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Abstract

Let A be a primitive matrix and let λ be its Perron–Frobenius
eigenvalue. We give formulas expressing the associated normalized
Perron–Frobenius eigenvector as a simple functional of a multitype
Galton–Watson process whose mean matrix is A, as well as of a
multitype branching process with mean matrix e(A−I)t. These for-
mulas are generalizations of the classical formula for the invariant
probability measure of a Markov chain.

Let A be a primitive matrix of size N , i.e., a non–negative matrix whose
m–th power is positive for some natural number m. The Perron–Frobenius
theorem (Theorem 1.1 in [3]) states that there exist a positive real number
λ and a vector u with positive coordinates such that uTA = λuT . More-
over, the eigenvalue λ is simple, is larger in absolute value than any other
eigenvalue of A, and any non–negative eigenvector of A is a multiple of
u. The eigenvalue λ is the Perron–Frobenius eigenvalue of A and u is a
Perron–Frobenius eigenvector of A. In the particular case of a stochastic
matrix A, there is an intimate link between the Perron–Frobenius theorem
and the theory of Markov chains. Indeed, if A is stochastic, then λ = 1
and the vector u represents the invariant probability measure of the Markov
chain having A for transition matrix. For a general primitive matrix A,
the Perron–Frobenius theorem carries along, but the probabilistic link to the
theory of Markov chains falls apart (compare for instance chapters 5 and 6
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in [3]). The purpose of this note is to provide a natural probabilistic in-
terpretation of the Perron–Frobenius eigenvector, but this time in terms of
branching processes. More precisely, we give probabilistic representations
of the normalized Perron–Frobenius eigenvector u/|u|1, as a functional of
a multitype Galton–Watson process, as well as of a multitype branching
process. Some of the formulas that we employ are mere reformulations
of well–known formulas appearing for example in chapter 6 of [3]. Our
main contribution is to give them a probabilistic interpretation in terms of
branching processes, which, by the way, renders the formulas more concise
and elegant.

1. The Galton–Watson case. A multitype Galton–Watson process is
a Markov chain

Zn =
(
Zn(1), . . . , Zn(N)

)
, n ≥ 0 ,

with state space NN . The number Zn(i) represents the number of indi-
viduals having type i in generation n. In order to build generation n + 1
from generation n, each individual of type i present in generation n pro-
duces a random number of offspring, distributed according to a prescribed
reproduction law, independently of the other individuals and the past of
the process. The ensemble of all the offspring forms the generation n+ 1.
The null vector is an absorbing state. For each i ∈ { 1, . . . ,m }, we denote
by Pi and Ei the probabilities and expectations for the process started
from a population consisting of a single individual of type i. From now
onwards, we consider a multitype Galton–Watson model (Zn)n≥0 whose
mean matrix is equal to A, i.e., we suppose that

∀ i, j ∈ { 1, . . . , N } Ei
(
Z1(j)

)
= A(i, j) .

There exist intimate links between the asymptotic behavior of the Galton–
Watson process (Zn)n≥0, the Perron–Frobenius eigenvalue λ, and the asso-
ciated normalized eigenvector u of A. For instance, the following classical
result can be found in Chapter 2 of [2]. If the Perron–Frobenius eigenvalue
λ of A is strictly larger than one, then the multitype Galton–Watson pro-
cess has a positive probability of survival. Conditionally on the survival
event, the vector of proportions of the different types converges almost
surely to u when time goes to ∞, i.e., conditionally on the survival event,
with probability one,

∀ i ∈ { 1, . . . , N } lim
n→∞

Zn(i)

Zn(1) + · · ·+ Zn(N)
= u(i) .

In this note, we shall present a simpler formula linking the Galton–Watson
process (Zn)n≥0 with λ and u, which works not only in the case λ > 1,
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but in the critical and subcritical cases also. Let us fix i ∈ { 1, . . . , N }.
We shall stop the process (Zn)n≥0 on the type i by killing the descendants
of individuals of type i in any generation n ≥ 2. The resulting process is
denoted by (Zin)n≥0. Thus, in the stopped process (Zin)n≥0, the individuals
reproduce as in the Galton–Watson process (Zn)n≥0, however from gener-
ation 1 onwards, the individuals of type i do not have any descendants.
We denote by Ei the expectation for the process (Zin)n≥0 starting with a
population consisting of one individual of type i. Notice that this indi-
vidual produces offspring as in the Galton–Watson process (Zn)n≥0, only
individuals of type i belonging to the subsequent generations are prevented
from having offspring. Finally, for u = (u(1), . . . , u(N)) a vector in RN , we
define

|u|1 = |u(1)|+ · · ·+ |u(N)| .

Theorem 1 The normalized Perron–Frobenius eigenvector u of A is given
by the formula

∀i ∈ { 1, . . . , N } u(i) =
1∑

n≥1

λ−nEi
(∣∣Zin∣∣1) .

Notice that
∣∣Zin|1 is simply the size of n–th generation of the process

(Zin)n≥0. In the case where λ ≥ 1, the factor λ−n is naturally interpreted
as a killing probability. We introduce a random clock τλ, independent of
the branching process (Zn)n≥0, and distributed according to the geometric
law of parameter 1− 1/λ:

∀n ≥ 1 P (τλ ≥ n) =
( 1

λ

)n−1
.

The formula presented in the theorem can then be rewritten as

∀i ∈ E u(i) =
1

Ei

(
τλ−1∑
n=1

∣∣Zin∣∣1
) .

The nicest situation is when the Perron–Frobenius eigenvalue is equal to
one. In this case, the formula becomes

∀i ∈ { 1, . . . , N } u(i) =
1

Ei

(∑
n≥1

∣∣Zin∣∣1) .
The denominator is naturally interpreted as the expected number of descen-
dants from an individual of type i, if the descendants of type i are forbidden
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to reproduce. Let us remark also that, by multiplying the matrix W by
a constant factor, we can adjust the value of the Perron–Frobenius eigen-
value without altering the Perron–Frobenius eigenvector. More precisely,
suppose that the mean matrix of the Galton–Watson process is given by

∀ i, j ∈ { 1, . . . , N } Ei
(
Z1(j)

)
= cA(i, j) ,

where c is a positive constant. If we take c = 1/λ, then we obtain indeed
a critical branching process and the Perron–Frobenius eigenvalue is 1. In
practice, the exact value of the Perron–Frobenius eigenvalue might be un-
known, so we can simply choose a value c large enough so that the Perron–
Frobenius eigenvalue becomes larger than one, and we can introduce the
random killing clock as above.

In the particular case where the matrix A is a stochastic matrix, and
each individual produces exactly one child, the Perron–Frobenius eigen-
value λ is equal to 1 and the process (Zn)n≥0 is simply a Markov chain
with transition matrix A. The stopped process (Zin)n≥0 is the Markov
chain stopped at the time τi of the first return to i. So, in this situation,
the population Zin has size 1 until time τi and 0 afterwards, therefore

∑
n≥1

λ−nEi
(∣∣Zin∣∣1) = Ei

(
τi∑
n≥1

1

)
= Ei(τi)

and we recover the classical formula for the invariant probability measure
of a Markov chain.

Let us come to the proof of the theorem. The theorem is in fact a
consequence of the following proposition.

Proposition 2 Let i ∈ { 1, . . . , N }. The vector v defined by

∀j ∈ { 1, . . . , N } v(j) =
∑
n≥1

λ−nEi
(
Zin(j)

)
is the Perron–Frobenius eigenvector of A satisfying v(i) = 1.

Indeed, the formula appearing in the theorem is obtained by normalizing
the above vector. We now proceed to the proof of the proposition.

Proof. We fix i ∈ { 1, . . . , N } and we define a vector v via the formula
stated in the proposition. Let us examine first v(i). By definition of the
stopped process (Zin)n≥0, we have

v(i) =
∑
n≥1

∑
i1,...,in−1 6=i

λ−nA(i, i1) · · ·A(in−1, i) .
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The Lemma of [1] yields that the above sum is equal to 1, thus v(i) = 1.
Let next j belong to { 1, . . . , N }. We have

(vA)(j) =
∑

1≤k≤N

v(k)A(k, j) = A(i, j) +
∑

1≤k≤N
k 6=i

v(k)A(k, j) .

We compute next∑
1≤k≤N
k 6=i

v(k)A(k, j) =
∑

1≤k≤N
k 6=i

∑
n≥1

λ−nEi
(
Zin(k)

)
A(k, j)

=
∑
n≥1

λ−nEi

( ∑
1≤k≤N
k 6=i

Zin(k)A(k, j)
)

=
∑
n≥1

λ−nEi

(
E
(
Zin+1(j)

∣∣∣Zin))
=
∑
n≥1

λ−nEi
(
Zin+1(j)

)
= λv(j)− Ei

(
Zi1(j)

)
.

Remember that the initial individual of type i reproduces as in the Galton–
Watson process (Zn)n≥0, therefore Ei

(
Zi1(j)

)
= A(i, j) and putting to-

gether the previous computations, we obtain

∀j ∈ { 1, . . . , N } (vA)(j) = λv(j) .

Since in addition v(i) = 1, we conclude that all the components of v are
positive and finite, therefore v is a left Perron–Frobenius eigenvector of A,
as wanted. �

2. The branching process case. A multitype branching process is a
continuous–time Markov process

Zt =
(
Zt(1), . . . , Zt(N)

)
, t ≥ 0 ,

with state space NN . The number Zt(i) represents the number of individ-
uals carrying the type i at time t. Individuals reproduce independently
of each other, at a rate dependent on their type. When an individual
reproduces, it gives birth to a random number of offspring, distributed
according to a prescribed reproduction law, independently of the other in-
dividuals and the past of the process. The null vector is an absorbing state.
For each i ∈ { 1, . . . ,m } , we denote by Pi and Ei the probabilities and
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and expectations for the process started from a population consisting of
a single individual of type i. We consider a multitype branching process
whose mean matrix has generator A− I, in other words, we suppose that

∀ i, j ∈ { 1, . . . , N } ∀t ≥ 0 Ei
(
Zt(j)

)
=
(
e(A−I)t

)
(i, j) ,

where the exponential appearing in the formula is the matrix exponential.
This mean matrix corresponds to the process where individuals reproduce
at rate 1, and the reproduction laws are the same as in the discrete Galton–
Watson process. There exist well–known links between the asymptotic
behavior of the branching process (Zt)t≥0, the Perron–Frobenius eigen-
value λ, and the associated eigenvector u of A, analogous to those of the
Galton–Watson case. We shall next present a simple formula in the spirit
of theorem 1. Let us fix i ∈ { 1, . . . , N }. We will stop the process (Zt)t≥0
on the type i by killing the descendants of type i at any time t ≥ 0. The
resulting process is denoted by (Zit)t≥0. We denote by Ei the expecta-
tion for the process (Zit)t≥0 starting from a random population, drawn
according to the original reproduction law of an individual of type i, so
that Ei(Z

i
0(j)) = A(i, j). All individuals of type i die at rate 1 without

producing offspring.

Theorem 3 The normalized Perron–Frobenius eigenvector u of A is given
by the formula

∀ i ∈ { 1, . . . , N } u(i) =
1∫ ∞

0

e−(λ−1)tEi
(∣∣Zit ∣∣1) dt

As for the Galton–Watson case, this result is a direct consequence of the
following proposition.

Proposition 4 Let i ∈ { 1, . . . , N }. The vector v defined by

∀j ∈ { 1, . . . , N } v(j) =

∫ ∞
0

e−(λ−1)tEi
(
Zit(j)

)
dt

is the Perron–Frobenius eigenvector of A satisfying v(i) = 1.

Proof. As in the discrete case, we do the proof by verifying that the
vector v is indeed an eigenvector of A. Let k ∈ { 1, . . . , N }, and let us start
by computing the integral involved in the definition of v(k). Differentiating
the expectation with respect to t yields

d

dt
Ei
(
Zit(k)

)
=

∑
1≤j≤N
j 6=i

Ei
(
Zit(j)

)
A(j, k)− Ei

(
Zit(k)

)
.
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Thus, integrating by parts, for any T > 0,∫ T

0

e−(λ−1)tEi
(
Zit(k)

)
dt = − 1

λ− 1
e−(λ−1)TEi

(
ZiT (k)

)
+

1

λ− 1
Ei
(
Zi0(k)

)
+

1

λ− 1

∫ T

0

e−(λ−1)t
( ∑

1≤j≤N
j 6=i

Ei
(
Zit(j)

)
A(j, k)− Ei

(
Zit(k)

))
dt .

Let B be the matrix obtained from A by filling with zeros its i–th row.
The first expectation on the right hand–side can be rewritten as

Ei
(
Zit(k)

)
=

∑
1≤j≤N

A(i, j)
(
e(B−I)t

)
(j, k) .

Yet it follows from part (e) of theorem 1.1 of [3] that the spectral radius
of B is strictly less than λ. Therefore, when t goes to infinity, the matrix
exponential e(B−I)t behaves as eµ

′t, for some µ′ strictly smaller than λ−1.
Sending T to infinity in the above integrals we obtain the following identity:

λv(k) = A(i, k) +
∑

1≤j≤N
j 6=i

v(j)A(j, k) .

Thus, the proof will be achieved if we manage to show that v(i) = 1. Yet,
the previous formula holds for k = i too, and we may use it iteratively over
v(j) in order to get, for any n ≥ 1,

v(i) =

n∑
t=1

1

λn

∑
i1,...,it 6=i

A(i, i1) · · ·A(it, i)

+
1

λn

∑
i1,...,in+1 6=i

v(i1)A(i1, i2) · · ·A(in+1, i) .

Again, calling B the matrix obtained from A by filling with zeros its i–th
row, the last term can be written as

1

λn

∑
1≤i1≤N
i1 6=i

v(i1)Bn(i1, i),

which converges to 0 when n goes to ∞. Thus,

v(i) =
∑
n≥1

∑
i1,...,in−1 6=i

λ−nA(i, i1) · · ·A(in−1, i) .

This last quantity is equal to 1, as shown in the lemma of [1]. �
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