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Law of large numbers for the maximal �ow through adomain of R
d in �rst passage per
olationRaphaël CerfUniversité Paris Sud, Laboratoire de Mathématiques, bâtiment 42591405 Orsay Cedex, Fran
eE-mail: r
erf�math.u-psud.frandMarie ThéretÉ
ole Normale Supérieure, Département Mathématiques et Appli
ations, 45 rue d'Ulm75230 Paris Cedex 05, Fran
eE-mail: marie.theret�ens.frAbstra
t: We 
onsider the standard �rst passage per
olation model in the res
aled graph Z

d/nfor d ≥ 2, and a domain Ω of boundary Γ in R
d. Let Γ1 and Γ2 be two disjoint open subsetsof Γ, representing the parts of Γ through whi
h some water 
an enter and es
ape from Ω. Weinvestigate the asymptoti
 behaviour of the �ow φn through a dis
rete version Ωn of Ω betweenthe 
orresponding dis
rete sets Γ1

n and Γ2
n. We prove that under some 
onditions on the regularityof the domain and on the law of the 
apa
ity of the edges, φn 
onverges almost surely towardsa 
onstant φΩ, whi
h is the solution of a 
ontinuous non-random min-
ut problem. Moreover, wegive a ne
essary and su�
ient 
ondition on the law of the 
apa
ity of the edges to ensure that φΩ > 0.AMS 2000 subje
t 
lassi�
ations: 60K35.Keywords : First passage per
olation, maximal �ow, minimal 
ut, law of large numbers.1 First de�nitions and main resultWe use many notations introdu
ed in [18℄ and [19℄. Let d ≥ 2. We 
onsider the graph (Zd

n,E
d
n)having for verti
es Z

d
n = Z

d/n and for edges E
d
n, the set of pairs of nearest neighbours for thestandard L1 norm. With ea
h edge e in E

d
n we asso
iate a random variable t(e) with values in

R
+. We suppose that the family (t(e), e ∈ E

d
n) is independent and identi
ally distributed, with a
ommon law Λ: this is the standard model of �rst passage per
olation on the graph (Zd

n,E
d
n). Weinterpret t(e) as the 
apa
ity of the edge e; it means that t(e) is the maximal amount of �uid that
an go through the edge e per unit of time.We 
onsider an open bounded 
onne
ted subset Ω of R

d su
h that the boundary Γ = ∂Ω of Ωis pie
ewise of 
lass C1 (in parti
ular Γ has �nite area: Hd−1(Γ) <∞). It means that Γ is in
ludedin the union of a �nite number of hypersurfa
es of 
lass C1, i.e., in the union of a �nite number of
C1 submanifolds of R

d of 
odimension 1. Let Γ1, Γ2 be two disjoint subsets of Γ that are open in Γ
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1 FIRST DEFINITIONS AND MAIN RESULTWe want to de�ne the maximal �ow from Γ1 to Γ2 through Ω for the 
apa
ities (t(e), e ∈ E
d
n). We
onsider a dis
rete version (Ωn,Γn,Γ

1
n,Γ

2
n) of (Ω,Γ,Γ1,Γ2) de�ned by:





Ωn = {x ∈ Z
d
n | d∞(x,Ω) < 1/n} ,

Γn = {x ∈ Ωn | ∃y /∈ Ωn , 〈x, y〉 ∈ E
d
n} ,

Γi
n = {x ∈ Γn | d∞(x,Γi) < 1/n , d∞(x,Γ3−i) ≥ 1/n} for i = 1, 2 ,where d∞ is the L∞-distan
e, the notation 〈x, y〉 
orresponds to the edge of endpoints x and y (see�gure 1).

Γ2
Γ1

Γ1
n

Γ2
n

Γ Γn

Figure 1: Domain Ω.We shall study the maximal �ow from Γ1
n to Γ2

n in Ωn. Let us de�ne properly the maximal�ow φ(F1 → F2 in C) from F1 to F2 in C, for C ⊂ R
d (or by 
ommodity the 
orresponding graph

C ∩ Z
d/n). We will say that an edge e = 〈x, y〉 belongs to a subset A of R

d, whi
h we denote by
e ∈ A, if the interior of the segment joining x to y is in
luded in A. We de�ne Ẽ

d
n as the set of all theoriented edges, i.e., an element ẽ in Ẽ

d
n is an ordered pair of verti
es whi
h are nearest neighbours.We denote an element ẽ ∈ Ẽ

d
n by 〈〈x, y〉〉, where x, y ∈ Z

d
n are the endpoints of ẽ and the edge isoriented from x towards y. We 
onsider the set S of all pairs of fun
tions (g, o), with g : E

d
n → R

+and o : E
d
n → Ẽ

d
n su
h that o(〈x, y〉) ∈ {〈〈x, y〉〉, 〈〈y, x〉〉}, satisfying:

• for ea
h edge e in C we have
0 ≤ g(e) ≤ t(e) ,

• for ea
h vertex v in C r (F1 ∪ F2) we have
∑

e∈C : o(e)=〈〈v,·〉〉
g(e) =

∑

e∈C : o(e)=〈〈·,v〉〉
g(e) ,where the notation o(e) = 〈〈v, .〉〉 (respe
tively o(e) = 〈〈., v〉〉) means that there exists y ∈ Z

d
n su
hthat e = 〈v, y〉 and o(e) = 〈〈v, y〉〉 (respe
tively o(e) = 〈〈y, v〉〉). A 
ouple (g, o) ∈ S is a possiblestream in C from F1 to F2: g(e) is the amount of �uid that goes through the edge e, and o(e) givesthe dire
tion in whi
h the �uid goes through e. The two 
onditions on (g, o) express only the fa
t2



2 COMPUTATION OF φΩthat the amount of �uid that 
an go through an edge is bounded by its 
apa
ity, and that there isno loss of �uid in the graph. With ea
h possible stream we asso
iate the 
orresponding �ow
flow(g, o) =

∑

u∈F2 , v /∈C : 〈u,v〉∈Ed
n

g(〈u, v〉)1o(〈u,v〉)=〈〈u,v〉〉 − g(〈u, v〉)1o(〈u,v〉)=〈〈v,u〉〉 .This is the amount of �uid that 
rosses C from F1 to F2 if the �uid respe
ts the stream (g, o). Themaximal �ow through C from F1 to F2 is the supremum of this quantity over all possible 
hoi
es ofstreams
φ(F1 → F2 in C) = sup{flow(g, o) | (g, o) ∈ S} .We denote by

φn = φ(Γ1
n → Γ2

n in Ωn)the maximal �ow from Γ1
n to Γ2

n in Ωn. We will investigate the asymptoti
 behaviour of φn/n
d−1when n goes to in�nity. More pre
isely, we will show that (φn/n

d−1)n≥1 
onverges towards a
onstant φΩ (depending on Ω, Γ1, Γ2, Λ and d) when n goes to in�nity, and that this 
onstant isstri
tly positive if and only if Λ(0) < 1 − pc(d), where pc(d) is the 
riti
al parameter for the bondper
olation on Z
d. The des
ription of φΩ will be given in se
tion 2. Here we state the pre
isetheorem:Theorem 1. We suppose that Ω is a Lips
hitz domain and that Γ is in
luded in the union of a�nite number of oriented hypersurfa
es S1, ...,Sr of 
lass C1 whi
h are transverse to ea
h other. Wealso suppose that Γ1 and Γ2 are open in Γ, that their relative boundaries ∂ΓΓ1 and ∂ΓΓ2 in Γ havenull Hd−1 measure, and that d(Γ1,Γ2) > 0. We suppose that the law Λ of the 
apa
ity of an edgeadmits an exponential moment:

∃θ > 0

∫

R+

eθxdΛ(x) < +∞ .Then there exists a �nite 
onstant φΩ ≥ 0 su
h that
lim

n→∞
φn

nd−1
= φΩ a.s.Moreover, this equivalen
e holds:

φΩ > 0 ⇐⇒ Λ(0) < 1 − pc(d) .Remark 1. In the two 
ompanion papers [7℄ and [8℄, we prove in fa
t that the lower large deviationsof φn/n
d−1 below φΩ are of surfa
e order, and that the upper large deviations of φn/n

d−1 above φΩare of volume order (see se
tion 3.2 where these results are presented).2 Computation of φΩ2.1 Geometri
 notationsWe start with some geometri
 de�nitions. For a subset X of R
d, we denote by Hs(X) the s-dimensional Hausdor� measure of X (we will use s = d − 1 and s = d− 2). The r-neighbourhood3



2.2 Flow in a 
ylinder 2 COMPUTATION OF φΩ

Vi(X, r) of X for the distan
e di, that 
an be the Eu
lidean distan
e if i = 2 or the L∞-distan
e if
i = ∞, is de�ned by

Vi(X, r) = {y ∈ R
d | di(y,X) < r} .If X is a subset of R

d in
luded in an hyperplane of R
d and of 
odimension 1 (for example a nondegenerate hyperre
tangle), we denote by hyp(X) the hyperplane spanned by X, and we denote by

cyl(X,h) the 
ylinder of basis X and of height 2h de�ned by
cyl(X,h) = {x+ tv |x ∈ X , t ∈ [−h, h]} ,where v is one of the two unit ve
tors orthogonal to hyp(X) (see �gure 2). For x ∈ R

d, r ≥ 0

h

h

v

x X

Figure 2: Cylinder cyl(X,h).and a unit ve
tor v, we denote by B(x, r) the 
losed ball 
entered at x of radius r, by disc(x, r, v)the 
losed dis
 
entered at x of radius r and normal ve
tor v, and by hyp(x, v) the hyperplane
ontaining x and orthogonal to v. We denote by αd the volume of a unit ball in R
d, and αd−1 the

Hd−1 measure of a unit dis
.2.2 Flow in a 
ylinderHere are some parti
ular de�nitions of �ows through a box. Let A be a non degenerate hyperre
t-angle, i.e., a box of dimension d− 1 in R
d. All hyperre
tangles will be supposed to be 
losed in R

d.We denote by v one of the two unit ve
tors orthogonal to hyp(A). For h a positive real number, we
onsider the 
ylinder cyl(A,h). The set cyl(A,h) r hyp(A) has two 
onne
ted 
omponents, whi
hwe denote by C1(A,h) and C2(A,h). For i = 1, 2, let Ah
i be the set of the points in Ci(A,h) ∩ Z

d
nwhi
h have a nearest neighbour in Z

d
n r cyl(A,h):

Ah
i = {x ∈ Ci(A,h) ∩ Z

d
n | ∃y ∈ Z

d
n r cyl(A,h) , 〈x, y〉 ∈ E

d
n} .Let T (A,h) (respe
tively B(A,h)) be the top (respe
tively the bottom) of cyl(A,h), i.e.,

T (A,h) = {x ∈ cyl(A,h) | ∃y /∈ cyl(A,h) , 〈x, y〉 ∈ E
d
n and 〈x, y〉 interse
ts A+ hv}and

B(A,h) = {x ∈ cyl(A,h) | ∃y /∈ cyl(A,h) , 〈x, y〉 ∈ E
d
n and 〈x, y〉 interse
ts A− hv} .4



2 COMPUTATION OF φΩ 2.3 Max-�ow min-
ut theoremFor a given realisation (t(e), e ∈ E
d
n) we de�ne the variable τ(A,h) = τ(cyl(A,h), v) by

τ(A,h) = τ(cyl(A,h), v) = φ(Ah
1 → Ah

2 in cyl(A,h)) ,and the variable φ(A,h) = φ(cyl(A,h), v) by
φ(A,h) = φ(cyl(A,h), v) = φ(B(A,h) → T (A,h) in cyl(A,h)) ,where φ(F1 → F2 in C) is the maximal �ow from F1 to F2 in C, for C ⊂ R

d (or by 
ommodity the
orresponding graph C ∩Z
d/n) de�ned previously. The dependen
e in n is impli
it here, in fa
t we
an also write τn(A,h) and φn(A,h) if we want to emphasize this dependen
e on the mesh of thegraph.2.3 Max-�ow min-
ut theoremThe maximal �ow φ(F1 → F2 in C) 
an be expressed di�erently thanks to the max-�ow min-
uttheorem (see [5℄). We need some de�nitions to state this result. A path on the graph Z

d
n from v0to vm is a sequen
e (v0, e1, v1, ..., em, vm) of verti
es v0, ..., vm alternating with edges e1, ..., em su
hthat vi−1 and vi are neighbours in the graph, joined by the edge ei, for i in {1, ...,m}. A set E ofedges in C is said to 
ut F1 from F2 in C if there is no path from F1 to F2 in C rE. We 
all E an

(F1, F2)-
ut if E 
uts F1 from F2 in C and if no proper subset of E does. With ea
h set E of edgeswe asso
iate its 
apa
ity whi
h is the variable
V (E) =

∑

e∈E

t(e) .The max-�ow min-
ut theorem states that
φ(F1 → F2 in C) = min{V (E) |E is a (F1, F2)-
ut } .In fa
t, as we will see in se
tion 2.5, φΩ is a 
ontinuous equivalent of the dis
rete min-
ut.2.4 De�nition of νThe asymptoti
 behaviour of the res
aled expe
tation of τn(A,h) for large n is well known, thanksto the almost subadditivity of this variable. We re
all the following result:Theorem 2. We suppose that ∫

[0,+∞[
x dΛ(x) < ∞ .Then for ea
h unit ve
tor v there exists a 
onstant ν(d,Λ, v) = ν(v) (the dependen
e on d and Λ isimpli
it) su
h that for every non degenerate hyperre
tangle A orthogonal to v and for every stri
tlypositive 
onstant h, we have

lim
n→∞

E[τn(A,h)]

nd−1Hd−1(A)
= ν(v) .5



2.5 Continuous min-
ut 2 COMPUTATION OF φΩFor a proof of this proposition, see [25℄. We emphasize the fa
t that the limit depends on thedire
tion of v, but not on h nor on the hyperre
tangle A itself.We re
all some geometri
 properties of the map ν : v ∈ Sd−1 7→ ν(v), under the only 
onditionon Λ that E(t(e)) <∞. They have been stated in the se
tion 4.4 of [25℄. There exists a unit ve
tor
v0 su
h that ν(v0) = 0 if and only if for all unit ve
tor v, ν(v) = 0, and it happens if and onlyif Λ({0}) ≥ 1 − pc(d). This property has been proved by Zhang in [27℄. Moreover, ν satis�es theweak triangle inequality, i.e., if (ABC) is a non degenerate triangle in R

d and vA, vB and vC arethe exterior normal unit ve
tors to the sides [BC], [AC], [AB] in the plane spanned by A, B, C,then
H1([AB])ν(vC ) ≤ H1([AC])ν(vB) + H1([BC])ν(vA) .This implies that the homogeneous extension ν0 of ν to R

d, de�ned by ν0(0) = 0 and for all w in
R

d,
ν0(w) = |w|2ν(w/|w|2) ,is a 
onvex fun
tion; in parti
ular, sin
e ν0 is �nite, it is 
ontinuous on R

d. We denote by νmin(respe
tively νmax) the in�mum (respe
tively supremum) of ν on Sd−1.2.5 Continuous min-
utWe give here a de�nition of φΩ and of another 
onstant φ̃Ω in terms of the map ν. For a subset Fof R
d, we de�ne the perimeter of F in Ω by

P(F,Ω) = sup

{∫

F
div f(x)dLd(x), f ∈ C∞

c (Ω, B(0, 1))

}
,where C∞

c (Ω, B(0, 1)) is the set of the fun
tions of 
lass C∞ from R
d to B(0, 1), the ball 
entered at

0 and of radius 1 in R
d, having a 
ompa
t support in
luded in Ω, and div is the usual divergen
eoperator. The perimeter P(F ) of F is de�ned as P(F,Rd). We denote by ∂F the boundary of F ,and by ∂∗F the redu
ed boundary of F . At any point x of ∂∗F , the set F admits a unit exteriornormal ve
tor vF (x) at x in a measure theoreti
 sense (for de�nitions see for example [9℄ se
tion13). For all F ⊂ R

d of �nite perimeter in Ω, we de�ne
IΩ(F ) =

∫

∂∗F∩Ω
ν(vF (x))dHd−1(x) +

∫

Γ2∩∂∗(F∩Ω)
ν(v(F∩Ω)(x))dHd−1(x)

+

∫

Γ1∩∂∗(ΩrF )
ν(vΩ(x))dHd−1(x) .If P(F,Ω) = +∞, we de�ne IΩ(F ) = +∞. Finally, we de�ne

φΩ = inf{IΩ(F ) |F ⊂ R
d} = inf{IΩ(F ) |F ⊂ Ω} .In the 
ase where ∂F is C1, IΩ(F ) has the simpler following expression:

IΩ(F ) =

∫

∂F∩Ω
ν(vF (x))dHd−1(x) +

∫

Γ2∩∂(F∩Ω)
ν(v(F∩Ω)(x))dHd−1(x)

+

∫

Γ1∩∂(ΩrF )
ν(vΩ(x))dHd−1(x) .6



2 COMPUTATION OF φΩ 2.5 Continuous min-
ut
Γ2Γ1

Ω

vF (x)

x

F

vΩ(z)

z

v(F∩Ω)(y)

y

(∂F ∩ Ω) ∪ (Γ2
∩ ∂(F ∩ Ω)) ∪ (Γ1

∩ ∂(Ω r F ))Figure 3: The set (∂F ∩ Ω) ∪ (Γ2 ∩ ∂(F ∩ Ω)) ∪ (Γ1 ∩ ∂(Ω r F )).The lo
alization of the set along whi
h the previous integrals are done is illustrated in �gure 3.When a hypersurfa
e S is pie
ewise of 
lass C1, we say that S is transverse to Γ if for all x ∈ S∩Γ,the normal unit ve
tors to S and Γ at x are not 
ollinear; if the normal ve
tor to S (respe
tivelyto Γ) at x is not well de�ned, this property must be satis�ed by all the ve
tors whi
h are limits ofnormal unit ve
tors to S (respe
tively Γ) at y ∈ S (respe
tively y ∈ Γ) when we send y to x - thereis at most a �nite number of su
h limits. We say that a subset P of R
d is polyhedral if its boundary

∂P is in
luded in the union of a �nite number of hyperplanes. For ea
h point x of su
h a set Pwhi
h is on the interior of one fa
e of ∂P , we denote by vP (x) the exterior unit ve
tor orthogonalto P at x. For A ⊂ R
d, we denote by ◦

A the interior of A. We de�ne φ̃Ω by
φ̃Ω = inf

{
IΩ(P )

∣∣∣∣∣
P ⊂ R

d , Γ1 ⊂
◦
P , Γ2 ⊂

◦
R

d
r P

P is polyhedral , ∂P is transverse to Γ

}
.Noti
e that if P is a set su
h that

Γ1 ⊂
◦
P and Γ2 ⊂

◦
R

d
r P ,then

IΩ(P ) =

∫

∂P∩Ω
ν(vP (x))dHd−1(x) .See �gure 4 to have an example of su
h a polyhedral set P .The de�nitions of the 
onstants φΩ and φ̃Ω are not very intuitive. We propose to de�ne thenotion of a 
ontinuous 
utset to have a better understanding of these 
onstants. We say that S ⊂ R

d
uts Γ1 from Γ2 in Ω if every 
ontinuous path from Γ1 to Γ2 in Ω interse
ts S. In fa
t, if P is apolyhedral set of R
d su
h that

Γ1 ⊂
◦
P and Γ2 ⊂

◦
R

d
r P ,then ∂P ∩ Ω is a 
ontinuous 
utset from Γ1 to Γ2 in Ω. Sin
e ν(v) is the average amount of �uidthat 
an 
ross a hypersurfa
e of area one in the dire
tion v per unit of time, it 
an be interpreted7



2.5 Continuous min-
ut 2 COMPUTATION OF φΩ

Γ2vP (x)

Γ1 Ω

∂P

∂Ω

P

x

Figure 4: A polyhedral set P as in the de�nition of φ̃Ω.as the 
apa
ity of a unitary hypersurfa
e. Thus IΩ(P ) 
an be interpreted as the 
apa
ity of the
ontinuous 
utset ∂P ∩Ω. The 
onstant φ̃Ω is the solution of a min 
ut problem, be
ause it is equalto the in�mum of the 
apa
ity of a 
ontinuous 
utset that satis�es some spe
i�
 properties. We
an de�ne two other 
onstants, that are solutions of possibly more intuitive min 
uts problems. If
S is a hypersurfa
e whi
h is pie
ewise of 
lass C1, we denote by vS(x) one of the two normal unitve
tors to S at x for every point x at whi
h S is regular. The Hd−1 measure of the points at whi
h
S is not regular is null. We de�ne

φ̂Ω = inf

{∫

S∩Ω
ν(vS(x))dHd−1(x)

∣∣∣∣∣
S hypersurfa
e pie
ewise of 
lass C1

S 
uts Γ1 from Γ2 in Ω

}and
φΩ = inf

{∫

S∩Ω
ν(vS(x))dHd−1(x)

∣∣∣∣∣
S polyhedral hypersurfa
e
S 
uts Γ1 from Γ2 in Ω

}
.We remark that by de�nition,

φ̂Ω ≤ φΩ ≤ φ̃Ω .We 
laim that φΩ ≤ φ̂Ω. Let S be a hypersurfa
e whi
h is pie
ewise of 
lass C1, whi
h 
uts Γ1 from
Γ2 in Ω, and su
h that ∫

S∩Ω
ν(vS(x))dHd−1(x) ≤ φ̂Ω + ηfor some positive η. Let F be the set of the points of Ω r S that 
an be joined to a point of Γ1 bya 
ontinuous path. Then

(∂F ∩ Ω) ∪ (Γ1 ∩ ∂(Ω r F )) ∪ (Γ2 ∩ ∂(F ∩ Ω)) ⊂ S ∩ Ω .Thus F is of �nite perimeter in Ω, and IΩ(F ) satis�es
IΩ(F ) ≤

∫

S∩Ω
ν(vS(x))dHd−1(x) ≤ φ̂Ω + η .8



3 STATE OF THE ARTThus we have proved that
φΩ ≤ φ̂Ω ≤ φΩ ≤ φ̃Ω .3 State of the art3.1 Existing laws of large numbersOnly in this se
tion, we 
onsider the standard �rst passage per
olation model on the graph (Zd,Ed)instead of the res
aled graph (Zd

n,E
d
n). We present here some laws of large numbers that have beenproved about maximal �ows.Using a subadditive argument and 
on
entration inequalities, Rossignol and Théret have provedin [25℄ that τ(nA, h(n)) satis�es a law of large numbers:Theorem 3 (Rossignol and Théret). We suppose that

∫

[0,∞[
x dΛ(x) < ∞ .For every unit ve
tor v, for every non degenerate hyperre
tangle A orthogonal to v, for every heightfun
tion h : N → R

+ satisfying limn→∞ h(n) = +∞, we have
lim

n→∞
τ(nA, h(n))

Hd−1(nA)
= ν(v) in L1 .Moreover, if the origin of the graph belongs to A, or if

∫

[0,∞[
x1+ 1

d−1 dΛ(x) < ∞ ,then
lim

n→∞
τ(nA, h(n))

Hd−1(nA)
= ν(v) a.s.Kesten, Zhang, Rossignol and Théret have studied the maximal �ow between the top and thebottom of straight 
ylinders. Let us denote by D(k,m) the 
ylinder

D(k,m) =

d−1∏

i=1

[0, ki] × [0,m] ,where k = (k1, ..., kd−1) ∈ R
d−1. We denote by φ(k,m) the maximal �ow in D(k,m) from its top∏d−1

i=1 [0, ki] × {m} to its bottom ∏d−1
i=1 [0, ki] × {0}. Kesten proved in [19℄ the following result:Theorem 4 (Kesten). Let d = 3. We suppose that Λ(0) < p0 for some �xed p0 ≥ 1/27, and that

∃γ > 0

∫

[0,+∞[
eγx dΛ(x) < ∞ .If m = m(k) goes to in�nity with k1 ≥ k2 in su
h a way that

∃δ > 0 lim
k1≥k2→∞

k−1+δ logm(k) = 0 ,9



3.1 Existing laws of large numbers 3 STATE OF THE ARTthen
lim

k1≥k2→∞
φ(k,m)

k1k2
= ν((0, 0, 1)) a.s. and in L1 .Moreover, if Λ(0) > 1−pc(d), where pc(d) is the 
riti
al parameter for the standard bond per
olationmodel on Z

d, and if ∫

[0,+∞[
x6 dΛ(x) < ∞ ,there exists a 
onstant C = C(F ) <∞ su
h that for all m = m(k) that goes to in�nity with k1 ≥ k2and satis�es

lim inf
k1≥k2→∞

m(k)

k1k2
> C ,for all k1 ≥ k2 su�
iently large, we have

φ(k,m) = 0 a.s.Zhang improved this result in [28℄ where he proved the following theorem:Theorem 5 (Zhang). Let d ≥ 2. We suppose that
∃γ > 0

∫

[0,+∞[
eγx dΛ(x) < ∞ .Then for all m = m(k) that goes to in�nity when all the ki, i = 1, ..., d − 1 go to in�nity in su
h away that

∃δ ∈]0, 1] logm(k) ≤ max
i=1,...,d−1

k1−δ
i ,we have

lim
k1,...,kd−1→∞

φ(k,m)
∏d−1

i=1 ki

= ν((0, ..., 0, 1)) a.s. and in L1 .Moreover, this limit is positive if and only if Λ(0) < 1 − pc(d).To show this theorem, Zhang obtains �rst an important 
ontrol on the number of edges in aminimal 
utset. Finally, Rossignol and Théret improved Zhang's result in [25℄ in the parti
ular 
asewhere the dimensions of the basis of the straight 
ylinder go to in�nity all at the same speed. Theyobtain the following result:Theorem 6 (Rossignol and Théret). We suppose that
∫

[0,∞[
x dΛ(x) < ∞ .For every straight hyperre
tangle A =

∏d−1
i=1 [0, ai]×{0} with ai > 0 for all i, for every height fun
tion

h : N → R
+ satisfying limn→∞ h(n) = +∞ and limn→∞ log h(n)/nd−1 = 0, we have

lim
n→∞

φ(nA, h(n))

Hd−1(nA)
= ν((0, ..., 0, 1)) a.s. and in L1 .10



3 STATE OF THE ART 3.1 Existing laws of large numbersIn dimension two, more results are known. We present here two of them. Rossignol and Thérethave studied in [24℄ the maximal �ow from the top to the bottom of a tilted 
ylinder in dimensiontwo, and they have proved the following theorem (Corollary 2.10 in [24℄):Theorem 7 (Rossignol and Théret). Let v be a unit ve
tor, A a non degenerate line-segment orthog-onal to v, h : N → R
+ a height fun
tion satisfying limn→∞ h(n) = +∞ and limn→∞ log h(n)/n = 0.We suppose that there exists α ∈ [0, π/2] su
h that

lim
n→∞

2h(n)

H1(nA)
= tanα .Then, if ∫

[0,∞[
x dΛ(x) < ∞ ,we have

lim
n→∞

φ(nA, h(n))

H1(nA)
= inf

{
ν(v′)
v · v′

∣∣∣ v′ satis�es v · v′ ≥ cosα

} in L1 .Moreover, if the origin of the graph is the middle of A, or if
∫

[0,∞[
x2 dΛ(x) < ∞ ,then we have

lim
n→∞

φ(nA, h(n))

H1(nA)
= inf

{
ν(v′)
v · v′

∣∣∣ v′ satis�es v · v′ ≥ cosα

} a.s.Garet studied in [15℄ the maximal �ow σ(A) between a 
onvex bounded set A and in�nity in the
ase d = 2. By an extension of the max �ow - min 
ut theorem to non �nite graphs, Garet provesin [15℄ that this maximal �ow is equal to the minimal 
apa
ity of a set of edges that 
uts all pathsfrom A to in�nity. Let ∂A be the boundary of A, and ∂∗A the set of the points x ∈ ∂A at whi
h
A admits a unique exterior normal unit ve
tor vA(x) in a measure theoreti
 sense (see [9℄, se
tion13, for a pre
ise de�nition). If A is a 
onvex set, the set ∂∗A is also equal to the set of the points
x ∈ ∂A at whi
h A admits a unique exterior normal ve
tor in the 
lassi
al sense, and this ve
tor is
vA(x). Garet proved the following theorem:Theorem 8 (Garet). Let d = 2. We suppose that Λ(0) < 1 − pc(2) = 1/2 and that

∃γ > 0

∫

[0,+∞[
eγx dΛ(x) < ∞ .Then for all 
onvex bounded set A 
ontaining 0 in its interior, we have

lim
n→∞

σ(nA)

n
=

∫

∂∗A
ν(vA(x))dH1(x) = I(A) > 0 a.s.Moreover, for all ε > 0, there exist 
onstants C1, C2 > 0 depending on ε and Λ su
h that

∀n ≥ 0 P

[
σ(nA)

nI(A)
/∈]1 − ε, 1 + ε[

]
≤ C1 exp(−C2n) .11



3.2 Large deviations for φn 3 STATE OF THE ARTNevertheless, a law of large numbers for the maximal �ow from the top to the bottom of a tilted
ylinder for d ≥ 3 was not proved yet. In fa
t, the la
k of symmetry of the graph indu
ed by theslope of the box is a major issue to extend the existing results 
on
erning straight 
ylinders to tilted
ylinders. The theorem of Garet was not extended to dimension d ≥ 3 either. Theorem 1 appliesto the maximal �ow from the top to the bottom of a tilted 
ylinder. Thus it is a generalisationof the laws of large numbers of Kesten, Zhang, Rossignol and Théret for the variable φ in straight
ylinders, in the parti
ular 
ase where all the dimensions of the 
ylinder go to in�nity at the samespeed (or, equivalently, the 
ylinder is �xed and the mesh of the graph go to zero isotropi
ally).Moreover, it gives a hint of what 
ould be a generalisation of the result of Garet in higher dimension,all the more sin
e the expression of the 
onstant φΩ is a reminis
ent of the value of the limit inGaret's Theorem: the 
apa
ity IΩ of a 
ontinuous 
utset is exa
tly the same as the one de�ned byGaret in [15℄ in dimension two, ex
ept that we 
onsider a maximal �ow through a bounded domain,so our 
apa
ity is adapted to deal with spe
i�
 boundary 
onditions.From now on, we work in the res
aled graph (Zd
n,E

d
n).3.2 Large deviations for φnWe present here the two existing results 
on
erning φn. We 
onsider an open bounded 
onne
tedsubset Ω of R

d, whose boundary Γ is pie
ewise of 
lass C1, and two disjoint open subsets Γ1 and
Γ2 of Γ. The �rst result states that the lower large deviations below φΩ are of surfa
e order, and isproved by the authors in [7℄:Theorem 9. If the law Λ of the 
apa
ity of an edge admits an exponential moment:

∃θ > 0

∫

R+

eθxdΛ(x) < +∞ ,and if Λ(0) < 1 − pc(d), then for all λ < φΩ,
lim sup

n→∞

1

nd−1
log P[φn ≤ λnd−1] < 0 .The se
ond result states that the upper large deviations of φn above φ̃Ω are of volume order andis proved by the authors in [8℄:Theorem 10. We suppose that d(Γ1,Γ2) > 0. If the law Λ of the 
apa
ity of an edge admits anexponential moment:

∃θ > 0

∫

R+

eθxdΛ(x) < +∞ ,then for all λ > φ̃Ω,
lim sup

n→∞

1

nd
log P[φn ≥ λnd−1] < 0 .By a simple Borel-Cantelli lemma, these results imply that if Λ admits an exponential momentand if d(Γ1,Γ2) > 0, then

φΩ ≤ lim inf
n→∞

φn

n
≤ lim sup

n→∞

φn

n
≤ φ̃Ω .12



3 STATE OF THE ART 3.2 Large deviations for φnNoti
e here that Theorem 9 allows us to obtain the �rst inequality only under the additionalhypothesis that Λ(0) < 1 − pc(d), however if Λ(0) ≥ 1 − pc(d) we know that ν(v) = 0 for all v, so
φΩ = 0 and the �rst inequality remains valid.Thus, to prove Theorem 1, it remains to prove that φΩ = φ̃Ω, and to study the positivity of
φΩ. The equality φΩ = φ̃Ω is a 
onsequen
e of a polyhedral approximation of sets having �niteperimeter that will be done in se
tion 4. The positivity of φΩ is proved in se
tion 5, using tools ofdi�erential geometry like tubular neighbourhood of paths. These two results are proved by purelygeometri
al studies. Sin
e the probabilisti
 part of the proof of Theorem 1 is 
ontained in Theorems9 and 10, we propose a sket
h of the proofs of these two theorems in se
tions 3.2.1 and 3.2.2 to helpthe understanding of the law of large numbers proved in this paper.Before these two sket
hes of proofs, we would like to make two remarks. The �rst one is that thelarge deviations that are obtained in Theorem 9 and 10 are of the relevant order. Indeed, if all theedges in Ωn have a 
apa
ity whi
h is abnormally big, then the maximal �ow φn will be abnormallybig too. The probability for these edges to have an abnormally large 
apa
ity is of order exp−Cndfor a 
onstant C, be
ause the number of edges in Ωn is C ′nd for a 
onstant C ′. On the opposite, ifall the edges in a �at layer that separates Γ1

n from Γ2
n in Ωn have abnormally small 
apa
ity, then

φn will be abnormally small. Sin
e the 
ardinality of su
h a set of edges is D′nd−1 for a 
onstant
D′, the probability of this event is of order exp−Dnd−1 for a 
onstant D.The se
ond remark we would like to do is that the 
ondition d(Γ1,Γ2) > 0 is relevant in Theorem10. First, without this 
ondition, we 
annot be sure that there exists a polyhedral set P as inthe de�nition of φ̃Ω, and thus the polyhedral approximation (see se
tion 4) 
annot be performed.Moreover, if d(Γ1,Γ2) = 0, there exists a set of edges of 
onstant 
ardinality (not depending on n)that 
ontains paths from Γ1

n to Γ2
n through Ωn for all n along the 
ommon boundary of Γ1 and Γ2,and so it may be su�
ient for these edges to have a huge 
apa
ity to obtain that φn is abnormallybig too. Thus, we 
annot hope to obtain upper large deviations of volume order (see [26℄ for a
ounter-example). However, we do not know if this 
ondition is essential for Theorem 1 to hold.3.2.1 Lower large deviationsTo prove Theorem 9, we have to study the probability

P

[
φn ≤ (φΩ − ε)nd−1

] (1)for a positive ε. The proof is divided in three steps.First step: We 
onsider a set of edges En that 
uts Γ1
n from Γ2

n in Ωn, of minimal 
apa
ity (so
φn = V (En)) and having the minimal number of edges among those 
utsets. We see it as the (edge)boundary of a set En whi
h is in
luded in Ω. Zhang's estimate of the number of edges in a minimal
utset (Theorem 1 in [28℄) states that with high probability, the perimeter P(En,Ω) of En in Ω issmaller than a 
onstant β. Thus, En belongs to the set

Cβ = {F ⊂ Ω |F ⊂ Ω , P(F,Ω) ≤ β} .We endow Cβ with the topology L1 asso
iated to the following distan
e d:
d(F1, F2) = Ld(F1△F2) ,13



3.2 Large deviations for φn 3 STATE OF THE ARTwhere Ld is the d-dimensional Lebesgue measure. For this topology, the set Cβ is 
ompa
t. Thus,if we asso
iate to ea
h set F in Cβ a positive 
onstant εF , and if we denote by V(F, εF ) the neigh-bourhood of F of radius εF for the distan
e d de�ned above, the 
olle
tion of these neighbourhoodsis an open 
overing of Cβ, and thus by 
ompa
tness of Cβ we 
an extra
t a �nite 
overing:
∃F1, ..., FN Cβ ⊂

N⋃

i=1

V(Fi, εFi
) .If we �nd an upper bound on the following probability:

P

[
φn ≤ (φΩ − ε)nd−1 and d(En, F ) ≤ εF

] (2)for ea
h F in Cβ and a 
orresponding εF , then we will obtain an upper bound on the probability (1).Se
ond step: We 
onsider a �xed set F in Cβ, and we want to evaluate the probability (2).So we suppose that En is 
lose to F for the distan
e d, we denote it by En ≈ F to simplify thenotations. We skip here all the problems of boundary 
onditions that arise in the proof of Theorem 9:we suppose that IΩ(F ) is equal to the integral of ν along ∂∗F ∩ Ω.We make a zoom along ∂F . Using the Vitali 
overing Theorem (Theorem 12 in se
tion 4), weknow that there exists a �nite number of disjoint balls Bj = B(xj, rj) for j = 1, ...,N with xj ∈ ∂Fsu
h that ∂F is �almost �at� in ea
h ball, and the part of ∂F that is missing in the 
overing hasa very small area. We denote by vj the exterior normal unit ve
tor of F at xj (we suppose that itexists). Here �almost �at� means that(i) the 
apa
ity of ∂F inside Bj is very 
lose to the 
apa
ity of the �at dis
 hyp(xj , vj)∩Bj , i.e.,very 
lose to αd−1r
d−1
j ν(vj) ;(ii) F ∩Bj ≈ B−

j , where B−
j is the lower half part of the ball Bj in the dire
tion given by vj :

B−
j = {y ∈ Bj | (y − xj) · vj < 0} .Thanks to property (i) and the fa
t that only a very small area of ∂F is missing in the 
overing, weknow that

IΩ(F ) is 
lose to N∑

j=1

αd−1r
d−1
j ν(vj) . (3)On the other hand, thanks to property (ii), we obtain that

En ∩Bj ≈ F ∩Bj ≈ B−
jfor the distan
e d. It means that in volume, En is very similar to B−

j inside Bj , however theremight exist some thin but long strands in Bj that belongs to En ∩ (B−
j )c or to Ec

n ∩B−
j . We wantto 
ompare V (En ∩Bj) with the maximal �ow τn(Dj , γ) in a 
ylinder of basis Dj = disc(xj , r

′
j , vj)where r′j is a little bit smaller than rj , and γ is a very small height, so that the 
ylinder is in
ludedin Bj and is almost �at. To make this 
omparison, we have to 
ut the above-mentioned strands14



3 STATE OF THE ART 3.2 Large deviations for φnby adding edges to En. We do it very 
arefully, in order to 
ontrol the number of edges we add,together with their 
apa
ity, and we obtain that
V (En ∩Bj) ≤ τn(Dj , γ) + error , (4)where error is a 
orre
tive term that is very small. Combining (3) and (4), sin
e IΩ(F ) ≥ φΩ, we
on
lude that if φn ≤ (φΩ − ε)nd−1 and En ≈ F , then there exists j ∈ {1, ...,N} su
h that

τn(Dj , γ) ≤ (ν(vj) − ε/2)αd−1r
′d−1
j nd−1 .Third step: It remains to study the probability

P[τn(Dj , γ) ≤ (ν(vj) − ε/2)αd−1r
′d1
j nd−1] .In fa
t it has already been done by Rossignol and Théret in [25℄. It is easy to 
ompare τn(Dj , γ)with a sum of maximal �ows through 
ylinders whose bases are hyperre
tangles. Then, we 
an usedire
tly Theorem 3.9 in [25℄ that states that the lower large deviations of these maximal �ows belowtheir limits are of surfa
e order.3.2.2 Upper large deviationsTo prove Theorem 10, we have to study the probability

P

[
φn ≥ (φ̃Ω + ε)nd−1

] (5)for a positive ε. First of all, we 
an 
he
k that φ̃Ω is �nite. In fa
t, we have to 
onstru
t a polyhedralset P that satis�es all the 
onditions in the de�nition of φ̃Ω. This is done with the help of te
hniquesvery similar to some of those we will use in se
tion 4 to 
omplete our polyhedral approximation, sowe will not explain these te
hniques here. The proof of theorem 10 is divided in three steps.First step: We 
onsider a polyhedral set P as in the de�nition of φ̃Ω su
h that IΩ(P ) is very
lose to this 
onstant. We want to 
onstru
t sets of edges near ∂P ∩ Ω that 
ut Γ1
n from Γ2

n in
Ωn. Be
ause we took a dis
rete approximation of Ω from the outside, we need to enlarge a little Ω,be
ause some �ow might go from Γ1

n to Γ2
n using paths that lies partly in Ωn rΩ. Thus we 
onstru
ta set Ω′ whi
h 
ontains a small neighbourhood of Ω (hen
e also Ωn for all n large enough), whi
his transverse to ∂P , and whi
h is small enough to ensure that IΩ′(P ) is still very 
lose to φΩ. To
onstru
t this set, we 
over ∂Ω with small 
ubes, by 
ompa
tness we extra
t a �nite sub
over of

∂Ω, and �nally we add the 
ubes of the sub
over to Ω to obtain Ω′. We 
onstru
t these 
ubes sothat their boundaries are transverse to ∂P , and their diameters are uniformly smaller than a small
onstant, so that Ω′ is in
luded in a neighbourhood of Ω as small as we need. Sin
e ∂P is transverseto Γ, if we take this 
onstant small enough, we 
an 
ontrol Hd−1(∂P ∩ (Ω′
r Ω)), and thus thedi�eren
e between IΩ′(P ) and IΩ(P ).Then we 
onstru
t a family of Cn (where C > 0) disjoint sets of edges that 
ut Γ1

n from Γ2
n in

Ωn, and that lie near ∂P . We 
onsider the neighbourhood P ′ of P inside Ω′ at distan
e smallerthan a tiny 
onstant h, and we partition P ′
rP into slabs M′(k) of width of order 1/n, so we have15



3.2 Large deviations for φn 3 STATE OF THE ART
Cn su
h slabs whi
h look like translates of ∂P ∩ Ω′ that are slightly deformed and thi
kened. Weprove that ea
h path from Γ1

n to Γ2
n in Ωn must 
ontain at least one edge that lies in the set M′(k)for ea
h k, i.e., ea
h setM′(k) 
ontains a 
utset. Thus we have found a family of Cn disjoint 
utsets.Se
ond step: We almost 
over ∂P ∩Ω′ by a �nite family of disjoint 
ylinders Bj, j ∈ J , whosebases are hyperre
tangles of sidelength l, that are orthogonal to ∂P , of height bigger than h, andsu
h that the part of ∂P whi
h is missing in this 
overing is very small. Thus, we obtain that

IΩ′(P ) is 
lose to ∑

j∈J

ν(vj)l
d−1 , (6)where vj gives the dire
tion towards whi
h the 
ylinder Bj is tilted (it is the unit ve
tor whi
h isorthogonal to the fa
e of ∂P that 
uts Bj).We want to 
ompare φn with the sum of the maximal �ows φ(Bj , vj). For ea
h j, let Ej be aset of edges that 
uts the top from the bottom of Bj. The set ∪j∈JEj does not 
ut Γ1

n from Γ2
n in

Ωn in general, to 
reate su
h a 
utset we must add two sets of edges:(i) a set of edges that 
overs the part of ∂P ∩ Ω′ that is missing in the 
overing by the 
ylinders
Bj ,(ii) a set of edges that glues together all the previous sets of edges (the sets Ej and the setdes
ribed in (i)).In fa
t, we have already 
onstru
ted Cn possible sets of edges as in (i): the edges that lie in

M′(k) r (∪j∈JBj) for k = 1, ..., Cn. We denote these sets by M(k). We 
an also �nd C ′n (C ′ > 0)disjoint sets of edges that 
an be the glue des
ribed in (ii), we denote these sets by W (l) for
l = 1, ..., C ′n. We do not provide a pre
ise des
ription of these sets. In fa
t, we 
an 
hoose di�erentsets be
ause we provide the glue more or less in the interior of the 
ylinders Bj. Thus we obtainthat

∀k ∈ {1, ..., Cn} ∀l ∈ {1, ..., C ′n}
⋃

j∈J

Ej ∪M(k) ∪W (l) 
uts Γ1
n from Γ2

n in Ωn .We obtain that
φn ≤

∑

j∈J

φ(Bj , vj) + min
k=1,...,Cn

V (M(k)) + min
l=1,...,C′n

V (W (l)) . (7)Combining (6) and (7), we see that if φn ≥ (φ̃Ω + ε)nd−1, one of the following events must happen:(a) ∃j ∈ J φ(Bj , vj) ≥ (ν(vj) + ε/2)ld−1nd−1,(b) ∀k ∈ {1, ..., Cn} V (M(k)) ≥ ηnd−1,(
) ∀l ∈ {1, ..., C ′n} V (W (l)) ≥ ηnd−1,where η is a very small 
onstant (depending on ε and φΩ).Third step: it 
onsists in taking 
are of the probability that the events (a), (b) or (
) happen.The probability of (a) has already been studied in [26℄: the upper large deviations of the variable φ16



4 POLYHEDRAL APPROXIMATIONin a 
ylinder above ν are of volume order. The events (b) and (
) are of the same type, and theirprobability is of the form
P




αnd−1∑

m=1

tm ≥ ηnd−1




Dn

, (8)where (tm)m∈N is a family of i.i.d. variables of distribution fun
tion Λ, D is a 
onstant, η is avery small 
onstant and αnd−1 is the 
ardinality of the family of variables we 
onsider. If α <
ηE[t1]

−1, and if the law Λ admits one exponential moment, the Cramér Theorem in R states thatthe probability (8) de
ays exponentially fast with nd. Note the role of the optimization over Dndi�erent probabilities to obtain the 
orre
t speed of de
ay. To 
omplete the proof, it is enough to
ontrol the 
ardinality of the sets M(k) and W (l) for ea
h k, l. This 
an been done, using thegeometri
al properties of ∂P (it is polyhedral and transverse to ∂Ω′).4 Polyhedral approximation : φΩ = φ̃ΩWe 
onsider an open bounded domain Ω in R
d. We denote its topologi
al boundary by Γ = ∂Ω.Let also Γ1, Γ2 be two disjoint subsets of Γ.Hypothesis on Ω: We suppose that Ω is a Lips
hitz domain, i.e., its boundary Γ 
an be lo
allyrepresented as the graph of a Lips
hitz fun
tion de�ned on some open ball of R

d−1. Moreover thereexists a �nite number of oriented hypersurfa
es S1, . . . , Sp of 
lass C1 whi
h are transverse to ea
hother and su
h that Γ is in
luded in their union S1 ∪ · · · ∪ Sp.This hypothesis is automati
ally satis�ed when Ω is a bounded open set with a C1 boundary orwhen Ω is a polyhedral domain. The Lips
hitz 
ondition 
an be expressed as follows: ea
h point x of
Γ = ∂Ω has a neighbourhood U su
h that U∩Ω is represented by the inequality xn < f(x1, · · · , xn−1)in some 
artesian 
oordinate system where f is a fun
tion satisfying a Lips
hitz 
ondition. Su
hdomains are usually 
alled Lips
hitz domains in the literature. The boundary Γ of a Lips
hitzdomain is d−1 re
ti�able (in the terminology of Federer's book [14℄), so that its Minkowski 
ontentis equal to Hd−1(Γ). In addition, a Lips
hitz domain Ω is admissible (in the terminology of Ziemer'sbook [29℄) and in parti
ular Hd−1(Γ r ∂∗Ω) = 0. Moreover, ea
h point of Γ is a

essible from Ωthrough a re
ti�able ar
.Hypothesis on Γ1,Γ2: The sets Γ1, Γ2 are open subsets of Γ. The relative boundaries ∂Γ Γ1,
∂Γ Γ2 of Γ1, Γ2 in Γ have null Hd−1 measure. The distan
e between Γ1 and Γ2 is positive.We re
all that the relative topology of Γ is the topology indu
ed on Γ by the topology of R

d. Hen
eea
h of the sets Γ1,Γ2 is the interse
tion of Γ with an open set of R
d. For F a subset of Ω having�nite perimeter in Ω, the 
apa
ity of F is

IΩ(F ) =

∫

Ω∩∂∗F
ν(vF (y)) dHd−1(y) +

∫

Γ2∩∂∗F
ν(vF (y)) dHd−1(y) +

∫

Γ1∩∂∗(ΩrF )
ν(vΩrF (y)) dHd−1(y) .For all A ⊂ R

d, A is the 
losure of A, ◦
A its interior and Ac = R

d
rA. We will prove the followingtheorem: 17



4 POLYHEDRAL APPROXIMATIONTheorem 11. Let F be a subset of Ω having �nite perimeter. For any ε > 0, there exists apolyhedral set P whose boundary ∂P is transverse to Γ and su
h that
Γ1 ⊂

◦
P , Γ2 ⊂

◦
R

d
r P , Ld(F∆(P ∩ Ω)) < ε ,

∫

∂∗P∩Ω
ν(vP (x))dHd−1(x) = IΩ(P ) ≤ IΩ(F ) + ε .First we noti
e that theorem 11 implies that φΩ = φ̃Ω, and thus the 
onvergen
e of φn (seese
tion 3.2). It is obvious sin
e φΩ ≤ φ̃Ω (see se
tion 2.5), and theorem 11 implies that φΩ ≥ φ̃Ω.The main di�
ulty of the proof of theorem 11 is to handle properly the approximation 
loseto Γ in order to push ba
k inside Ω all the interfa
es. The essential tools of the proof are theBesi
ovit
h di�erentiation theorem, the Vitali 
overing theorem and an approximation te
hniquedue to De Giorgi. Let us summarise the global strategy.Sket
h of the proof: We �x γ > 0. We 
over ∂∗Ω up to a set of Hd−1 measure less than γ bya �nite 
olle
tion of disjoint balls B(xi, ri), i ∈ I1 ∪ I2 ∪ I3 ∪ I4, 
entered on Γ, whose radii aresu�
iently small to ensure that the surfa
e and volume estimates within the balls are 
ontrolled bythe fa
tor γ. The indi
es of I1 
orrespond to balls 
entered on Γ1 ∩ ∂∗(Ω r F ), the indi
es of I2 toballs 
entered on Γ2 ∩ ∂∗F , the indi
es of I3 to balls 
entered on (Γ r Γ2) ∩ ∂∗F , the indi
es of I4to balls 
entered on (Γ r Γ1) ∩ ∂∗(Ω r F ) (see �gure 5). The remaining part of Γ is 
overed by a

Balls
I2

indexed by
F

∂F

Balls indexed by I3

indexedby I1
Ω r F

Balls indexed by I4

Balls indexed by I4
Ω r F

Ω

Γ1

Γ2for d ≥ 3
in ∂Lpossible strands

∂L

Balls indexed
Balls

by I5
Figure 5: The balls indexed by Ii for i = 1, ..., 5.�nite 
olle
tion of balls B(yj, sj), j ∈ J0 ∪ J1 ∪ J2. The indi
es of J1 
orrespond to balls 
overingthe remaining part of Γ1, the indi
es of J2 
orrespond to balls 
overing the remaining part of Γ2.18



4 POLYHEDRAL APPROXIMATIONWe 
hoose ε > 0 su�
iently small, depending on γ and on the previous families of balls and weapproximate the set F by a smooth set L inside Ω, whose 
apa
ity and volume are at distan
e lessthan ε from those of F . We build then two further family of balls:- B(xi, ri), i ∈ I5, 
over Ω ∩ ∂L, up to a set of Hd−1 measure ε.- B(yj, sj), j ∈ J3, 
over the remaining set Ω ∩ ∂Lr
⋃

i∈I5
B(xi, ri).Inside ea
h ball B(xi, ri), i ∈ I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5, up to a small fra
tion, the interfa
es are lo
atedon hypersurfa
es and the radii of the balls are so small that these hypersurfa
es are almost �at.Hen
e we 
an en
lose the interfa
es into small �at polyhedral 
ylinders Di, i ∈ I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5,and by aggregating adequately the 
ylinders to the set F or to its 
omplement Ω r F , we movethese interfa
es on the boundaries of these 
ylinders. The remaining interfa
es are en
losed in theballs B(yj, sj), j ∈ J0 ∪ J1 ∪ J2 ∪ J3 and we approximate these balls from the outside by polyhedra.We have to de�ne deli
ately the whole pro
ess, in order not to lose too mu
h 
apa
ity, and to
ontrol the possible intera
tion between interfa
es 
lose to Γ and interfa
es in Ω. The presen
e ofboundary 
onditions 
reates a substantial additional di�
ulty 
ompared to the polyhedral approx-imation performed in [9℄. Indeed, the most di�
ult interfa
es to handle are those 
orresponding to

Di, i ∈ I3 ∪ I4. We �rst 
hoose the balls B(xi, ri), i ∈ I1 ∪ I2 ∪ I3 ∪ I4, 
orresponding to γ. We
over the remaining portion of Γ with the balls B(yj, sj), j ∈ J0 ∪ J1 ∪ J2. At this point we 
analready in prin
iple de�ne the 
ylinders Di, i ∈ I1 ∪ I2. Then we 
hoose ε small enough, dependingon γ and the balls B(xi, ri), i ∈ I1 ∪ I2 ∪ I3 ∪ I4, to ensure that the perturbation of volume ε 
ausedwhen smoothing the set F inside Ω will not alter signi�
antly the situation inside the balls B(xi, ri),
i ∈ I3 ∪ I4. Then we move inside Ω and we build the 
ylinders Di, i ∈ I5. Then we 
ome ba
k tothe boundary and we build the 
ylinders Di, i ∈ I3 ∪ I4. We 
over the remaining interfa
es in Ωby the balls B(yj, sj), j ∈ J3. Finally we aggregate su

essively ea
h �at polyhedral 
ylinder Di tothe set L or to its 
omplement.Preparation of the proof. Let us 
onsider a subset F of Ω having �nite perimeter. Let γ belongto ]0, 1/16[. We start by handling the boundary Γ, for whi
h we make lo
ally �at approximations
ontrolled by the fa
tor γ. By hypothesis, there exists a �nite number of oriented hypersurfa
es
S1, . . . , Sp of 
lass C1 su
h that Γ is in
luded in their union S1 ∪ · · · ∪ Sp. In parti
ular, we have

Γ r ∂∗Ω ⊂ S =
⋃

1≤k<l≤p

Sk ∩ Sl .Sin
e the hypersurfa
es S1, . . . , Sr are transverse to ea
h other, this implies that Hd−1(S) = 0.
• Continuity of the normal ve
tors. The hypersurfa
es S1, . . . , Sp being C1 and the set Γ
ompa
t, the maps x ∈ Γ 7→ vSk

(x), 1 ≤ k ≤ p (where vSk
(x) is the unit normal ve
tor to Sk at x)are uniformly 
ontinuous:

∀δ > 0 ∃η > 0 ∀k ∈ { 1, . . . , p } ∀x, y ∈ Sk ∩ Γ |x− y|2 ≤ η ⇒
∣∣vSk

(x) − vSk
(y)

∣∣
2
< δ .Let η∗ be asso
iated to δ = 1 by this property. We will use also a more re�ned property.

• Lo
alisation of the interfa
es. We �rst prove a geometri
 lemma:Lemma 1. Let Γ be an hypersurfa
e (that is a C1 submanifold of R
d of 
odimension 1) and let Kbe a 
ompa
t subset of Γ. There exists a positive M = M(Γ,K) su
h that:

∀ε > 0 ∃ r > 0 ∀x, y ∈ K |x− y|2 ≤ r ⇒ d2(y, tan(Γ, x)) ≤M ε |x− y|2 .(tan(Γ, x) is the tangent hyperplane of Γ at x). 19



4 POLYHEDRAL APPROXIMATIONProof. By a standard 
ompa
tness argument, it is enough to prove the following lo
al property:
∀x ∈ Γ ∃M(x) > 0 ∀ε > 0 ∃ r(x, ε) > 0 ∀y, z ∈ Γ ∩B(x, r(x, ε))

d2(y, tan(Γ, z)) ≤M(x) ε |y − z|2 .Indeed, if this property holds, we 
over K by the open balls Bo(x, r(x, ε)/2), x ∈ K, we extra
t a�nite sub
over Bo(xi, r(xi, ε)/2), 1 ≤ i ≤ k, and we set
M = max{M(xi) : 1 ≤ i ≤ k } , r = min{ r(xi, ε)/2 : 1 ≤ i ≤ k } .Let now y, z belong to K with |y − z|2 ≤ r. Let i be su
h that y belongs to B(xi, r(xi, ε)/2). Sin
e

r ≤ r(xi, ε)/2, then both y, z belong to the ball B(xi, r(xi, ε)) and it follows that
d2(y, tan(Γ, z)) ≤ M(xi) ε |y − z|2 ≤M ε |y − z|2 .We turn now to the proof of the above lo
al property. Sin
e Γ is an hypersurfa
e, for any xin Γ there exists a neighbourhood V of x in R

d, a di�eomorphism f : V 7→ R
d of 
lass C1 and a

(d − 1) dimensional ve
tor spa
e Z of R
d su
h that Z ∩ f(V ) = f(Γ ∩ V ) (see for instan
e [14℄,

3.1.19). Let A be a 
ompa
t neighbourhood of x in
luded in V . Sin
e f is a di�eomorphism, themaps y ∈ A 7→ df(y) ∈ End(Rd), u ∈ f(A) 7→ df−1(u) ∈ End(Rd) are 
ontinuous. Therefore theyare bounded:
∃M > 0 ∀y ∈ A ||df(y)|| ≤M , ∀u ∈ f(A) ||df−1(u)|| ≤M(here ||df(x)|| = sup{ |df(x)(y)|2 : |y|2 ≤ 1 } is the standard operator norm in End(Rd)). Sin
e f(A)is 
ompa
t, the di�erential map df−1 is uniformly 
ontinuous on f(A):

∀ε > 0 ∃δ > 0 ∀u, v ∈ f(A) |u− v|2 ≤ δ ⇒ ||df−1(u) − df−1(v)|| ≤ ε .Let ε be positive and let δ be asso
iated to ε as above. Let ρ be positive and small enough sothat ρ < δ/2 and B(f(x), ρ) ⊂ f(A) (sin
e f is a C1 di�eomorphism, f(A) is a neighbourhood of
f(x)). Let r be su
h that 0 < r < ρ/M and B(x, r) ⊂ A. We 
laim that M asso
iated to x and rasso
iated to ε, x answer the problem. Let y, z belong to Γ ∩ B(x, r). Sin
e [y, z] ⊂ B(x, r) ⊂ A,and ||df(ζ)|| ≤M on A, then

|f(y) − f(x)|2 ≤M |y − x|2 ≤Mr < ρ , |f(z) − f(x)|2 < ρ ,

|f(y) − f(z)|2 < δ , |f(y) − f(z)|2 < M |y − z|2 .We apply next a 
lassi
al lemma of di�erential 
al
ulus (see [20℄, I, 4, Corollary 2) to the map f−1and the interval [f(z), f(y)] (whi
h is in
luded in B(f(x), ρ) ⊂ f(A)) and the point f(z):
|y − z − df−1(f(z))(f(y) − f(z))|2 ≤

|f(y) − f(z)|2 sup { ||df−1(ζ) − df−1(f(z))|| : ζ ∈ [f(z), f(y)] } .The right�hand member is less than M |y − z|2 ε. Sin
e z + df−1(f(z))(f(y) − f(z)) belongs to
tan(Γ, z), we are done. �We 
ome ba
k to our 
ase. Let k ∈ { 1, . . . , p }. The set Sk ∩ Γ is a 
ompa
t subset of thehypersurfa
e Sk. Applying lemma 1, we get:

∃Mk ∀δ0 > 0 ∃ ηk > 0 ∀x, y ∈ Sk ∩ Γ |x− y|2 ≤ ηk ⇒ d2

(
y, tan(Sk, x)

)
≤Mkδ0|x− y|2 .20



4 POLYHEDRAL APPROXIMATIONLet M0 = max1≤k≤pMk and let δ0 in ]0, 1/2[ be su
h that M0δ0 < γ. For ea
h k in { 1, . . . , p }, let
ηk be asso
iated to δ0 as in the above property and let

η0 = min
(

min
1≤k≤p

ηk, η
∗,

1

8d
dist(Γ1,Γ2)

)
.

• Covering of Γ by transverse 
ubes. We build a family of 
ubes Q(x, r), indexed by x ∈ Γand r ∈]0, rΓ[ su
h that Q(x, r) is a 
ube 
entered at x of side length r whi
h is transverse to Γ.For x ∈ R
d and k ∈ { 1, . . . , p }, let pk(x) be a point of Sk ∩ Γ su
h that

|x− pk(x)|2 = inf
{
|x− y|2 : y ∈ Sk ∩ Γ

}
.Su
h a point exists sin
e Sk ∩ Γ is 
ompa
t. We de�ne then for k ∈ { 1, . . . , p }

∀x ∈ R
d vk(x) = vSk

(pk(x)) .We de�ne also
dr = inf

v1,...,vp∈Sd−1
max
b∈Bd

min
1 ≤ k ≤ r
e ∈ b

(
|e− vi|2, | − e− vi|2

)where Bd is the 
olle
tion of the orthonormal basis of R
d and Sd−1 is the unit sphere of R

d. Let ηbe asso
iated to dr/4 as in the above 
ontinuity property. We set
rΓ =

η

2d
.Let x ∈ Γ. By the de�nition of dr, there exists an orthonormal basis bx of R

d su
h that
∀e ∈ bx ∀k ∈ { 1, . . . , p } min

(
|e− vk(x)|2, | − e− vk(x)|2

)
>

dr

2
.Let Q(x, r) be the 
ube 
entered at x of sidelength r whose sides are parallel to the ve
tors of bx.We 
laim that Q(x, r) is transverse to Γ for r < rΓ. Indeed, let y ∈ Q(x, r) ∩ Γ. Suppose that

y ∈ Sk for some k ∈ { 1, . . . , p }, so that vk(y) = vSk
(y) and |x − pk(x)|2 < drΓ. In parti
ular, wehave |y − pk(x)|2 < 2drΓ < η and |vSk

(y) − vk(x)|2 < dr/4. For e ∈ bx,
dr

2
≤ |e− vk(x)|2 ≤ |e− vSk

(y)|2 + |vSk
(y) − vk(x)|2when
e

|e− vSk
(y)|2 ≥ dr

2
− dr

4
=

dr

4
.This is also true for −e, therefore the fa
es of the 
ube Q(x, r) are transverse to Sk.

• Vitali 
overing Theorem for Hd−1. A 
olle
tion of sets U is 
alled a Vitali 
lass for a Borel set
E of R

d if for ea
h x ∈ E and δ > 0, there exists a set U ∈ U 
ontaining x su
h that 0 < diamU < δ,where diamU is the diameter of the set U . We now re
all the Vitali 
overing Theorem for Hd−1(see for instan
e [13℄, Theorem 1.10), sin
e it will be useful during the proof:21



4 POLYHEDRAL APPROXIMATIONTheorem 12. Let E be a Hd−1 measurable subset of R
d and U be a Vitali 
lass of 
losed sets for

E. Then we may sele
t a (
ountable) disjoint sequen
e (Ui)i∈I from U su
h thateither ∑

i∈I

(diamUi)
d−1 = +∞ or Hd−1(E r ∪i∈IUi) = 0 .If Hd−1(E) <∞, then given ε > 0, we may also require that

Hd−1(E) ≤ αd−1

2d−1

∑

i∈I

(diamUi)
d−1 .Start of the main argument. We �rst handle the interfa
es along Γ. Let R(Γ) be the set of thepoints x of Γ r S su
h that

lim
r→0

(αdr
d)−1Ld(B(x, r) r Ω) = 1/2 ,

lim
r→0

(αd−1r
d−1)−1Hd−1(B(x, r) ∩ Γ) = 1 .Let R(Ω r F ) be the set of the points x belonging to ∂∗(Ω r F ) ∩R(Γ) su
h that

lim
r→0

(αd−1r
d−1)−1Hd−1(B(x, r) ∩ ∂∗(Ω r F )) = 1 ,

lim
r→0

(αdr
d)−1Ld(B(x, r) ∩ (Ω r F )) = 1/2 ,

lim
r→0

(αd−1r
d−1)−1

∫

B(x,r)∩∂∗(ΩrF )
ν(vΩrF (y)) dHd−1(y) = ν(vΩ(x)) .Let R(F ) be the set of the points x belonging to ∂∗F ∩R(Γ) su
h that

lim
r→0

(αd−1r
d−1)−1Hd−1(B(x, r) ∩ ∂∗F ) = 1 ,

lim
r→0

(αdr
d)−1Ld(B(x, r) ∩ F ) = 1/2 ,

lim
r→0

(αd−1r
d−1)−1

∫

B(x,r)∩∂∗F
ν(vF (y)) dHd−1(y) = ν(vΩ(x)) .Thanks to the hypothesis on Γ and the stru
ture of the sets of �nite perimeter (see either Lemma 1,se
tion 5.8 of [12℄, Lemma 5.9.5 in [29℄ or Theorem 3.61 of [1℄), we have

Hd−1
(
Γ r (R(F ) ∪R(Ω r F ))

)
= 0 .For x in R(Γ), there exists a positive r0(x, γ) su
h that, for any r < r0(x, γ),

|Ld(B(x, r) r Ω) − αdr
d/2| ≤ γ αdr

d ,

|Hd−1(B(x, r) ∩ Γ) − αd−1r
d−1| ≤ γ αd−1r

d−1 .For x in R(Ω r F ), there exists a positive r(x, γ) < r0(x, γ) su
h that, for any r < r(x, γ),
|Hd−1(B(x, r) ∩ ∂∗(Ω r F )) − αd−1r

d−1| ≤ γ αd−1r
d−1 ,

|Ld(B(x, r) ∩ (Ω r F )) − αdr
d/2| ≤ γ αdr

d ,
∣∣∣(αd−1r

d−1)−1

∫

B(x,r)∩∂∗(ΩrF )
ν(vΩrF (y)) dHd−1(y) − ν(vΩ(x))

∣∣∣ ≤ γ .22



4 POLYHEDRAL APPROXIMATIONFor x in R(F ), there exists a positive r(x, γ) < r0(x, γ) su
h that, for any r < r(x, γ),
|Hd−1(B(x, r) ∩ ∂∗F ) − αd−1r

d−1| ≤ γ αd−1r
d−1 ,

|Ld(B(x, r) ∩ F ) − αdr
d/2| ≤ γ αdr

d ,
∣∣∣(αd−1r

d−1)−1

∫

B(x,r)∩∂∗F
ν(vF (y)) dHd−1(y) − ν(vΩ(x))

∣∣∣ ≤ γ .Let us de�ne the sets
Γ1∗ = Γ1 ∩R(Ω r F ) , Γ2∗ = Γ2 ∩R(F ) ,

Γ3∗ = (Γ r Γ2) ∩R(F ) , Γ4∗ = (Γ r Γ1) ∩R(Ω r F ) .The family of balls
B(x, r) , x ∈ Γ1∗ ∪ Γ2∗ , r < min

(
r(x, γ), γ, η0,

1

2
dist(x, S)

)
,

B(x, r) , x ∈ Γ3∗ , r < min
(
r(x, γ), γ, η0,

1

2
dist(x, S),

1

2
dist(x,Γ2)

)
,

B(x, r) , x ∈ Γ4∗ , r < min
(
r(x, γ), γ, η0,

1

2
dist(x, S),

1

2
dist(x,Γ1)

)is a Vitali relation for Γ1∗ ∪ Γ2∗ ∪ Γ3∗ ∪ Γ4∗. Re
all that S is the set of the points belonging totwo or more of the hypersurfa
es S1, . . . , Sp and sin
e S is disjoint from Γ1∗,Γ2∗,Γ3∗,Γ4∗, thendist(x, S) > 0 for x ∈ Γ1∗ ∪ Γ2∗ ∪ Γ3∗ ∪ Γ4∗. By the standard Vitali 
overing Theorem (see theorem12), we may sele
t a �nite or 
ountable 
olle
tion of disjoint balls B(xi, ri), i ∈ I, su
h that: for
i ∈ I, xi ∈ Γ1∗ ∪ Γ2∗ ∪ Γ3∗ ∪ Γ4∗, ri < min(r(xi, γ), γ, η0,

1
2dist(xi, S)) andeither Hd−1

(
Γ r

⋃

i∈I

B(xi, ri)
)

= 0 or ∑

i∈I

rd−1
i = ∞ .Be
ause for ea
h i in I, ri is smaller than r(xi, γ),

αd−1(1 − γ)
∑

i∈I

rd−1
i ≤ Hd−1(Γ) < ∞and therefore the �rst 
ase o

urs, so that we may sele
t four �nite subsets I1, I2, I3, I4 of I su
hthat

∀k ∈ { 1, . . . , 4 } ∀i ∈ Ik xi ∈ Γk∗ ,

Hd−1
(
Γ r

⋃

1≤k≤4

⋃

i∈Ik

B(xi, ri)
)
< γ .Let i belong to I1 ∪ I2 ∪ I3 ∪ I4. We have

Hd−1(Γ ∩B(xi, ri) rB(xi, ri(1 − 2
√
γ))) = Hd−1(Γ ∩B(xi, ri)) −Hd−1(Γ ∩B(xi, ri(1 − 2

√
γ)))

≤ (1 + γ)αd−1r
d−1
i − (1 − γ)αd−1r

d−1
i (1 − 2

√
γ)d−1

= αd−1r
d−1
i (1 + γ − (1 − γ)(1 − 2

√
γ)d−1)

≤ αd−1r
d−1
i 2d

√
γ .23



4 POLYHEDRAL APPROXIMATIONHen
e
∑

i∈I1∪I2∪I3∪I4

Hd−1(Γ ∩B(xi, ri) rB(xi, ri(1 − 2
√
γ)))

≤ 2d
√
γ

∑

i∈I1∪I2∪I3∪I4

αd−1r
d−1
i ≤ 4d

√
γHd−1(Γ)and

Hd−1
(
Γ r

⋃

i∈I1∪I2∪I3∪I4

B(xi, ri(1 − 2
√
γ))

)
< γ + 4d

√
γHd−1(Γ) .We have a �nite number of disjoint 
losed balls B(xi, ri(1−2

√
γ)), i ∈ I1∪I2∪I3∪I4. By in
reasingslightly all the radii ri, we 
an keep the balls disjoint, ensure that ea
h radius ri satis�es the samestri
t inequalities for i in I1 ∪ I2 ∪ I3 ∪ I4, and get the inequality

Hd−1
(
Γ r

⋃

i∈I1∪I2∪I3∪I4

B
o
(xi, ri(1 − 2

√
γ))

)
< 2γ + 4d

√
γHd−1(Γ) .The above set is a 
ompa
t subset of Γ. For k = 1, 2, we de�ne

Rk = Γk r

⋃

i∈I1∪I2∪I3∪I4

B
o
(xi, ri(1 − 2

√
γ)) .The sets R1 and R2 are 
ompa
t and their Hd−1 measure is less than 2γ + 4d

√
γHd−1(Γ) (re
allthat ∂ΓΓ1 and ∂ΓΓ2 have a null Hd−1 measure). For k = 1, 2, by the de�nition of the Hausdor�measure Hd−1, there exists a 
olle
tion of balls B(yj, sj), j ∈ Jk su
h that:

∀j ∈ Jk 0 < sj < min
(
η0,

rΓ
2

)
, B(yj, sj) ∩Rk 6= ∅ ,

∑

j∈Jk

αd−1s
d−1
j < 3γ + 4d

√
γHd−1(Γ) ,

Rk ⊂
⋃

j∈Jk

B
o
(yj , sj) .By 
ompa
tness of R1 and R2, the sets J1 and J2 
an be 
hosen to be �nite. It remains to 
over

R0 = Γ r

⋃

i∈I1∪I2∪I3∪I4

B
o
(xi, ri(1 − 2

√
γ)) r

⋃

j∈J1∪J2

B
o
(yj , sj) .The set R0 is a 
losed subset of Γ whi
h is at a positive distan
e from Γ1 and Γ2. There exists a
olle
tion of balls B(yj, sj), j ∈ J0 su
h that:

∀j ∈ J0 0 < sj < min
(
η0,

rΓ
2
,

1

8d
dist(R0,Γ

1 ∪ Γ2)
)
, B(yj, sj) ∩R0 6= ∅ ,

∑

j∈J0

αd−1s
d−1
j < 3γ + 4d

√
γHd−1(Γ) ,

R0 ⊂
⋃

j∈J0

B
o
(yj, sj) .24



4 POLYHEDRAL APPROXIMATIONNow the 
olle
tion of balls
B
o
(xi, ri(1 − 2

√
γ)), i ∈ I1 ∪ I2 ∪ I3 ∪ I4, B(yj, sj), j ∈ J0 ∪ J1 ∪ J2
overs 
ompletely Γ. We will next repla
e these balls by polyhedra. For j ∈ J0 ∪ J1 ∪ J2, let xjbelong to B(yj, sj) ∩ Γ and let Qj be the 
ube Q(xj , 4sj). For i in I1 ∪ I2 ∪ I3 ∪ I4, the point xibelongs to exa
tly one hypersurfa
e among S1, . . . , Sp, whi
h we denote by Ss(i). In parti
ular Γadmits a normal ve
tor vΩ(xi) at xi in the 
lassi
al sense. For ea
h i in I1 ∪ I2 ∪ I3 ∪ I4, let Pi be a
onvex open polygon inside the hyperplane hyp(xi, vΩ(xi)) su
h that

disc(xi, ri(1 − 2
√
γ), vΩ(xi)) ⊂ Pi ⊂ disc(xi, ri(1 −√

γ), vΩ(xi)) ,

|Hd−2(∂Pi) − αd−2r
d−2
i (1 −√

γ)d−2| ≤ δ0αd−2r
d−2
i (1 −√

γ)d−2 ,

|Hd−1(Pi) − αd−1r
d−1
i (1 −√

γ)d−1| ≤ δ0αd−1r
d−1
i (1 −√

γ)d−1 .Thanks to the 
hoi
es of the radius ri and the 
onstants M0, η0, we have then
Γ ∩B(xi, ri(1 − 2

√
γ)) ⊂ Ss(i) ∩B(xi, ri(1 − 2

√
γ)) ⊂ cyl

o
(Pi, 2γri) ,

Γ ∩B(xi, ri) ⊂ Ss(i) ∩B(xi, ri) ⊂ cyl(disc(xi, ri, vΩ(xi)),M0δ0ri) ,

∀x ∈ B(xi, ri) ∩ Γ |vΩ(x) − vΩ(xi)|2 < 1 .The 
hoi
e of δ0 guarantees that M0δ0(1 + δ0)ri < 2γri. Let t be su
h that
M0δ0(1 + δ0)ri ≤ t <

√
γri .We have

−tvΩ(xi) + Pi ⊂ Ω ∩B(xi, ri) , Γ ∩ (−tvΩ(xi) + Pi) = ∅ .In parti
ular, the set Γ 
an interse
t the 
ylinder cyl(Pi, t) only along its lateral sides, whi
h areparallel to vΩ(xi). Let x belong to Γ ∩ ∂ cyl(Pi, t). Then
|vcyl(Pi,t)(x) − vΩ(x)|2 ≥ |vcyl(Pi,t)(x) − vΩ(xi)|2 − |vΩ(xi) − vΩ(x)|2 ≥

√
2 − 1 .Therefore the 
ylinder cyl(Pi, t) is transverse to Γ. We will repla
e the ball Bo(xi, ri(1−2

√
γ)) by the
ylinder cyl(Pi, ti), for a 
arefully 
hosen value of ti in the interval [M0δ0(1+ δ0)ri,

√
γri[. However,we must delay the 
hoi
es of the values ti, i ∈ I3 ∪ I4 until we have modi�ed the set F inside Ω. Wedeal next with the interfa
es inside Ω and we make an approximation of F 
ontrolled by a fa
tor

ε. We 
hoose ε su�
iently small 
ompared to γ so that, when we perturb the set F by a volume ε,the resulting e�e
t 
lose to Γ is still of order γ. Let ε be su
h that 0 < ε < γ and
ε < γαd min

i∈I1∪I2∪I3∪I4
rd
i .We use next a 
lassi
al approximation result: there exists a relatively 
losed subset L of Ω having�nite perimeter su
h that Ω ∩ ∂L is an hypersurfa
e of 
lass C∞ and

Ld(F∆L) < ε ,
∣∣∣
∫

Ω∩∂∗F
ν(vF (y)) dHd−1(y) −

∫

Ω∩∂L
ν(vL(y)) dHd−1(y)

∣∣∣ < ε .25



4 POLYHEDRAL APPROXIMATIONIn the 
ase where ν is 
onstant, this result is stated in Lemma 4.4 of [23℄. In the non 
onstant 
ase,the argument should be slightly modi�ed, as explained in the proof of proposition 14.8 of [9℄, wherethe approximation is performed in R
d instead of Ω. When working inside Ω, the extra di�
ulty isto deal with regions 
lose to the boundary (see the proof of Proposition 4.3 of [23℄). For r > 0, wede�ne

∂Lr =
{
x ∈ ∂L : d(x,Γ) ≥ r

}
.By 
ontinuity of the measure Hd−1|∂L, there exists r∗ > 0 su
h that

Hd−1(Ω ∩ ∂Lr ∂L2r∗) ≤ ε .We apply lemma 1 to the set ∂Lr∗ and the hypersurfa
e Ω ∩ ∂L:
∃M > 0 ∀δ > 0 ∃ η > 0 ∀x, y ∈ ∂Lr∗ |x− y|2 ≤ η ⇒ d2

(
y, tan(∂L, x)

)
≤Mδ|x− y|2 .For a point x belonging to ∂Lr∗ , the tangent hyperplane of Ω ∩ ∂L at x is pre
isely hyp(x, vL(x)).Let M be as above. We 
an assume that M > 1. Let δ in ]0, δ0[ be su
h that 2δM < ε. Let η beasso
iated to δ as in the above property. For x ∈ ∂L2r∗ ,

lim
r→0

(αd−1r
d−1)−1Hd−1(B(x, r) ∩ ∂L) = 1 ,

lim
r→0

(αd−1r
d−1)−1

∫

B(x,r)∩∂L
ν(vL(y)) dHd−1(y) = ν(vL(x)) .For any x in ∂L2r∗ , there exists a positive r(x, ε) su
h that, for any r < r(x, ε),

|Hd−1(B(x, r) ∩ ∂L) − αd−1r
d−1| ≤ εαd−1r

d−1 ,
∣∣∣(αd−1r

d−1)−1

∫

B(x,r)∩∂L
ν(vL(y)) dHd−1(y) − ν(vL(x))

∣∣∣ ≤ ε .The family of balls B(x, r), x ∈ ∂L2r∗ , r < min(r∗, η0, r(x, ε), ε, η), is a Vitali relation for ∂L2r∗ .By the standard Vitali 
overing Theorem, we may sele
t a �nite or 
ountable 
olle
tion of disjointballs B(xi, ri), i ∈ I ′, su
h that: for any i in I ′, xi ∈ ∂L2r∗ ,
ri < min(r∗, η0, r(xi, ε), ε, η)and either Hd−1

(
∂L2r∗ r

⋃

i∈I′

B(xi, ri)
)

= 0 or ∑

i∈I′

rd−1
i = ∞ .Be
ause for ea
h i in I ′, ri is smaller than r(xi, ε),

αd−1(1 − ε)
∑

i∈I′

rd−1
i ≤ Hd−1(Ω ∩ ∂L) < ∞and therefore the �rst 
ase o

urs, so that we may sele
t a �nite subset I5 of I ′ su
h that

Hd−1
(
∂L2r∗ r

⋃

i∈I5

B(xi, ri)
)
< ε .26



4 POLYHEDRAL APPROXIMATIONWe have a �nite number of disjoint 
losed balls B(xi, ri), i ∈ I5. By in
reasing slightly all the radii
ri, we 
an keep the balls disjoint, ea
h ri stri
tly smaller than min(r∗, η0, r(xi, ε), ε, η) for i in I5,and get the stronger inequality

Hd−1
(
∂L2r∗ r

⋃

i∈I5

B
o
(xi, ri)

)
< ε .For ea
h i in I5, let Pi be a 
onvex open polygon inside the hyperplane hyp(xi, vL(xi)) su
h that

disc(xi, ri, vL(xi)) ⊂ Pi ⊂ disc(xi, ri(1 + δ), vL(xi)) ,

|Hd−2(∂Pi) − αd−2r
d−2
i | ≤ δαd−2r

d−2
i ,

|Hd−1(Pi) − αd−1r
d−1
i | ≤ δαd−1r

d−1
i .We set ψ = Mδ(1 + δ) (hen
e ψ < ε < 1). Let i belong to I5. Let Di be the 
ylinder

Di = cyl(Pi,Mδ(1 + δ)ri)of basis Pi and height 2ψri. The point xi belongs to ∂L2r∗ , the radius ri is smaller than η and r∗,so that
∀x ∈ ∂L ∩B(xi, ri) d2

(
x,hyp(xi, vL(xi))

)
≤Mδ|x− xi|2 ,when
e

∂L ∩B(xi, ri) ⊂ cyl
(
disc(xi, ri, vL(xi)),Mδri

)
⊂ D

o
i .We will approximate F by L inside Ω and we will push the interfa
es Γ1 ∩ ∂∗(Ω rF ) and Γ2 ∩ ∂∗Finto Ω. We next handle the regions 
lose to Γ inside the family of balls B(xi, ri), i ∈ I1∪I2∪I3∪I4.We will modify adequately the set F to ensure that no signi�
ant interfa
e is 
reated within theseballs. Our te
hnique 
onsists in building a small �at 
ylinder 
entered on Γ whi
h we add (forindi
es in I1 ∪ I3) or remove (for indi
es in I2 ∪ I4) to the set F . We have to design 
arefully thisoperation in order not to 
reate any signi�
ant additional interfa
e. This is the pla
e where we tietogether the 
overing of the boundary and the inner approximation. Re
all that we already 
hosea family of polygons Pi, i ∈ I1 ∪ I2 ∪ I3 ∪ I4. For i ∈ I1 ∪ I2, we simply de�ne Di to be the 
ylinder

Di = cyl(Pi,M0δ0(1 + δ0)ri) ,see �gure 6. The 
onstru
tion of the 
ylinders asso
iated to the indi
es i ∈ I3 ∪ I4 is more 
om-pli
ated. Our te
hnique 
onsists in 
hoosing 
arefully the height ti of the 
ylinders cyl(Pi, ti) for
i ∈ I3 ∪ I4. We examine separately the indi
es in I3 and I4.
• Balls indexed by I3. Let i belong to I3. Be
ause of the 
ondition imposed on ε, we have

|Ld(B(xi, ri) ∩ L) − αdr
d
i /2| ≤ γ αdr

d
i + ε ≤ 2γ αdr

d
i .Sin
e in addition

|Ld(B(xi, ri) r Ω) − αdr
d
i /2| ≤ γ αdr

d
i ,it follows that

Ld(B(xi, ri) ∩ (Ω r L
o
)) ≤ 3γ αdr

d
i .27



4 POLYHEDRAL APPROXIMATION

Γ ∩ Biis in
ludedthis layer
Pi

B(xi, ri(1 − 2
√

γ))

B(xi, ri(1 −√
γ))

Bi = B(xi, ri)

M0δ0(1 + δ0)ri

M0δ0ri

Di = cyl(Pi, M0, δ0(1 + δ0ri))

xi

vΩ(xi)

Figure 6: The 
ylinder Di for i ∈ I1 ∪ I2.
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4 POLYHEDRAL APPROXIMATIONThanks to the 
hoi
e of the polygon Pi, we have then
∫

2γri<t<
√

γri

Hd−1((−tvΩ(xi) + Pi) r L
o
) dt ≤ Ld(B(xi, ri) ∩ (Ω r L

o
)) ≤ 3γαdr

d
i .The 
ondition on γ yields in parti
ular √γ − 2γ ≥ √

γ/2. Hen
e there exists ti ∈]2γri,
√
γri[ su
hthat

Hd−1((−tivΩ(xi) + Pi) r L
o
) ≤ 6

√
γαdr

d−1
i .Let Di be the 
ylinder Di = cyl(Pi, ti).

• Balls indexed by I4. Let i belong to I4. Be
ause of the 
ondition imposed on ε, we have
|Ld(B(xi, ri) ∩ (Ω r L)) − αdr

d
i /2| ≤ γ αdr

d
i + ε ≤ 2γ αdr

d
i .Sin
e in addition

|Ld(B(xi, ri) r Ω) − αdr
d
i /2| ≤ γ αdr

d
i ,it follows that

Ld(B(xi, ri) ∩ L) ≤ 3γ αdr
d
i .Thanks to the 
hoi
e of the polygon Pi, we have then

∫

2γri<t<
√

γri

Hd−1((−tvΩ(xi) + Pi) ∩ L) dt ≤ Ld(B(xi, ri) ∩ L) ≤ 3γαdr
d
i .The 
ondition on γ yields in parti
ular √γ − 2γ ≥ √

γ/2. Hen
e there exists ti ∈]2γri,
√
γri[ su
hthat

Hd−1((−tivΩ(xi) + Pi) ∩ L) ≤ 6
√
γαdr

d−1
i .Let Di be the 
ylinder Di = cyl(Pi, ti) (see �gure 7). We have now built the whole family of
ylinders Di, i ∈ I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5. Moreover, the sets

D
o
i , i ∈ I1 ∪ I2 ∪ I3 ∪ I4 , B

o
(yj , sj) , j ∈ J0 ∪ J1 ∪ J2 ,
over 
ompletely Γ. It remains now to 
over the region

R3 = Ω ∩ ∂L r

⋃

i∈I1∪I2∪I3∪I4∪I5

D
o
i r

⋃

j∈J0∪J1∪J2

B
o
(yj , sj) .Sin
e R3 does not interse
t Γ, the distan
e

ρ =
1

8d
dist(Γ, R3)is positive and also R3 is 
ompa
t. From the pre
eding inequalities, we dedu
e that

Hd−1(R3) ≤ Hd−1(Ω ∩ ∂Lr ∂L2r∗) + Hd−1
(
∂L2r∗ r

⋃

i∈I5

D
o
i

)

≤ ε+ Hd−1
(
∂L2r∗ r

⋃

i∈I5

B
o
(xi, ri)

)
≤ 2ε .29



4 POLYHEDRAL APPROXIMATION

xi
Ω

Ωc

Γ

Bi

Pi

ti

vΩ(xi)

thin strandin
luded in L

Hd−1((Pi − tivΩ(xi)) ∩ L)is small
Di = cyl(Pi, ti)

Figure 7: The 
ylinder Di for i ∈ I4.
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4 POLYHEDRAL APPROXIMATIONBy the de�nition of the Hausdor� measure Hd−1, there exists a 
olle
tion of balls B(yj, sj), j ∈ J3,su
h that:
∀j ∈ J3 0 < sj < ρ, B(yj, sj) ∩R3 6= ∅ ,

R3 ⊂
⋃

j∈J3

B
o
(yj, sj) ,

∑

j∈J3

αd−1s
d−1
j ≤ 3ε .By 
ompa
tness, we might assume in addition that J3 is �nite. For j ∈ J3, let xj belong to

B(yj, sj) ∩R3 and let Qj be the 
ube Q(xj, 4sj). We set
P =

(
(Ω ∩ L) ∪

⋃

i∈I1∪I3∪I5

Di ∪
⋃

j∈J1

Qj

)
r

⋃

i∈I2∪I4

Di r

⋃

j∈J0∪J2∪J3

Qj .The sets Qoj, j ∈ J0 ∪ J1 ∪ J2 ∪ J3, Doi, i ∈ I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 
over ∂L ∪ Γ, therefore
∂P ⊂

⋃

i∈I1∪I2∪I3∪I4∪I5

∂Di ∪
⋃

j∈J0∪J1∪J2∪J3

∂Qj ,thus P is polyhedral and ∂P is transverse to Γ. Sin
e the sets
D
o
i , i ∈ I1 ∪ I3 , Q

o
j , j ∈ J1
over 
ompletely Γ

1, while the sets
Di , i ∈ I2 ∪ I4 ∪ I5 , Qj , j ∈ J0 ∪ J2 ∪ J3do not interse
t Γ

1, then Γ
1 is in
luded in the interior of P . Similarly, the sets

D
o
i , i ∈ I2 ∪ I4 , Q

o
j , j ∈ J2
over 
ompletely Γ

2, while the sets
Di , i ∈ I1 ∪ I3 ∪ I5 , Qj , j ∈ J0 ∪ J1 ∪ J3do not interse
t Γ

2, thus Γ
2 is in
luded in the interior of the 
omplement of P . We next 
he
k thatthe set P ∩ Ω approximates the initial set F with respe
t to the volume. We have

(P ∩ Ω)∆F ⊂ (L∆F ) ∪
⋃

i∈I1∪I2∪I3∪I4∪I5

Di ∪
⋃

j∈J0∪J1∪J2∪J3

Qjwhen
e
Ld((P ∩ Ω)∆F ) ≤ ε+∑

i∈I1∪I2∪I3∪I4

2αd−1r
d−1
i (1 + δ0)

√
γri +

∑

i∈I5

2αd−1r
d−1
i (1 + δ)ψri +

∑

j∈J0∪J1∪J2∪J3

αd(2sj)
d .31



4 POLYHEDRAL APPROXIMATIONYet ea
h ri is smaller than γ,
∑

i∈I1∪I2∪I3∪I4

αd−1r
d−1
i ≤ 2Hd−1(Γ) ,

∑

i∈I5

αd−1r
d−1
i ≤ 2Hd−1(Ω ∩ ∂L) ≤ 2

νmin (νmaxHd−1(∂∗F ∩ Ω) + ε) ,

∑

j∈J0∪J1∪J2∪J3

αd−1s
d−1
j ≤ 3

(
3γ + 4d

√
γHd−1(Γ)

)
+ 3ε ,so that

Ld((P ∩ Ω)∆F ) ≤ ε+ 6
√
γHd−1(Γ) +

6ε

νmin (νmaxHd−1(∂∗F ∩ Ω) + ε)

+ 3 · 2d αd

αd−1
(3γ + 4d

√
γHd−1(Γ) + ε) .We estimate next the 
apa
ity of P . To do this, we examine the interse
tion of ∂P ∩ Ω with ea
hpolyhedral 
ylinder. For i ∈ I1 ∪ I2, we use the obvious in
lusion

P ∩ Ω ∩ ∂Di ⊂ Ω ∩ ∂Di .For i ∈ I3∪I4∪I5, the sets ∂P ∩Ω∩∂Di require more attention. We 
onsider separately the indi
esof I3, I4 and I5.
• Cylinders indexed by I3. Let i in I3. We have

Ω ∩ ∂P ∩ ∂Di ⊂ Ω ∩ (∂Di r L
o
) ∪

⋃

j∈J0∪J1∪J2∪J3

∂Qj .Yet, thanks to the 
onstru
tion of the 
ylinder Di,
Hd−1(Ω ∩ ∂Di r L

o
) ≤ Hd−1((−tivΩ(xi) + Pi) r L

o
) + Hd−2(∂Pi)2

√
γri

≤ 6
√
γαdr

d−1
i + 2αd−2r

d−2
i 2

√
γri ≤ 6

√
γ(αd + αd−2)r

d−1
i .

• Cylinders indexed by I4. Let i in I4. We have
Ω ∩ ∂P ∩ ∂Di ⊂ Ω ∩ (∂Di ∩ L) ∪

⋃

j∈J0∪J1∪J2∪J3

∂Qj .Yet, thanks to the 
onstru
tion of the 
ylinder Di,
Hd−1(Ω ∩ ∂Di ∩ L) ≤ Hd−1((−tivΩ(xi) + Pi) ∩ L) + Hd−2(∂Pi)2

√
γri

≤ 6
√
γαdr

d−1
i + 2αd−2r

d−2
i 2

√
γri ≤ 6

√
γ(αd + αd−2)r

d−1
i .

• Cylinders indexed by I5. Let i in I5. We set
Gi = disc

(
xi − ψrivL(xi),

√
1 − ψ2ri, vL(xi)

)
.We 
laim that the set Gi is in
luded in the interior of L. Indeed, Gi ⊂ B(xi, ri) ∩ ∂Di, yet

∂L ∩B(xi, ri) ⊂ D
o
i, therefore Gi does not interse
t ∂L. Sin
e vL(xi) is the exterior normal ve
torto L at xi, then Gi is in
luded in Lo. The de�nition of the set P implies that

∂P ∩Gi ⊂
⋃

j∈J0∪J1∪J2∪J3

∂Qj ,32



4 POLYHEDRAL APPROXIMATIONwhen
e
Ω ∩ ∂P ∩ ∂Di ⊂ (∂Di rGi) ∪

⋃

j∈J0∪J1∪J2∪J3

∂Qj .

Yet
Hd−1

(
∂Di r (Pi + ψrivL(xi)) rGi

)
≤ 2αd−2r

d−2
i 2ψri + αd−1r

d−1
i

(
1 + δ − (1 − ψ2)(d−1)/2

)

≤ αd−1r
d−1
i

(
4
αd−2

αd−1
ψ + 1 + δ − (1 − ψ2)(d−1)/2

)
.

Finally, we 
on
lude that
Ω ∩ ∂P ⊂

⋃

i∈I1∪I2

(Ω ∩ ∂Di) ∪
⋃

i∈I3

(Ω ∩Di r L
o
) ∪

⋃

i∈I4

(Ω ∩ ∂Di ∩ L)

∪
⋃

i∈I5

(∂Di rGi) ∪
⋃

j∈J0∪J1∪J2∪J3

∂Qj .

Therefore
IΩ(P ) ≤

∑

i∈I1∪I2

∫

Ω∩∂Di

ν(vP (x)) dHd−1(x) + νmax

∑

i∈I3

Hd−1(Ω ∩ ∂Di r L
o
)

+ νmax

∑

i∈I4

Hd−1(Ω ∩ ∂Di ∩ L)

+
∑

i∈I5

(
ν(vL(xi))Hd−1(Pi) + νmaxHd−1

(
∂Di r (Pi + ψrivL(xi)) rGi

))

+ νmax

∑

j∈J0∪J1∪J2∪J3

Hd−1(∂Qj) .33



4 POLYHEDRAL APPROXIMATIONWe use now the various estimates obtained in the 
ourse of the approximation. We get
IΩ(P ) ≤

∑

i∈I1∪I2

(
αd−1r

d−1
i (1 + δ0)ν(vΩ(xi)) + νmaxαd−2r

d−1
i 2M0δ0(1 + δ0)

2
)

+
∑

i∈I3∪I4

νmax

(
6
√
γ(αd + αd−2)r

d−1
i

)

+
∑

i∈I5

(
αd−1r

d−1
i (1 + δ)ν(vL(xi))

+ νmaxαd−1r
d−1
i

(
4
αd−2

αd−1
ψ + 1 + δ − (1 − ψ2)(d−1)/2

))

+
∑

j∈J0∪J1∪J2∪J3

νmaxαd−12
d−1sd−1

j

≤ 1 + δ0
1 − γ

∑

i∈I1

∫

B(xi,ri)∩∂∗(ΩrF )
ν(vΩ(y)) dHd−1(y)

+
1 + δ0
1 − γ

∑

i∈I2

∫

B(xi,ri)∩∂∗F
ν(vΩ(y)) dHd−1(y)

+
1 + δ

1 − ε

∑

i∈I5

∫

B(xi,ri)∩∂L
ν(vL(y)) dHd−1(y)

+
∑

i∈I1∪I2∪I3∪I4∪I5

νmaxαd−1r
d−1
i

( αd−2

ald−1
5γ + 6

√
γ
αd + αd−2

αd−1
+ 4

αd−2

αd−1
ψ

+ 1 + δ − (1 − ψ2)(d−1)/2
)

+ νmax2
d−13

(
3γ + 4d

√
γHd−1(Γ) + ε

)

≤ 1 + δ0
1 − γ

(∫

Γ1∩∂∗(ΩrF )
ν(vΩ(y)) dHd−1(y) +

∫

Γ2∩∂∗F
ν(vΩ(y)) dHd−1(y)

+

∫

Ω∩∂L
ν(vL(y)) dHd−1(y)

)

+ 2(Hd−1(Γ) + Hd−1(Ω ∩ ∂L))νmax

(αd−2

αd−1
5γ + 6

√
γ
αd + αd−2

αd−1
+ 4

αd−2

αd−1
ψ

+ 1 + δ − (1 − ψ2)(d−1)/2
)

+ νmax

(
2d−13

(
3γ + 4d

√
γHd−1(Γ)

)
+ 3ε

)

≤ 1 + δ0
1 − γ

(
IΩ(F ) + ε)

+ 2
(
Hd−1(Γ) +

νmaxIΩ(F ) + ε

νmin )
νmax

(αd−2

αd−1
5γ + 6

√
γ
αd + αd−2

αd−1
+ δε+ 4

αd−2

αd−1
ε
)

+ νmax

(
2d−13

(
3γ + 4d

√
γHd−1(Γ)

)
+ 3ε

)where we have used the inequality ψ < ε in the last step. We have also use the in
lusions
∀i ∈ I1 B(xi, ri) ∩ ∂∗(Ω r F ) ⊂ Γ1 ∩ ∂∗(Ω r F ) ,

∀i ∈ I2 B(xi, ri) ∩ ∂∗F ⊂ Γ2 ∩ ∂∗F .Sin
e δ0, δ, γ, ε 
an be 
hosen arbitrarily small, we have obtained the desired approximation. �34



5 POSITIVITY OF φ̃Ω5 Positivity of φ̃ΩWe suppose that ∫

[0,+∞[
x dΛ(x) < ∞ , (9)We will prove that φ̃Ω > 0 if and only if Λ(0) < 1− pc(d). In fa
t we know that if the 
ondition (9)is satis�ed,

Λ(0) < 1 − pc(d) ⇐⇒ ∃v , ν(v) > 0 ⇐⇒ ∀v , ν(v) > 0 .Thus, the impli
ation
Λ(0) ≥ 1 − pc(d) =⇒ φ̃Ω = 0is trivial. We suppose that Λ(0) < 1 − pc(d). Sin
e ν satis�es the weak triangle inequality, thefun
tion v 7→ ν(v) is 
ontinuous, and so as soon as Λ(0) < 1 − pc(d) and (9) is satis�ed, we have

νmin = min
S1

ν > 0 .If P is a polyhedral set, then Hd−1((∂P ∩ Ω) r (∂∗P ∩ Ω)) = 0. We then obtain that
φ̃Ω ≥ νmin × inf{Hd−1(S ∩ Ω) | S hypersurfa
e that 
uts Γ1 from Γ2 in Ω , d(S,Γ1 ∪ Γ2) > 0} .We re
all that the hypersurfa
e S 
uts Γ1 from Γ2 in Ω if S interse
ts any 
ontinuous path from apoint in Γ1 to a point in Γ2 that is in
luded in Ω. We 
onsider su
h a hypersurfa
e S ⊂ R

d, and wewant to bound from below the quantity Hd−1(S ∩ Ω) independently on S.The idea of the proof is the following. We 
onsider a path from Γ1 to Γ2 in Ω. We 
onstru
t atubular neighbourhood of this path of diameter depending only on the domain and not on the pathitself that lies in Ω ex
ept at its endpoints. Then we prove that it is not very deformed 
omparedto a straight tube. Sin
e S has to 
ut this tube, we obtain the desired lower bound Hd−1(S ∩ Ω).For i = 1, 2, we 
an �nd xi in Γi and ri > 0 su
h that Γ ∩ B(xi, ri) ⊂ Γi and Γ ∩ B(xi, ri) isa C1 hypersurfa
e. We denote by vΩ(xi) the exterior normal unit ve
tor to Ω at xi, and by TΩ(xi)the hyperplane tangent to Γ at xi. Sin
e Γ is of 
lass C1 in a neighbourhood of xi and Ω is aLips
hitz domain, applying lemma 1, we know that for all θ > 0, there exists ε > 0 depending on
(Ω,Γ,Γ1,Γ2, x1, x2) su
h that for i = 1, 2 we have





Ω ∩B(xi, 2ε) is 
onne
ted ,
Γ ∩B(xi, 2ε) ⊂ V2(TΩ(xi), 2ε sin θ) ∩B(xi, 2ε) ,
Γ ∩B(xi, 2ε) ⊂ Γi .We �x θ small enough to have 2ε sin θ < ε/2. We de�ne
Ai = TΩ(xi) ∩B(xi, ε) and Di = cyl(Ai, ε) ,and then

Ω̂ = Ω ∪ D̊1 ∪ D̊2 ,where D̊i is the interior of Di for i = 1, 2. We de�ne
Xi = {z ∈ D̊i |xiz · vΩ(xi) > ε/2} ⊂ Ω̂ .35



5 POSITIVITY OF φ̃ΩThen Xi ⊂ Ω̂ r Ω. Ea
h path r from a point y1 ∈ X1 to a point y2 ∈ X2 
ontains a path r′ from apoint y′1 ∈ Γ1 to a point y′2 ∈ Γ2 su
h that r′ ⊂ Ω, thus S interse
ts r. We 
onsider the set
Vi = {z ∈ Xi | d2(z, ∂Xi) > ε/8} .Let ŷ1 ∈ V1, ŷ2 ∈ V2 su
h that d2(ŷi, ∂Xi) > ε/4 for i = 1, 2. Sin
e Ω̂ is obviously 
onne
ted by ar
,there exists a path r̂ from ŷ1 to ŷ2 in Ω̂. The path r̂ is 
ompa
t and Ω̂ is open, so δ = d2(r̂, ∂Ω̂) > 0.We thus 
an �nd a path r in
luded in V2(r̂,min(δ/2, ε/8)) whi
h is a C∞ submanifold of R

d ofdimension 1 and whi
h has one endpoint, denoted by y1, in V1, and the other one, denoted by y2,in V2.As we explained previously, d2(r, ∂Ω̂) > 0, so there exists a positive η1 su
h that V2(r, η1) ⊂ Ω̂.We 
an suppose that η1 < ε/16, to obtain that B(yi, η1) ⊂ Xi for i = 1, 2. For all z in r we denoteby Nr(z) the hyperplane orthogonal to r at z, and by Nη
r (z) the subset of Nr(z) 
omposed of thepoints of Nr(z) that are at distan
e smaller than or equal to η of z. The tubular neighbourhoodof r of radius η, denoted by tub(r, η), is the set of all the points z in R

d su
h that there exists ageodesi
 of length smaller than or equal to η from z that meets r orthogonally, i.e.,
tub(r, η) =

⋃

z∈r

Nη
r (z) ,(see for example [17℄). We have a pi
ture of this tubular neighbourhood on �gure 8. Sin
e r is a
ompa
t C∞ submanifold of R

d whi
h is 
omplete, there exists a η2 > 0 small enough su
h that forall η ≤ η2, the tubular neighbourhood of r of diameter η is well de�ned by a C∞-di�eomorphism(see for example [3℄, Theorem 2.7.12, or [17℄), i.e., there exists a C∞-di�eomorphism ψ from
Nrη = {(z, v) , z ∈ r , v ∈ Nη

r (z)}to tub(r, η). We 
hoose a positive η smaller than min(η1, η2). We stress the fa
t that this η dependson (Ω,Γ,Γ1,Γ2) but not on S.Let (I, h) be a parametrisation of 
lass C∞ of r, i.e., I = [a, b] is a 
losed interval of R,
h : I → r is a C∞-di�eomorphism whi
h is an immersion. Let z be in r, and uz = h−1(z) ∈ I.The ve
tor h′(uz) is tangent to r at z, and there exists some ve
tors (e2(z), ..., ed(z)) su
h that
(h′(uz), e2(z), ..., ed(z)) is a dire
t basis of R

d. There exists a neighbourhood Uz of uz in I su
hthat for all u ∈ Uz, (h′(u), e2(z), ..., ed(z)) is still a basis of R
d, sin
e h′ is 
ontinuous. Indeedthe 
ondition for a family of ve
tors (α1, ..., αd) to be a basis of R

d is an open 
ondition, be-
ause it 
orresponds to det((α1, ..., αd)) > 0 where det is the determinant of the matrix. Weapply the Gram-S
hmidt pro
ess to the basis (h′(u), e2(z), ..., ed(z)) to obtain a dire
t orthonor-mal basis (h′(u)/‖h′(u)‖, v2(u, z), ..., vd(u, z)) of R
d for all u ∈ Uz, su
h that the dependen
eof (h′(u)/‖h′(u)‖, v2(u, z), ..., vd(u, z)) on u ∈ Uz is of 
lass C∞. We remark that the family

(v2(u, z), ..., vd(u, z)) is a dire
t orthonormal basis of Nr(h(u)) for all u ∈ Uz. We have asso
i-ated with ea
h z ∈ r a neighbourhood Uz of uz = h−1(z) in I, we 
an obviously suppose that
Uz is an interval whi
h is open in I. Sin
e (Uz, z ∈ r) is a 
overing of the 
ompa
t I, we 
anextra
t a �nite 
overing (Uj , j = 1, ..., n) from it. We 
an 
hoose this family to be minimal, i.e.,su
h that (Uj , j ∈ {1, ..., n} r j0) is not a 
overing of I for any j0 ∈ {1, ..., n}. We then reorder the
(Uj , j = 1, ..., n) (keeping the same notation) by the in
reasing order of their left end point in I ⊂ R.Sin
e the family (Uj) is minimal, ea
h point of I belongs either to a unique set Uj, j ∈ {1, ..., n}, orto exa
tly two sets Uj and Uj+1 for j ∈ {1, ..., n−1}. We denote by aj the middle of the non-empty36



5 POSITIVITY OF φ̃Ω
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Figure 8: Constru
tion of tub(r, η).
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5 POSITIVITY OF φ̃Ωopen interval Uj ∩ Uj+1 for j ∈ {1, ..., n − 1}, and by (h′(u)/‖h′(u)‖, v2(u, j), ..., vd(u, j)) the dire
torthonormal basis de�ned previously on Uj for j ∈ {1, ..., n}. We want to 
onstru
t a family ofdire
t orthonormal basis (h′(u)/‖h′(u)‖, f2(u), ..., fd(u)) of R
d su
h that the fun
tion:

ψ : u ∈ I 7→ (h′(u)/‖h′(u)‖, f2(u), ..., fd(u))is of 
lass C∞. We have to de�ne a 
on
atenation of the (h′(u)/‖h′(u)‖, v2(u, j), ..., vd(u, j)) overthe di�erent sets Uj . For u ∈ [a, a1], we de�ne
ψ(u) = (h′(u)/‖h′(u)‖, v2(u, 1), ..., vd(u, 1)) .Thus the fun
tion ψ de�ned on [a, a1] is of 
lass C∞. On U1∩U2 we have de�ned two di�erent dire
torthonormal basis (h′(u)/‖h′(u)‖, v2(u, j), ..., vd(u, j)) for j = 1 and j = 2 that have the same �rstve
tor. Let φ1 : U1∩U2 → SOd−1(R) be the fun
tion of 
lass C∞ that asso
iates to ea
h u ∈ U1∩U2the matrix of 
hange of basis from (v2(u, 2), ..., vd(u, 2)) to (v2(u, 1), ..., vd(u, 1)).If b1 is the right end point of U1∩U2, then φ1 is in parti
ular de�ned on [a1, b1[. Let g1 be a C∞-di�eomorphism from [a1, b1[ to [a1,∞[ whi
h is stri
tly in
reasing (so g1(a1) = a1) and su
h that allthe derivatives of g1 at a1 are null. Then φ1 ◦ g−1

1 is de�ned on [a1,+∞[ and all its derivatives at a1are equal to those of φ1. We then transform all the orthonormal basis (v2(u, j), ..., vd(u, j)) of R
d−1for j ≥ 2 and u ≥ a1 by the 
hange of basis φ1 ◦ g−1

1 , and we denote the new dire
t orthonormalbasis of R
d−1 obtained this way by (ṽ2(u, j), ..., ṽd(u, j)). We then de�ne ψ on ]a1, a2] by

ψ(u) = (h′(u)/‖h′(u)‖, ṽ2(u, 2), ..., ṽd(u, 2)) ,and we remark that ψ(u) still de�nes a dire
t orthonormal basis of R
d. The fun
tion ψ is of 
lass

C∞ on [a, a2], in
luding at a1. We iterate this pro
ess with the family of basis
(h′(u)/‖h′(u)‖, ṽ2(u, j), ..., ṽd(u, j)) , j = 2, ..., nat a2, et
..., �nitely many times sin
e we work with a �nite 
overing of I. We obtain in the end afun
tion

ψ ◦ h−1 : r → SOd−1(R)whi
h is of 
lass C∞, and for all z ∈ r, the set of the points of R
d that have for �rst 
oordinate 0 inthe basis ψ ◦ h−1(z) is exa
tly the hyperplane Nr(z).For ea
h t = (t2, ..., td−1) ∈ {z ∈ R

d−1 | d(z, 0) ≤ η}, the set
rt = {y ∈ R

d | ∃z ∈ r , y has 
oordinates (0, t2, ..., td−1) in the basis ψ ◦ h−1(z)}is a 
ontinuous path (even of 
lass C∞) from a point in X1 to a point in X2, therefore
rt ∩ S ∩ Ω 6= ∅ .Moreover, sin
e d(S,Γ1 ∪ Γ2) > 0, we obtain that
rt ∩ S ∩ Ω 6= ∅ . (10)For ea
h y ∈ tub(r, η), there exists a unique zy ∈ r su
h that y ∈ Nr(zy), so we 
an asso
iate to yits 
oordinates (0, t2(y), ..., td(y)) in the basis ψ ◦h−1(zy). We de�ne the proje
tion p of tub(r, η) on

Nη
r (y1) that asso
iates to ea
h y in tub(r, η) the point of 
oordinate (0, t2(y), ..., td(y)) in the basis38
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