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Abstract. We study a markovian evolutionary process which encompasses the classical

simple genetic algorithm. This process is obtained by perturbing randomly a very simple

selection scheme. Using the Freidlin–Wentzell theory, we carry out a precise study of the
asymptotic dynamics of the process as the perturbations disappear. We show how a delicate

interaction between the perturbations and the selection pressure may force the convergence

toward the global maxima of the fitness function. We put forward the existence of a critical
population size, above which this kind of convergence can be achieved. We compute upper

bounds of this critical population size for several examples. We derive several conditions to

ensure convergence in the homogeneous case: these provide the first mathematically well-
founded convergence results for genetic algorithms.
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I. Introduction

Stochastic optimization has been a field of intense research during the last decade:
computers become more and more powerful and there is an increasing need for robust
and efficient search techniques. In the jungle of optimization procedures, there exists a
particular class of algorithms called genetic algorithms. Introduced by J.H. Holland in the
seventies [6], these algorithms are based on the genetic mechanisms which guide natural
evolution: mutation, crossover and selection. Today, they are widely used to handle a large
spectrum of optimization problems ranging from the classical traveling salesman problem
to the design of network architecture [5].

However the behavior of genetic algorithms relies heavily on several control parameters
(for instance the population size, the probabilities of mutation and crossover). Until now,
no firm result concerning the choice of these parameters and the dynamics of the genetic
algorithm has been available: practical know–how and experimental simulations were the
only guides for handling concrete problems.

In this paper, we study a slightly more general evolutionary scheme. We consider first
a very simple selection algorithm which is extremely rapidly trapped in bad points of the
search space and we perturb randomly the whole mechanism. We focus on the asymptotic
dynamics of the process as the random perturbations vanish. We show how a delicate
interaction between mutations, crossovers and selection pressure ensures the convergence
of the algorithm toward the set of the global maxima of the fitness function. We put
forward the existence of a critical population size, above which this kind of convergence
can be achieved. Our results seem to be the first well–founded convergence theorems of
this kind concerning genetic algorithms.

To fulfill this program, we use the powerful tools developed by Freidlin and Wentzell
in a much more general framework for the study of random perturbations of dynamical
systems [4].

Classical genetic algorithms are not usually described as the random perturbation of
a simple process. For a fixed level of intensity of the random perturbations, our model
evolves exactly as a classical genetic algorithm. We are only able to analyze rigorously the
asymptotic regime when the perturbations vanish. On one hand, the asymptotic picture
sheds some light on the true dynamics of classical genetic algorithms. On the other hand,
this approach suggests new ways of implementing genetic algorithms, using the theory of
generalized annealing processes [3,12].

To avoid lengthy and technical computations we focus here mainly on the study of the
invariant measure of the process and we just quote without proof a result of convergence
for the inhomogeneous case. In another work, we apply to our model the very technical
tools developed by Catoni and Trouvé to control the speed of convergence of generalized
annealing processes to equilibrium (see [2] and the references therein). A major difficulty
with such dynamics is the lack of reversibility [3].
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This paper has the following structure.
We first describe our model. Then, we study the convergence of the algorithm in the
homogeneous case and derive sufficient conditions to ensure that the population settles in
a global maximum of the fitness function. We show that these conditions are fulfilled when
the population size is large enough. We apply our results to the classical simple genetic
algorithm. In the inhomogeneous case, we give several conditions on the rate of decrease of
the perturbations to ensure the convergence of the population to the set of global maxima
in finite time. We finally examine the value of the critical population size for a specific
problem coming from statistical mechanics, namely the search of the ground state of the
Ising model in a finite box.

II. General notations and conventions

The cardinality of a set X will be noted indifferently |X| or cardX and its characteristic
function 1X . We adopt usual conventions concerning empty sets:

min ∅ = +∞, max ∅ = −∞,
∏
∅

= 1,
∑
∅

= 0.

If s is a real number, bsc denotes the unique integer such that bsc ≤ s < bsc+ 1.
We say that a real number s is positive if s > 0 and that it is non–negative if s ≥ 0.
We consider a finite space of states E and a real-valued positive non-constant function f
(which will be called the fitness function) defined on E. The letters i, j will denote elements
of E. The set of global maxima of f is

f∗ = { i ∈ E : f(i) = max
j∈E

f(j) }.

By f(f∗) we mean the maximum of f over E i.e. maxj∈E f(j).
The Kronecker symbol δ(i, j) will be used to denote the identity matrix indexed by E:

∀i, j ∈ E δ(i, j) = 0 if i 6= j, δ(i, j) = 1 if i = j.

Let m be a positive integer. The state space of most of Markov chains under consideration
will be Em, the set of m–uples of elements of E: these m–uples are called populations and
their components individuals. They will be denoted by the letters x, y, z.
If x = (x1, · · · , xm) belongs to Em, [x] is the set of individuals contained in x i.e.

[x] = {xk : 1 ≤ k ≤ m }

and for i in E, x(i) is the number of occurrences of i in the population x:

x(i) = card { k : 1 ≤ k ≤ m, xk = i }.
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The group of permutations Sm of the set {1, · · · ,m} operates on Em in the following way:

∀σ ∈ Sm σ · x = σ · (x1, · · · , xm) = (xσ(1), · · · , xσ(m)).

The set Em/Sm is the set of equivalence classes associated with this group operation.
We associate with f two functions defined on Em.
The first one is still noted f and takes its values in (R∗+)m:

f(x) = f(x1, · · · , xm) = (f(x1), · · · , f(xm)).

The second one is noted f̂ and is real-valued:

f̂(x) = f̂(x1, · · · , xm) = max
1≤k≤m

f(xk).

For x in Em, x̂ denotes the set of those elements of [x] which realize the value f̂(x):

x̂ = {xk : 1 ≤ k ≤ m, f(xk) = f̂(x) }.

For a point i of E, (i) is the m–uple whose m components are equal to i and A is the set
of all such m–uples (which are called the uniform populations). By S we denote the set of
equi–fitness populations, that is, populations whose individuals have the same fitness:

S = {x ∈ Em : f(x1) = · · · = f(xm) }.

We sometimes identify f∗ with { (i) : i ∈ f∗} so that f∗ may be seen as a subset of A.

III. Description of the model

1. The unperturbed Markov chain (X∞n )

In the absence of perturbations, the process under study is a Markov chain (X∞n )n≥0

with state space Em. The superscript ∞ reflects the fact that this process describes the
limit behavior of our model, when all perturbations have disappeared. The transition
probabilities of this chain are

P
(
X∞n+1 = z/X∞n = y

)
=

1
(card ŷ)m

m∏
k=1

1by(zk)y(zk) =
1

(card ŷ)m
∏
i∈[z]

1by(i)y(i)z(i)

that is, the individuals of the population X∞n+1 are chosen randomly (under the uniform
distribution) and independently among the elements of X̂∞n which are the best individuals
of X∞n according to the fitness function f .
Suppose the chain starts up with the initial population X0 = x0. Then

∀n ≥ 1 [X∞n ] ⊂ x̂0

and with probability one, after a finite number of steps N , the chain is absorbed in a
state (i) where i belongs to x̂0. In particular, if x̂0 is reduced to one point i, the chain is
instantaneously absorbed in (i).
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2. The perturbed Markov chain (X l
n)

The previous Markov chain (X∞n ) is randomly perturbed by three distinct mechanisms.
The first two act directly upon the population and mimic the phenomena of mutation and
crossover. The third one consists in loosening the selection of the individuals.
The intensity of the perturbations is governed by an integer parameter l. As l grows toward
infinity, the perturbations progressively disappear.
The perturbed Markov chain (X l

n) is obtained through overlapping of several other chains
(U ln), (V ln) which represent the successive populations obtained by applying the perturbing
operators. More precisely, we decompose the transition from X l

n to X l
n+1 in three stages:

X l
n

mutation−−−−−−→ U ln
crossover−−−−−−→ V ln

selection−−−−−−→ X l
n+1.

We now proceed to a more detailed description of these three operations.

X l
n −→ U ln: mutation. The mutation operator is modeled by random independent per-

turbations of the individuals of the population X l
n. Such a perturbation is described by

a markovian kernel pl on the space E, that is a function defined on E × E with values in
[0, 1] verifying

∀i ∈ E
∑
j∈E

pl(i, j) = 1.

The transition probabilities from X l
n to U ln are then given by

(1) P
(
U ln = u/X l

n = x
)

= pl(x1, u1) · · · pl(xm, um).

This perturbation is small whenever the matrix (pl(i, j))(i,j)∈E×E is close to the identity
matrix. To ensure the vanishing of mutations when l grows toward infinity, we will impose

(2) ∀i, j ∈ E lim
l→∞

pl(i, j) = δ(i, j).

U ln −→ V ln: crossover. The crossover operator is modeled by random independent per-
turbations of the couples formed by consecutive individuals of the population (X l

n). As in
the mutation case, such a perturbation is described by a markovian kernel ql on the space
E × E, that is a function defined on (E × E)× (E × E) with values in [0, 1] verifying:

∀(i1, j1) ∈ E × E
∑

(i2,j2)∈E×E

ql ((i1, j1), (i2, j2)) = 1.

The transition probabilities from U ln to V ln are

(3) P
(
V ln = v/U ln = u

)
= δm(um, vm)

∏
1≤k≤m/2

ql ((u2k−1, u2k), (v2k−1, v2k))
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where δm(i, j) = δ(i, j) if m is odd (the last individual of the population remains unchanged
after crossover) and δm(i, j) = 1 if m is even.
To ensure the vanishing of crossovers when l grows toward infinity, we will impose

(4) ∀(i1, j1) ∈ E × E ∀(i2, j2) ∈ E × E lim
l→∞

ql ((i1, j1), (i2, j2)) = δ(i1, i2)δ(j1, j2).

V ln −→ X l
n+1: selection. In order to build our selection operator, we will use a selection

function.

Definition. A selection function of order m is a function F defined on {1, · · · ,m}×(R∗+)m

with values in [0, 1] satisfying for each (f1, · · · , fm) in (R∗+)m:

a)
m∑
k=1

F (k, f1, · · · , fm) = 1,

b) ∀σ ∈ Sm ∀k ∈ {1, · · · ,m} F (σ(k), fσ(1), · · · , fσ(m)) = F (k, f1, · · · , fm),

c) f1 ≥ f2 ≥ · · · ≥ fm ⇒ F (1, f1, · · · , fm) ≥ F (2, f1, · · · , fm) ≥ · · · ≥ F (m, f1, · · · , fm).

The value F (k, f1, · · · , fm) is the probability of choosing fk among the values f1, · · · , fm:
this probability does not depend on the indices and increases with the relative value of fk
among f1, · · · , fm. Now let Fl be a selection function. The m individuals X l,1

n+1, · · · , X
l,m
n+1

who make up the population X l
n+1 are chosen randomly and independently in the popu-

lation V ln from the law defined by Fl:

∀ r ∈ {1, · · · ,m} ∀i ∈ E P
(
X l,r
n+1 = i

)
=

∑
h:V l,hn =i

Fl
(
h, f(V ln)

)
.

(recall that f(V ln) is the m–uple
(
f(V l,1n ), · · · , f(V l,mn )

)
) so that the transition probabilities

from V ln to X l
n+1 are

(5) P
(
X l
n+1 = x/V ln = v

)
=
∏
i∈[x]

( ∑
k:vk=i

Fl(k, f(v))
)x(i)

=
m∏
r=1

∑
k:vk=xr

Fl(k, f(v)).

The selection pressure is maximal if the individuals of X l
n+1 are chosen randomly and

uniformly from the fittest individuals of V ln. The unique selection function F∞ which
implements such a selection scheme is defined by

F∞(k, f(x)) =
1bx(xk)
card x̂
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i.e. we have then the uniform distribution over x̂.
To ensure the disappearance of the selection of individuals below peak fitness, we will
impose the convergence of Fl toward F∞ on the set f(E)m:

(6) ∀x ∈ Em ∀k ∈ {1, · · · ,m} lim
l→∞

Fl(k, f(x)) = F∞(k, f(x)).

The basic example of such a sequence of selection functions is given by

(7) Fl(k, f1, · · · , fm) =
exp(fk lnwl)∑m
r=1 exp(fr lnwl)

where (wl)l≥0 is an increasing sequence of positive real numbers which tends to infinity.
We will only be concerned with such sequences of selection functions in the sequel.
We can now evaluate the

Transition probabilities of the chain (X l
n).

The transition probability P
(
X l
n+1 = z/X l

n = y
)

is given by the sum∑
(u,v)∈(Em)2

P
(
X l
n+1 = z/V ln = v

)
P
(
V ln = v/U ln = u

)
P
(
U ln = u/X l

n = y
)
.

Conditions (2), (4) and (6) imply

∀(y, z) ∈ Em × Em lim
l→∞

P
(
X l
n+1 = z/X l

n = y
)

= P
(
X∞n+1 = z/X∞n = y

)
so that the transition probabilities of (X l

n) converge toward those of (X∞n ) as l tends to
infinity. Thus the Markov chain (X l

n) appears as a perturbation of the Markov chain (X∞n ).
In order to deal with the asymptotic dynamics of the chain (X l

n) we need more information
about the way its transition probabilities converge to those of (X∞n ). We will make the
following assumptions on the sequences of kernels pl and ql.

Hypothesis Hp. There exist a sequence (ul)l≥0 of positive real numbers and a function α
defined on E × E with values in R+ satisfying

a) lim
l→∞

ul = +∞

b) α is an irreducible kernel, that is

∀i, j ∈ E ∃i0, i1, · · · , ir i0 = i, ir = j,
∏

0≤k≤r−1

α(ik, ik+1) > 0

c) pl admits the development

∀i, j ∈ E ∀s > 0 pl(i, j) =
{
α(i, j)(ul)−1 + o ((ul)−s) if i 6= j

1− α(i, j)(ul)−1 + o ((ul)−s) if i = j
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Hypothesis Hq. There exist a sequence (vl)l≥0 of positive real numbers and a function β
defined on (E × E)× (E × E) with values in R+ satisfying

a) lim
l→∞

vl = +∞

b) ql admits the development
∀(i1, j1) ∈ E × E ∀(i2, j2) ∈ E × E ∀s > 0

ql ((i1, j1), (i2, j2)) =
{
β ((i1, j1), (i2, j2)) (vl)−1 + o ((vl)−s) if (i1, j1) 6= (i2, j2)
1− β ((i1, j1), (i2, j2)) (vl)−1 + o ((vl)−s) if (i1, j1) = (i2, j2)

In fact, the asymptotic dynamics of the chain will be governed by the kernels α and β:
the irreducibility condition on the kernel α (which implies the irreducibility of the kernel
pl for l large enough) is essential in order to allow the population to visit all the space E
even when the perturbations are small.

IV. Convergence of the homogeneous algorithm

This section is devoted to the study of the behavior of the chain (X l
n) when n first goes

to infinity and then l does. We will be interested in the quantities

lim
l→∞

lim
n→∞

P
(
X l
n = z/X l

0 = y
)
.

The kernel α is irreducible so that for l large enough, the chain (X l
n) is irreducible. Fur-

thermore, for l sufficiently large, the diagonal coefficients P
(
X l
n+1 = x/X l

n = x
)

are pos-
itive so that the chain (X l

n) is aperiodic. In addition, the state space of (X l
n) is finite.

The chain (X l
n) admits thus a unique invariant probability measure µl[11, Theorems 4.1

and 4.2]. This measure charges all points of the space Em and we have

∀ y, z ∈ Em lim
n→∞

P
(
X l
n = z/X l

0 = y
)

= µl(z).

We are thus interested in the convergence of the stationary measures (µl)l≥0.
We will note Px for the probability measure associated with the chain (X l

n) starting at
X l

0 = x and Ex will be the expectation with respect to Px.

1. The time of entrance in the set S of X l
n

Let τ l = min {n > 0 : X l
n ∈ S } be the first entrance time of the chain (X l

n) into S and

sl = min
x∈Em

∑
k:xk∈bxFl(k, f(x)).
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For each n in N and x in Em we have

P
(
X l
n+1 ∈ S/X l

n = x
)
≥ min
v∈Em

P
(
[X l

n+1] ⊂ v̂/V ln = v
)
≥ (sl)m.

From this we deduce that

(8) ∀q ∈ N ∀x ∈ Em Px
(
τ l > q

)
≤ (1− (sl)m)q .

Summing up this inequality from q = 0 to ∞ we get

∀x ∈ Em Ex
(
τ l
)
≤ (sl)−m.

We proceed now to a more careful study of the sequence (sl)l≥0. With our choice for
the sequence Fl, it is clear that sl is strictly positive for every l. In addition, for a
fixed population x, Fl(k, f(x)) increases with l (recall that wl is an increasing sequence)
whenever xk belongs to x̂. The sequence sl, being the minimum over Em of sums of such
increasing sequences, is also increasing. Define

(9) δ = min{ |f(i)− f(j)| : i, j ∈ E, f(i) 6= f(j) }.

For x in Em, we have

1−
∑

k:xk∈bxFl(k, f(x)) =

∑
r:xr 6∈bx exp((f(xr)− f̂(x)) lnwl)

card x̂+
∑
r:xr 6∈bx exp((f(xr)− f̂(x)) lnwl

≤ (m− 1)(wl)−δ

whence finally

(10) 1− sl ≤ (m− 1)(wl)−δ.

2. Concentration of µl on S

We denote by (Zln) the Markov chain induced by (X l
n) on S and by νl its invariant

probability measure µlS . More precisely, (Zln) is the Markov chain with state space S and
with transition probabilities

∀x, y ∈ S P (Zln+1 = y/Zln = x) = Px(Xτ l = y)

(we recall that τ l is the hitting time of S). We first use the standard formula for repre-
senting the invariant measure of (X l

n) with the help of the induced Markov chain (Zln) [7,
Proposition 5.3]. We obtain

(11) ∀x ∈ Em µl(x) = µl(S)
∑
y∈S

νl(y)Ey

τ l−1∑
k=0

1{Xlk=x}

 .
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The study of the asymptotic behavior of µl will entirely rely on this representation formula.
If x does not belong to S then for y in S

Ey

τ l−1∑
k=0

1{Xlk=x}

 = Ey

τ l−1∑
k=1

1{Xlk=x}

 ≤ Ey[τ l]− 1 ≤ (sl)−m − 1.

Reporting this inequality in the representation formula (11) yields

µl(x) ≤ µl(S)
(
(sl)−m − 1

)
.

The convergence of the selection functions (Fl)l≥0 toward F∞ implies that sl converges to
one whence

lim
l→∞

µl(Em \ S) = 0.

If x belongs to S then for y in S

Ey

τ l−1∑
k=0

1{Xlk=x}

 = δ(x, y).

Reporting this equality in the representation formula (11) yields µl(x) = µl(S)νl(x). We
have just shown that µl(S) converges to one as l goes to infinity. Therefore it remains to
study the convergence of the sequence of probability measures νl.

3. Asymptotics of the transition matrix of Zln

To study the convergence of the measure νl we will use the powerful machinery developed
by Freidlin and Wentzell. The first step consists in evaluating the asymptotics of the
transition probabilities of the induced Markov chain (Zln). Thus our next task will be to
obtain estimates of the quantities P

(
Zln+1 = y/Zln = x

)
for x and y in S.

We will successively study the asymptotics of the transition probabilities
P
(
U ln = u/X l

n = x
)
, P

(
V ln = v/U ln = u

)
, P

(
X l
n+1 = x/V ln = v

)
.

Asymptotics of P
(
U ln = u/X l

n = x
)
. Define for x and u in Em

d(x, u) = card { k : 1 ≤ k ≤ m,xk 6= uk }
and extend α to Em × Em by putting

α(x, u) =
∏

k:xk 6=uk

α(xk, uk).

Define for x in Em the set U(x) as the set of populations reachable from x in one transition
step through the kernel α that is U(x) = {u ∈ Em : α(x, u) > 0 }. Using the development
of pl given by hypothesis Hp in (1), we see that, as l→∞,

If u 6∈ U(x) P
(
U ln = u/X l

n = x
)

= o
(
(ul)−s

)
∀s > 0

If u ∈ U(x) P
(
U ln = u/X l

n = x
)
∼ α(x, u)(ul)−d(x,u).
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Asymptotics of P
(
V ln = v/U ln = u

)
. Define for u and v in Em

d̄(u, v) = card { k : 1 ≤ k ≤ m/2, (u2k−1, u2k) 6= (v2k−1, v2k) }

and extend β to Em × Em by putting

β(u, v) = δm(um, vm)
∏

k:(u2k−1,u2k)6=(v2k−1,v2k)

β((u2k−1, u2k), (v2k−1, v2k)).

For u in Em, let V(u) be the set of populations reachable from u in one transition step
through the kernel β that is V(u) = { v ∈ Em : β(u, v) > 0 }. Using the development of ql
given by hypothesis Hq in (3), we obtain, as l→∞,

If v 6∈ V(u) P
(
V ln = v/U ln = u

)
= o

(
(vl)−s

)
∀s > 0

If v ∈ V(u) P
(
V ln = v/U ln = u

)
∼ β(u, v)(vl)−d̄(u,v).

Asymptotics of P
(
X l
n+1 = z/V ln = y

)
. Formulas (5) and (7) yield

P
(
X l
n+1 = z/V ln = y

)
=
∏
i∈[z]

(
y(i) exp(f(i) lnwl)∑m
k=1 exp(f(yk) lnwl)

)z(i)
whence

P
(
X l
n+1 = z/V ln = y

)
∼

l→∞

1
(card ŷ)m

∏
i∈[z]

y(i)z(i) exp

(∑
i∈[z]

z(i)f(i)−mf̂(y)
)

lnwl


The important quantity in this formula is the exponent of wl which gives the rate of
decreasing of the transition probabilities: it may be written

m

(
1
m

m∑
k=1

f(zk)− f̂(y)

)

i.e. m multiplied by the difference between the mean of f over the population z and the
maximum of f over the population y.

Choice of the sequences ul, vl and wl. We are interested in the dynamics of the chain
(X l

n) when the perturbations become smaller and smaller that is when l grows to infinity.
In this situation, with overwhelming probability, the chain (X l

n) behaves as the chain (X∞n )
would do. However the occurrence of rare events (which have very low probability) allows
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the chain (X l
n) to escape from the absorbing states of the chain (X∞n ) and to visit all the

space. These rare events are caused by the three distinct mechanisms of perturbations
described earlier. To ensure that these three mechanisms actually play their own role in
the asymptotic dynamics of the chain, we must give the same order of intensity to the
three kinds of perturbations. If one perturbation is negligible compared to another one, its
asymptotic influence will be null. We will therefore focus on the situation where the three
sequences ul, vl and wl which express the intensity of each perturbation have asymptotics
logarithmically of the same order.
In the sequel we make the choice ul = la, vl = lb, wl = lc where a, b, c are three positive
real numbers.

Let z1 and z2 be two arbitrary populations. As high as l might be, the probability for
the chain (X l

n) to travel from z1 to z2 is non–zero. Let r be a positive integer. We will
now study the

Asymptotics of P
(
X l
n+r = z2/X

l
n = z1

)
. This transition probability may be written as∑

P
(
X l
n+r = z2, V

l
n+r−1 = vr−1, U ln+r−1 = ur−1, X l

n+r−1 = xr−1, · · · ,

X l
n+1 = x1, V ln = v0, U ln = u0, X l

n = z1

)
the sum being taken over all possible values of sequences of populations in Em

u0, · · · , ur−1, v0, · · · , vr−1 and x1, · · · , xr−1.

Anyway the sum is finite and to estimate it we need only to take into account the terms
which prevail at infinity. Since the kernel α is irreducible, for r large enough, there is
always a path leading from z1 to z2 which involves only transition probabilities of order
l−s for some positive s. Therefore at least one term in the above sum is asymptotically of
order l−t for some positive t.
If the path P: z1 = x0 → u0 → v0 → x1 → u1 → · · · → xr−1 → ur−1 → vr−1 → xr = z2

contains a transition of very low probability, the corresponding term in the sum will be
negligible compared to any power of 1/l. More precisely:
If there exists k in {0, · · · , r − 1} such that either uk 6∈ U(xk) or vk 6∈ V(uk), the product

r−1∏
k=0

P
(
X l
n+1 = xk+1/V ln = vk

)
P
(
V ln = vk/U ln = uk

)
P
(
U ln = uk/X l

n = xk
)

is negligible with respect to l−s for any positive s.
If there exists an index k in {0, · · · , r−1} such that [xk+1] 6⊂ [vk], the above term vanishes.
Let Dr(z1, z2) be the set of paths

x0 → u0 → v0 → x1 → u1 → · · · → xr−1 → ur−1 → vr−1 → xr

12



satisfying

x0 = z1, x
r = z2 and ∀k ∈ {0, · · · , r − 1} uk ∈ U(xk), vk ∈ V(uk), [xk+1] ⊂ [vk]

(This set may be empty for small values of r).
It follows from the preceding discussion that

P
(
X l
n+r = z2/X

l
n = z1

)
=∑

Dr(z1,z2)

P
(
X l
n+r = z2/V

l
n+r−1 = vr−1

)
· · ·P

(
U ln = u0/X l

n = z1

)
+ o

(
l−s
)

for any positive s. In the above sum, the term associated with the path P of Dr(z1, z2)

z1 = x0 → u0 → v0 → x1 → u1 → · · · → xr−1 → ur−1 → vr−1 → xr = z2

is asymptotically of order l−t where t is equal to

V (P) = a
r−1∑
k=0

d(xk, uk) + b
r−1∑
k=0

d̄(uk, vk) + c
r−1∑
k=0

(
mf̂(vk)−

m∑
h=1

f(xk+1
h )

)
.

This quantity, which will be called the cost of the path, reflects the difficulty for the process
to move along the path under consideration. We need only to consider the terms with the
lowest exponents. Define the function Vr on Em × Em by

Vr(z1, z2) = min
P∈Dr(z1,z2)

V (P)

and let D∗r(z1, z2) be the set of those elements in Dr(z1, z2) which realize the minimum
Vr(z1, z2). We define the length l(P) of a path P as the number of transitions of the chain
(X l

n) it involves. With each path P we associate a constant C(P) defined by

(12) C(P) =
∏

0≤k<l(P)

α(xk, uk)β(uk, vk)(card v̂k)−m
∏

i∈[xk+1]

(vk(i))x
k+1(i)

and we put
Cr(z1, z2) =

∑
P∈D∗r (z1,z2)

C(P).

In particular, Dr(z1, z2) is exactly the set of paths P of length r such that C(P) > 0.
With these notations we see that:
If Dr(z1, z2) is empty,

∀s > 0 P
(
X l
n+r = z2/X

l
n = z1

)
= o(l−s).

13



If Dr(z1, z2) is not empty,

P
(
X l
n+r = z2/X

l
n = z1

)
= Cr(z1, z2) l−Vr(z1,z2) + o

(
l−Vr(z1,z2)

)
.

Remark that this formula is valid even if z1 and z2 differ only by a permutation (in this
case Vr(z1, z2) may vanish).
Our next objective is to study the way the chain (X l

n) behaves when it escapes from the
set S. We first examine how the chain may travel from z1 to z2 staying outside S.

Asymptotics of P
(
X l
n+r = z2, ∀k ∈ {1, · · · , r − 1}, X l

n+k 6∈ S/X l
n = z1

)
.

Let D̃r(z1, z2) be the set of elements belonging to Dr(z1, z2) such that

∀k ∈ {1, · · · , r − 1} xk 6∈ S.

Analogously define the function Ṽr on Em × Em by

Ṽr(z1, z2) = mineDr(z1,z2)
a
r−1∑
k=0

d(xk, uk) + b
r−1∑
k=0

d̄(uk, vk) + c
r−1∑
k=0

(
mf̂(vk)−

m∑
h=1

f(xk+1
h )

)

and let D̃∗r(z1, z2) be the set of those elements in D̃r(z1, z2) which realize the minimum.
Put

C̃r(z1, z2) =
∑

P∈ eD∗r (z1,z2)

C(P).

Using exactly the same technique as in the preceding case we get

P
(
X l
n+r = z2, ∀k ∈ {1, · · · , r − 1}, X l

n+k 6∈ S/X l
n = z1

)
=

(13) C̃r(z1, z2) l−eVr(z1,z2) + o
(
l−

eVr(z1,z2)
)

whenever D̃r(z1, z2) is not empty.

The minimal costs V and Ṽ . The most probable path followed by the chain (X l
n)

between two populations z1 and z2 will be a path of minimal cost. We consider two
minimal costs, depending on whether the path is constrained outside S or not:

V (z1, z2) = inf
r∈N

Vr(z1, z2), Ṽ (z1, z2) = inf
r∈N

Ṽr(z1, z2)

(We make the convention that V0(z1, z2) = Ṽ0(z1, z2) =∞ if z1 6= z2 and 0 if z1 = z2).
Since D̃r(z1, z2) ⊂ Dr(z1, z2), then Vr(z1, z2) ≤ Ṽr(z1, z2) and taking the minimum over r
we obtain

V (z1, z2) ≤ Ṽ (z1, z2).

We first state some elementary properties of the functions Vr and Ṽr.
14



Lemma 3.1. Let r be a positive integer.
For every integers k1 and k2 such that 1 ≤ k1 ≤ k2 ≤ r − 1,

Vr(z1, z2) = min
zk1 ,zk2∈ Em

{
Vk1−1(z1, zk1) + Vk2−k1(zk1 , zk2) + Vr−k2+1(zk2 , z2)

}
Ṽr(z1, z2) = min

zk1 ,zk2∈Em\S

{
Ṽk1−1(z1, zk1) + Ṽk2−k1(zk1 , zk2) + Ṽr−k2+1(zk2 , z2)

}
Corollary 3.2. ∀r ∈ N∗ ∀z1, z2 ∈ Em

Vr(z1, z2) = min
x1···xr−1∈ Em

{
V1(z1, x

1) + V1(x1, x2) + · · ·+ V1(xr−1, z2)
}

Ṽr(z1, z2) = min
x1···xr−1∈Em\S

{
Ṽ1(z1, x

1) + Ṽ1(x1, x2) + · · ·+ Ṽ1(xr−1, z2)
}

Lemma 3.3. Let r be a positive integer. We have

∀z1 ∈ Em ∀z2 ∈ Em \ S Ṽr(z1, z2) ≥ Vr(z1, z2) > 0
∀z1 ∈ Em ∀z2 ∈ Em Vr(z1, z2) = 0 =⇒ [z2] ⊂ ẑ1 and z2 ∈ S
∀z1 ∈ A ∀z2 ∈ Em z1 6= z2 =⇒ Vr(z1, z2) > 0

The above results are immediate consequences of the definition of the functions Vr and
Ṽr. The next lemma is of direct interest for V and Ṽ :

Lemma 3.4. Let r∗ = card (Em/Sm). For every r strictly greater than r∗ we have

inf
k≤r∗

Vk(z1, z2) ≤ Vr(z1, z2), inf
k≤r∗

Ṽk(z1, z2) < Ṽr(z1, z2)

Proof. Let r be an integer strictly greater than r∗ and consider an element of Dr(z1, z2):

u0, · · · , ur−1, v0, · · · , vr−1, x0, · · · , xr.
Since r > card (Em/Sm) then necessarily the sequence x1, · · · , xr contains two popula-
tions which are equivalent modulo Sm:

∃ k1 ∈ {1, · · · , r} ∃ k2 ∈ {1, · · · , r} k1 < k2 ∃σ ∈ Sm σ · xk1 = xk2 .

In each of the three sequences uk, vk, xk we remove the elements whose index lies in
{k1, · · · , k2 − 1}. We obtain an element of Dr−(k2−k1)(z1, z2) whose cost is less than
the original one, whence Vr−(k2−k1)(z1, z2) ≤ Vr(z1, z2).
Suppose now that the original sequence was in fact in the set D̃r(z1, z2): necessarily xk1

and therefore xk2 were in Em \ S; by lemma 3.3, the cost of the path between xk1 and
xk2 is strictly positive and the cost of the new path between z1 and z2 (i.e. the element
of D̃r−(k2−k1)(z1, z2) obtained by removing the cycle xk1 → · · · → xk2) is strictly smaller
than the original one, whence Ṽr−(k2−k1)(z1, z2) < Ṽr(z1, z2). An immediate descending
induction on r gives the desired inequalities. �

As a consequence, we have the following
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Corollary 3.5. Let r∗ = card (Em/Sm). Then

V (z1, z2) = inf
k≤r∗

Vk(z1, z2), Ṽ (z1, z2) = inf
k≤r∗

Ṽk(z1, z2).

Let I(z1, z2) (respectively Ĩ(z1, z2)) be the set of integers k such that V (z1, z2) = Vk(z1, z2)
(respectively Ṽ (z1, z2) = Ṽk(z1, z2)). Let D(z1, z2) and D̃(z1, z2) be the set of all paths
realizing the minimum in the functions V and Ṽ :

D(z1, z2) =
⋃

k∈I(z1,z2)

D∗k(z1, z2), D̃(z1, z2) =
⋃

k∈eI(z1,z2)

D̃∗k(z1, z2).

Lemma 3.4 and corollary 3.2 show that these sets are non–empty; furthermore the set
D(z1, z2) contains at least a path whose length is less than r∗ and the length of each path
in D̃(z1, z2) is less than r∗ (so that D̃(z1, z2) is finite). Finally, we put

C(z1, z2) =
∑

P∈D(z1,z2)

C(P), C̃(z1, z2) =
∑

P∈ eD(z1,z2)

C(P).

We are now in position to estimate the transition probabilities of the chain (Zln).
Let y be in Em and z in S. A straightforward application of the Markov property to the
chain (Zln) shows that P

(
Zln+1 = z/Zln = y

)
= Py

(
X l
τ l = z

)
. We decompose this quantity

according to the possible values of τ l:

(14) Py
(
X l
τ l = z

)
=

q∑
k=1

Py
(
X l
τ l = z, τ l = k

)
+ Py

(
X l
τ l = z, τ l > q

)
.

However we have already shown in (8) and (10) that

Py
(
τ l > q

)
≤ (1− (sl)m)q ≤ mq(1− sl)q ≤ mq(m− 1)q l−cδq.

We choose the integer q large enough to ensure that q > r∗ and cδq > Ṽ (y, z). Since

Py
(
X l
τ l = z, τ l = k

)
= Py

(
X l
k = z, ∀h ∈ {1, · · · , k − 1}, X l

h 6∈ S
)

= C̃k(y, z) l−eVk(y,z) + o
(
l−

eVk(y,z)
)

then for each fixed integer q greater than r∗,
q∑

k=1

Py
(
X l
τ l = z, τ l = k

)
∼

l→∞
C̃(y, z) l−eV (y,z).

In addition, the second term in the right–hand side of (14) is dominated by l−cδq which is
negligible compared to l−eV (y,z) whence finally

(15) P
(
Zln+1 = z/Zln = y

)
= Py

(
X l
τ l = z

)
∼

l→∞
C̃(y, z) l−eV (y,z).

Now, to evaluate the stationary measure of the chain (Zln) we need
16



4. Some results from the Freidlin–Wentzell theory

In this section we restate word for word some key results from the Freidlin–Wentzell
theory. This material is extracted from [4], chapter 6, Lemmas on Markov Chains.

Let H be a finite set and let a subset W be selected in H. A graph consisting of arrows
i→ j (i ∈ H \W, j ∈ H, i 6= j) is called a W–graph if it satisfies the following conditions:

(1) every point i ∈ H \W is the initial point of exactly one arrow;
(2) there are no closed cycles in the graph.

We note that condition (2) can be replaced by the following condition:
(2′) for any point i ∈ H \W there exists a sequence of arrows leading from i to some

point j ∈W .
We denote by G(W ) the set of W–graphs; we shall use the letter g to denote graphs. If

pij (i, j ∈ H, j 6= i) are numbers, then
∏

(i→j)∈g pij will be denoted by π(g).

Lemma 4.1. Let us consider a Markov chain with set of states H and transition probabil-
ities pij and assume that every state can be reached from any other state in a finite number
of steps. Then the stationary distribution of the chain is {(

∑
i∈H Qi)

−1Qi, i ∈ H}, where

(16) Qi =
∑

g∈G{i}

π(g).

Lemma 4.2. Let us be given a Markov chain on a phase space X divided into disjoint
sets Xi, where i runs over a finite set H. Suppose that there exist non–negative numbers
pij (j 6= i, i, j ∈ H) and a number a > 1 such that

(17) a−1pij ≤ P (x,Xj) ≤ apij (x ∈ Xi, i 6= j)

for the transition probabilities of our chain. Furthermore, suppose that every set Xj can
be reached from any state x sooner or later (for this it is necessary and sufficient that for
any j there exist a {j}–graph g such that π(g) > 0). Then

(18) a2−2h

(∑
i∈H

Qi

)−1

Qi ≤ ν(Xi) ≤ a2h−2

(∑
i∈H

Qi

)−1

Qi

for any normalized invariant measure ν of our chain, where h is the number of elements
in H and the Qi are defined by formula (16).

5. Convergence of the measure νl

Put for y and z in S

plyz = C̃(y, z) l−eV (y,z).
17



Since S is finite, from the estimation (15) we deduce that for any positive ε there exists
an integer L such that

∀ l ≥ L ∀y, z ∈ S (1 + ε)−1 plyz ≤ P
(
Zln+1 = z/Zln = y

)
≤ (1 + ε) plyz.

Put for x in S
Qlx =

∑
g∈G{x}

πl(g)

where G{x} denotes the set of x–graphs over S and for g in G{x},

πl(g) =
∏

(y→z)∈g

plyz.

Application of lemma 4.2 to the chain (Zln) yields for l ≥ L

(19) (1 + ε)2−2|S| Qlx∑
y∈S Q

l
y

≤ νl(x) ≤ (1 + ε)2|S|−2 Qlx∑
y∈S Q

l
y

.

We study now the asymptotic behavior of Qlx. For g in G{x},

πl(g) =
( ∏

(y→z)∈g

C̃(y, z)
)

exp
(
−

∑
(y→z)∈g

Ṽ (y, z) ln l
)

so that the crucial quantity for computing the asymptotics of Qlx is

W (x) = min
g∈G{x}

∑
(y→z)∈g

Ṽ (y, z).

Let G∗(x) be the set of x–graphs which realize the above minimum.
If g belongs to G∗(x), πl(g) is asymptotically of order l−W (x).
If g does not belong to G∗(x), πl(g) is negligible compared to l−W (x).
Finally

Qlx ∼
l→∞

( ∑
g∈G∗(x)

∏
(y→z)∈g

C̃(y, z)
)
l−W (x).

Put
D̃(x) =

∑
g∈G∗(x)

∏
(y→z)∈g

C̃(y, z)

18



and let
W ∗ =

{
x ∈ S : W (x) = min

y∈S
W (y)

}
.

By W (W ∗) we mean the value miny∈SW (y). With these notations, we see that there
exists an integer L′ such that for l ≥ L′,

(1 + ε)−1 D̃(x)∑
y∈W∗ D̃(y)

lW (W∗)−W (x) ≤ Qlx∑
y∈S Q

l
y

≤ (1 + ε)
D̃(x)∑

y∈W∗ D̃(y)
lW (W∗)−W (x)

whence for l ≥ max(L,L′), by (19),

(1 + ε)1−2|S| D̃(x)∑
y∈W∗ D̃(y)

lW (W∗)−W (x) ≤ νl(x) ≤ (1 + ε)2|S|−1 D̃(x)∑
y∈W∗ D̃(y)

lW (W∗)−W (x)

We conclude that:
If x does not belong to W ∗ then liml→∞ νl(x) = 0.
If x belongs to W ∗ then

lim
l→∞

νl(x) =
D̃(x)∑

y∈W∗ D̃(y)
=

∑
g∈G∗(x)

∏
(y→z)∈g C̃(y, z)∑

y∈W∗
∑
g∈G∗(y)

∏
(z1→z2)∈g C̃(z1, z2)

We denote by ν∞ this limit measure. The complete formula for ν∞ is

ν∞(x) =

∑
g∈G∗(x)

∏
(y→z)∈g

∑
P∈ eD(y,z) C(P)∑

y∈W∗
∑
g∈G∗(y)

∏
(z1→z2)∈g

∑
P∈ eD(z1,z2) C(P)

where C(P) is defined by (12). The measure ν∞ is concentrated on the set W ∗ and charges
all points of W ∗. The crucial question now is: what is the set W ∗?

6. The function W and the uniform populations

We derive some properties of the functional W . First, W may equivalently be defined
through V instead of Ṽ :

Lemma 6.1. The following equality holds for all x in Em:

(20) W (x) = min
g∈G(x)

∑
(y→z)∈g

Ṽ (y, z) = min
g∈G(x)

∑
(y→z)∈g

V (y, z).

Proof. The proof of this lemma can be found in [4, chapter 6, lemma 4.1]. �

The perturbed chain (X l
n) is attracted by the populations of the set S: these popu-

lations play a role analogous to the compacta Ki’s (the ω–limit sets of the trajectories
of the solutions of the deterministic system) in the work of Freidlin and Wentzell. They
distinguish two kinds of compacta according to their stability properties. In our situation,
the populations in A will play the role of the stable compacta whereas the populations in
S \A will behave as the unstable compacta.
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Lemma 6.2. If x belongs to S \A then for each i in [x],

V (x, (i)) = Ṽ (x, (i)) = 0.

Proof. This result is straightforward and similar to lemma 4.2 of [4]. �

We restate now textually lemma 4.3 of [4].

Lemma 6.3. a) Among the x–graphs for which the minimum in W (x) is attained there
is one in which from the index y, y 6= x of each population in S \ A an arrow y → z is
issued with V (y, z) = 0 and z in A.
b) For a population x in A, the value W (x) can be calculated according to (20), considering
graphs on the set of populations in A.
c) If x is a population in S \A then

W (x) = min
y∈A

(W (y) + V (y, x)) .

Proof. The proof of this lemma is only a rewriting of the proof of lemma 4.3 of [4]. �

As a consequence, the set W ∗ is included in the set of uniform populations A (lemmas 3.3
and 3.4 imply that for y in A and x 6= y, V (y, x) > 0).

7. Some more notations

For λ in R+ we define

fλ = f−1({λ}), f+
λ = f−1(]λ,∞[), f−λ = f−1([0, λ[).

Since the study of W ∗ requires only consideration of uniform populations, we will often
write i instead of (i). For instance, V (i, j) stands for V ((i), (j)).
For any graph g over A we define

V (g) =
∑

(i→j)∈g

V (i, j).

If X and Y are two subsets of S, we denote by GX(Y ) the set of Y –graphs over X ∪ Y .
For instance, we have G(X) = GS(X) = GS\X(X). We put

WX(Y ) = min
g∈GX(Y )

∑
(i1→i2)∈g

V (i1, i2) = min
g∈GX(Y )

V (g).

We note G∗X(Y ) the set of graphs in GX(Y ) which realize this minimum.
We define GX(∅) as the union of all x–graphs over X for all x in X:

GX(∅) =
⋃
x∈X

GX{x}.

If g is a graph over E, its restriction g|λ to the level λ is the graph

g|λ = { (i1, i2) ∈ g : i1 ∈ fλ}.
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8. Sufficient conditions to ensure W ∗ ⊂ f∗

Theorem 8.1. If the inequality

(21)
∑

λ∈f(E)

Wfλ(f+
λ ) <

∑
λ∈f(E)

Wfλ(f+
λ ∪ f

−
λ )− max

i∈E\f∗
min

j:f(j)6=f(i)
V (i, j)

is satisfied, then the set W ∗ of all points which may be settled ultimately by the homogeneous
algorithm with positive probability is included in the set f∗ of the global maxima of the
fitness function i.e.

∀x ∈ Em lim
l→∞

lim
n→∞

P
(
[X l

n] ⊂ f∗/X l
0 = x

)
= 1.

Proof. Let g be a graph over E. We may decompose the sum V (g) in the following way:

V (g) =
∑

λ∈f(E)

∑
i1∈fλ

(i1→i2)∈g

V (i1, i2) =
∑

λ∈f(E)

∑
(i1→i2)∈g|λ

V (i1, i2)

i.e.
V (g) =

∑
λ∈f(E)

V (g|λ).

Suppose now that g is in G{i} for some i in E. Put θ = f(i).
Then g|λ belongs to Gfλ(f+

λ ∪ f
−
λ ) whenever λ 6= θ whence

(22) V (g|λ) ≥Wfλ(f+
λ ∪ f

−
λ ).

Let j be any point outside fθ; then g|θ ∪ {(i→ j)} is a graph of Gfθ (f
+
θ ∪ f

−
θ ) whence

V (g|θ) ≥Wfθ (f
+
θ ∪ f

−
θ )− V (i, j)

and the inequality being valid for all j outside fθ, we have

(23) V (g|θ) ≥Wfθ (f
+
θ ∪ f

−
θ )− min

j:f(j) 6=f(i)
V (i, j).

Summing up inequalities (22) and (23) yields

V (g) ≥
∑

λ∈f(E)

Wfλ(f+
λ ∪ f

−
λ )− min

j:f(j)6=f(i)
V (i, j)
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for any graph g in G{i}. Taking the minimum over all g in G{i} we obtain

W (i) ≥
∑

λ∈f(E)

Wfλ(f+
λ ∪ f

−
λ )− min

j:f(j)6=f(i)
V (i, j)

so that finally

(24) min
i∈E\f∗

W (i) ≥
∑

λ∈f(E)

Wfλ(f+
λ ∪ f

−
λ )− max

i∈E\f∗
min

j:f(j) 6=f(i)
V (i, j).

We build now a near–optimal graph g.
For each λ in f(E), select a graph gλ in G∗fλ(f+

λ ). If λ = f(f∗), gλ is an i∗–graph over f∗

for some i∗ in f∗ (in this case, f+
λ is empty).

We define the graph g as the union of the graphs gλ:

(i1 → i2) ∈ g ⇐⇒ ∃λ ∈ f(E) (i1 → i2) ∈ gλ.
It is easy to see that g is in G{i∗}. Furthermore we have by construction

∀λ ∈ f(E) g|λ = gλ

whence
V (g) =

∑
λ∈f(E)

V (g|λ) =
∑

λ∈f(E)

Wfλ(f+
λ )

from which we deduce, for the point i∗ of f∗,

(25) W (i∗) ≤
∑

λ∈f(E)

Wfλ(f+
λ ).

Putting together the inequalities (21), (24) and (25), we obtain

W (i∗) < min
i∈E\f∗

W (i)

where i∗ is a point of f∗, which clearly implies W ∗ ⊂ f∗. �

The condition (21) depends strongly on the structure of the optimization problem: the
essential ingredients which are hidden behind the functionals W and V are the function f
and the kernels α and β which determine the asymptotic dynamics of the chain (X l

n).
We derive now some stronger but more explicit conditions for the inequality (21) to hold.
Clearly it is sufficient to have both

(26) ∀λ ∈ f(E) \ f(f∗) Wfλ(f+
λ ) ≤Wfλ(f+

λ ∪ f
−
λ )

and

(27) Wf∗(∅) < Wf∗(E \ f∗)− max
i∈E\f∗

min
j:f(j) 6=f(i)

V (i, j).

We next prove two fundamental lemmas describing the behavior of the function V with
respect to the size of the population m.

22



9. Increasing of fitness

Lemma 9.1. Let R be the smallest integer such that

∀i, j ∈ E ∃ r ≤ R ∃i0, · · · , ir ∈ E such that
i0 = i, ir = j, ∀k ∈ {0, · · · , r − 1} α(ik, ik+1) > 0

i.e. R is the minimal number of transitions necessary to join two arbitrary points of E
through the kernel α (since α is irreducible and E is finite, R is finite). Put

∆◦ = max
i∈E\f∗

min
{

max
0≤k<r

(f(i)−f(ik)) : i0 = i, r ≤ R, f(ir) > f(i),
∏

0≤k<r

α(ik, ik+1) > 0
}

∆∗ = max
i,j∈f∗

min
{

max
0≤k<r

(f(i)− f(ik)) : i0 = i, r ≤ R, ir = j,
∏

0≤k<r

α(ik, ik+1) > 0
}
.

Let i be any point in E \ f∗. With these notations we have

(28) ∀m ∈ N∗ min
j∈E,f(j)>f(i)

V (i, j) ≤ aR+ c(R− 1)∆◦.

Let i, j be two points in f∗. We have also

(29) ∀m ∈ N∗ V (i, j) ≤ aR+ c(R− 1)∆∗.

Corollary 9.2. Let ∆~ = max (∆◦,∆∗). Then,

(30) sup
m∈N∗

{
max
i∈E\f∗

min
j∈E,f(j)>f(i)

V (i, j), max
i,j∈f∗

V (i, j)
}
≤ aR+ c(R− 1)∆~,

(31) sup
m∈N∗

max
y∈S\(f∗)m

min
z∈S, bf(z)> bf(y)

V (y, z) ≤ aR+ c(R− 1)∆◦.

Remark. Putting
∆ = max { |f(i)− f(j)| : i, j ∈ E },

we have clearly ∆~ = max (∆◦,∆∗) ≤ ∆. All the right–hand side members of the preceding
inequalities are thus smaller than (a+ c∆)|E|.
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Proof of lemma. Let i be a point of E \ f∗. By the very definition of ∆◦, there exists a
sequence i0, · · · , ir of points of E such that:

i0 = i, r ≤ R, f(ir) > f(i),
∏

0≤k<r

α(ik, ik+1) > 0 and max
0≤k<r

(f(i)− f(ik)) ≤ ∆◦.

Among these sequences, we choose a sequence of minimal length, so that necessarily

∀k ∈ {0, · · · , r − 1} f(ik) ≤ f(i).

We put j = ir and we define

x0 = (i0), x1 = (i, · · · , i, i1), · · · , xr−1 = (i, · · · , i, ir−1), xr = (j),
u0 = v0 = x1, · · · , ur−2 = vr−2 = xr−1,

ur−1 = vr−1 = (i, · · · , i, ir).
The path

x0 → u0 → v0 → x1 → u1 → · · · → vr−2 → xr−1 → ur−1 → vr−1 → xr

clearly belongs to Dr((i), (j)) and its cost is ar + c
∑r−2
k=0 (f(i)− f(ik+1)). It follows that

V (i, j) ≤ Vr(i, j) ≤ ar + c
r−2∑
k=0

(
f(i)− f(ik+1)

)
.

from which we obtain immediately

V (i, j) ≤ aR+ c(R− 1)∆◦

and since f(j) > f(i), inequality (28) is proved.
Let i, j be two points in f∗. By the very definition of ∆∗, there exists a sequence i0, · · · , ir
leading from i to j through the kernel α such that r ≤ R and

max
0≤k<r

(f(i)− f(ik)) ≤ ∆∗.

We build the sequences uk, vk, xk as above and thus obtain a similar inequality for V (i, j)
(with ∆∗ instead of ∆◦), which proves inequality (29). �

Proof of corollary. Inequality (30) is a direct consequence of lemma 9.1. To prove inequality
(31), consider an element y of S \ (f∗)m. Pick up a point i in ŷ. Using inequality (28), we
see that there exists a point j in E such that f(j) > f(i) and V (i, j) ≤ aR+c(R−1)∆◦. We
build as above a path of length smaller than R which transforms by successive mutations
the individual i in j and leaves unchanged all others individuals of y and obtain

V (y, (j)) ≤ aR+ c(R− 1)∆◦

whence
min

j∈E,f(j)> bf(y)
V (y, (j)) ≤ aR+ c(R− 1)∆◦.

Taking the maximum over y in S \ (f∗)m and then over m in N∗ yields inequality (31). �
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10. Decreasing of fitness

Lemma 10.1. Let ρ = min(a, b/2, cδ) where δ is defined by (9). Then

(32) ∀ z1 ∈ Em ∀ z2 ∈ Em V (z1, z2) ≥ ρ card { k : 1 ≤ k ≤ m f(z1
k) > f̂(z2) } .

Remark. The above inequality, being true for the function V , is a fortiori true for the
function Ṽ .

Proof. We show by induction on r that Vr satisfies this inequality.
Consider first the case r = 0. Either z1 = z2 and the right–hand member vanishes or
z1 6= z2 and V0(z1, z2) is infinite.
Suppose the result is true at rank r.
Let uk, vk, xk be an element of Dr+1(z1, z2). We consider two situations:
• If f̂(v0) ≤ f̂(z2) then all elements of the set

{ z1
k : 1 ≤ k ≤ m, f(z1

k) > f̂(z2) }

have been destroyed during the transition between z1 and v0 whence

d(z1, u0) + 2d̄(u0, v0) ≥ card { k : 1 ≤ k ≤ m, f(z1
k) > f̂(z2) }.

• If f̂(v0) > f̂(z2) then putting

h = card { k : 1 ≤ k ≤ m, f̂(v0) > f(x1
k) }

we have
card { k : 1 ≤ k ≤ m, f(x1

k) > f̂(z2) } ≥ m− h
and

c

(
mf̂(v0)−

m∑
k=1

f(x1
k)
)
≥ chδ ≥ ρh.

The induction hypothesis at rank r implies

Vr(x1, z2) ≥ ρ(m− h).

Now

a
r∑

k=0

d(xk, uk) + b
r∑

k=0

d̄(uk, vk) + c
r∑

k=0

(
mf̂(vk)−

m∑
h=1

f(xk+1
h )

)

≥ c
(
mf̂(v0)−

m∑
k=1

f(x1
k)
)

+ Vr(x1, z2) ≥ ρh+ ρ(m− h) = ρm

and the desired inequality is true in both cases for the path under consideration. Taking
the minimum over all elements of Dr+1(z1, z2) yields the result at rank r + 1 and the
induction is completed. �
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11. Our last condition

Theorem 11.1. Let m be an integer such that

(33) ρm > max
i∈E\f∗

min
j∈E,f(j)>f(i)

V (i, j) ,

(34) ρm ≥ max
i,j∈f∗

V (i, j).

For this integer m we have

lim
l→∞

µl(f∗) = lim
l→∞

νl(f∗) = 1.

Remark. Inequality (30) shows that such an integer m always exists: the quantities on the
right–hand side are bounded by (a + c∆)|E| which is a constant independent of m. In
particular, the conditions are fulfilled as soon as m > (aR+ c(R− 1)∆~)/min(a, b/2, cδ).

Proof. We prove that for such an m the preceding sufficient conditions (26) and (27) are
satisfied. Let λ be in f(E) \ f(f∗) and let g be a graph in Gfλ(f+

λ ∪ f
−
λ ). This graph

may contain a finite number of transitions from fλ to f−λ : i1 → i′1, · · · , ir → i′r. The first
inequality (33) implies that for each ik, 1 ≤ k ≤ r, there exists a state jk in f+

λ such that
V (ik, jk) < ρm and inequality (32) of lemma 10.1 implies V (ik, jk) < V (ik, i′k). Let g′ be
the graph obtained by replacing the r arrows i1 → i′1, · · · , ir → i′r by i1 → j1, · · · , ir → jr.
The graph g′ is in Gfλ(f+

λ ) and V (g′) ≤ V (g). This construction being valid for any graph
in Gfλ(f+

λ ∪ f
−
λ ), we have

Wfλ(f+
λ ) ≤Wfλ(f+

λ ∪ f
−
λ )

for all λ in f(E) \ f(f∗) and the first inequality (26) is proved.
Now let g be a graph in Gf∗(E \ f∗). This graph contains a finite number of transitions
from f∗ to E \ f∗: i1 → j1, · · · , ir → jr. Let g′ be the graph obtained from g by replacing
the arrows i2 → j2, · · · , ir → jr by the (r − 1) arrows i2 → i1, · · · , ir → i1. Inequality
(34) implies that V (g′) ≤ V (g). In addition the graph g′ is still in Gf∗(E \ f∗) and may
be decomposed as the union of a graph of Gf∗(∅) and the arrow i1 → j1 whence

V (g) ≥ V (g′) ≥Wf∗(∅) + V (i1, j1) ≥Wf∗(∅) + ρm.

Taking the minimum over all graphs in Gf∗(E \ f∗) yields

Wf∗(E \ f∗) ≥Wf∗(∅) + ρm.

Since by (33)

ρm > max
i∈E\f∗

min
j∈E,f(j)>f(i)

V (i, j) ≥ max
i∈E\f∗

min
j∈E,f(j)6=f(i)

V (i, j)

then
Wf∗(E \ f∗) > Wf∗(∅) + max

i∈E\f∗
min

j∈E,f(j)6=f(i)
V (i, j)

and the second inequality (27) is proved. �
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12. Existence of a critical population size m∗

Our fundamental result may be stated as follows.

Theorem 12.1. Fix the space E, the fitness function f , the mutation and crossover
kernels α and β and the positive constants a, b, c.
There exists a critical population size m∗ depending upon all these objects such that,
when m is greater than m∗, the set W ∗ of the minima of the virtual energy W is included
in the set f∗ of the global maxima of the fitness function f . Moreover we have

m∗ ≤ aR+ c(R− 1)∆~

min
(
a, b/2, cδ

) .

(We recall that δ = min{ |f(i) − f(j)| : i, j ∈ E, f(i) 6= f(j) } and ∆~ is defined in
Lemma 9.1 and Corollary 9.2. Moreover ∆~ ≤ ∆ = max { |f(i)− f(j)| : i, j ∈ E }.)

Of course, we expect that in most practical situations, the critical size m∗ is much
smaller than the cardinality of the search space E, which is a basic requirement for a
reasonable algorithm. In fact, considering the upper bound given in theorem 12.1 with
b =∞, we obtain that m∗ is less than R (a+ c∆~)/min(a, cδ). The quantities ∆~ and δ
depend only on the values of the fitness function. In a concrete situation, δ can be chosen
as the level of precision that we require from the genetic algorithm to feel. The coefficient
R can be thought of as the diameter of the search space, which is of course much less than
its cardinality. In addition, the general upper bound given above is very rough and might
be considerably enhanced (for instance by analyzing carefully the lefthand side of (28) and
using the condition (33)). In fact, the critical size is related to the difficulty of escaping
from a local maximum to go to a better local maximum, rather than to the cardinality of
the search space. We will illustrate this on a concrete example on the space {0, 1}Nd in
the last section of the paper. Let us first examine more simple examples.

Consider the space E = { 0, 1, · · · , N } and let α be a markovian mutation kernel on E
such that

∀i ∈ {1, · · · , N − 1} α(i, i−1)+α(i, i+1)+α(i, i) = 1, α(i, i−1) > 0, α(i, i+1) > 0,

(the possible mutations from i are i→ i− 1 and i→ i+ 1), and for the points 0 and N ,

α(0, 1) + α(0, 0) = 1, α(0, 1) > 0, α(N,N − 1) + α(N,N) = 1, α(N,N − 1) > 0.

For the crossover kernel β, we choose the identity matrix over E × E.
We consider the fitness function f defined by

∀k ∈ E f(k) = 2 cos
(
k
π

2

)
+ k .
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This function has local maxima at the points 4k. If we apply directly the rough upper
bound given above, we obtain m∗ ≤ (aN + 2c(N − 1))/min(a, b/2, c). This bound is very
bad, because here the diameter of the space is of the same order as the cardinality of the
space itself. However, if we compute the lefthand side of (28) and use the condition (33),
we get m∗ ≤ 3(a+ c)/min(a, b/2, c) which does not even depend on N . Taking b large and
a = c, we see that m∗ ≤ 6.

Clearly, the algorithm can’t possibly work with one single individual: when m = 1, the
selection operator does nothing at all and the fitness function f does not intervene in the
transition mechanism.
Perhaps two individuals is enough to solve all the optimization problems, i.e., m∗ = 2?
The answer is no. We give now examples where the critical size m∗ is arbitrarily large.
We consider the space E defined in the previous example, with the same crossover and
mutation kernels. Let f be a function defined on E, with values in R∗+ such that

f(1) = f(2) = · · · = f(N − 1), f(0) = f(1) + γ, f(N) = f(N − 1) + Γ,

where 0 < γ < Γ. We have

∀i ∈ {1, · · · , N − 1} V (i, i− 1) = V (i, i+ 1) = a,

(these transitions need only the mutation of one individual: the remainder of the popula-
tion, driven by the process (X∞n ), then comes on the new point)

V (0, 1) = min
(
am, a+ cmγ

)
, V (N,N − 1) = min

(
am, a+ cmΓ

)
.

The transition from 0 to 1, for instance, takes place either trough a general mutation, of
cost am, or by a general anti-selection after an individual has mutated to 1, of cost a+cmγ.
Finally

V (0, N) = min
(
am+ a(N − 1), a+ cmγ + a(N − 1), aN + c(N − 1)γ

)
.

There are two possible trajectories to go from 0 to N ; either the whole population go
from 0 to 1 (cost V (0, 1)) and then from 1 to N (cost a(N − 1)), or an explorer starts
alone from 0 and mutates until the point N , while the remainder of the population waits
in 0 (cost aN + c(N − 1)γ): when the explorer reaches the point N , the whole population
throw themselves on N , since γ < Γ.
Similarly

V (N, 0) = min
(
am+ a(N − 1), a+ cmΓ + a(N − 1), aN + c(N − 1)Γ + cm(Γ− γ)

)
.
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Notice yet a crucial difference for the passage from N to 0: for the second kind of trajec-
tories, whenever the explorer reaches 0, it is necessary to perform a general anti–selection
of cost cm(Γ− γ) to bring everyone in 0. In particular, we check that

lim
m→∞

V (0, N) = aN + c(N − 1)γ < ∞

and

lim
m→∞

V (N, 0)
m

= min
(
a, c(Γ− γ)

)
> 0.

We evaluate now the virtual energy W .
For i in {1, · · · , N − 1}, the i–graph of minimal cost is

0→ 1 · · · → i− 1→ i← i+ 1← · · · ← N − 1← N

so that
W (i) = a(N − 2) + V (0, 1) + V (N,N − 1).

For the point 0, there are two possible 0–graphs:

N → N − 1→ · · · → 1→ 0 et N − 1→ · · · → 1→ 0← N

whence

W (0) = a(N − 1) + min
(
V (N,N − 1), V (N, 0)

)
= a(N − 1) + min

(
am, a+ cmΓ, aN + c(N − 1)Γ + cm(Γ− γ)

)
.

Similarly, we have

W (N) = a(N − 1) + min
(
am, a+ cmγ, aN + c(N − 1)γ

)
.

Since N > 1 and V (0, 1) > a, V (N,N − 1) > a, for all i in {1, · · · , N − 1}, we have
W (0) < W (i), W (N) < W (i), so that W ∗ ⊂ {0, N}. Suppose

am ≤ a+ cmγ et am ≤ aN + c(N − 1)γ.

For these inequalities to hold, it is enough that a ≤ cγ and m ≤ N .
In this situation

W (0) = W (N) = a(N − 1) + am

and the set W ∗ = {0, N} is not included in f∗ = {N}.
Thus, whenever a ≤ cγ, we have m∗ > N .
Let us try to explain this phenomenon: the exits from the attraction basins of 0 and N
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take place with a general mutation, of cost am, which brings the whole population in 1
and N − 1. The heights γ and Γ do not intervene and the dynamics can’t discriminate
between the points 0 and N . The limiting law is then concentrated on both points {0, N}.

Whenever the mutation kernel α is not symmetric, we may in addition build examples
where f∗ ∩W ∗ = ∅ whenever m < m∗.
Consider the space E = { 0, 1, · · · , N,N + 1, · · · , N +M − 1 } and let f : E 7→ R∗+ be such
that

f(1) = f(2) = · · · = f(N − 1) = f(N + 1) = · · · = f(N +M − 1),
f(0) = f(1) + γ, f(N) = f(N − 1) + Γ,

where 0 < γ < Γ. Let α be a markovian mutation kernel satisfying

∀i ∈ {0, · · · , N +M − 2} α(i, i+ 1) = 1

and α(N +M − 1, 0) = 1. We have

V (N, 0) = min
(
am+ a(M − 1), a+ cmΓ + a(M − 1), aM + c(M − 1)Γ + cm(Γ− γ)

)
,

V (0, N) = min
(
am+ a(N − 1), a+ cmγ + a(N − 1), aN + c(N − 1)γ

)
,

and

W (0) = a(N +M − 2) + min
(
am, a+ cmΓ, aM + c(M − 1)Γ + cm(Γ− γ)

)
,

W (N) = a(N +M − 2) + min
(
am, a+ cmγ, aN + c(N − 1)γ

)
.

To have W (0) < W (N) (and W ∗ = {0}), it is enough that

aM + c(M − 1)Γ + cm(Γ− γ) < min
(
am, a+ cmγ, aN + c(N − 1)γ).

Equivalently

aM + c(M − 1)Γ < m(a− c(Γ− γ)),

aM + c(M − 1)Γ < a+ cm(2γ − Γ),

aM + c(M − 1)Γ + cm(Γ− γ) < aN + c(N − 1)γ.

We choose γ,Γ such that 0 < Γ/2 < γ < Γ and a, c such that a > c(Γ− γ).
Fix an integer M . The first two inequalities are fulfilled for m sufficiently large. Fix such
a value of m. The parameter N appears only in the third inequality. All other parameters
being fixed, this inequality is satisfied for N sufficiently large.
We have thus built a space E, a mutation kernel α, a function f : E 7→ R∗+ and a
set of parameters (a, c,m) (where the population size m may be arbitrarily large) such
that W ∗ ∩ f∗ = ∅.
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V. Application to the classical simple genetic algorithm

We specialize our general model in order to apply our results to

1. The simple genetic algorithm

We take E = {0, 1}N for some integer N . A point i of E is a word of length N over
the alphabet {0, 1} and is noted i = i1 · · · iN where ik ∈ {0, 1}. The Hamming distance
H(i, j) between two points i, j of E is the number of letters where i and j differ:

H(i, j) = card { k : 1 ≤ k ≤ m, ik 6= jk }.

The mutation kernel pl is defined by

pl(i, j) =


0 if H(i, j) > 1,
l−a if H(i, j) = 1,

1−Nl−a if H(i, j) = 0.

The associated kernel α is

α(i, j) =


0 if H(i, j) > 1,
1 if H(i, j) = 1,
N if H(i, j) = 0.

It is irreducible: the minimal number of transitions necessary to join two arbitrary points
of E through the kernel α is R = N .
In order to build the crossover operator, we define now a cutting operator Tk for k in
{1, · · · , N − 1}; Tk maps E × E onto E × E and for i, j in E, we put Tk(i, j) = (i′, j′)
where

i′ = i1 · · · ikjk+1 · · · jN , j′ = j1 · · · jkik+1 · · · iN .

The kernel β is then defined to be

β((i, j), (i′, j′)) = card { k : 1 ≤ k ≤ N − 1, Tk(i, j) = (i′, j′) }

and the kernel ql is

ql((i, j), (i′, j′)) = β((i, j), (i′, j′)) l−b if (i, j) 6= (i′, j′)

and
ql((i, j), (i, j)) = 1−

∑
(i′,j′) 6=(i,j)

β((i, j), (i′, j′)) l−b.
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Both hypothesis Hp and Hq are clearly fulfilled. We put as before

∆◦ = max
i∈E\f∗

min
{

max
0≤k<r

(f(i)−f(ik)) : i0 = i, r ≤ R, f(ir) > f(i),
∏

0≤k<r

H(ik, ik+1) > 0
}

∆∗ = max
i,j∈f∗

min
{

max
0≤k<r

(f(i)− f(ik)) : i0 = i, r ≤ R, ir = j,
∏

0≤k<r

H(ik, ik+1) > 0
}

and let ∆~ = max (∆◦,∆∗).
Within this framework, all convergence results proved in part IV do apply. We restate and
comment only the rough results, which take a more precise form in this context.

2. The homogeneous case

Theorem 2.1. (Convergence of the homogeneous simple genetic algorithm)
If

(35) m >
aN + c(N − 1)∆~

min (a, b/2, cδ)

then
∀x ∈ Em lim

l→∞
lim
n→∞

P
(
[X l

n] ⊂ f∗/X l
0 = x

)
= 1.

Our condition shows that the optimization problem may be solved with a sufficiently
large population size. In addition, we are completely free for the choice of the parameters
a, b and c: if we take a very large c, so that min (a, b/2) ≤ cδ, we see that δ does not
intervene any more in the above condition. The parameter ∆~ describes the difficulty for
an individual to travel from one point to a better point. If ∆~ is fixed and N becomes
large, a population size of order CN for some constant C will always suffice to handle
the problem. Finally, let us remark that our condition on the population size m is very
rough: neither the fine structure of the optimization problem nor the possibility of using
crossovers to travel between two populations have been taken into account to obtain it.
The crucial point is that the perturbation mechanism allows the process to visit all the
space, even when the random perturbations are very small. The role of the crossover is
thus not fundamental (the algorithm without crossover corresponds to the case b = ∞):
however this operator creates a lot of new possible transitions for the chain (Xn) and thus
certainly decreases the values of the functions V and Ṽ as well as the optimal population
size.
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3. The inhomogeneous case

In practice, one will not wait for the Markov chain to reach equilibrium before decreasing
the perturbations. The idea is then to decrease the intensity of the perturbations as time
goes, and one wishes do to this in the most efficient way to obtain the same limiting law.
From now onwards we assume that l and n increase simultaneously. More precisely, we
take l as an increasing function of n with limn→∞ l(n) =∞.
The Markov chains of our model become thus time inhomogeneous and the transition
probabilities depend on the time via the function l(n). We suppress the index l in our
notations; for instanceXn stands forX l

n. Recall that the convergence exponent [10, chapter
3] of the increasing sequence l(n) is defined as the unique non–negative real number λ
having the following property: the series

l(1)−θ + l(2)−θ + · · ·+ l(n)−θ + · · ·

converges for θ > λ and diverges for θ < λ.
We denote by T1, · · · , Tn, · · · the instants of the successive visits of the chain (Xn) in the
set S of equi–fitness populations i.e. Tn = inf{ k : k > Tn−1, Xk ∈ S }. We are mostly
interested in the behavior of the chain (XTn).

Theorem 3.1. (Convergence of the inhomogeneous simple genetic algorithm)
1) For the chain (XTn) to be trapped in f∗ after a finite number of transitions, i.e., to have

∀x ∈ Em P (∃N ∀n ≥ N [XTn ] ⊂ f∗/X0 = x) = 1

the convergence exponent of the sequence l(n) must be a positive real number; that is, there
must exist two positive real numbers θ1 and θ2 such that∑

n≥0

l(n)−θ1 =∞ and
∑
n≥0

l(n)−θ2 <∞.

2) If the convergence exponent λ of the sequence l(n) and the population size m satisfy the
inequalities

aN + c(N − 1)∆~ < λ < min (a, b/2, cδ)m

then, with probability one, the chain (XTn) is trapped in f∗ after a finite number of tran-
sitions, i.e.,

∀x ∈ Em P (∃N ∀n ≥ N [XTn ] ⊂ f∗/X0 = x) = 1.

3) Suppose there exists a real number t strictly greater than one such that for all r in N, the
sequences l(btnc+r) and l(n) are logarithmically equivalent. If the convergence exponent λ
of the sequence l(n) and the population size m both satisfy the inequalities

aN + c(N − 1)∆~ < min (a, b/2, cδ)m ≤ λ
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then
∀x ∈ Em lim

n→∞
P ([Xn] ⊂ f∗/X0 = x) = 1.

The proofs of these results involve technical large deviations estimates. To avoid lengthy
developments, we do not reproduce them here. To ensure the convergence toward f∗ in
the inhomogeneous case, we must first ensure that the homogeneous algorithm converges
(condition (35)) and that the rate of increasing of the sequence l(n) is carefully adapted
to avoid the process to be trapped in any sub–optimal population.

The next very important issue is the speed of convergence of the algorithm. This
question is addressed in [2] using the very technical tools developed by Catoni and Trouvé
for analyzing generalized simulated annealing processes.

4. The ground state of the Ising model

We consider a finite box Λ = {1 · · ·N}d of side length N in the d–dimensional integer
lattice Zd. A point of this box is called a site. Sites will be denoted by the letters x, y. We
wrap this box into a torus and we define a neighbourhood relation on Λ by: x ∼ y if all
the coordinates of x and y are equal except one which differs by 1 or N − 1. At each site x
of Λ there is a spin taking the values −1 or +1. The set of all possible spins configurations
is X = {−1,+1}Λ. Configurations of spins will be denoted by the letters η, σ. The value
of the spin at site x for a configuration σ is denoted by σ(x).

The energy of a configuration σ is

(36) E(σ) = −1
2

∑
{x,y}:x∼y

σ(x)σ(y) − h

2

∑
x∈Λ

σ(x)

where h > 0 is the external magnetic field. We consider the situation where N is large and
h is small, with Nh > 2d. A ground state of the Ising model is a configuration realizing
the global minimum of the energy. Because h is small, in order to minimize the energy, we
should first try to minimize the first term appearing in the energy. The effect of this term
is to make neighbouring sites have the same sign (this is the ferromagnetic interaction).
The effect of the second term is to make the spins choose the sign of the magnetic field.
Hence the unique ground state is the configuration with all spins up. There is another
very stable configuration, the one with all spins down. We use the mutation kernel of the
simple genetic algorithm defined in paragraph V.1. For any configurations σ, η, we set

(37) pl(σ, η) =


l−a if η = σx for some site x

1−Ndl−a if η = σ

0 otherwise
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where σx is the configuration σ flipped at x i.e.

σx(y) =
{

+σ(y) if y 6= x

−σ(y) if y = x

Hence the mutation consists in making one spin-flip at any site of the configuration. The
energy landscape associated with this energy and this mutation kernel is very complicated
and full of local minima. For instance any configuration which is the union of parallelepi-
pedic droplets of + in a sea of − such that any two droplets are at a distance larger than
two is a local minimum. Some features of this energy landscape have been analyzed in
dimension two and three in order to deal with metastability questions associated to the
Metropolis dynamics [1,9]. Partial results are also available in arbitrary dimension [8]. We
will rely on these results to give upper bounds on the critical population size m∗ associated
to the problem of minimizing the energy E. The critical population size of the simple ge-
netic algorithm running on the space X = {−1,+1}Nd , with the mutation kernel defined
in (37), with no crossover, and with the fitness function −E defined in (36) satisfies

m∗ ≤ Nd

(
a+ c

C(d)
hd−1

)
(min(a, ch))−1

where C(d) is a constant depending only on the dimension. Thus the critical size is less
than a polynomial in N , while the size of the state space is 2N

d

. In fact we have used here
the rough upper bound given in (28). A more careful analysis would yield

m∗ ≤
(

2d
h

)d (
a+ c

C(d)
hd−1

)
(min(a, ch))−1

which is even independent of N ! Notice however that the length N has to satisfy Nh > 2d.
This phenomenon illustrates the fact that the critical size is related to a fitness barrier the
population has to overcome to find the true global minimum, rather than to the cardinality
of the search space. Here the fitness barrier corresponds to the energy necessary to escape
from the metastable state (all spins down) to reach the ground state (all spins up). This
energy barrier is the energy of a critical droplet (see [1,8,9]).
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