochastic models
are considerably harder to study. Another simpler possibility is to consider
the proportions of each type of individuals in the population, instead of their
numbers, as Moran and Kingman did in the late seventies [16, 18]. Let us denote
by xn(u) the proportion of individuals of type u in the generation n. The model
proposed by Moran is given by

∀u ∈ E xn+1(u) =

∑
v∈E xn(v)f(v)M(v, u)∑

v∈E xn(v)f(v)
.

The denominator has been chosen to ensure that
∑

u∈E xn+1(u) = 1. In fact,
this model consists in iterating a deterministic map on the function encoding
the proportions of each type present in the population. The possible equilibria
of the model correspond to the fixed points of this map, that is the solutions of
the following equations:

∀u ∈ E x(u)
∑
v∈E

x(v)f(v) =
∑
v∈E

x(v)f(v)M(v, u) (1.1)

subject to the constraint

∀u ∈ E x(u) ≥ 0 ,
∑
u∈E

x(u) = 1 . (1.2)

We call these equations the quasispecies equations. They characterize also the
equilibrium in the model originally developed by Eigen [10], which led to the
quasispecies theory. Some of our results are derived for the general quasispecies
equations (1.1). To go further, we will focus on a particular choice of the set of
genotypes E and of the mutation matrix M . Both for practical and historical
reasons, we make the same choice as Eigen and Schuster [11], which leads to the
sharp peak landscape.

Genotypes. We consider the different genotypes to be sequences of length
ℓ ≥ 1 over an alphabet A of cardinality κ ≥ 1. Standard examples are A =
{ 0, 1 }, κ = 2, E = { 0, 1 }ℓ for binary sequences or A = {A,C,G, T }, κ = 4,
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E = {A,C,G, T }ℓ to model DNA molecules. The i-th component of a genotype
u is denoted by u(i). The Hamming distance d counts the number of differences
between two sequences:

∀u, v ∈ E d(u, v) = card
{
1 ≤ i ≤ ℓ : u(i) ̸= v(i)

}
.

When we wish to work with the simplest model, we use binary sequences. When
we seek to state a more general result, we use sequences over a finite alphabet.

Mutations. We suppose that mutations happen independently along the se-
quence with probability q ∈ ]0, 1[ , and that, upon mutation, a new letter of the
alphabet is chosen with equal probability. For u, v ∈ E, the mutation probabil-
ity M(u, v) is given by

M(u, v) =
( q

κ− 1

)d(u,v)
(1− q)ℓ−d(u,v) . (1.3)

The final missing ingredient to specify completely the model is the fitness func-
tion. We will consider different types of fitness functions in the following sub-
sections. For the initial models, for which the fitness function is quite simple,
we work with the genotype space E = Aℓ where A is a finite alphabet. For the
more complicated fitness landscapes considered at the end which contain a kind
of plateau, we work with the genotype space of binary sequences E = { 0, 1 }ℓ.

1.2 The sharp peak landscape

Ideally, we would like to have explicit formulas for x in terms of f and M .
Unfortunately, there is little hope of obtaining such explicit formulas in the
general case. So we consider the simplest non neutral fitness function which
comes to mind, the sharp peak landscape: there is a privileged genotype, w∗,
referred to as the wild type, which has a higher fitness than the rest. We work
with the genotype space E = Aℓ where A is a finite alphabet of cardinality κ.
Let σ > 1 and let the fitness function fSP be given by

∀u ∈ E fSP(u) =

{
σ if u = w∗ ,

1 if u ̸= w∗ .
(1.4)

This is the fitness function that Eigen studied in detail in his article [10]. Despite
its apparent simplicity, this model leads to interesting mathematical questions
and it provides new insight into the genetic structure of a population. Eigen
and Schuster [11] discussed the sharp peak landscape (which is fully presented in
section 2.2) with the help of approximation techniques and in a specific asymp-
totic regime. We present here a new approach, which is more elementary. The
sharp peak landscape is studied in detail in section 2. We perform several exact
computations and we derive several exact formulas. In particular, we obtain a
remarkable equation for the mean fitness λ at equilibrium, which had been pre-
viously discovered by Bratus, Novozhilov and Semenov, see formulas 5.5 and 5.6
in [3]. We state next a probabilistic version of this formula. Let Sℓ be a random
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variable with distribution the binomial law with parameters ℓ and (κ − 1)/κ.
Denoting by E the expectation, the mean fitness λ at equilibrium satisfies

1

σ − 1
= E

 1

λ

ρSℓ
− 1

 , (1.5)

where we have set
ρ = 1− κq

κ− 1
. (1.6)

Bratus, Novozhilov and Semenov exploited this equation to derive rigorous
bounds on the mean fitness, but this formula has wider applications. Fur-
thermore, we obtain also in subsection 2.4 an exact formula for the quasispecies
distribution, involving a series and the mean fitness. A very simple formula
for the mean Hamming distance is derived, which is exact and which does not
require a specific asymptotic expansion, like sending the length of the macro-
molecules to ∞ or the mutation probability to 0 (recall that the Hamming
distance between two sequences is the number of sites where they differ). The
mean Hamming distance Q in the quasispecies distribution can be interpreted
as the mean number of ones in a genotype at equilibrium, and the formula is

Q =
ℓq λ

λ− ρ
, (1.7)

where λ is the mean fitness of the population (here we assume that the wild-
type is the genotype (0, . . . , 0) and the Hamming distances are computed with
respect to the wild-type).

We stress that all the formulas obtained in section 2 are exact and hold for a
fixed value of the length ℓ. In the next subsection and in section 3, we perform
asymptotic expansions of these formulas in the long chain regime.

1.3 The error threshold

We shall demonstrate that the quasispecies equations for the sharp peak land-
scape undergo a phenomenon similar to a phase transition. This is a classical
and well-known result. However we adopt an original approach for the proof, in-
deed we will show how it follows easily from equation (1.5). Furthermore, with
the help of the exact formulas derived in section 2.4, we recover the limiting
quasispecies distribution in the long chain regime in section 3.3.

We consider the asymptotic regime, called the long chain regime, where

ℓ → +∞ , q → 0 , ℓq → a ∈ [0,+∞] . (1.8)

The parameter a is in fact the asymptotic mean number of observed mutations
per individual in each reproduction cycle. We denote by λ the mean fitness at
equilibrium and by x(w∗) the proportion of the wild type w∗ in the population
at equilibrium.
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Theorem 1.9 (Error threshold). For the sharp peak landscape, we have the
following dichotomy:
• If a > lnσ, then λ → 1, whence x(w∗) → 0.
• If a < lnσ, then λ → σe−a > 1, and

x(w∗) → σe−a − 1

σ − 1
.

Thus the limit of the proportion x(w∗) of the wild type present in the population
is positive only if σe−a > 1, or equivalently, if asymptotically q < ℓ−1 lnσ. The
value

q∗ =
lnσ

ℓ

is the error threshold, described by Eigen as the critical mutation rate above
which the wild type w∗ disappears from the population. Whenever the occur-
rence of mutations is negligible compared to the sequence length, that is for
a = 0, we have x(w∗) = 1 and the only genotype present in the population is
the wild type w∗. In the presence of a small number of mutations, that is for
a > 0, genetic diversity is constantly reintroduced in the population and there
is a positive proportion of the genotypes which differs from w∗. Yet most of the
genotypes are very close to the wild type w∗. In fact, the population looks like
a cloud of mutants centered around the wild type. As the mutation rate q is
raised, the proportion of the wild type w∗ present in the population decreases.
When q reaches the error threshold, the wild type disappears from the popula-
tion. More precisely the proportion of the wild type becomes comparable to the
proportions of the other genotypes. This is the error catastrophe: the selective
advantage of the wild type w∗ is annihilated by the mutations.

This kind of equilibrium was discovered within the framework of Eigen’s
model and was called a quasispecies [10, 11], as opposed to a species, which
refers to an homogeneous solution in chemistry. In fact, Eigen’s model is a model
for the evolution of a population of macromolecules governed by a system of
chemical reactions and the laws of kinetics yield a differential system of equations
whose equilibrium is described by the quasispecies equation. This system was
historically analyzed with approximation and expansion techniques, which in
the asymptotic regime (1.8) led to the discovery of the error threshold.

Although the original goal of Eigen was to understand the first stages of life
on Earth, the notion of quasispecies and the error threshold had a profound
impact on the understanding of molecular evolution [9]. Indeed, many living
organisms seem to satisfy approximately the scaling relation

mutation rate ∼ 1

genome length
.

Unfortunately, for complex creatures, it is very complicated to estimate the
mutation rate, which is usually extremely small. Viruses, however, have a rather
high mutation rate, and the orders of magnitude of their genome length and their
mutation rate is compatible with this scaling law. Moreover, some RNA viruses,
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like the HIV, evolve with a high mutation rate which seems to be close to an
error threshold [9]. Why is that so?

In order to survive a virus should achieve two goals. First, its genetic infor-
mation should be preserved from one generation to another, hence its mutation
rate has to be below the error threshold. Second, it has to escape the attacks
of the immune system of its hosts, and to do so, it should mutate as fast as
possible. The most efficient strategy is therefore to adjust the mutation rate to
the left of the error threshold: this will achieve simultaneously a huge genetic
variability, and the preservation of the pertinent genetic information across gen-
erations. Some promising antiviral strategies, called lethal mutagenesis, consist
in using mutagenic drugs which increase slightly the mutation rate of the virus
in order to induce an error catastrophe [1, 7, 9].

Most of the rigorous mathematical analysis of Eigen’s model deals with the
sharp peak landscape, or with landscapes presenting a lot of symmetries (see [2]
for the analysis of a permutation invariant fitness landscape and [4] for a review
of the literature).

1.4 Extension to a general landscape

We try to extend the formulas obtained in section 2 to a general fitness land-
scape. Here we work with the genotype space E = Aℓ where A is a finite
alphabet of cardinality κ. We make the following hypothesis on the fitness
function f .

Hypothesis 1.10. The fitness function f is larger or equal than 1, and it is
not identically equal to 1.

In theorem 1.11, we obtain an interesting equation involving the covariance of
the fitness and the sum of an arbitrary function g over the letters of the sequences
in the quasispecies distribution This formula is a considerable generalization of
the formula (1.7).

Theorem 1.11. Let A be a finite alphabet of cardinality κ and let E = Aℓ. Let
g be a function defined on A with values in R and let G : E → R be defined by

∀u ∈ E G(u) =

ℓ∑
i=1

g(u(i)) .

For any fitness function f over the genotype set E, which is larger or equal
than 1, and which is not identically equal to 1, we have

f G = ρ fG+ ℓ(1− ρ)f g , (1.12)

where ρ is given in (1.6) and

fG =
∑
u∈E

f(u)G(u)x(u) , g =
1

κ

∑
a∈A

g(a) ,

f =
∑
u∈E

f(u)x(u) , G =
∑
u∈E

G(u)x(u) .
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Let us look at the specific case of the sharp peak landscape. We take κ = 2,
E = { 0, 1 }ℓ, and the fitness function defined in formula (1.4). For the function
g, we take the identity function on { 0, 1 }, so that, for any u ∈ E, the value
G(u) is simply the Hamming class of u (that is, the number of ones present in
u). In particular, we have fG = G and g = 1/2, so that the formula (1.12)
becomes

f G = ρG+
ℓ

2
(1− ρ)f , (1.13)

which is precisely the formula (1.7) that we obtained previously in this context.
We can also consider the neutral case. If the fitness function is constant, then
the quasispecies distribution is in fact the uniform distribution over the genotype
space, so that G = ℓ/2, and the above relation (1.13) still holds. This is not too
surprising, because it amounts to the case where the fitness σ of the wild type
w∗ is equal to 1.

The proof of theorem 1.11 is done in section 4, where we perform also several
useful computations valid for a general state space E. The various formulas
obtained in section 4 shed new insight into the classical phenomenon of the
error threshold and the notion of quasispecies, which are discussed in section 3.2.
Finally, in section 4, we outline a robust strategy to analyze more general fitness
landscapes. This strategy will be used to study the fitness landscapes introduced
in the following subsections.

1.5 Finitely many peaks

Now that we have well understood the case of the sharp peak landscape, we are
ready to consider more complex landscapes. Here we work with the genotype
space E = Aℓ where A is a finite alphabet of cardinality κ. We make the
following hypothesis on the fitness function f .

Hypothesis 1.14. There exist a fixed integer k and k fixed values σ1, . . . , σk

such that: for any value of ℓ, q, there exist k peaks w∗
1 , · · · , w∗

k in E (whose
location may vary with ℓ and q) such that the fitness function fFP is given by

∀u ∈ E fFP(u) =

{
σi if u = w∗

i , 1 ≤ i ≤ k ,

1 otherwise .
(1.15)

We consider again the long chain regime

ℓ → +∞ , q → 0 , ℓq → a ∈ [0,+∞] .

To simplify the proofs, we suppose that a < +∞. Indeed, the case a = +∞
should be considered separately. We shall prove the following theorem.

Theorem 1.16 (Error threshold for finitely many peaks). Let us set

σ = max
1≤i≤k

σi .
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Let λFP(ℓ, q) be the mean fitness for the model associated with the fitness func-
tion fFP and the parameters ℓ, q. We have the following dichotomy:
• If a > lnσ, then λFP(ℓ, q) → 1.
• If a < lnσ, then λFP(ℓ, q) → σe−a > 1.

We see that the situation is very similar to the case of the sharp peak landscape.
The critical parameter depends now on the fitness of the highest peak. The
conclusion is that, when there is a finite number of peaks, the lower peaks do
not really interfere with the highest peak. Two proofs of theorem 1.16 are
presented in section 5.

1.6 Plateau

We have seen that a finite number of small peaks do not interact significantly
with the highest peak. We consider here a fitness landscape which contains a
kind of plateau, that is a large subset of genotypes having a fitness σ > 1. More
precisely, we consider the genotype space of binary sequences E = { 0, 1 }ℓ and
the usual mutation kernel M . To simplify the formulas, we suppose that the
length ℓ is even. The Hamming class number H(u) of u ∈ { 0, 1 }ℓ is the number
of ones present in u, that is

H(u) =
∑

1≤i≤ℓ

u(i) .

We consider the fitness function fPL defined as follows.

Hypothesis 1.17. The fitness function fPL is given by

∀u ∈ { 0, 1 }ℓ fPL(u) =

{
σ if H(u) = ℓ/2 ,

1 otherwise .
(1.18)

The plateau associated with the fitness function fPL(u) consists of the sequences
having ℓ/2 zeroes and ℓ/2 ones. In particular, it contains sequences which are
very far away for the Hamming distance. This might go against the intuitive
notion of a plateau, especially in low-dimensional spaces, where we would usually
take for a plateau a closed neighborhood around a fixed connected set. However,
our goal is to find a subset of { 0, 1 }ℓ which is very stable with respect to the
mutations, and the plateau of fPL(u) is the simplest example of such a set. We
could also modify this set so that it is closer to our intuition of a plateau, by
adding to it all the sequences which are at Hamming distance less than

√
ℓ from

it. All the results presented here and in the subsequent section would hold for
this larger set as well (yet the proofs would become more complicated).

We consider again the long chain regime with a finite:

ℓ → +∞ , q → 0 , ℓq → a ∈ [0,+∞[ .
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Theorem 1.19. Let λPL(ℓ, q) be the mean fitness for the model associated with
the fitness function fPL and the parameters ℓ, q. For any a > 0, we have

lim
ℓ→∞, q→0

ℓq→a

λPL(ℓ, q) = λ(a, σ) ,

where λ(a, σ) is the unique real number λ > 1 such that

1

σ − 1
=
∑
n≥1

e−an

λn

∑
k≥0

(an)2k

22k(k!)2
. (1.20)

The situation for the fitness landscape fPL with the huge plateau is very dif-
ferent from the sharp peak landscape. Indeed, the error threshold phenomenon
described in theorem 1.9 does not occur, and there is no phase transition in the
long chain regime. It turns out that, if we shift the plateau away from ℓ/2, then
an error threshold phenomenon reappears. We consider the fitness function fPL

defined as follows.

Hypothesis 1.21. Let σ > 1 and α ∈ [0, 1]. The fitness function fPL is given
by

∀u ∈ { 0, 1 }ℓ fPL(u) =

{
σ if H(u) = ⌊αℓ⌋ ,
1 otherwise ,

(1.22)

where ⌊αℓ⌋ is the integer part of αℓ.

The cases α = 0 and α = 1 correspond in fact to the sharp peak landscape,
which has already been studied. We shall therefore exclude these cases.

Theorem 1.23. Suppose that α ̸∈ { 0, 1/2, 1 }. Let λPL(ℓ, q) be the mean fitness
for the model associated with the fitness function fPL and the parameters ℓ, q.
There exist two positive values a1c(σ, α) ≤ a2c(σ, α) such that: if a ≥ a2c(σ, α),
then

lim
ℓ→∞, q→0

ℓq→a

λPL(ℓ, q) = 1 .

If a < a1c(σ, α), then
lim inf

ℓ→∞, q→0
ℓq→a

λPL(ℓ, q) > 1 .

Of course, it would be more satisfactory to know that a1c(σ, α) = a2c(σ, α).
This would be a consequence of the monotonicity of the function ϕα(a) defined
in (6.16), unfortunately this fact does not seem so obvious.

The proofs of theorems 1.19 and 1.23 are presented in section 6. The reason
underlying these two results is the following. In the neutral fitness landscape,
the most likely Hamming class is already the class ℓ/2. By installing a plateau
precisely on this Hamming class, we reinforce its stability. When we shift the
plateau away from the Hamming class ℓ/2, we create a competition between
two Hamming classes, and this leads to the occurrence of a phase transition.
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1.7 Survival of the flattest

We finally prove rigorously within our framework the possible occurrence of the
survival of the flattest, a phenomenon which has been previously discovered by
Wilke, Wang, Ofria, Lenski and Adami [21] and which has been investigated
in several works [6, 14, 19, 20]. We state next the precise mathematical result
we obtain. We will now combine the sharp peak landscape with a plateau.
We consider the genotype space of binary sequences E = { 0, 1 }ℓ and the usual
mutation kernelM , with the following fitness function. To simplify the formulas,
we suppose that the length ℓ is even.

Hypothesis 1.24. Let δ, σ ≥ 1 and let fSP/PL be the fitness function given by

∀u ∈ { 0, 1 }ℓ fSP/PL(u) =


δ if u = 0 · · · 0 ,
σ if u contains ℓ

2 zeroes and ℓ
2 ones ,

1 otherwise .

(1.25)

Theorem 1.26. Let a > 0 and let λ(a, σ) be the unique real number λ > 1 such
that

1

σ − 1
=
∑
n≥1

e−an

λn

∑
k≥0

(an)2k

22k(k!)2
. (1.27)

Let λSP/PL(δ, σ, ℓ, q) be the mean fitness for the model associated with the fitness
function fSP/PL and the parameters ℓ, q. We have the following convergence in
the long chain regime:

lim
ℓ→∞, q→0

ℓq→a

λSP/PL(δ, σ, ℓ, q) = max
(
δe−a, λ(a, σ)

)
.

Let us denote by y(0) the fraction of the sequence 0 · · · 0 in the population at
equilibrium, and by y(ℓ/2) the fraction of the sequences having ℓ/2 zeroes and
and ℓ/2 ones in the population at equilibrium.

• If λ(a, σ) > δe−a, then y(0) → 0, y(ℓ/2) → λ(a, σ)− 1

σ − 1
.

• If δe−a > λ(a, σ), then y(ℓ/2) → 0, y(0) → δe−a − 1

δ − 1
.

A plateau is always more stable than a peak of the same height, that is, for
any a > 0, any σ > 1, we have λ(a, σ) > σe−a. However, for a fixed value
a > 0, there exist positive values σ < δ such that λ(a, σ) > δe−a. Indeed, let
us compute the right-hand member of equation (1.27) where λ is replaced by
δe−a:∑

n≥1

e−an(
δe−a

)n ∑
k≥0

(an)2k

22k(k!)2
=
∑
n≥1

1

δn

∑
k≥0

(an)2k

22k(k!)2

≥
∑
n≥1

1

δn

(
1 +

(an)2

4

)
=

1

δ − 1
+

a2

4

δ(δ + 1)

(δ − 1)3
.

12



So, for any value of δ > σ such that

1

σ − 1
<

1

δ − 1
+

a2

4

δ(δ + 1)

(δ − 1)3
,

we will indeed have λ(a, σ) > δe−a. For such values, the quasispecies will be
located on the plateau, despite the fact that the height σ of the plateau is strictly
less than the height of the peak. In this situation, we witness the survival of
the flattest.

Theorem 1.26 is proved in section 7. The route to prove theorems 1.16
and 1.26 is quite long. It rests on the exact formulas proved in subsection 4.2
and the general strategy developed in section 4.

2 The sharp peak landscape

Our first goal is to develop an exact formula for the quasispecies on the sharp
peak landscape. All our subsequent study of the sharp peak landscape will rely
on this formula.

2.1 A representation formula for the quasispecies

The computations performed in this subsection are in fact valid without any
assumption on the geometry of the genotype space E. We merely suppose that
E is finite and that the coefficients of the matrix M are all positive. Suppose
that (x(u), u ∈ E) is a solution of the system (1.1) satisfying the constraint
(1.2). Let λ be the mean fitness of this solution, defined by

λ =
∑
v∈E

x(v)f(v) = σx(w∗) + 1− x(w∗) . (2.1)

Obviously, the mean fitness λ satisfies 1 ≤ λ ≤ σ and λ = 1 if and only if
x(w∗) = 0. By hypothesis, all the coefficients of the mutation matrix M are
positive, and it follows from equation (1.1) that

∀u ∈ E x(u)σ ≥
∑
v∈E

x(v)f(v)M(v, u) > 0 . (2.2)

Therefore x(u) > 0 for all u ∈ E. The equation (1.1) for a generic genotype u
reads:

λx(u) = σx(w∗)M(w∗, u) +
∑
v ̸=w∗

x(v)M(v, u) . (2.3)

We rewrite this equation as

x(u) =
σ − 1

λ
x(w∗)M(w∗, u) +

1

λ

∑
v∈E

x(v)M(v, u) . (2.4)
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Using this very formula for x(v), we replace x(v) in the sum, thereby getting

x(u) =
σ − 1

λ
x(w∗)M(w∗, u) +

σ − 1

λ2

∑
v∈E

x(w∗)M(w∗, v)M(v, u)

+
1

λ2

∑
v,v′∈E

x(v′)M(v′, v)M(v, u) .

We iterate this process. After N − 1 steps, we get

x(u) =
∑

1≤n≤N

σ − 1

λn

∑
v1,...,vn−1∈E

x(w∗)M(w∗, v1) · · ·M(vn−1, u)

+
1

λN

∑
v1,...,vN∈E

x(v1)M(v1, v2) · · ·M(vN , u) .

The sums of products involving the matrix M have a natural probabilistic in-
terpretation. Let (Xn)n∈N be the Markov chain on E with transition matrix M .
The previous formula for x(u) can now be rewritten as

x(u) =
∑

1≤n≤N

σ − 1

λn
x(w∗)P

(
Xn = u

∣∣X0 = w∗)
+

1

λN

∑
v1∈E

x(v1)P
(
XN = u

∣∣X0 = v1
)
.

By (2.1) and (2.2), the mean fitness λ is strictly larger than one, therefore the
last term goes to 0 as N goes to ∞. Sending N to ∞, and using the fact that

λ− 1 = (σ − 1)x(w∗) , (2.5)

we get the following result.

Proposition 2.6. Any solution (x(u), u ∈ E) of the quasispecies equations
(1.1) for the sharp peak function fSP defined in (1.4) satisfies

x(u) =
∑
n≥1

λ− 1

λn
P
(
Xn = u

∣∣X0 = w∗) , (2.7)

where (Xn)n≥0 is the Markov chain on E with transition matrix M .

Let us take u = w∗ in formula (2.7). Using again (2.5), we obtain

1

σ − 1
=
∑
n≥1

1

λn
P
(
Xn = w∗ ∣∣X0 = w∗) . (2.8)

The right-hand side of this equation is a continuous decreasing function of λ,
which is equal to +∞ when λ = 1 and is less than or equal to 1/(σ − 1)
when λ = σ. Therefore there exists exactly one value of λ in [1, σ] which
satisfies this equation. Our next goal is to obtain an explicit expression for
P
(
Xn = w∗

∣∣X0 = w∗) and to perform the summation of the series appearing
in (2.8). To do so, we shall make additional assumptions on the geometry of the
fitness landscape.
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2.2 Mutation dynamics

We now turn our attention to the genotype space E = Aℓ where A is a finite
alphabet of cardinality κ and we consider the mutation scheme (1.3). In this
model, the mutations occur independently at each site. An important conse-
quence of this structural assumption is that the components (Xn(i), 1 ≤ i ≤ ℓ)
of the Markov chain Xn are themselves independent Markov chains with state
space A and transition matrix

1− q
q

κ− 1
· · · q

κ− 1
q

κ− 1
1− q

. . .
q

κ− 1
...

. . .
. . .

...
q

κ− 1
· · · q

κ− 1
1− q


.

The non-diagonal terms in this matrix are all equal to q/(κ− 1). Since we want
to compute P

(
Xn = w∗

∣∣X0 = w∗), we shall lump together the letters which
differ from the wild type w∗, and we shall do this for each component. More
precisely, we define a process (Vn)n≥0 by setting

∀i ∈ { 1, . . . , ℓ } Vn(i) =

{
0 if Xn(i) = w∗(i) ,

1 if Xn(i) ̸= w∗(i) .

The binary word Vn indicates the sites where Xn and w∗ differ. In particular, Vn

is a deterministic function of Xn. Thanks to the specific form of the transition
matrix, it turns out that Vn(i) is still a Markov chain. This is a particular case
of the lumping theorem of Kemeny and Snell (see theorem 6.3.2 of [15]). To see
why it is so, let us consider for instance the first two steps of the first component
Vn(1) and let us compute

P(V2(1) = 0, V1(1) = 1
∣∣V0(1) = 0

)
=

∑
x1∈A\{w∗(1) }

P(X2(1) = w∗(1), X1(1) = x1

∣∣V0(1) = 0
)

=
∑

x1∈A\{w∗(1) }

P(X2(1) = w∗(1) |X1(1) = x1)

× P(X1(1) = x1 |X0(1) = w∗(1)
)
= (κ− 1)× q

κ− 1
× q

κ− 1
= q

q

κ− 1
.

The simplification in the final result comes from the fact that the probabilities
to find or to lose a letter from the wild type w∗ are the same for all the letters
in A\{w∗(1) }. A similar computation can be done for a finite number of steps.
We conclude that Vn(i) is the two states Markov chain that we define and study
next. Let (En)n≥0 be the Markov chain with state space {0, 1} and transition
matrix

T =

(
1− q q
q

κ− 1
1− q

κ− 1

)
.
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The eigenvalues of T are 1 and

ρ = 1− κq

κ− 1
. (2.9)

We will study some asymptotic regimes where q is sent to 0, so we can suppose
that q ≤ 1 − 1/κ (otherwise ρ might be negative and this creates additional
complications). It is a standard exercise to compute the powers of T :

∀n ≥ 1 Tn =


1

κ
+

κ− 1

κ
ρn

κ− 1

κ

(
1− ρn

)
1

κ

(
1− ρn

) κ− 1

κ
+

1

κ
ρn

 .

Here is a simple illuminating way to realize the Markov chain (En)n≥0 and
to understand the expression of the n-th power Tn. Let (εn)n≥1 be an i.i.d.
sequence of Bernoulli random variables with parameter ρ. Suppose that En−1 =
e ∈ { 0, 1 }. If εn = 1, then we set En = e. If εn = 0, then we choose a
letter uniformly over A, independently of the past history until time n, and
we set En = 0 if the chosen letter is the one of the wild type and En = 1
otherwise. Now, the event En = E0 can occur in two different ways. Either
ε1 = · · · = εn = 1, or one of the ε1, . . . , εn is zero, in which case En = 0 with
probability 1/κ and En = 1 with probability (κ− 1)/κ, thus

P(En = 0 |E0 = 0) = ρn +
(
1− ρn

) 1
κ
,

P(En = 1 |E0 = 1) = ρn +
(
1− ρn

)κ− 1

κ
,

and we recover the expression of the diagonal coefficients of Tn. In words, the
status En at step n is the same as at time 0 if no mutation has occurred, or if
the last mutation results in the same letter as the wild type (case E0 = 0) or
in a different letter (case E0 = 1). Similarly, the event En ̸= E0 can occur only
if one of the ε1, . . . , εn is zero, and the last mutation event yields the adequate
letter, thus

P(En = 1 |E0 = 0) =
(
1− ρn

)κ− 1

κ
,

P(En = 0 |E0 = 1) =
(
1− ρn

) 1
κ
.

Now the probability P
(
Xn = w∗

∣∣X0 = w∗) can be rewritten with the help of
Vn and En as

P
(
Xn = w∗ ∣∣X0 = w∗) = P

(
Xn(i) = w∗(i), 1 ≤ i ≤ ℓ

∣∣X0 = w∗)
= P

(
Vn(i) = 0, 1 ≤ i ≤ ℓ

∣∣X0 = w∗)
=

∏
1≤i≤ℓ

P
(
Vn(i) = 0

∣∣X0 = w∗)
=
(
P
(
En = 0

∣∣E0 = 0
))ℓ

=
( 1
κ
+

κ− 1

κ
ρn
)ℓ

. (2.10)
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2.3 The equation for the mean fitness

We have all the material necessary to obtain the equation (1.5). Substituting
the expression obtained in (2.10) into formula (2.8), we obtain

1

σ − 1
=
∑
n≥1

1

λn

( 1
κ
+

κ− 1

κ
ρn
)ℓ

. (2.11)

We expand the power in ℓ, we exchange the summations and we re-sum the
series as follows:

1

σ − 1
=
∑
n≥1

1

λn

∑
0≤k≤ℓ

(
ℓ

k

)( 1
κ

)ℓ−k(κ− 1

κ
ρn
)k

=
1

κℓ

∑
0≤k≤ℓ

(
ℓ

k

)
(κ− 1)k

∑
n≥1

ρkn

λn

=
1

κℓ

∑
0≤k≤ℓ

(
ℓ

k

)
(κ− 1)k

1

λ

ρk
− 1

.

Thus the equation satisfied by the mean fitness λ reads:

1

σ − 1
=

1

κℓ

∑
0≤k≤ℓ

(
ℓ

k

)
(κ− 1)k

1

λ

ρk
− 1

. (2.12)

This equation was discovered by Bratus, Novozhilov and Semenov, see formu-
las (5.5) and (5.6) in [3], they exploited this equation to derive rigorous bounds
on the mean fitness. This formula calls naturally for a probabilistic interpre-
tation. Let Sℓ be a random variable with distribution the binomial law with
parameters ℓ and (κ − 1)/κ. Denoting by E the expectation, equation (2.12)
can be rewritten as

1

σ − 1
= E

 1

λ

ρSℓ
− 1

 . (2.13)

Our analysis of the quasispecies equations on the sharp peak landscape rests on
the identity (2.11) or its equivalent form (2.13). Indeed, if we manage to estimate
the mean fitness λ, then we will also have an estimate on the proportion x(w∗)
of the wild type present in the population. Moreover, once we know λ or x(w∗),
the proportions of the other types are completely determined by formula (2.7).

2.4 An exact formula for the quasispecies

Loosely speaking, a quasispecies is a cloud of mutants centered around a specific
genotype. The structure of this cloud depends on the parameters σ and q.
In fact, the proportion of the wild type w∗ decreases as the mutation rate q
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increases, and it becomes comparable to the proportions of the other genotypes
when q reaches the error threshold q∗. This fascinating phenomenon will be
proved rigorously in section 3.2. When q is a little below q∗, we observe a cloud
of mutants centered around w∗ which contains a very small proportion of the
wild type w∗, the vast majority of the genotypes present in the population will
differ from w∗. Yet the genetic information carried out by w∗ is still present
in the population and it determines its structure. This paradoxical situation
has led several biologists to argue that the selection operates at the level of the
quasispecies, and not at the level of individuals [9]. Thus an important goal
is to understand better the statistical composition of the cloud of mutants. In
order to do so, we classify the genotypes according to their Hamming distance
to the wild type w∗. For k ≥ 1, we define the Hamming class k as the set Hk

of the genotypes which differ from w∗ at exactly k indices, i.e.,

Hk =
{
u ∈ E : d(u,w∗) = k

}
. (2.14)

We shall exploit further formula (2.7) in order to derive an exact formula for
the proportion Q(k) of the genotypes belonging to the Hamming class k. For
k ≥ 1, we have, thanks to formula (2.7),

Q(k) =
∑
u∈Hk

∑
n≥1

λ− 1

λn
P
(
Xn = u

∣∣X0 = w∗)
=
∑
n≥1

λ− 1

λn

∑
u∈Hk

P
(
Xn = u

∣∣X0 = w∗)
=
∑
n≥1

λ− 1

λn
P
(
Xn ∈ Hk

∣∣X0 = w∗) . (2.15)

We have already noticed that the components of Xn, (Xn(i), 1 ≤ i ≤ ℓ), are
independent Markov chains. Therefore, using the notation of section 2.2,

P
(
Xn ∈ Hk

∣∣X0 = w∗) = P
( ∑

1≤i≤ℓ

Vn(i) = k
∣∣X0 = w∗

)
=

(
ℓ

k

)(
P
(
En = 1

∣∣E0 = 0
))k(

P
(
En = 0

∣∣E0 = 0
))ℓ−k

=

(
ℓ

k

)((
1− ρn

)κ− 1

κ

)k(
ρn +

(
1− ρn

) 1
κ

)ℓ−k

. (2.16)

Recall that ρ = 1 − κq/(κ− 1). Plugging (2.16) in (2.15), we get an exact
formula for the quasispecies distribution, in terms of a series involving λ and ρ:

Q(k) =
∑
n≥1

λ− 1

λn

(
ℓ

k

)((
1− ρn

)κ− 1

κ

)k(
ρn +

(
1− ρn

) 1
κ

)ℓ−k

. (2.17)
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We can even compute the sum of the series, by developing the powers, and we
get a finite algebraic formula:

Q(k) = (λ− 1)

(
ℓ

k

)
(κ− 1)k

κℓ

k∑
i=0

ℓ−k∑
j=0

(
k

i

)(
ℓ− k

j

)
(−1)i(κ− 1)jρi+j

λ− ρi+j
. (2.18)

Of course this formula is complicated, yet it expresses completely the depen-
dence of Q(k) as a function of λ and q and it shows the complexity of the sharp
peak landscape. Surprisingly, the mean and the variance of the Hamming dis-
tance of the quasispecies distribution have very simple expressions. Indeed, the
mean of the Hamming distance of the distribution Q is given by

Q =

ℓ∑
k=0

kQ(k) =
ℓq λ

λ− ρ
. (2.19)

To compute this mean, we rely on formula (2.17) to write

Q =

ℓ∑
k=0

kQ(k)

=
∑
n≥1

λ− 1

λn

ℓ∑
k=0

k

(
ℓ

k

)((
1− ρn

)κ− 1

κ

)k(
ρn +

(
1− ρn

) 1
κ

)ℓ−k

.(2.20)

In the inner sum, we recognize the expectation of a binomial law, whence

Q =
∑
n≥1

λ− 1

λn
ℓ
(
1− ρn

)κ− 1

κ
.

By summing the geometric series and using the definition of ρ, we obtain formula
(2.19). In fact, all the successive moments of the quasispecies distribution can
be computed in this way.

3 The error threshold

We still consider the case of the sharp peak landscape described in section 1.2.
In the previous section 2, we did exact computations with the length ℓ fixed.
Here we shall perform asymptotic expansions in the long chain regime. We
will revisit the classical error threshold phenomenon and compute the limiting
quasispecies distribution.

3.1 An upper bound on λ

The goal of this subsection is to prepare the ground for the technical proof of
the error threshold result. We start from the identity (2.13) and we wish to
obtain an upper bound on λ. From the weak law of large numbers, we know
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that the most likely values for Sℓ are those around its mean (κ − 1)ℓ/κ, so we
pick a positive number ε and we split the expectation as follows:

1

σ − 1
=

∑
0≤k≤ℓ

P(Sℓ = k)
1

λ

ρk
− 1

=
∑

k:|k−(κ−1)ℓ/κ|>εℓ

P(Sℓ = k)
1

λ

ρk
− 1

+
∑

k:|k−(κ−1)ℓ/κ|≤εℓ

P(Sℓ = k)
1

λ

ρk
− 1

.

(3.1)

Taking advantage from the fact that ρ ≤ 1, we bound ρk by 1 in the first sum
and by ρ(κ−1)ℓ/κ−εℓ in the second, this leads to the inequality

1

σ − 1
≤ 1

λ− 1
P
(∣∣∣Sℓ −

κ− 1

κ
ℓ
∣∣∣ > εℓ

)
+

1

λ

ρ(κ−1)ℓ/κ−εℓ
− 1

. (3.2)

We apply the Chebyshev inequality to the binomial random variable Sℓ and we
get the classical estimate:

P
(∣∣∣Sℓ −

κ− 1

κ
ℓ
∣∣∣ > εℓ

)
≤ variance(Sℓ)

ε2ℓ2
=

κ− 1

κ2ε2ℓ
. (3.3)

Plugging the Chebyshev inequality into (3.2), we conclude that

∀ε > 0
1

σ − 1
≤ κ− 1

κ2ε2ℓ(λ− 1)
+

1

λ

ρ(κ−1)ℓ/κ−εℓ
− 1

. (3.4)

Let us pause for one moment to look at this inequality. Obviously, as λ goes to
∞, the right-hand side goes to 0, and the inequality cannot hold. In other words,
for this inequality to hold, λ must not be too large. Thus, from this inequality,
we should be able to derive an upper bound on λ. To get the best possible
upper bound, we could rewrite it as a polynomial inequality of degree two in λ
and compute the associated roots, but this leads to messy expressions. Instead,
after a few trials (hidden to the reader), we obtain the following inequality.

Lemma 3.5. The mean fitness λ satisfies

λ ≤ max

(
1 +

4σ

ℓ1/4
, σ
(
1− κq

κ− 1

)(κ−1)ℓ/κ−ℓ2/3(
1 +

1

ℓ1/13

))
. (3.6)

Proof. Suppose that λ is larger than the upper bound in (3.6). We check that
this is not compatible with inequality (3.4) with the choice ε = ℓ−1/3. Indeed,
we have on one hand

λ > 1 +
4σ

ℓ1/4
=⇒ 1

ℓ1/3(λ− 1)
≤ 1

4σℓ1/12
.
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On the other hand,

λ > σ
(
1− κq

κ− 1

)(κ−1)ℓ/κ−ℓ2/3(
1 +

1

ℓ1/13

)
=⇒

1

λ

ρ(κ−1)ℓ/κ−ℓ2/3
− 1

≤ 1

σ
(
1 +

1

ℓ1/13

)
− 1

.

Applying the mean value theorem to the function x 7→ 1/(σ − 1 + x) on the
interval [0, σ/ℓ1/13], we have

1

σ
(
1 +

1

ℓ1/13

)
− 1

≤ 1

σ − 1
− 1

(2σ − 1)2
σ

ℓ1/13
≤ 1

σ − 1
− 1

4σℓ1/13
. (3.7)

Combining the previous inequalities, we obtain that

κ− 1

κ2ℓ1/3(λ− 1)
+

1

λ

ρ(κ−1)ℓ/κ−ℓ2/3
− 1

≤ 1

σ − 1
+

1

4σ

( 1

ℓ1/12
− 1

ℓ1/13

)
<

1

σ − 1
,

which stands in contradiction with the inequality (3.4) with ε = ℓ−1/3.

3.2 Revisiting the error threshold

Because of its importance, we shall give two proofs of theorem 1.9. The first
proof is a soft proof based on a compactness argument, whose starting point is
the initial quasispecies equation. The second proof is a more technical proof,
whose starting point is the equation (2.11) discovered by Bratus, Novozhilov and
Semenov. Naturally, the second proof is more informative, it yields a control
on the speed of convergence and it opens the way to performing an asymptotic
expansion of λ with respect to ℓ and q.

From equation (2.1), we can express x(w∗) as

x(w∗) =
λ− 1

σ − 1
. (3.8)

Therefore it is enough to study the asymptotic behavior of λ. We shall prove
that

λ −→ max
(
1, σe−a

)
. (3.9)

Soft proof. In the long chain regime, we have

σ
(
1− q

)ℓ −→ σe−a . (3.10)

The quasispecies equation (1.1) associated with w∗ reads

λx(w∗) = σx(w∗)M(w∗, w∗) +
∑

v∈E\{w∗}

x(v)M(v, w∗) . (3.11)
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We know that x(w∗) > 0, therefore we deduce from (3.11) that

λ ≥ σM(w∗, w∗) = σ(1− q)ℓ . (3.12)

Using the lower bound (3.12) and the fact that λ ≥ 1, we see that

lim inf λ ≥ max
(
1, σe−a

)
. (3.13)

Suppose that λ does not converge towards max
(
1, σe−a

)
. In this case, there

exist ε > 0 and two sequences of parameters (ℓn)n≥0, (qn)n≥0 such that

ℓn → +∞ , qn → 0 , ℓnqn → a ,

∀n ≥ 0 λ(ℓn, qn) ≥ max
(
1, σe−a

)
+ ε . (3.14)

Using (3.8) and (3.14), we obtain a lower bound on x(w∗):

x(w∗) ≥ ε

σ − 1
. (3.15)

We bound from above the quasispecies equation (3.11) associated with w∗, as
follows:

λx(w∗) ≤ σx(w∗)(1− q)ℓ +
(
1− x(w∗)

)
q , (3.16)

where we have used the fact that M(v, w∗) ≤ q whenever v ̸= w∗. Using
together (3.15) and (3.16), we obtain that

∀n ≥ 0 λ(ℓn, qn) ≤ σ(1− qn)
ℓn +

σ − 1

ε
qn .

Sending n to∞, we see that this inequality is not coherent with inequality (3.14).
Therefore it must be the case that λ converges towards max

(
1, σe−a

)
.

Technical proof. This proof is entirely based on the equation (2.11) discovered
by Bratus, Novozhilov and Semenov, see formulas 5.5 and 5.6 in [3], and its prob-
abilistic interpretation (2.13). Let us start with a simple interesting inequality
on λ. The map

ϕ : x ∈ [0,+∞[ 7→ 1

λ

ρx
− 1

is convex (recall that we suppose that ρ > 0). The equation (2.11) (or rather
(2.13)) can be rewritten with the help of the function ϕ as

1

σ − 1
= E (ϕ(Sℓ)) , (3.17)

where Sℓ is a random variable with distribution the binomial law with parame-
ters ℓ and (κ− 1)/κ. By the classical Jensen inequality, we have therefore

1

σ − 1
≥ ϕ

(
E(Sℓ)

)
= ϕ

(κ− 1

κ
ℓ
)
. (3.18)
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This yields the inequality

λ ≥ σρ(κ−1)ℓ/κ = σ
(
1− κq

κ− 1

)(κ−1)ℓ/κ

. (3.19)

Notice that this inequality is not better than the lower bound (3.12) used in the
soft proof. However it can certainly be improved with additional work. In the
long chain regime, we have

σ
(
1− κq

κ− 1

)(κ−1)ℓ/κ

−→ σe−a . (3.20)

We put together the lower bound (3.19), the upper bound (3.6) (which have
both been derived from the equation (2.11)) and the limit stated in (3.20) to
obtain the desired conclusion.

3.3 The limiting quasispecies distribution

In section 2.4, we computed an exact expression for the mean Hamming distance
under the quasispecies distribution, which was

Q =

ℓ∑
k=0

kQ(σ, a)(k) =
ℓq λ

λ− ρ
. (3.21)

This formula is particularly illuminating for the error threshold phenomenon.
We consider again the long chain regime

ℓ → +∞ , q → 0 , ℓq → a ∈ [0,+∞] . (3.22)

We have the dichotomy:
• If a > lnσ, then λ → 1, λ− ρ → 0, whence Q → +∞.
• If a < lnσ, then λ → σe−a > 1, and

Q −→ aσe−a

σe−a − 1
. (3.23)

We can go even further, indeed we can perform the expansion of formula (2.16)
in the regime (3.22) and we obtain

P
(
Xn ∈ Hk

∣∣X0 = w∗) ∼ ℓk

k!
(nq)k(1− nq)ℓ ∼ (na)k

k!
e−na ,

thus the asymptotic distribution of Xn is the Poisson distribution with param-
eter na. Together with formula (3.9), this yields that, for any fixed n ≥ 1,

1

λn
P
(
Xn ∈ Hk

∣∣X0 = w∗) ∼ (na)k

σnk!
.
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Figure 1: Fractions of the different types as a function of a for σ = 5.
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Substituting brutally this expansion into formula (2.15), and using again for-
mula (3.9), we get finally

Q(k) ∼ (σe−a − 1)
ak

k!

∑
n≥1

nk

σn
.

Some steps in this computation must be made rigorous, but this can be done
with a routine application of the dominated convergence theorem. In fact, this
formula was obtained in [5], while studying the quasispecies arising in a stochas-
tic model for the evolution of a finite population. Thanks to this formula, we
can easily draw the quasispecies distribution (figures 1 and 2) and study its
dependence on the parameters σ, a. In the quasispecies literature, this was pre-
viously done by integrating numerically the differential system (see for instance
[8], figure 3, p.9). Besides, we can now perform simple theoretical computations
with the help of this distribution. For instance, the mutation rate at which the
proportion of the Hamming class 1 becomes larger than the proportion of the
wild type w∗ is a = 1− 1/σ.

4 Extension to a general landscape

Our starting point is the quasispecies equation (1.1), rewritten in the following
form:

∀u ∈ E λx(u) =
∑
v∈E

x(v)f(v)M(v, u) (4.1)

subject to the constraint

∀u ∈ E x(u) ≥ 0 ,
∑
u∈E

x(u) = 1 , (4.2)

where
λ =

∑
v∈E

x(v)f(v)

is the mean fitness, or equivalently the Perron-Frobenius eigenvalue of the matrix
(f(v)M(v, u))u,v∈E .

4.1 Reformulation of the quasispecies equations

The computations performed in this subsection are in fact valid without any
assumption on the geometry of the genotype space E. Thanks to the hypothesis
on the fitness function, we have that λ ≥ 1. Moreover, since the matrix M has
only positive entries and since the fitness function is not identically equal to 1,
then the Perron-Frobenius eigenvalue is strictly larger than one, i.e., λ > 1. We
rewrite the equation (4.1) as

∀u ∈ E λx(u)−
∑
v∈E

x(v)M(v, u) =
∑
v∈E

x(v)
(
f(v)− 1

)
M(v, u) . (4.3)
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We denote by xt the row vector which is the transpose of the column vector x
and we introduce the square matrix whose diagonal coefficients are the fitness
values (f(u), u ∈ E):

F =


. . . 0 0
0 f(u) 0

0 0
. . .

 . (4.4)

After dividing by λ (recall that λ > 1), equation (4.3) can be rewritten in matrix
form as

xt
(
I − 1

λ
M
)

= xt 1

λ

(
F − I

)
M . (4.5)

Now the matrix M is a stochastic matrix, hence its spectral radius is equal to
1. Since λ > 1, then the matrix I − 1

λM is invertible, and its inverse is given by
the geometric series: (

I− M

λ

)−1

=
∑
n≥0

Mn

λn
.

Plugging this identity into equation (4.5), we obtain

xt = xt
(
F − I

)∑
n≥1

Mn

λn
. (4.6)

Let us introduce the setW ∗ of the genotypes where the fitness function is strictly
larger than one:

W ∗ =
{
u ∈ E : f(u) > 1

}
.

We call the set W ∗ the set of the wild types. We introduce the matrix Nλ,
indexed by the elements of W ∗, defined as

∀v, w ∈ W ∗ Nλ(v, w) =
((

F − I
)∑
n≥1

Mn

λn

)
(v, w) . (4.7)

With this notation, the linear system (4.6) of size κℓ can be split into the system
of size |W ∗| given by

∀v ∈ W ∗ x(v) =
∑

w∈W∗

x(w)Nλ(w, v) , (4.8)

and the κℓ − |W ∗| remaining equations

∀v ∈ E \W ∗ x(v) =
∑

w∈W∗

x(w)(f(w)− 1)
∑
n≥1

Mn

λn
(w, v) . (4.9)

The system (4.8) expresses that the vector (x(v), v ∈ W ∗) is a left Perron-
Frobenius eigenvector of the matrix Nλ, and that the Perron-Frobenius eigen-
value of Nλ is equal to 1. The equations (4.9) show that the remaining coordi-
nates (x(v), v ∈ E \W ∗) are completely determined by (x(v), v ∈ W ∗). These
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considerations suggest that the quasispecies equation can in principle be solved
through the following procedure.
General strategy. We start by isolating the set W ∗ of the wild types and
we form the matrix (Nλ(w, v))v,w∈W∗ , defined in formula (4.7), where λ > 1
is considered as a parameter. Now, the Perron-Frobenius eigenvalue of Nλ is
a decreasing function of λ, which tends to 0 as λ goes to +∞ and to +∞ as
λ goes to 1. We choose for λ the unique value such that the Perron-Frobenius
eigenvalue of Nλ is equal to 1. Once this value is fixed, we solve the system
(4.8) on W ∗. The remaining coordinates of x on E \ W ∗ are determined by
equations (4.9).
A general lower bound on λ. We close this section with a general lower
bound on λ. The quasispecies equations imply that

∀u ∈ E λx(u) ≥ x(u) f(u)M(u, u) = x(u)f(u) (1− q)ℓ .

Since x(u) > 0 for any u ∈ E, this readily implies that

λ ≥
(
max
E

f
)
(1− q)ℓ . (4.10)

4.2 Computation of
∑

n≥1M
n/λn

From now onwards, we work with the genotype space E = Aℓ where A is a
finite alphabet of cardinality κ and we consider the mutation scheme (1.3). We
start by computing Mn. We use the notations and the technique of section 2.2
and we generalize formula (2.10) as follows:

Mn(u, v) = P
(
Xn = v

∣∣X0 = u
)
= P

(
Xn(i) = v(i), 1 ≤ i ≤ ℓ

∣∣X0 = u
)

=
∏

1≤i≤ℓ

P
(
Xn(i) = v(i)

∣∣X0(i) = u(i)
)
.

(4.11)

Now, we have

P
(
Xn(i) = v(i)

∣∣X0(i) = u(i)
)
=


1

κ
+

κ− 1

κ
ρn if u(i) = v(i) ,

1

κ

(
1− ρn

)
if u(i) ̸= v(i) ,

(4.12)

where
ρ = 1− κq

κ− 1
.

Coming back to formula (4.11), we conclude that

Mn(u, v) =
( 1
κ
+

κ− 1

κ
ρn
)ℓ−d(u,v)( 1

κ

(
1− ρn

))d(u,v)
. (4.13)
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We wish now to compute ∑
n≥1

Mn

λn
.

Our first strategy consists of developing formula (4.13). We end up with several
geometric series and we obtain a closed finite formula. So, starting from (4.13),
we have, setting d = d(u, v) to alleviate the notation,

Mn(u, v) =

ℓ−d∑
i=0

d∑
j=0

(
ℓ− d

i

)( 1
κ

)ℓ−d−i(κ− 1

κ

)i
ρni
(
d

j

)
1

κd
(−1)jρnj . (4.14)

We can now sum the geometric series and we get

∑
n≥1

Mn

λn
(u, v) =

ℓ−d∑
i=0

d∑
j=0

(
ℓ− d

i

)( 1
κ

)ℓ−d−i(κ− 1

κ

)i(d
j

)
1

κd

(−1)j

λ

ρi+j
− 1

. (4.15)

4.3 Probabilistic interpretation

We provide furthermore a probabilistic interpretation of the apparently complex
formula (4.15). Let Sℓ−d be a binomial random variable with parameters ℓ −
d, 1− 1/κ. We have

∑
n≥1

Mn

λn
(u, v) = E

(
1

κd

d∑
j=0

(
d

j

)
(−1)j

λ

ρSℓ−d+j
− 1

)
. (4.16)

The above formula is quite nice. Its drawback is that it contains negative terms,
so it is not obvious to see that the global result is non-negative. We present
next a third formula, which avoids this problem.

4.4 Third formula

The trick consists of developing the factor (1− ρn)d of formula (4.13) in a more
complicated way, as follows:

Mn(u, v) =

ℓ−d∑
i=0

(
ℓ− d

i

)( 1
κ

)ℓ−d−i(κ− 1

κ

)i
ρni

1

κd
(1− ρ)d

( n−1∑
j=0

ρj
)d

. (4.17)

We wish to compute the series
∑

n≥1 M
n/λn. From now onwards, we deal with

the case d ≥ 1 (for d = 0, we use the expression obtained in (4.15), where
all the terms are positive). Focusing on the two terms which depend on n in
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formula (4.17), we end up with the series

∑
n≥1

ρni

λn

(
n−1∑
j=0

ρj

)d

=
∑
n≥1

ρni

λn

n−1∑
j1=0

· · ·
n−1∑
jd=0

ρj1+···+jd

=
∑

j1,...,jd≥0

∑
n>max(j1,...,jd)

ρni

λn
ρj1+···+jd

=
∑

j1,...,jd≥0

(ρi
λ

)max(j1,...,jd)+1

1− ρi

λ

ρj1+···+jd . (4.18)

Notice that this formula is not quite legitimate for d = 0, unless we make the
convention that, for d = 0, there is only one term in the sum corresponding to
j1 = · · · = jd = 0. Therefore it seems safer to perform the above computation
only when d ≥ 1. Let us set γ = ρi/λ and let us focus on the sum∑

j1,...,jd≥0

γmax(j1,...,jd) ρj1+···+jd . (4.19)

We shall decompose the sum according to the number r of distinct indices among
j1, · · · , jd, their different values i1, . . . , ir, and the number of times n1, . . . , nr

each value appears. We get

d∑
r=1

∑
0≤i1<···<ir

∑
n1,...,nr≥1

n1+···+nr=d

∑
j1,...,jd∈J

γmax(j1,...,jd) ρj1+···+jd , (4.20)

where the innermost sum extends over the set J defined by

J =
{
j1, . . . , jd ≥ 0 : for 1 ≤ k ≤ d, ik appears nk times in j1, . . . , jd

}
.

The number of terms appearing in the last summation corresponds to the
number of placements of d balls in r cells with occupancy numbers given by
n1, . . . , nr (see for instance the classical book of Feller [13], section II.5), that is
d!/(n1! · · ·nr!). For each of these placements, we have

max(j1, . . . , jd) = ir , j1 + · · ·+ jd = n1i1 + · · ·+ nrir ,

therefore the formula (4.20) becomes

d∑
r=1

∑
0≤i1<···<ir

∑
n1,...,nr≥1

n1+···+nr=d

d!

n1! · · ·nr!
γir ρn1i1+···+nrir . (4.21)
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We can perform the summation over ir, and we get∑
0≤i1<···<ir

γir ρn1i1+···+nrir =

γρnr

1− γρnr

∑
0≤i1<···<ir−1

(
γρnr

)ir−1
ρn1i1+···+nr−1ir−1 . (4.22)

The number of indices i1, . . . , ir−1 has decreased by 1, and γ has been replaced
by γρnr . We proceed in the same way and we perform successively the summa-
tions over ir−1, . . . , i1 until we obtain∑

0≤i1<···<ir

γir ρn1i1+···+nrir =

γρnr

1− γρnr

γρnr+nr−1

1− γρnr+nr−1
· · · γρnr+···+n2

1− γρnr+···+n2

∑
0≤i1

(
γρnr+···+n2

)i1
ρn1i1 .

Recalling that n1 + · · ·+ nr = d, we can compute the last sum∑
0≤i1

(
γρnr+···+n2

)i1
ρn1i1 =

1

1− γρd

and we conclude that∑
0≤i1<···<ir

γir ρn1i1+···+nrir =

γρnr

1− γρnr

γρnr+nr−1

1− γρnr+nr−1
· · · γρnr+···+n2

1− γρnr+···+n2

1

1− γρd
. (4.23)

Putting together formulas (4.21) and (4.23), we obtain a finite formula for the
sum (4.19):∑

j1,...,jd≥0

γmax(j1,...,jd) ρj1+···+jd =

d∑
r=1

∑
n1,...,nr≥1

n1+···+nr=d

d!

n1! · · ·nr!

1

γρd
ρrnr+(r−1)nr−1+···+n1∏r

k=1

(
1
γ − ρnr+···+nr−k+1

) . (4.24)

Plugging this formula into (4.18) and (4.17) yields that, for d = d(u, v) ≥ 1,

∑
n≥1

Mn

λn
(u, v) =

ℓ−d∑
i=0

(
ℓ− d

i

)( 1
κ

)ℓ−i(κ− 1

κ

)i(1− ρ

ρ

)d 1

1− ρi

λ

×
d∑

r=1

∑
n1,...,nr≥1

n1+···+nr=d

d!

n1! · · ·nr!

ρrnr+(r−1)nr−1+···+n1∏r
k=1

(
λ
ρi − ρnr+···+nr−k+1

) . (4.25)
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We can further rewrite this formula using the expectation with respect to a
Binomial random variable Sℓ−d with parameters ℓ− d and 1− 1/κ. Indeed, we
have∑

n≥1

Mn

λn
(u, v) =

1

κd

(1− ρ

ρ

)d
×

E

(
1

1− ρSℓ−d

λ

d∑
r=1

∑
n1,...,nr≥1

n1+···+nr=d

d!

n1! · · ·nr!

ρrnr+(r−1)nr−1+···+n1∏r
k=1

(
λ

ρSℓ−d
− ρnr+···+nr−k+1

)) .

(4.26)

Each of the previous formulas has its own interest and might be useful, depend-
ing on the context. For instance, with formula (4.15), we see directly that the
coefficients of the matrix Nλ are rational functions of the parameter λ, and that
there exists a unique choice for λ such that the Perron-Frobenius eigenvalue
of Nλ becomes equal to 1. The analysis of the error threshold conducted in
section 3.2 rests entirely on the probabilistic representation presented in for-
mula (4.16) in the specific case where u = v = w∗ and d = 0. Finally, the third
formula (4.26) will be useful to analyze the asymptotic behavior of the non-
diagonal entries of the matrix Nλ for the landscape with finitely many peaks in
section 5.

4.5 Proof of theorem 1.11

Let G : E → R be an additive functional, that is a function given by

∀u ∈ E G(u) =

ℓ∑
i=1

g(u(i)) ,

where g is a function defined on A with values in R. We consider an arbitrary
fitness function satisfying hypothesis 1.10, and we denote by (x(u), u ∈ E), the
solution of the quasispecies equation associated with f . Our goal here is to
relate the mean value G of G in the quasispecies (x(u), u ∈ E), defined by

G =
∑
u∈E

G(u)x(u)

to the mean fitness λ or f , defined by

f =
∑
u∈E

f(u)x(u) .

Our starting point is formula (4.6), which yields

G =
∑
u∈E

G(u)
∑
v∈E

x(v)
(
f(v)− 1

)∑
n≥1

1

λn
Mn(v, u)

=
∑
v∈E

x(v)
(
f(v)− 1

)∑
n≥1

1

λn

∑
u∈E

Mn(v, u)G(u) . (4.27)
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We compute next the most inner sum. By the definition of G,

∑
u∈E

Mn(v, u)G(u) =

ℓ∑
i=1

∑
u∈E

Mn(v, u) g(u(i)) . (4.28)

Moreover, formulas (4.11) and (4.12) yield that, for 1 ≤ i ≤ ℓ,∑
u∈E

Mn(v, u) g(u(i)) =
( 1
κ
+

κ− 1

κ
ρn
)
g(v(i)) +

( 1
κ

(
1− ρn

)) ∑
a∈A\{v(i)}

g(a)

= ρng(v(i)) +
(
1− ρn

)
g ,

(4.29)

where g is the mean value of g over the alphabet A, i.e.,

g =
1

κ

∑
a∈A

g(a) . (4.30)

Plugging formula (4.29) in formula (4.28), we obtain∑
u∈E

Mn(v, u)G(u) = ρnG(v) + ℓ
(
1− ρn

)
g . (4.31)

Inserting this last formula into (4.27), we obtain

G =
∑
v∈E

x(v)
(
f(v)− 1

)∑
n≥1

1

λn

(
ρnG(v) + ℓ

(
1− ρn

)
g
)

=
∑
v∈E

x(v)
(
f(v)− 1

)( ρ

λ− ρ
G(v) +

ℓg

λ− 1
− ℓgρ

λ− ρ

)
=

ρ

λ− ρ

(
fG−G

)
+
(
f − 1

)
ℓg

λ(1− ρ)

(λ− 1)(λ− ρ)
, (4.32)

where we have introduced the notation

fG =
∑
u∈E

f(u)G(u)x(u) . (4.33)

Recalling that f = λ, we have proved the curious formula stated in the theo-
rem 1.11.

5 Finitely many peaks

As for the sharp peak landscape, we shall give two proofs of theorem 1.16, a soft
one, whose starting point is the initial quasispecies equation, and a technical
one, based on the strategy explained at the end of section 4. Again, the soft
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proof might look easier, but the technical proof is more informative and could
potentially yield more accurate estimates. We define first the set W ∗ of the wild
types as

W ∗ =
{
wi : 1 ≤ i ≤ k

}
.

Throughout the proofs, we write simply λ(ℓ, q) or even λ instead of λFP(ℓ, q).

5.1 Soft proof

We start as in the case of the sharp peak landscape. In the long chain regime,
we have that σ

(
1− q

)ℓ → σe−a. Using the lower bound (4.10) and the fact that
λ ≥ 1, we see that

lim inf λ ≥ max
(
1, σe−a

)
. (5.1)

Suppose that λ does not converge towards max
(
1, σe−a

)
. In this case, there

exist ε > 0 and two sequences of parameters (ℓn)n≥0, (qn)n≥0 such that

ℓn → +∞ , qn → 0 , ℓnqn → a ,

∀n ≥ 0 λ(ℓn, qn) ≥ max
(
1, σe−a

)
+ ε . (5.2)

For 1 ≤ i ≤ k, we bound from above the quasispecies equation (1.1) associated
with w∗

i , as follows:

λx(w∗
i ) ≤

∑
v∈W∗

σx(v)M(v, w∗
i ) +

∑
v∈E\W∗

x(v)M(v, w∗
i ) . (5.3)

We sum equation (5.3) over i ∈ { 1, . . . , k }. Setting

x(W ∗) =
∑

1≤i≤k

x(w∗
i ) ,

∀v ∈ E M(v,W ∗) =
∑

1≤i≤k

M(v, w∗
i ) ,

we obtain

λx(W ∗) ≤
∑

v∈W∗

σx(v)M(v,W ∗) +
∑

v∈E\W∗

x(v)M(v,W ∗) . (5.4)

We use next the fact that M(v, w∗
i ) ≤ q whenever v ̸= w∗

i and we obtain that

∀v ∈ W ∗ M(v,W ∗) ≤ M(v, v) + kq = (1− q)ℓ + kq ,

∀v ∈ E \W ∗ M(v,W ∗) ≤ kq .

Inserting these inequalities in (5.4), we obtain that

λx(W ∗) ≤ σx(W ∗)
(
(1− q)ℓ + kq

)
+
(
1− x(W ∗)

)
kq

≤ σx(W ∗)(1− q)ℓ + σkq . (5.5)
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In addition, we have that

λ ≤ σx(W ∗) + 1− x(W ∗) ≤ σx(W ∗) + 1 . (5.6)

Equation (5.6) and the condition (5.2) yield that

1

x(W ∗)
≤ σ

λ− 1
≤ σ

ε
. (5.7)

Using together (5.5) and (5.7), we obtain that

∀n ≥ 0 λ(ℓn, qn) ≤ σ(1− qn)
ℓn +

σ

ε
σkqn .

Sending n to ∞, we see that this inequality is not coherent with inequality (5.2).
Therefore it must be the case that λ converges towards max

(
1, σe−a

)
.

5.2 Technical proof

For this proof, we shall implement the strategy explained at the end of section 4.
So we consider the matrix

(
Nλ(i, j)

)
1≤i,j≤k

defined by

∀i, j ∈ { 1, . . . , k } Nλ(i, j) =
((

F − I
)∑
n≥1

Mn

λn

)
(w∗

i , w
∗
j ) , (5.8)

where the matrix F was introduced in formula (4.4). The advantage is that the
size of the matrix Nλ is k × k and this size does not vary with ℓ and q. The
diagonal elements of the matrix are given by

Nλ(i, i) = (σi − 1)
∑
n≥1

1

λn
Mn(w∗

i , w
∗
i ) , 1 ≤ i ≤ k .

In fact, the above series does not depend on i. Using formula (4.16) with d = 0,
we have

∀i ∈ { 1, . . . , k } Nλ(i, i) = (σi − 1)E

(
1

λ

ρSℓ
− 1

)
, (5.9)

where Sℓ is a binomial random variable with parameters ℓ, 1−1/κ. The param-
eter λ is adjusted so that the Perron-Frobenius eigenvalue of the matrix Nλ is
equal to 1. This Perron-Frobenius eigenvalue is always larger or equal than any
diagonal element, thus we must have Nλ(i, i) ≤ 1. Proceeding exactly as in the
technical proof of theorem 1.9, we obtain with the help of Jensen’s inequality
that

∀i ∈ { 1, . . . , k } λ ≥ σiρ
(κ−1)ℓ/κ . (5.10)

Taking the maximum over i ∈ { 1, . . . , k }, we get

λ ≥ σρ(κ−1)ℓ/κ . (5.11)
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We seek next an upper bound on the value of λ. The Perron-Frobenius eigen-
value of the matrix Nλ is equal to 1, and all its entries are non-negative, thus

1 ≤ max
1≤i≤k

∑
1≤j≤k

Nλ(i, j) .

In particular, there exists an index i ∈ { 1, . . . , k } such that

1 ≤
∑

1≤j≤k

Nλ(i, j) . (5.12)

Let us study the non-diagonal elements of the matrix Nλ. For i ̸= j, we have

Nλ(i, j) = (σi − 1)
∑
n≥1

1

λn
Mn(w∗

i , w
∗
j ) .

In fact, the series depends only on the Hamming distance between w∗
i and w∗

j , as
we can see from formula (4.13). The same formula shows also that Mn(w∗

i , w
∗
j )

is a non-increasing function of d(w∗
i , w

∗
j ). Therefore, using the formula (4.26)

with d = 1, we have the inequality

Nλ(i, j) ≤ (σi − 1)
λ(1− ρ)

κ
E

(
1

ρSℓ−1

( λ

ρSℓ−1
− 1
)( λ

ρSℓ−1
− ρ
)) , (5.13)

where Sℓ−1 is a binomial random variable with parameters ℓ−1, 1−1/κ. More-
over we know that 1 ≤ λ ≤ σ, thus

Nλ(i, j) ≤ (σi − 1)σ
(1− ρ)

κ
E

(
1( λ

ρSℓ−1
− 1
)(

λ− ρSℓ−1+1
)) . (5.14)

Plugging (5.9) and (5.14) in inequality (5.12), we get (recall that σ ≥ σi)

1

σ − 1
≤ E

(
1

λ

ρSℓ
− 1

)
+ kσ

(1− ρ)

κ
E

(
1( λ

ρSℓ−1
− 1
)(

λ− ρSℓ−1+1
)) . (5.15)

We proceed in a way similar to what we did for the sharp peak landscape.
Namely, we pick a positive number ε and we split the expectations according to
the values of Sℓ and Sℓ−1, as follows:

1

σ − 1
≤ 1

λ− 1
P
(∣∣∣Sℓ −

κ− 1

κ
ℓ
∣∣∣ > εℓ

)
+

1

λ

ρ(κ−1)ℓ/κ−εℓ
− 1

+
kσ(1− ρ)

κ(λ− 1)(λ− ρ)
P
(∣∣∣Sℓ−1 −

κ− 1

κ
(ℓ− 1)

∣∣∣ > ε(ℓ− 1)
)

+
kσ(1− ρ)

κ

1( λ

ρ(κ−1)(ℓ−1)/κ−εℓ
− 1
)(

λ− ρ(κ−1)(ℓ−1)/κ−εℓ
) . (5.16)
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We use the estimate given by Chebyshev’s inequality (3.3) and we obtain

1

σ − 1
≤ 1

λ− 1

κ− 1

κ2ε2ℓ
+

1

λ

ρ(κ−1)ℓ/κ−εℓ
− 1

+
kσ(1− ρ)

κ(λ− 1)(λ− ρ)

κ− 1

κ2ε2(ℓ− 1)

+
kσ(1− ρ)

κ

1( λ

ρ(κ−1)(ℓ−1)/κ−εℓ
− 1
)(

λ− ρ(κ−1)(ℓ−1)/κ−εℓ
) . (5.17)

We regroup the first and the third term together, as well as the second and the
fourth term and we finally get (using that 1− ρ ≤ λ− ρ and that ρ ≤ 1)

1

σ − 1
≤ κ+ kσ

κ(λ− 1)

κ− 1

κ2ε2(ℓ− 1)

+
1

λ

ρ(κ−1)(ℓ−1)/κ−εℓ
− 1

(
1 +

kσ(1− ρ)

κ(
λ− ρ(κ−1)(ℓ−1)/κ−εℓ

)) . (5.18)

By making an adequate choice for ε, we shall now deduce an upper bound on λ
from this inequality.

Lemma 5.19. There exists a positive constant c such that, in the long chain
regime, the mean fitness λ satisfies

λ ≤ max

(
1 +

c

ℓ1/4
, σ
(
1− κq

κ− 1

)(κ−1)(ℓ−1)/κ−ℓ2/3(
1 +

1

ℓ1/13

))
. (5.20)

Before proving lemma 5.19, we explain the end of the technical proof. The lower
bound (5.11) on λ and the upper bound (5.20) on λ yield the desired conclusion
and this terminates the technical proof. We have also obtained some estimates
on the speed of convergence of λ, which could be improved with some additional
work.

Proof of lemma 5.19. Suppose that λ is larger than the upper bound in (5.20).
We check that this is not compatible with inequality (5.18) with the choice
ε = ℓ−1/3. Indeed, we have on one hand

λ > 1 +
c

ℓ1/4
=⇒ κ+ kσ

κ(λ− 1)

κ− 1

κ2ℓ−2/3(ℓ− 1)
= O

( 1

ℓ1/12

)
.

On the other hand,

λ > σ
(
1− κq

κ− 1

)(κ−1)(ℓ−1)/κ−ℓ2/3(
1 +

1

ℓ1/13

)
=⇒

∃c′ > 0
1

λ

ρ(κ−1)(ℓ−1)/κ−ℓ2/3
− 1

≤ 1

σ − 1
− c′

ℓ1/13
+ o
( 1

ℓ1/13

)
.
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We have also that (notice that we use here the fact that a is finite)

kσ(1− ρ)

κ(
λ− ρ(κ−1)(ℓ−1)/κ−ℓ2/3

) = O
(1
ℓ

)
.

Combining the previous inequalities, we obtain that the right-hand member of
inequality (5.18) has the following expansion:

O
( 1

ℓ1/12

)
+

1

σ − 1
− c′

ℓ1/13
+ o
( 1

ℓ1/13

)
+O

(1
ℓ

)
.

This quantity becomes strictly less than 1/(σ − 1) for ℓ large enough, and this
is not compatible with the inequality (5.18).

6 Plateau

This section is devoted to the proof of theorems 1.19 and 1.23. We first show
that the value λ(a, σ) is well-defined. Then we perform a lumping procedure and
we study the asymptotics of the reduced equations. This yields the convergence
of λ towards λ(a, σ). The other claims of the theorem are proved with a similar
argument.

6.1 Definition of λ(a, σ)

We start by proving that equation (1.20) admits a unique solution. Let us define
the function ϕn by

ϕn(a) = e−an
∑
k≥0

(an)2k

22k(k!)2
. (6.1)

For any a > 0, we have

ϕn(a) = e−an
∑
k≥0

(
1

k!

(an
2

)k)2

≤ e−an

(∑
k≥0

1

k!

(an
2

)k)2

= 1 .

It follows that the map

λ 7→
∑
n≥1

ϕn(a)

λn

is continuous decreasing on ]1,+∞[. Moreover it converges to 0 when λ goes to
∞ and to +∞ when λ goes to 1, because∑

n≥1

ϕn(a) ≥
∑
n≥1

e−an
∑
k≥0

(an)2k

(2k + 1)!

=
∑
n≥1

e−an

an

∑
k≥0

(an)2k+1

(2k + 1)!
=
∑
n≥1

e−an

an
sh(an) = +∞ .
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Thus there exists a unique value λ(a, σ) satisfying equation (1.20). We prove
next the main claim of the theorem. Throughout the proof, we write simply
λ(ℓ, q) or even λ instead of λPL(ℓ, q).

6.2 Lumping

We are dealing with a fitness function which depends only on the Hamming
classes. So we lump together the genotypes according to their Hamming classes
and we introduce the new variables y(h), 0 ≤ h ≤ ℓ, given by

∀h ∈ { 0, . . . , ℓ } y(h) =
∑

u:H(u)=h

x(u) .

Using formula (4.6), we have

∀h ∈ { 0, . . . , ℓ } y(h) =
∑

u:H(u)=h

∑
v

x(v)
(
f(v)− 1

)∑
n≥1

1

λn
Mn(v, u)

=
∑
v

x(v)
(
f(v)− 1

)∑
n≥1

1

λn

∑
u:H(u)=h

Mn(v, u) . (6.2)

Now, the point is that the most inner sum depends only on the Hamming class
of v. Indeed, let us fix b ∈ { 0, . . . , ℓ } and let v be such that H(v) = b. After
n mutation steps starting from v, we obtain a genotype Xn whose components
are ℓ independent Bernoulli random variables. Among them, exactly b have
parameter (1+ρn)/2 and ℓ− b have parameter (1−ρn)/2 (this is a consequence
of the computations performed in section 2.2). Therefore the Hamming class
of Xn is distributed as the sum of two independent binomial random variables
with respective parameters (b, (1 + ρn)/2) and (ℓ− b, (1− ρn)/2). We conclude
that

∀ b, c ∈ { 0, . . . , ℓ } , ∀v ∈ { 0, 1 }ℓ ,

H(v) = b =⇒
∑

u:H(u)=c

Mn(v, u) = Mn
H(b, c) , (6.3)

where the matrix Mn
H(b, c) is given by

Mn
H(b, c) = P

(
Bin
(
b,
1 + ρn

2

)
+ Bin

(
ℓ− b,

1− ρn

2

)
= c

)
, (6.4)

Bin(n, p) being a generic binomial random variable with parameters (n, p) and
the two binomial random variables appearing above being independent. From
the definition (1.18), we see that the fitness fPL depends only on the Hamming,
i.e., there exists a function f such that fPL(v) = f(H(v)) for any v. With a
slight abuse of notation, we still denote this function by fPL. Rearranging the
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sum in formula (6.2) according to the Hamming class of v and using (6.3), we
get

∀h ∈ { 0, . . . , ℓ } y(h) =
∑

0≤k≤ℓ

∑
v:H(v)=k

x(v)
(
fPL(v)− 1

)∑
n≥1

1

λn
Mn

H(k, h)

=
∑

0≤k≤ℓ

y(k)
(
fPL(k)− 1

)∑
n≥1

1

λn
Mn

H(k, h) .

(6.5)

Equation (6.5) is in fact valid as long as the fitness function depends only on
the Hamming classes. In the case of the plateau landscape, the equation for
h = ℓ/2 yields

1

σ − 1
=
∑
n≥1

1

λn
Mn

H

( ℓ
2
,
ℓ

2

)
. (6.6)

This is the counterpart of equation (2.8) for the sharp peak landscape.

6.3 Asymptotics of Mn
H(ℓ/2, ℓ/2)

We shall rely on equation (6.6) to analyze the asymptotic behavior of λ in the
long chain regime. Let us begin with the term Mn

H(ℓ/2, ℓ/2).

Lemma 6.7. In the long chain regime, we have the convergence

∀n ≥ 1 lim
ℓ→∞, q→0

ℓq→a

Mn
H

( ℓ
2
,
ℓ

2

)
= ϕn(a) , (6.8)

where the sequence of functions ϕn is defined in (6.1).

Proof. From formula (6.4) with b = c = ℓ/2, we have

Mn
H

( ℓ
2
,
ℓ

2

)
= P

(
Bin
( ℓ
2
,
1 + ρn

2

)
+ Bin

( ℓ
2
,
1− ρn

2

)
=

ℓ

2

)

= P

(
Bin
( ℓ
2
,
1− ρn

2

)
= Bin

( ℓ
2
,
1− ρn

2

))
,

with the understanding that the two binomial random variables appearing above
are independent. Moreover, we have, for a > 0,

ℓ

2

1− ρn

2
=

ℓ

2

1− (1− 2q)n

2
∼ ℓ

2
nq ∼ na

2
,

hence we are in the regime where these binomial laws converge towards the Pois-
son distribution P(na/2) with parameter na/2. If a = 0, the limit distribution
is a Dirac mass at 0. Let us fix K ≥ 1. We have

Mn
H

( ℓ
2
,
ℓ

2

)
≥

∑
0≤k≤K

P

(
Bin
( ℓ
2
,
1− ρn

2

)
= k

)2

,
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whence, passing to the limit,

lim inf
ℓ→∞, q→0

ℓq→a

Mn
H

( ℓ
2
,
ℓ

2

)
≥ e−an

∑
0≤k≤K

(an)2k

22k(k!)2
.

Sending K to ∞, we obtain that

lim inf
ℓ→∞, q→0

ℓq→a

Mn
H

( ℓ
2
,
ℓ

2

)
≥ e−an

∑
k≥0

(an)2k

22k(k!)2
= ϕn(a) . (6.9)

Let us look for the reverse inequality. We fix again K ≥ 1 and we write

Mn
H

( ℓ
2
,
ℓ

2

)
≤

∑
0≤k≤K

P

(
Bin
( ℓ
2
,
1− ρn

2

)
= k

)2

+ P

(
Bin
( ℓ
2
,
1− ρn

2

)
> K

)
.

We bound the last term with the help of Markov’s inequality:

P

(
Bin
( ℓ
2
,
1− ρn

2

)
> K

)
≤ 1

K

ℓ

2

1− ρn

2
≤ an

K
,

where the last inequality holds asymptotically. From the previous two inequal-
ities, we conclude that

lim sup
ℓ→∞, q→0

ℓq→a

Mn
H

( ℓ
2
,
ℓ

2

)
≤ e−an

∑
0≤k≤K

(an)2k

22k(k!)2
+

an

K
.

We finally send K to ∞ to complete the proof of the lemma.

6.4 Convergence of λ

Let λ∗ be an accumulation point of λ. By definition, there exist two sequences
of parameters (ℓm)m≥0, (qm)m≥0 such that

ℓm → +∞ , qm → 0 , ℓmqm → a , λ(ℓm, qm) → λ∗ .

By lemma 6.7 and Fatou’s lemma, we have∑
n≥1

ϕn(a)

(λ∗)n
=
∑
n≥1

lim
m→∞

1

λ(ℓm, qm)n
Mn

H

(ℓm
2
,
ℓm
2

)
≤ lim

m→∞

∑
n≥1

1

λ(ℓm, qm)n
Mn

H

(ℓm
2
,
ℓm
2

)
=

1

σ − 1
, (6.10)

where the last equality comes from (6.6). This inequality and the very definition
of λ(a, σ) (see equality (1.20)) imply that λ∗ ≥ λ(a, σ) > 1. In particular, there
exist ε > 0 and M ≥ 1 such that

∀m ≥ M λ(ℓm, qm) ≥ 1 + ε . (6.11)
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This last inequality ensures that the series∑
n≥1

1

λ(ℓm, qm)n
Mn

H

(ℓm
2
,
ℓm
2

)
converges uniformly with respect to m, so that we can interchange the limits
and the infinite sum to get

1

σ − 1
= lim

m→∞

∑
n≥1

1

λ(ℓm, qm)n
Mn

H

(ℓm
2
,
ℓm
2

)
=
∑
n≥1

lim
m→∞

1

λ(ℓm, qm)n
Mn

H

(ℓm
2
,
ℓm
2

)
=
∑
n≥1

ϕn(a)

(λ∗)n
. (6.12)

This way we see that λ∗ has to be the solution λ(a, σ) of equation (1.20). In
conclusion, the only possible accumulation point for λ in the long chain regime is
λ(a, σ). Therefore λ converges towards λ(a, σ) as announced, and this completes
the proof of theorem 1.19.

6.5 Asymptotics of Mn
H

(
⌊αℓ⌋, ⌊αℓ⌋

)
The next lemma is the missing ingredient to complete the proof of theorem 1.23.

Lemma 6.13. In the long chain regime, we have the convergence

∀n ≥ 1 lim
ℓ→∞, q→0

ℓq→a

Mn
H

(
⌊αℓ⌋, ⌊αℓ⌋

)
= ϕn,α(a) , (6.14)

where the sequence of functions ϕn,α is defined by

ϕn,α(a) = e−an
∑
k≥0

(
√

4α(1− α)an)2k

22k(k!)2
. (6.15)

Proof. From formula (6.4) with b = c = ⌊αℓ⌋, we have

Mn
H

(
⌊αℓ⌋, ⌊αℓ⌋

)
= P

(
Bin
(
⌊αℓ
⌋
,
1 + ρn

2

)
+ Bin

(
ℓ− ⌊αℓ⌋, 1− ρn

2

)
= ⌊αℓ⌋

)
= P

(
Bin
(
ℓ− ⌊αℓ⌋, 1− ρn

2

)
= Bin

(
⌊αℓ⌋, 1− ρn

2

))
,

with the understanding that the two binomial random variables appearing above
are independent. Moreover, we have

ℓ
1− ρn

2
= ℓ

1− (1− 2q)n

2
∼ ℓnq ∼ na ,

hence we are in the regime where the first binomial law converges towards the
Poisson distribution with parameter (1 − α)na while the second binomial law
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converges towards the Poisson distribution with parameter αna. We proceed as
in the proof of lemma 6.7 to conclude that

∀n ≥ 1 lim
ℓ→∞, q→0

ℓq→a

Mn
H

(
⌊αℓ⌋, ⌊αℓ⌋

)
= e−an

∑
k≥0

((1− α)an)k

k!

(αan)k

k!
,

and we rewrite the right-hand quantity as in formula (6.15).

6.6 Completion of the proof of theorem 1.23

Let ϕα(a) be the function defined by

ϕα(a) =
∑
n≥1

ϕn,α(a) =
∑
n≥1

e−an
∑
k≥0

(
√

4α(1− α)an)2k

22k(k!)2
. (6.16)

In order to study the behavior of ϕα(a) as a goes to 0 or ∞, we take advantage
of the simple inequalities (2k)! ≤ 22k(k!)2 ≤ (2k + 1)! to bound ϕn,α(a) from
above and from below as follows:

e−an sinh
(√

4α(1− α)an
)√

4α(1− α)an
≤ ϕn,α(a) ≤ e−an cosh

(√
4α(1− α)an

)
.

From these inequalities, we deduce that, when α ̸= 1/2, we have

lim
a→0

ϕα(a) = +∞ , lim
a→+∞

ϕα(a) = 0 . (6.17)

Moreover, for any a0 > 0, we have

∀a ≥ a0 ϕn,α(a) ≤ exp
(
−a0n(1−

√
4α(1− α))

)
.

Thus, when α ̸= 1/2, the series
∑

n≥1 ϕn,α(a) is uniformly convergent over
[a0,+∞[ for any a0 > 0 and therefore the function ϕα is continuous on ]0,+∞[.
We consider the equation

1

σ − 1
= ϕα(a) ,

and we denote by a1c(σ, α) (respectively a2c(σ, α)) the smallest (respectively the
largest) solution to this equation in ]0,+∞[. These two real numbers are well-
defined, thanks to the limits (6.17) and the continuity of ϕα on ]0,+∞[.

We use a strategy similar to the one of the proof of theorem 1.19. Suppose
that a ≥ a2c(σ, α). The equation for h = ⌊αℓ⌋ in the system (6.5) yields

1

σ − 1
=
∑
n≥1

1

λn
Mn

H

(
⌊αℓ⌋, ⌊αℓ⌋

)
. (6.18)

Let λ∗ be an accumulation point of λ. If λ∗ > 1, then, proceeding as in the proof
of theorem 1.19, we pass to the limit along a subsequence in equation (6.18) to
get

1

σ − 1
=
∑
n≥1

1

(λ∗)n
ϕn,α(a) < ϕα(a) , (6.19)
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but this contradicts the fact that a ≥ a2c(σ, α). Suppose that a < a1c(σ, α). Let
λ∗ be an accumulation point of λ. Suppose that λ∗ = 1. By Fatou’s lemma, we
would have

ϕα(a) =
∑
n≥1

ϕn,α(a) ≤ lim inf
ℓ→∞, q→0

ℓq→a

∑
n≥1

1

λn
Mn

H

(
⌊αℓ⌋, ⌊αℓ⌋

)
=

1

σ − 1
, (6.20)

where the last equality comes from (6.18). Yet inequality (6.20) stands in con-
tradiction with the fact that a < a1c(σ, α). Therefore the infimum limit of λ has
to be strictly larger than 1.

7 Survival of the flattest

This final section is devoted to the proof of theorem 1.26.

7.1 Lower bound on λSP/PL(δ, σ, ℓ, q)

The mean fitness λSP/PL(δ, σ, ℓ, q) is also the Perron-Frobenius eigenvalue of the
matrix

(
fSP/PL(u)M(u, v), u, v ∈ E

)
. As such, it is a non-decreasing function

of the entries of this matrix. Therefore

λSP/PL(δ, σ, ℓ, q) ≥ max
(
λSP/PL(δ, 1, ℓ, q), λSP/PL(1, σ, ℓ, q)

)
.

With the help of theorems 1.16 and 1.19, we conclude that

lim inf
ℓ→∞, q→0

ℓq→a

λSP/PL(δ, σ, ℓ, q) ≥ max
(
δe−a, λ(a, σ)

)
.

Let us prove next the reverse inequality.

7.2 Lumping

Let (x(u), u ∈ { 0, 1 }ℓ) be the solution to the quasispecies equations associated
with fSP/PL. We are dealing with a fitness function which depends only on
the Hamming classes. So we lump together the genotypes according to their
Hamming classes and we introduce the new variables y(h), 0 ≤ h ≤ ℓ, given by

∀h ∈ { 0, . . . , ℓ } y(h) =
∑

u:H(u)=h

x(u) .

We use the same computations that lead from (6.2) to (6.5) (these computations
relied on the fact that the fitness function depended only on the Hamming
classes) to conclude that the variables y(h), 0 ≤ h ≤ ℓ, satisfy

∀h ∈ { 0, . . . , ℓ } y(h) =
∑

0≤k≤ℓ

y(k)
(
fSP/PL(k)− 1

)∑
n≥1

1

λn
Mn

H(k, h) , (7.1)
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where the matrix MH(k, h) was defined in (6.4). Again, with a slight abuse
of notation, we denote by fSP/PL(k) the common value of the fitness function
fSP/PL for all the sequences in the Hamming class H(k). In the sequel of the
proof, we write simply λ(ℓ, q) or even λ instead of λSP/PL(δ, σ, ℓ, q). The value
λ and the variables y satisfy also

λ = δy(0) + σy(ℓ/2) + 1− y(0)− y(ℓ/2) (7.2)

and ∑
0≤k≤ℓ

y(k) = 1 .

7.3 The two main equations

Let us rewrite the two equations of the system (7.1) corresponding to h = 0 and
h = ℓ/2:

y(0) = y(0)
(
δ − 1

)∑
n≥1

1

λn
Mn

H(0, 0) + y
( ℓ
2

)(
σ − 1

)∑
n≥1

1

λn
Mn

H

( ℓ
2
, 0
)
,

y
( ℓ
2

)
= y(0)

(
δ − 1

)∑
n≥1

1

λn
Mn

H

(
0,

ℓ

2

)
+ y

( ℓ
2

)(
σ − 1

)∑
n≥1

1

λn
Mn

H

( ℓ
2
,
ℓ

2

)
.

(7.3)

Let us examine what are the possible limits of λ, y(0) and y(ℓ/2) along a subse-
quence in the long chain regime. So, let us suppose that, along a subsequence,
the following convergences take place:

λ → λ∗ , y(0) → y∗0 , y(ℓ/2) → y∗1 . (7.4)

In the sequel of the argument, all the limits are taken along this subsequence.
Passing to the limit in (7.2), we get

λ∗ = δy∗0 + σy∗1 + 1− y∗0 − y∗1 . (7.5)

Since λ∗ ≥ λ(a, σ) > 1, then necessarily y∗0 + y∗1 > 0. Moreover, the following
convergences take place:

Mn
H(0, 0) → e−na , Mn

H

( ℓ
2
,
ℓ

2

)
→ ϕn(a) , (7.6)

while

Mn
H

( ℓ
2
, 0
)
→ 0 , Mn

H

(
0,

ℓ

2

)
→ 0 . (7.7)

The convergences (7.6) have already been proved. The first one is obvious and
the second one is the purpose of lemma 6.7. To prove the convergences (7.7),
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we use the expression of MH computed in (6.4) and we get

Mn
H

( ℓ
2
, 0
)

= P

(
Bin
( ℓ
2
,
1 + ρn

2

)
+Bin

( ℓ
2
,
1− ρn

2

)
= 0

)

≤ P

(
Bin
( ℓ
2
,
1 + ρn

2

)
= 0

)
≤ P

(
Bin
( ℓ
2
,
1

2

)
= 0

)
,

Mn
H

(
0,

ℓ

2

)
= P

(
Bin
(
ℓ,
1− ρn

2

)
=

ℓ

2

)
≤ P

(
Bin
(
ℓ,
1

2

)
=

ℓ

2

)
,

and it is well-known that the right-hand quantities goes to 0 as ℓ goes to ∞.

7.4 Upper bound on λSP/PL(δ, σ, ℓ, q)

Proceeding as in the proof of theorem 1.19 (see lemma 6.7 and thereafter),
we take advantage of the fact that λ∗ > 1 to interchange the limit and the
four sums appearing in (7.3). So, passing to the limit in (7.3), and using the
convergences (7.4), (7.6), (7.7), we get

y∗0 = y∗0
(
δ − 1

)∑
n≥1

e−na

(λ∗)n
= y∗0

δ − 1

λ∗ea − 1
,

y∗1 = y∗1
(
σ − 1

)∑
n≥1

ϕn(a)

(λ∗)n
. (7.8)

If y∗0 > 0, then the first equation implies that λ∗ = δe−a. If y∗1 > 0, then the
second equation is equivalent to equation (1.20). Therefore λ∗ has to be equal
to the unique solution λ(a, σ) of this equation. In conclusion, there are only two
possible limits along a subsequence for λ, namely δe−a and λ(a, σ), thus

lim sup
ℓ→∞, q→0

ℓq→a

λSP/PL(δ, σ, ℓ, q) ≤ max
(
δe−a, λ(a, σ)

)
.

The final conclusions of the theorem are obtained as a by-product of the previous
argument. Indeed, if δe−a ̸= λ(a, σ), then it follows from (7.8) that we cannot
have simultaneously y∗0 > 0 and y∗1 > 0. This remark, in conjunction with the
identity (7.5), yields the convergences stated at the end of the theorem.
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