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Abstract: We consider the standard first passage percolation model in the rescaled graph Zd/n
for d > 2, and a domain Q of boundary I' in R% Let I'! and I'? be two disjoint open subsets
of I', representing the parts of I' through which some water can enter and escape from 2. We
investigate the asymptotic behaviour of the flow ¢, through a discrete version 2, of €2 between
the corresponding discrete sets I'L and I'2. We prove that under some conditions on the regularity
of the domain and on the law of the capacity of the edges, ¢, converges almost surely towards
a constant ¢gq, which is the solution of a continuous non-random min-cut problem. Moreover, we
give a necessary and sufficient condition on the law of the capacity of the edges to ensure that ¢q > 0.
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1 First definitions and main result

We use many notations introduced in [I8] and [T9]. Let d > 2. We consider the graph (Z% E%)
having for vertices Z¢ = 7Z%/n and for edges EZ, the set of pairs of nearest neighbours for the
standard L' norm. With each edge e in E¢ we associate a random variable t(e) with values in
R*. We suppose that the family (t(e),e € E%) is independent and identically distributed, with a
common law A: this is the standard model of first passage percolation on the graph (Z%,EZ). We
interpret t(e) as the capacity of the edge e; it means that ¢(e) is the maximal amount of fluid that
can go through the edge e per unit of time.

We consider an open bounded connected subset Q of R? such that the boundary ' = 9 of Q
is piecewise of class C! (in particular T' has finite area: H% (') < o). It means that I" is included
in the union of a finite number of hypersurfaces of class C', i.e., in the union of a finite number of
C' submanifolds of R? of codimension 1. Let I'', T2 be two disjoint subsets of I" that are open in T
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1 FIRST DEFINITIONS AND MAIN RESULT

We want to define the maximal flow from I'! to I'? through © for the capacities (t(e),e € EZ). We
consider a discrete version (Q,, Ty, TL,T2) of (Q,T',I't, T'?) defined by:

Qp = {2 €78 |do(x,Q) < 1/n},
I ={zeQ|ye,, (x,y) c EL},
' = {x €Ty |doo(z,T%) < 1/n, doo(z,I37%) >1/n} fori=1,2,

where d is the L*°-distance, the notation (z,y) corresponds to the edge of endpoints x and y (see
figure []).

Figure 1: Domain (2.

We shall study the maximal flow from T'} to T'2 in Q,. Let us define properly the maximal
flow ¢(F} — Fy in C) from Fy to I in C, for C C R (or by commodity the corresponding graph
C NZ%n). We will say that an edge e = (z,y) belongs to a subset A of R?, which we denote by
e € A, if the interior of the segment joining x to y is included in A. We define Efl as the set of all the
oriented edges, i.e., an element € in Eg is an ordered pair of vertices which are nearest neighbours.
We denote an element ¢ € E2 by ((x,y)), where z, y € ZZ are the endpoints of € and the edge is
oriented from x towards y. We consider the set S of all pairs of functions (g,0), with g : E¢ — R+
and 0 : B¢ — E< such that o((z,y)) € {{(z, 1)), ((y, x))}, satisfying:

e for each edge e in C we have
0 < gle) < te),

e for each vertex v in C ~\ (F} U Fy) we have

S g = 9(e).

e€C:o(e)=((v,)) e€C': o(e)=((-v))

where the notation o(e) = ((v,.)) (respectively o(e) = ({.,v))) means that there exists y € Z¢ such
that e = (v,y) and o(e) = ((v,y)) (respectively o(e) = ((y,v))). A couple (g,0) € S is a possible
stream in C from F} to Fy: g(e) is the amount of fluid that goes through the edge e, and o(e) gives
the direction in which the fluid goes through e. The two conditions on (g,0) express only the fact
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that the amount of fluid that can go through an edge is bounded by its capacity, and that there is
no loss of fluid in the graph. With each possible stream we associate the corresponding flow

flow(g,0) = > 9 V) LoD =((uw)y — 9 VD) Lo(uvh)=((v,u) -
u€Fy,v¢C: (u,v)€EL

This is the amount of fluid that crosses C' from Fj to Fj if the fluid respects the stream (g, 0). The
maximal flow through C from Fj to F5 is the supremum of this quantity over all possible choices of
streams

¢(Fy — Fy in C) = sup{flow(g,0) | (g,0) € S}.

We denote by
n = 6T, -T2 inQ,)

the maximal flow from T’} to I'2 in Q,. We will investigate the asymptotic behaviour of ¢, /n?!
when n goes to infinity. More precisely, we will show that (¢,/n?1),>1 converges towards a
constant ¢q (depending on 2, I'', T2, A and d) when n goes to infinity, and that this constant is
strictly positive if and only if A(0) < 1 — p.(d), where p.(d) is the critical parameter for the bond
percolation on Z?. The description of ¢q will be given in section @l Here we state the precise
theorem:

Theorem 1. We suppose that 2 is a Lipschitz domain and that T is included in the union of a
finite number of oriented hypersurfaces Sy, ..., S, of class C' which are transverse to each other. We
also suppose that T't and T'? are open in T, that their relative boundaries OrI'' and OrI'? in T have
null H¥~1 measure, and that d(T*,T?) > 0. We suppose that the law A of the capacity of an edge
admits an exponential moment:

30 >0 / ePTdA(z) < +o0.
R+

Then there exists a finite constant ¢q > 0 such that

Moreover, this equivalence holds:
po >0 <= A0) <1-—pd).

Remark 1. In the two companion papers [7] and [8], we prove in fact that the lower large deviations
of ¢n/n%"! below ¢q are of surface order, and that the upper large deviations of ¢, /n%~! above ¢q
are of volume order (see section where these results are presented).

2 Computation of ¢q

2.1 Geometric notations

We start with some geometric definitions. For a subset X of R% we denote by H*(X) the s-
dimensional Hausdorff measure of X (we will use s =d — 1 and s = d — 2). The r-neighbourhood
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Vi(X,r) of X for the distance d;, that can be the Euclidean distance if i = 2 or the L*>-distance if
1 = oo, is defined by
Vi(X,r) = {y e RY|di(y, X) <7}

If X is a subset of R? included in an hyperplane of R? and of codimension 1 (for example a non
degenerate hyperrectangle), we denote by hyp(X) the hyperplane spanned by X, and we denote by
cyl(X, h) the cylinder of basis X and of height 2h defined by

eyl(X,h) = {+tv|z € X, te[—hh]},

where v is one of the two unit vectors orthogonal to hyp(X) (see figure B). For z € R%, r > 0

Figure 2: Cylinder cyl(X,h).

and a unit vector v, we denote by B(x,r) the closed ball centered at z of radius r, by disc(zx,r,v)
the closed disc centered at x of radius r and normal vector v, and by hyp(z,v) the hyperplane
containing z and orthogonal to v. We denote by oy the volume of a unit ball in R?, and ag_; the
H4! measure of a unit disc.

2.2 Flow in a cylinder

Here are some particular definitions of flows through a box. Let A be a non degenerate hyperrect-
angle, i.e., a box of dimension d — 1 in R%. All hyperrectangles will be supposed to be closed in R¢.
We denote by v one of the two unit vectors orthogonal to hyp(A). For h a positive real number, we
consider the cylinder cyl(A,h). The set cyl(A, h) \ hyp(A) has two connected components, which
we denote by Ci(A,h) and Ca(A, h). For i = 1,2, let A" be the set of the points in C;(A,h) NZ&
which have a nearest neighbour in Z% \ cyl(4, h):

Al = {z e Ci(A,h) NZE| 3y € ZE \ cyl(A, h), (z,y) € EL}.
Let T'(A, h) (respectively B(A, h)) be the top (respectively the bottom) of cyl(A, h), i.e.,
T(A,h) = {z € cyl(A,h)| 3y ¢ cyl(A,h), (z,y) € EL and (x,y) intersects A + hv}
and

B(A,h) = {z € cyl(A,h) |3y ¢ cyl(A,h), (z,y) € B¢ and (z,y) intersects A — hv} .
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For a given realisation (t(e),e € EZ) we define the variable 7(A, h) = 7(cyl(A, h),v) by
(A, h) = T(cyl(A,h),v) = ¢(A} — AL in cyl(A,h)),
and the variable ¢(A, h) = ¢(cyl(A, h),v) by
¢(A,h) = ¢(cyl(A,h),v) = ¢(B(A,h) — T(A,h) in cyl(A,h)),

where ¢(Fy — Fy in C) is the maximal flow from Fy to Fy in C, for C € R? (or by commodity the
corresponding graph C'NZ%/n) defined previously. The dependence in n is implicit here, in fact we
can also write 7,(A4,h) and ¢, (A, h) if we want to emphasize this dependence on the mesh of the
graph.

2.3 Max-flow min-cut theorem

The maximal flow ¢(F; — F in C) can be expressed differently thanks to the max-flow min-cut
theorem (see [5]). We need some definitions to state this result. A path on the graph ZZ from wvg
to vy, is a sequence (vg, €1,V1, ..., €m, Uy ) Of vertices vy, ..., vy, alternating with edges e, ..., e, such
that v;—1 and v; are neighbours in the graph, joined by the edge e;, for i in {1,...,m}. A set E of
edges in C'is said to cut F} from F5 in C' if there is no path from Fj to F5 in C' . E. We call E an
(Fy, Fy)-cut if E cuts Fy from Fy in C and if no proper subset of E does. With each set E of edges
we associate its capacity which is the variable

The max-flow min-cut theorem states that
¢(F1 — Fyin C) = min{ V(E) | E is a (Fy, Fy)-cut }.

In fact, as we will see in section 23] ¢q is a continuous equivalent of the discrete min-cut.

2.4 Definition of v

The asymptotic behaviour of the rescaled expectation of 7,,(A, h) for large n is well known, thanks
to the almost subadditivity of this variable. We recall the following result:

Theorem 2. We suppose that

/ rdA(z) < o0.
[0,4-00[

Then for each unit vector v there exists a constant v(d, A,v) = v(v) (the dependence on d and A is
implicit) such that for every non degenerate hyperrectangle A orthogonal to v and for every strictly
positive constant h, we have
Elr.(A, h
lim Elr(dh)] v(v).
n— 00 nd—lHd—l(A)
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For a proof of this proposition, see [25]. We emphasize the fact that the limit depends on the
direction of v, but not on A nor on the hyperrectangle A itself.

We recall some geometric properties of the map v : v € S41 — v(v), under the only condition
on A that E(t(e)) < oo. They have been stated in the section 4.4 of [25]. There exists a unit vector
v such that v(vg) = 0 if and only if for all unit vector v, v(v) = 0, and it happens if and only
if A({0}) > 1 — p.(d). This property has been proved by Zhang in [27]. Moreover, v satisfies the
weak triangle inequality, i.e., if (ABC) is a non degenerate triangle in R and v4, vp and vo are
the exterior normal unit vectors to the sides [BC|, [AC], [AB] in the plane spanned by A, B, C,
then

HY([AB))v(ve) < HH([AC)v(vp) +H ([BO])v(va) -
This implies that the homogeneous extension vy of v to R?, defined by 14(0) = 0 and for all w in
R4,
w(w) = |wlav(w/wlz),
is a convex function; in particular, since v is finite, it is continuous on R?. We denote by vmin
(respectively vpay) the infimum (respectively supremum) of v on S9!,

2.5 Continuous min-cut

We give here a definition of ¢q and of another constant g?b?z in terms of the map v. For a subset F
of R%, we define the perimeter of F in Q by

PIF.Q) = sup{ /F div f(2)dC4a), f € 630(9,3(0,1))} ,

where C2°(£2, B(0,1)) is the set of the functions of class C* from R? to B(0,1), the ball centered at
0 and of radius 1 in R%, having a compact support included in €, and div is the usual divergence
operator. The perimeter P(F) of F is defined as P(F,R%). We denote by F the boundary of F,
and by 0*F the reduced boundary of F'. At any point x of 0*F, the set F' admits a unit exterior
normal vector vp(x) at z in a measure theoretic sense (for definitions see for example [9] section
13). For all F C R? of finite perimeter in 2, we define

= v(vp(x =1y v(vrno) (@ =1y
Tl = [ vy @ s [ st )i

- / v(va(z))dH (z).
IINd* (NF)
If P(F,§) = +o0, we define Zo(F) = +o00. Finally, we define
pa = inf{Zo(F)|F Cc RY} = inf{Zq(F)|F c Q}.

In the case where OF is C!, Zo(F) has the simpler following expression:

= v(vp(x =1y v(v x =1y
ToF) = [ ver@an @ [ @) @

d—1
+ /F gy @),
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OFNQYUITNIAFNQ)) U NIQ N F))

Figure 3: The set (OF NQ)U(T2NI(FNQ)U T NIQ N F)).

The localization of the set along which the previous integrals are done is illustrated in figure (3]
When a hypersurface S is piecewise of class C!, we say that S is transverse to I if for all x € ST,
the normal unit vectors to S and T" at z are not collinear; if the normal vector to S (respectively
to I') at x is not well defined, this property must be satisfied by all the vectors which are limits of
normal unit vectors to S (respectively I') at y € S (respectively y € T') when we send y to x - there
is at most a finite number of such limits. We say that a subset P of R? is polyhedral if its boundary
OP is included in the union of a finite number of hyperplanes. For each point z of such a set P
which is on the interior of one face of P, we denote by vp(z) the exterior unit vector orthogonal

to P at z. For A C R?, we denote by A the interior of A. We define % by

PCcRYTICc P, T2CRIP }

bq = inf{ I (P)
P is polyhedral , P is transverse to I

Notice that if P is a set such that
I'' c P and ﬁCRd\P,
then
To(P) = / v(wp(2)dH (z).
oOPNQ

See figure M to have an example of such a polyhedral set P.

The definitions of the constants ¢q and ¢q are not very intuitive. We propose to define the
notion of a continuous cutset to have a better understanding of these constants. We say that S ¢ R?
cuts T'! from I'? in Q if every continuous path from I'! to I'? in Q intersects S. In fact, if P is a
polyhedral set of R? such that

I''c P and T2 c RI P,

then 9P N Q is a continuous cutset from T'! to I'? in Q. Since v(v) is the average amount of fluid
that can cross a hypersurface of area one in the direction v per unit of time, it can be interpreted
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1-\2

Figure 4: A polyhedral set P as in the definition of %

as the capacity of a unitary hypersurface. Thus Zo(P) can be interpreted as the capacity of the
continuous cutset 9P N €. The constant ;5?2 is the solution of a min cut problem, because it is equal
to the infimum of the capacity of a continuous cutset that satisfies some specific properties. We
can define two other constants, that are solutions of possibly more intuitive min cuts problems. If
S is a hypersurface which is piecewise of class C!, we denote by vs(x) one of the two normal unit
vectors to S at x for every point & at which S is regular. The H% ! measure of the points at which
S is not regular is null. We define

S cuts T from I'2 in O

S hypersurface piecewise of class C! }

(5;2 = inf {/Smﬂ V(vs(x))de_l(m)
and

S polyhedral hypersurface
S cuts I'! from I'? in O '

¢ = inf {/Smﬁu(vs(x))del(:U)

We remark that by definition,

pa < da < a.
We claim that ¢q < Q/Sg\) Let S be a hypersurface which is piecewise of class C!, which cuts I'' from
I'? in Q, and such that

/ 7y(v3(x))d7'ld_1(x) < (gg\z +n
SNQ

for some positive 7. Let F' be the set of the points of  \. S that can be joined to a point of I'' by
a continuous path. Then

OF N U NIQNF))H)U(?NaFNQ) c SNAQ.

Thus F' is of finite perimeter in €2, and Zq(F') satisfies

To(F) < | vus@)an @) < o +n.

8
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Thus we have proved that
da < ¢ < da < dq.

3 State of the art

3.1 Existing laws of large numbers

Only in this section, we consider the standard first passage percolation model on the graph (Z?,E%)
instead of the rescaled graph (Z<,E4). We present here some laws of large numbers that have been
proved about maximal flows.

Using a subadditive argument and concentration inequalities, Rossignol and Théret have proved
in [25] that 7(nA, h(n)) satisfies a law of large numbers:

Theorem 3 (Rossignol and Théret). We suppose that

/ xdA(z) < oo.
(0,00

For every unit vector v, for every non degenerate hyperrectangle A orthogonal to v, for every height
function h : N — R* satisfying lim,, . h(n) = +o00, we have

lim T7(nA, h(n))

_ o7l
A ST a) v(v) in L.

Mortreover, if the origin of the graph belongs to A, or if

/ pita dA(z) < o0,
[0,00]

then (. h(n))
. T(nA h(n
nh—{gom = V(’U) a.s.
Kesten, Zhang, Rossignol and Théret have studied the maximal flow between the top and the
bottom of straight cylinders. Let us denote by D(k,m) the cylinder

d—1

D(k,m) = [0,k x [0,m],
i=1

where k = (ki,...,kg_1) € R4~ We denote by ¢(k,m) the maximal flow in D(k,m) from its top
H?;ll [0, k;] x {m} to its bottom H?;ll [0, k;] x {0}. Kesten proved in [19] the following result:

Theorem 4 (Kesten). Let d = 3. We suppose that A(0) < pg for some fixed py > 1/27, and that
Jy >0 / e dA(z) < 0.
[0,+00]

If m = m(k) goes to infinity with k1 > ko in such a way that

36>0 lim k" logm(k) = 0,

kl 2]?2%00
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then
ok, m)

. . . 1
klzligrloo i v((0,0,1)) a.s. and in L.

Moreover, if A(0) > 1—p.(d), where p.(d) is the critical parameter for the standard bond percolation

model on Z¢, and if
/ 2% dA(z) < oo,
[0,400[

there exists a constant C = C(F) < oo such that for all m = m(k) that goes to infinity with ki > ko
and satisfies

lim inf m(k) > C,

k1 Zkgﬂoo kl 2

for all k1 > ko sufficiently large, we have
o(k,m) =0 a.s.
Zhang improved this result in [28] where he proved the following theorem:

Theorem 5 (Zhang). Let d > 2. We suppose that
3y >0 / e dA(z) < .
[0,+00]

Then for all m = m(k) that goes to infinity when all the k;, i = 1,...,d — 1 go to infinity in such a
way that
360 €]0, 1] logm(k) < max 1]9175,

we have 5
lim ¢(d ,1m) = v((0,...,0,1)) a.s. and in L' .
k1,....kg_1—00 sz_l k;

Moreover, this limit is positive if and only if A(0) < 1 — p.(d).

To show this theorem, Zhang obtains first an important control on the number of edges in a
minimal cutset. Finally, Rossignol and Théret improved Zhang’s result in [25] in the particular case
where the dimensions of the basis of the straight cylinder go to infinity all at the same speed. They
obtain the following result:

Theorem 6 (Rossignol and Théret). We suppose that

/ rdA(z) < oo.
[0,00]

For every straight hyperrectangle A = Hf;ll [0, a;] x {0} with a; > 0 for all i, for every height function

h:N — R* satisfying lim, .o h(n) = +o00 and lim,, .o log h(n)/n%"! =0, we have

L O(nA, hn)

= ..,0,1 .S. in LY.
noe THE1(nA) v((0,...,0,1)) a.s. and in

10
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In dimension two, more results are known. We present here two of them. Rossignol and Théret
have studied in [24] the maximal flow from the top to the bottom of a tilted cylinder in dimension
two, and they have proved the following theorem (Corollary 2.10 in [24]):

Theorem 7 (Rossignol and Théret). Let v be a unit vector, A a non degenerate line-segment orthog-
onal to v, h : N — RT a height function satisfying lim, .., h(n) = +00 and lim,,_. log h(n)/n = 0.
We suppose that there exists o € [0,7/2] such that

lim 2h(n) = tanao
n—oo HY(nA) ’
Then, if
/ xdA(z) < o0,
[0,00[
we have

oy SR _ e {1

noo HY(nA) v

Moreover, if the origin of the graph is the middle of A, or if

v satisfies v - v > cos a} in L.

/ 22 dA(z) < oo,
(0,00

then we have

i GADm) L (00)
R e R b

/ - /
v satisfies v - v > cos a} a.s.

Garet studied in [I5] the maximal flow o(A) between a convex bounded set A and infinity in the
case d = 2. By an extension of the max flow - min cut theorem to non finite graphs, Garet proves
in [I5] that this maximal flow is equal to the minimal capacity of a set of edges that cuts all paths
from A to infinity. Let A be the boundary of A, and 0* A the set of the points © € JA at which
A admits a unique exterior normal unit vector v4(z) in a measure theoretic sense (see [9], section
13, for a precise definition). If A is a convex set, the set 9*A is also equal to the set of the points
x € 0A at which A admits a unique exterior normal vector in the classical sense, and this vector is
va(x). Garet proved the following theorem:

Theorem 8 (Garet). Let d = 2. We suppose that A(0) < 1 — p.(2) = 1/2 and that
3y >0 / e dA(z) < .
[0,4-00]

Then for all conver bounded set A containing 0 in its interior, we have

lim o(nA)

n—o00 n

= / v(wa(z))dH (z) = Z(A) > 0 a.s.
o0*A
Moreover, for all € > 0, there exist constants Cy, Cy > 0 depending on € and A such that

J

Vn >0

]l —e, 1 +¢[| < Crexp(—Can).

11
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Nevertheless, a law of large numbers for the maximal flow from the top to the bottom of a tilted
cylinder for d > 3 was not proved yet. In fact, the lack of symmetry of the graph induced by the
slope of the box is a major issue to extend the existing results concerning straight cylinders to tilted
cylinders. The theorem of Garet was not extended to dimension d > 3 either. Theorem [ applies
to the maximal flow from the top to the bottom of a tilted cylinder. Thus it is a generalisation
of the laws of large numbers of Kesten, Zhang, Rossignol and Théret for the variable ¢ in straight
cylinders, in the particular case where all the dimensions of the cylinder go to infinity at the same
speed (or, equivalently, the cylinder is fixed and the mesh of the graph go to zero isotropically).
Moreover, it gives a hint of what could be a generalisation of the result of Garet in higher dimension,
all the more since the expression of the constant ¢q is a reminiscent of the value of the limit in
Garet’s Theorem: the capacity Zq of a continuous cutset is exactly the same as the one defined by
Garet in [I5] in dimension two, except that we consider a maximal flow through a bounded domain,
so our capacity is adapted to deal with specific boundary conditions.

From now on, we work in the rescaled graph (Z<4, E%).

3.2 Large deviations for ¢,

We present here the two existing results concerning ¢,,. We consider an open bounded connected
subset © of R?, whose boundary T is piecewise of class C!, and two disjoint open subsets I'! and
I'? of . The first result states that the lower large deviations below ¢q are of surface order, and is
proved by the authors in [7]:

Theorem 9. If the law A of the capacity of an edge admits an exponential moment:
30 >0 / eTdA(z) < +o0,
R+
and if A(0) < 1 —p.(d), then for all X < ¢q,

1
limsup -1 lOgP[¢n < )\ndil] < 0.
n

n—oo

The second result states that the upper large deviations of ¢,, above gfb\g/) are of volume order and
is proved by the authors in [§]:

Theorem 10. We suppose that d(T'',T2?) > 0. If the law A of the capacity of an edge admits an
exponential moment:

30 > 0 / " dA(z) < 400,
R+

then for all X\ > 55?2,
1
lim sup — log P[¢,, > a1 < 0.
n

n—oo
By a simple Borel-Cantelli lemma, these results imply that if A admits an exponential moment
and if d(T'',T2) > 0, then
Pn

oo < liminf On < limsup — < (Z{z

n—oo n n—oo N

12
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Notice here that Theorem [@ allows us to obtain the first inequality only under the additional
hypothesis that A(0) < 1 — p.(d), however if A(0) > 1 — p.(d) we know that v(v) = 0 for all v, so
¢ = 0 and the first inequality remains valid. -

Thus, to prove Theorem [I it remains to prove that ¢q = ¢q, and to study the positivity of
¢q. The equality ¢ = ¢q is a consequence of a polyhedral approximation of sets having finite
perimeter that will be done in section . The positivity of ¢q is proved in section Bl using tools of
differential geometry like tubular neighbourhood of paths. These two results are proved by purely
geometrical studies. Since the probabilistic part of the proof of Theorem [Mis contained in Theorems
and [I0] we propose a sketch of the proofs of these two theorems in sections B.2.1] and to help
the understanding of the law of large numbers proved in this paper.

Before these two sketches of proofs, we would like to make two remarks. The first one is that the
large deviations that are obtained in Theorem [@ and [[0] are of the relevant order. Indeed, if all the
edges in €2, have a capacity which is abnormally big, then the maximal flow ¢,, will be abnormally
big too. The probability for these edges to have an abnormally large capacity is of order exp —Cn?
for a constant C', because the number of edges in €, is C'n? for a constant C’. On the opposite, if
all the edges in a flat layer that separates '} from I'2 in €, have abnormally small capacity, then
¢n will be abnormally small. Since the cardinality of such a set of edges is D'n?"! for a constant
D', the probability of this event is of order exp —Dn®~! for a constant D.

The second remark we would like to do is that the condition d(I'!,T'?) > 0 is relevant in Theorem
M0 First, without this condition, we cannot be sure that there exists a polyhedral set P as in
the definition of ¢q, and thus the polyhedral approximation (see section M) cannot be performed.
Moreover, if d(I'!,I'2) = 0, there exists a set of edges of constant cardinality (not depending on n)
that contains paths from I'} to I'2 through ©,, for all n along the common boundary of I'! and I'?
and so it may be sufficient for these edges to have a huge capacity to obtain that ¢, is abnormally
big too. Thus, we cannot hope to obtain upper large deviations of volume order (see [26] for a
counter-example). However, we do not know if this condition is essential for Theorem [ to hold.

3.2.1 Lower large deviations

To prove Theorem [, we have to study the probability

P |6 < (60 — e)n"! (1)
for a positive €. The proof is divided in three steps.

First step: We consider a set of edges &, that cuts '} from I'2 in €,,, of minimal capacity (so
¢n = V(&,)) and having the minimal number of edges among those cutsets. We see it as the (edge)
boundary of a set F,, which is included in 2. Zhang’s estimate of the number of edges in a minimal
cutset (Theorem 1 in [28]) states that with high probability, the perimeter P(E,,Q) of E, in Q is
smaller than a constant 5. Thus, E, belongs to the set

Cs ={F CQ|FCQ, P(F,Q)<p}.
We endow Cg with the topology L' associated to the following distance d:

d(F\, F) = LYFAR),

13



3.2 Large deviations for ¢, 3 STATE OF THE ART

where £ is the d-dimensional Lebesgue measure. For this topology, the set Cg is compact. Thus,
if we associate to each set F' in Cg a positive constant e, and if we denote by V(F,eF) the neigh-
bourhood of F' of radius ep for the distance d defined above, the collection of these neighbourhoods
is an open covering of Cg, and thus by compactness of Cg we can extract a finite covering:

N
ARy, Py CsC | JV(Fier).

i=1

If we find an upper bound on the following probability:
P |:¢n < (¢ —e)n?t and d(E,,F) < ep (2)
for each F'in Cg and a corresponding e, then we will obtain an upper bound on the probability (II).

Second step: We consider a fixed set F' in Cg, and we want to evaluate the probability (2]).
So we suppose that F, is close to F' for the distance d, we denote it by E,, ~ F to simplify the
notations. We skip here all the problems of boundary conditions that arise in the proof of Theorem 3
we suppose that Zo(F') is equal to the integral of v along 0*F N Q.

We make a zoom along OF. Using the Vitali covering Theorem (Theorem [I2]in section ), we
know that there exists a finite number of disjoint balls B; = B(z;,r;) for j = 1,..., N with z; € OF
such that OF is "almost flat” in each ball, and the part of OF that is missing in the covering has
a very small area. We denote by v; the exterior normal unit vector of F' at z; (we suppose that it
exists). Here "almost flat” means that

(i) the capacity of OF inside B; is very close to the capacity of the flat disc hyp(z;,v;) N By, i.e.,

d—1 )
very close to ag_17j" v(v)) ;

(i) FNB; = B, where B} is the lower half part of the ball B; in the direction given by v;:

By ={ye€B;|(y—w;)- v; <0}.

Thanks to property (i) and the fact that only a very small area of F is missing in the covering, we

know that
N

Za(F) is close to Zad_lr;lflu(vj). (3)
j=1

On the other hand, thanks to property (ii), we obtain that
gnﬂBj ] FﬁBj ~ B]_

for the distance d. It means that in volume, F, is very similar to B]-_ inside B;, however there
might exist some thin but long strands in Bj that belongs to E, N (B; )¢ or to Ey N B;. We want
to compare V(€, N B;) with the maximal flow 7,(Dj,7) in a cylinder of basis D; = disc(z;, 7}, v;)
where r} is a little bit smaller than r;, and 7 is a very small height, so that the cylinder is included
in B; and is almost flat. To make this comparison, we have to cut the above-mentioned strands

14
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by adding edges to &,. We do it very carefully, in order to control the number of edges we add,
together with their capacity, and we obtain that

V(€N Bj) < 1,(Dj,7) + error, (4)

where error is a corrective term that is very small. Combining ([B) and (), since Zo(F') > ¢q, we
conclude that if ¢, < (¢pq — )n?! and E, ~ F, then there exists j € {1,..., '} such that

(D7) < (w(vy) —/2aq1ry 't

Third step: It remains to study the probability
Blra(D;,7) < (v(v)) — e/2ag_1r’nt .

In fact it has already been done by Rossignol and Théret in [25]. It is easy to compare 7,(Dj,)
with a sum of maximal flows through cylinders whose bases are hyperrectangles. Then, we can use
directly Theorem 3.9 in [25] that states that the lower large deviations of these maximal flows below
their limits are of surface order.

3.2.2 Upper large deviations
To prove Theorem [I0] we have to study the probability

e O (5)

for a positive €. First of all, we can check that % is finite. In fact, we have to construct a polyhedral
set P that satisfies all the conditions in the definition of ¢q. This is done with the help of techniques
very similar to some of those we will use in section @ to complete our polyhedral approximation, so
we will not explain these techniques here. The proof of theorem [I(lis divided in three steps.

First step: We consider a polyhedral set P as in the definition of (Zg/z such that Zg(P) is very
close to this constant. We want to construct sets of edges near P N € that cut T'} from I'Z in
Q,,. Because we took a discrete approximation of 2 from the outside, we need to enlarge a little €2,
because some flow might go from I'} to I'2 using paths that lies partly in €2, . Q. Thus we construct
a set ' which contains a small neighbourhood of Q (hence also €, for all n large enough), which
is transverse to P, and which is small enough to ensure that Zq/(P) is still very close to ¢q. To
construct this set, we cover 0€) with small cubes, by compactness we extract a finite subcover of
09, and finally we add the cubes of the subcover to Q to obtain €. We construct these cubes so
that their boundaries are transverse to P, and their diameters are uniformly smaller than a small
constant, so that €' is included in a neighbourhood of € as small as we need. Since OP is transverse
to I, if we take this constant small enough, we can control H4 (9P N (2 ~ Q)), and thus the
difference between Zg/ (P) and Zq(P).

Then we construct a family of Cn (where C' > 0) disjoint sets of edges that cut I'} from I'? in
Q,, and that lie near 9P. We consider the neighbourhood P’ of P inside €’ at distance smaller
than a tiny constant h, and we partition P’ \. P into slabs M’ (k) of width of order 1/n, so we have
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Cn such slabs which look like translates of 9P N Q' that are slightly deformed and thickened. We
prove that each path from '} to I'2 in €2, must contain at least one edge that lies in the set M’ (k)
for each k, i.e., each set M'(k) contains a cutset. Thus we have found a family of C'n disjoint cutsets.

Second step: We almost cover 0P N by a finite family of disjoint cylinders B;, j € J, whose
bases are hyperrectangles of sidelength [, that are orthogonal to OP, of height bigger than h, and
such that the part of 0P which is missing in this covering is very small. Thus, we obtain that

Zoy(P) s close to Z v(v)lt, (6)
JjeJ

where v; gives the direction towards which the cylinder B; is tilted (it is the unit vector which is
orthogonal to the face of 9P that cuts Bj).

We want to compare ¢, with the sum of the maximal flows ¢(B;,v;). For each j, let E; be a
set of edges that cuts the top from the bottom of B;. The set UjesE; does not cut '} from I'2 in
), in general, to create such a cutset we must add two sets of edges:

(i) a set of edges that covers the part of 9P N Q' that is missing in the covering by the cylinders

B;

(ii) a set of edges that glues together all the previous sets of edges (the sets E; and the set
described in (i)).

In fact, we have already constructed Cn possible sets of edges as in (i): the edges that lie in
M (k) \ (UjesBj) for k=1,...,Cn. We denote these sets by M (k). We can also find C'n (C’ > 0)
disjoint sets of edges that can be the glue described in (ii), we denote these sets by W(l) for
l=1,...,C'n. We do not provide a precise description of these sets. In fact, we can choose different
sets because we provide the glue more or less in the interior of the cylinders B;. Thus we obtain
that

Vke{l,...Cn} Vi€ {l,...C'n} | JE;UM(k)UW(I) cuts T}, from I'} in Q.

jed
We obtain that
< B;,v; i M (k i ).
O < > 0(Bj,vj)+  min V(M(k)+ _min V(WD) (7)

JjeJ
Combining (6l) and (), we see that if ¢, > (g/b?) +)n?1, one of the following events must happen:
(a) Fj€J ¢(Bjv;) > (v(vy) +e/2)1nd,
(b) Vk € {1,...,Cn} V(M(k)) > nni!,
(c) Vie{1,..,C'n} V(W) >yt

where 7 is a very small constant (depending on £ and ¢q).

Third step: it consists in taking care of the probability that the events (a), (b) or (c) happen.
The probability of (a) has already been studied in [26]: the upper large deviations of the variable ¢
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4 POLYHEDRAL APPROXIMATION

in a cylinder above v are of volume order. The events (b) and (c) are of the same type, and their

probability is of the form
Dn

d—1
P Z by > 1 , (8)
m=1

where (t,,)men is a family of i.i.d. variables of distribution function A, D is a constant, n is a
very small constant and an® ! is the cardinality of the family of variables we consider. If o <
nE[t;]71, and if the law A admits one exponential moment, the Cramér Theorem in R states that
the probability (§) decays exponentially fast with n¢. Note the role of the optimization over Dn
different probabilities to obtain the correct speed of decay. To complete the proof, it is enough to
control the cardinality of the sets M (k) and W(l) for each k, [. This can been done, using the
geometrical properties of OP (it is polyhedral and transverse to 9€)').

4 Polyhedral approximation : ¢g = %

We consider an open bounded domain © in R?. We denote its topological boundary by T' = 9.
Let also I'!, I'? be two disjoint subsets of I.

Hypothesis on : We suppose that €2 is a Lipschitz domain, i.e., its boundary I' can be locally
represented as the graph of a Lipschitz function defined on some open ball of R4, Moreover there
exists a finite number of oriented hypersurfaces Si,...,5, of class C' which are transverse to each
other and such that I' is included in their union S; U ---US,,.

This hypothesis is automatically satisfied when Q is a bounded open set with a C' boundary or
when € is a polyhedral domain. The Lipschitz condition can be expressed as follows: each point = of
I' = 92 has a neighbourhood U such that UNS is represented by the inequality z,, < f(x1, -+ ,Zp—1)
in some cartesian coordinate system where f is a function satisfying a Lipschitz condition. Such
domains are usually called Lipschitz domains in the literature. The boundary I' of a Lipschitz
domain is d — 1 rectifiable (in the terminology of Federer’s book [14]), so that its Minkowski content
is equal to H?~1(I"). In addition, a Lipschitz domain © is admissible (in the terminology of Ziemer’s
book [29]) and in particular H?~1(I' . 9*Q) = 0. Moreover, each point of I' is accessible from
through a rectifiable arc.

Hypothesis on I'',T'?: The sets I'', I'? are open subsets of I. The relative boundaries Op I'!,
Or T2 of T, T'? in T have null H%! measure. The distance between I'' and I'? is positive.

We recall that the relative topology of I is the topology induced on T' by the topology of R?. Hence
each of the sets I'!, I'? is the intersection of I' with an open set of RZ. For F a subset of { having
finite perimeter in §2, the capacity of F' is

To(F) = /Q v(op(y)) dH () + / v(op(y)) AH () + / v(var(y) AH(y).

NO*F 2No*F TNo*(QNF)

For all A C R% A is the closure of A, A its interior and A° = R% . A. We will prove the following
theorem:
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4 POLYHEDRAL APPROXIMATION

Theorem 11. Let F be a subset of Q) having finite perimeter. For any € > 0, there exists a
polyhedral set P whose boundary OP is transverse to I’ and such that

TTcp, TPcRINP, LYFAPNQ)) < ¢,
/ v(vp(z))dH¥H(z) = To(P) < To(F) +¢.
0* PN

First we notice that theorem [[I] implies that ¢q = %, and thus the convergence of ¢, (see
section [B.2)). Tt is obvious since ¢g < (/ﬁ?z (see section [23]), and theorem [[I] implies that ¢ > b

The main difficulty of the proof of theorem [l is to handle properly the approximation close
to I' in order to push back inside ) all the interfaces. The essential tools of the proof are the
Besicovitch differentiation theorem, the Vitali covering theorem and an approximation technique
due to De Giorgi. Let us summarise the global strategy.

Sketch of the proof: We fix v > 0. We cover 9*Q up to a set of H% ! measure less than v by
a finite collection of disjoint balls B(x;,7;), i € Iy U Iy U I3 U I4, centered on I', whose radii are
sufficiently small to ensure that the surface and volume estimates within the balls are controlled by
the factor 7. The indices of I; correspond to balls centered on I't N 9*(Q . F), the indices of Iy to
balls centered on ' N §*F, the indices of I3 to balls centered on (I' \. I'?) N §*F, the indices of Iy
to balls centered on (I' \ T'') N 9*(Q2 \ F) (see figure [). The remaining part of I is covered by a

Balls indexed by I,

possible strands
in OL
ford >3 Q)

Balls
indexed
by Il

" indexed by
L
Balls indexed by I4

Balls indexed by I3

Figure 5: The balls indexed by I; for i = 1,...,5.

finite collection of balls_B(yj, sj), j € JoU J1 U Jy. The indices of J; correspond to balls covering
the remaining part of I'y, the indices of Js correspond to balls covering the remaining part of I's.
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4 POLYHEDRAL APPROXIMATION

We choose ¢ > 0 sufficiently small, depending on ~ and on the previous families of balls and we
approximate the set F' by a smooth set L inside §2, whose capacity and volume are at distance less
than e from those of F'. We build then two further family of balls:

- B(xy,73), 1 € I, cover QN AL, up to a set of H4~! measure .
- B(yj,s;), j € J3, cover the remaining set QN IL \ ;. B(xi,7i)-

Inside each ball B(z;,r;), 1 € [; Ul UI3UI U I5, up to a small fraction, the interfaces are located
on hypersurfaces and the radii of the balls are so small that these hypersurfaces are almost flat.
Hence we can enclose the interfaces into small flat polyhedral cylinders D;, i € [ UloUI3U 4 U I,
and by aggregating adequately the cylinders to the set F' or to its complement 2 ~\ F, we move
these interfaces on the boundaries of these cylinders. The remaining interfaces are enclosed in the
balls B(y;,s;), j € JoUJiUJy U Js and we approximate these balls from the outside by polyhedra.

We have to define delicately the whole process, in order not to lose too much capacity, and to
control the possible interaction between interfaces close to I' and interfaces in 2. The presence of
boundary conditions creates a substantial additional difficulty compared to the polyhedral approx-
imation performed in [9]. Indeed, the most difficult interfaces to handle are those corresponding to
D;, i € I3 U Iy. We first choose the balls B(z;,7;), ¢ € Iy U Iy U I3 U Iy, corresponding to v. We
cover the remaining portion of I' with the balls B(y;,s;), j € Jo U Ji U Ja. At this point we can
already in principle define the cylinders D;, i € I1 U I5. Then we choose € small enough, depending
on 7 and the balls B(z;,r;), 1 € I; UIs U I3U Iy, to ensure that the perturbation of volume e caused
when smoothing the set F' inside Q will not alter significantly the situation inside the balls B(x;,7;),
i € I3U I4. Then we move inside §2 and we build the cylinders D;, ¢ € I5. Then we come back to
the boundary and we build the cylinders D;, ¢ € I3 U I;. We cover the remaining interfaces in €2
by the balls B(y;,s;j), j € J3. Finally we aggregate successively each flat polyhedral cylinder D; to
the set L or to its complement.

Preparation of the proof. Let us consider a subset F' of {2 having finite perimeter. Let v belong
to ]0,1/16[. We start by handling the boundary T', for which we make locally flat approximations
controlled by the factor . By hypothesis, there exists a finite number of oriented hypersurfaces

S1,...,5p of class C' such that I is included in their union S; U--- U Sp. In particular, we have
r~oocs= |J Sns.
1<k<i<p

Since the hypersurfaces Sy, ..., S, are transverse to each other, this implies that H?~1(S) = 0.

e Continuity of the normal vectors. The hypersurfaces Si,...,S, being C! and the set I
compact, the maps z € I' — vg, (z), 1 < k < p (where vg, (z) is the unit normal vector to Sy at z)
are uniformly continuous:

V6>0 >0 Vke{l,....,p} Vo,yeSpinT |z—yl2<n = |vg(z)—vs,(y)], <9.

Let n* be associated to § = 1 by this property. We will use also a more refined property.
e Localisation of the interfaces. We first prove a geometric lemma:

Lemma 1. Let T' be an hypersurface (that is a C* submanifold of R? of codimension 1) and let K
be a compact subset of I'. There exists a positive M = M(T", K) such that:

Ve>0 dr>0 Vrz,ye K lt —yla<r = da(y,tan(l,z)) < Mel|z —yl2.

(tan(T', x) is the tangent hyperplane of T at x).
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4 POLYHEDRAL APPROXIMATION

Proof. By a standard compactness argument, it is enough to prove the following local property:

Veel dM(z)>0 VYe>0 3Fr(r,e)>0 Vy,zelNB(z,r(xe))
dy(y, tan(l', z)) < M(z)ely — z[2.

Indeed, if this property holds, we cover K by the open balls é(w,r(m,s)ﬂ), x € K, we extract a
finite subcover B(x;, (2, €)/2), 1 <1 <k, and we set

M =max{M(z;):1<i<k}, r=min{r(z,e)/2:1<i<k}.

Let now y, z belong to K with |y — z|o < r. Let i be such that y belongs to B(x;,r(x;,)/2). Since
r < r(x;,€)/2, then both y, z belong to the ball B(z;,r(z;,¢)) and it follows that

da(y,tan(T, 2)) < M(zi)ely —zl2 < Mely — z|2.

We turn now to the proof of the above local property. Since I' is an hypersurface, for any x
in T' there exists a neighbourhood V of z in R?, a diffeomorphism f : V — R¢ of class C! and a
(d — 1) dimensional vector space Z of R? such that Z N f(V) = f(T NV) (see for instance [I4],
3.1.19). Let A be a compact neighbourhood of z included in V. Since f is a diffeomorphism, the
maps y € A — df(y) € End(RY), u € f(A) — df ' (u) € End(R?) are continuous. Therefore they
are bounded:

IM >0 vyeA |df(y)ll <M, Yue f(A) |ldf )| <M

(here ||df (z)|| = sup{ |df (x)(y)]2 : |yl2 < 1} is the standard operator norm in End(R%)). Since f(A)
is compact, the differential map df ~! is uniformly continuous on f(A):

Ve>0 36>0 Yu,ve f(A) |u—vp<d = |ldf ‘(w)—df ‘()| <e.

Let € be positive and let  be associated to € as above. Let p be positive and small enough so
that p < 0/2 and B(f(z),p) C f(A) (since f is a C' diffeomorphism, f(A) is a neighbourhood of
f(z)). Let r be such that 0 < r < p/M and B(x,r) C A. We claim that M associated to z and r
associated to e,z answer the problem. Let y,z belong to I' N B(z,r). Since [y, z] C B(x,r) C A,
and ||df (¢)|] < M on A, then

[f(y) = f(@)[2 < My =zl < Mr <p, |f(z) = f(2)l2 <p,
) = fR)2 <6, [f(y) = f(2)l2 < Mly — 22

We apply next a classical lemma of differential calculus (see [20], I, 4, Corollary 2) to the map f~!
and the interval [f(2), f(y)] (which is included in B(f(z),p) C f(A)) and the point f(2):

ly =z = df 7 (F(2))(f(y) = F(2))]2 <
| (y) = f(2)l2sup {ldf 7H(C) = df T (F ()l - C € [f(2), F(w)] }-

The right-hand member is less than M|y — z|ae. Since z + df ~*(f(2))(f(y) — f(z)) belongs to

tan(T", z), we are done. [
We come back to our case. Let k € {1,...,p}. The set S NI is a compact subset of the
hypersurface Si. Applying lemma [l we get:

AM Yoo >0 3k >0V, y € Sy, NT |z —ylo <mp = dQ(y,tan(Sk,x)) < Mydolx — yl2 .
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Let My = maxj<p<p My, and let dg in ]0,1/2[ be such that Mydy < 7. For each kin {1,...,p}, let
1, be associated to dg as in the above property and let

1
Mo = min (1211]321)% n, @dist(rl,ﬁ)) :
e Covering of I' by transverse cubes. We build a family of cubes Q(z,r), indexed by = € T’

and 7 €]0,rp[ such that Q(z,r) is a cube centered at x of side length r which is transverse to I
For x ¢ R%and k € {1,...,p}, let pi(z) be a point of Sy N T such that

[z — pr(x)[y = inf {|z—yla:yeSpnl}.
Such a point exists since S, NI is compact. We define then for k € {1,...,p}
veeRT up(z) = vs, (pr(x))

We define also

d, = inf max min e — v; —e —
r V1,.0p€S4L bEBy | < | < pr (| z|2,| z|2)

where By is the collection of the orthonormal basis of R? and S¢~! is the unit sphere of R Let 7
be associated to d,/4 as in the above continuity property. We set
_n
rp = —.

2d
Let 2 € T. By the definition of d,., there exists an orthonormal basis b, of R? such that

d

Yeecb, Vke{l,...,p} min(|e—vk(az)|2,| —e—vk(ﬂz)b) > Er

Let Q(z,7) be the cube centered at x of sidelength r whose sides are parallel to the vectors of b,.

We claim that Q(z,r) is transverse to I for » < rp. Indeed, let y € Q(z,7) NT. Suppose that

y € S for some k € {1,...,p}, so that vx(y) = vg, (y) and |z — pr(z)|2 < drp. In particular, we
have |y — pi(x)]2 < 2drr < n and |vg, (y) — vg(z)|2 < d./4. For e € by,

d,
5 = le —vr(x)]2 < le—ws, (Y)l2 + |vs, (y) — vr(2)]2
whence
e—vg(y > LT _ &
e—vs, (y)2 > 5 1= 1

This is also true for —e, therefore the faces of the cube Q(x,r) are transverse to Sk.

e Vitali covering Theorem for H% ', A collection of sets U is called a Vitali class for a Borel set
E of R%if for each € F and ¢ > 0, there exists a set U € U containing x such that 0 < diam U < 4,
where diam U is the diameter of the set U. We now recall the Vitali covering Theorem for H%~!
(see for instance [I3], Theorem 1.10), since it will be useful during the proof:
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Theorem 12. Let E be a H?™! measurable subset of R and U be a Vitali class of closed sets for
E. Then we may select a (countable) disjoint sequence (U;)icr from U such that

either Z(diam Ui)d_1 = 400 or Hd_l(E N UierU;) = 0.
el

If H¥Y(E) < oo, then given € > 0, we may also require that

HINE) < ‘;‘jj; (diam U;)* ! .

el

Start of the main argument. We first handle the interfaces along I'. Let R(I") be the set of the
points x of I' \\ S such that

liH(l) (agr) 1LY B(z,r) Q) = 1/2,

lim  (ag_r@ Y "HEY(B(z,r) D) = 1.

r—0

Let R(Q . F') be the set of the points = belonging to 0*(2 . F)) N R(T") such that

lim (ad_lrdfl)ledfl(B(x,r) NO"(QANF)) =1,

r—0

}ii% (agr) 1LY Bz, ) N (AN F)) = 1/2,

lim (ad_lrdl)l/ V(UQ\F(y))deil(y) = V(UQ(@"))
r—0 B(z,r)No* (QNF)

Let R(F) be the set of the points x belonging to 0*F N R(I") such that

lim (gD THEY Bz, r) N0 F) = 1,

r—

lim (agr) 1LY B(z,r) N F) = 1/2,

iy (a7 [ uor() dHE ) = vloa(a)).

r— (z,r)NO* F

Thanks to the hypothesis on I' and the structure of the sets of finite perimeter (see either Lemma 1,
section 5.8 of [12], Lemma 5.9.5 in [29] or Theorem 3.61 of [I]), we have

HEH N (R(F)UR(Q N F))) = 0.
For x in R(T"), there exists a positive ro(z,~y) such that, for any r < ro(z,7),

IL4B(x,r) Q) — agr?/2| < yagr?,
\Hdil(B(x,r) nr) — ad,lrdfl\ < voag_r?t.

For z in R(Q \ F'), there exists a positive r(z,7) < ro(z,7) such that, for any r < r(z,7v),

|Hd71(B(x,r) NO*" (AN F)) — ad_lrd71| < Wozd_lrdfl ,
]L’d(B(x,r) NQNFE)) — adrd/2] < 'yadrd,

(Oédlrd_l)_l/ v(var(y)) M (y) — v(va(@))| < 7.
B(x,r)N0* (Q\F)
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4 POLYHEDRAL APPROXIMATION

For z in R(F), there exists a positive r(z,7) < ro(x,~) such that, for any r < r(x,~),
(HEYB(2,r) NO*F) — ag_177Y < yag_1r? 1,
[L4(B (2, 1) N F) = agr?/2| < yagr?,

(ag1r?1) ! / v(or(y)) dHE () — v(va ()| < 7.
B(z,r)No*F

Let us define the sets
M =T'NROQNF), T =TI?NR(F),
I = (T\TY)NR(F), T* = (T ~T)NROQNF).
The family of balls
B(z,r), zeT™UuT?*, r<min (r(w,’y),’y,no, %dist(w, S)) ,
B(z,r), ze€l*, r<min (r(w,’y),'y,no, %dist(w, S), %dist(w,fg)) ,

1 1 —
B(z,r), z¢€ ', r<min (r(x,y),%no, §dist(x, 9), §dist(x,F1))

is a Vitali relation for I''* U T'?* U T3* U T#. Recall that S is the set of the points belonging to
two or more of the hypersurfaces Si,...,95, and since S is disjoint from ' 12 T3 T%*, then
dist(x, S) > 0 for x € T UT2* U3 UT*. By the standard Vitali covering Theorem (see theorem
[2), we may select a finite or countable collection of disjoint balls B(x;,r;), @ € I, such that: for
i€l x; e THUTHUT3* U, r; <min(r(z;,7),7, M0, 2dist(z;, S)) and

either HA! (F ~ U B(xl-,ri)> =0 or erfl = 0.
icl icl
Because for each i in I, r; is smaller than r(z;,7),
ag-1(1 —W)Zr;i*l < HUT) < o0
el

and therefore the first case occurs, so that we may select four finite subsets Iy, Is, I3, I4 of I such
that

Vke{l,...,4} Viel, z;eI*,

Hd_1<F\ U U B(mi,ri)) < 7.

1<k<4 i€l
Let ¢ belong to Iy U I, U I3 U I;. We have
HEYT N B2, i) ~ B(wi,ri(1 = 2y7))) = HEH T 0 Bz, 7)) — HEHT N B, (1 — 24/7)))
< (1 +agary !t = (1 =yagar{ (1 -2y7)""

=g (14— 1=y (1 -2y7)")
< ad_lr;Fle\/ﬁ.
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4 POLYHEDRAL APPROXIMATION

Hence
S HUNT N B(ai,ri) N Blai,ri(1— 247)))
i€el1UloUlsUly
<2y Y agar?!t < 4dyAHTNT)
1€TUIoUIsUl,
and

del(r\ U B(xi,ri(l—Q\/f_y))) < 4 +4dFHET).

i€ l1UloUlsUl,

We have a finite number of disjoint closed balls B(x;,7;(1—2,/7)), ¢ € I; UlUI3Ul4. By increasing
slightly all the radii r;, we can keep the balls disjoint, ensure that each radius r; satisfies the same
strict inequalities for ¢ in [; U Is U I3 U Iy, and get the inequality

e U é(xi,riu_Qﬁ))) < 2y + 4dyAHEYT).

i€l1UlUl3Uly

The above set is a compact subset of I'. For k = 1,2, we define

R, = Tk ~ U é(mi,m(l —-2/7)).

1€TUloUIs3UI,

The sets Ry and Ry are compact and their H%~! measure is less than 2y + 4d,/7H? (") (recall
that orI'! and OrI'? have a null H%"! measure). For k = 1,2, by the definition of the Hausdorff
measure H% !, there exists a collection of balls B(yj,s;), j € Ji such that:

Ve Jg 0 < s; < min (no,%), B(yj,Sj)ﬁRk%@,
D agastTh < 3y +4dyyHINT),
J€Jk

0
Ry C U B(yj,Sj).
JEJk

By compactness of Ry and Rs, the sets J; and J5 can be chosen to be finite. It remains to cover

Ro=T~ |J Ban-20)~ | Bus).

i€l1UlUl3Uly jeJ1UJ2

The set Ry is a closed subset of I' which is at a positive distance from I'' and I'2. There exists a
collection of balls B(y;, s;), j € Jo such that:

1
Vi e Jy 0 < s; < min (no,%,@dist(Ro,FlUFQ)) , B(yj,Sj)ﬁRo £+ O,
D aa1s§h < 3y +4dyyHITNTY,

J€Jo
0
Ry C U B(yj,sj).

j€Jdo
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4 POLYHEDRAL APPROXIMATION

Now the collection of balls
o)
B(xl',’l“i(l — 2\/’7)), 1€ [ Ul UlI3U Iy, B(yj, Sj), j€JoUJiUJy

covers completely I'. We will next replace these balls by polyhedra. For j € JyU J; U Ja, let x;
belong to B(y;,s;) NI and let Q; be the cube Q(xj,4s;). For i in I1 U Iy U I3 U Iy, the point ;
belongs to exactly one hypersurface among Si,. .., Sy, which we denote by Sy;). In particular T’
admits a normal vector vg(x;) at z; in the classical sense. For each i in Iy U I, U I3 U Iy, let P; be a
convex open polygon inside the hyperplane hyp(z;, vq(z;)) such that

disc(zi, (1 — 2/7), va(z;)) C P; C disc(x;, ri(1 — /7). v

[HE2(0P) — gard2(1 = 72| < dooaart (1~ /7
HNP) = agard (1= ) < SoaaoardH (1 - A

3]
8

&
N—

Thanks to the choices of the radius r; and the constants My, 19, we have then

IO Bz, mi(1— 207)) C Sy N Blas, il — 207)) C eyl(Pr, 2974) |
['N B(xi, i) C Ssu) N Blwg,ri) C eyl(disc(zi, 74, va(z:)), Modori) ,
Vo € B(xi,r;) NT lva(z) —va(zi)a < 1.

The choice of §y guarantees that Mydg(1 + dp)r; < 2yr;. Let ¢ be such that
Modo(1 + o) <t < /7.
We have
—tva(z;) + P C QN Bz, i), I'n(—tvg(x;) + B;) =

In particular, the set I' can intersect the cylinder cyl(P;,¢) only along its lateral sides, which are
parallel to vo(z;). Let x belong to I' N d cyl(F;,t). Then

[Veyt(Pot) () — va(@)]2 > [Veyi(pp () — val@s)]2 — Jva(z:) — va(@)ls > V2 - 1.

Therefore the cylinder cyl(F;, t) is transverse to I'. We will replace the ball l%(w,, ri(1—2,/7)) by the
cylinder cyl(FP;, t;), for a carefully chosen value of ¢; in the interval [Modo(1 4 do)rs, \/77:[. However,
we must delay the choices of the values t;, i € I3 U I4 until we have modified the set F' inside 2. We
deal next with the interfaces inside €2 and we make an approximation of F' controlled by a factor
€. We choose ¢ sufficiently small compared to v so that, when we perturb the set F' by a volume ¢,
the resulting effect close to I is still of order . Let € be such that 0 < & < v and

e < vaq min rd.
i€l1UlUl3Ul,

We use next a classical approximation result: there exists a relatively closed subset L of  having
finite perimeter such that QN AL is an hypersurface of class C*° and

CipAL) <c. | /Q loe() dH ) - /Q v(or(y)) dH ()] < e.

NoL
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4 POLYHEDRAL APPROXIMATION

In the case where v is constant, this result is stated in Lemma 4.4 of [23]. In the non constant case,
the argument should be slightly modified, as explained in the proof of proposition 14.8 of [9], where
the approximation is performed in R¢ instead of 2. When working inside Q, the extra difficulty is
to deal with regions close to the boundary (see the proof of Proposition 4.3 of [23]). For r > 0, we
define

OL, = {z €dL:d(z,T) >r}.
By continuity of the measure H9"!|5y, there exists r* > 0 such that
Hdil(Q NOL N 0Lg+) < €.
We apply lemma [ to the set 9L, and the hypersurface 2 N IL:
M >0 V§>0 3n>0 VYa,y€0Ly~ |z—yla <n = do(y,tan(dL,z)) < M|z —y|s.

For a point = belonging to dL,«, the tangent hyperplane of Q NJL at x is precisely hyp(z,vr(z)).
Let M be as above. We can assume that M > 1. Let ¢ in ]0, dp[ be such that 20M < e. Let 7 be
associated to 0 as in the above property. For x € Lo,

lir% (g rT "M Y B(x,7) NOL) = 1,

. d—1\—1 d—1 _
tim (aar®)7 [ V) ) = vl ).

For any = in OLq,~, there exists a positive r(z,e) such that, for any r < r(x,¢),
|HEYB(z,r) NOL) — ag_1r* Y| < eag_rd !,

(gt / v(op(y)) MO () — vl ()] < <.
B(z,r)NOL

The family of balls B(x,r), © € OLgy+, r < min(r*,ng, r(x,€),e,n), is a Vitali relation for 0Lg..
By the standard Vitali covering Theorem, we may select a finite or countable collection of disjoint
balls B(x;,r;), i € I, such that: for any i in I, x; € QLo

r, < min(T*777077"($i75)=5777)

and
either HIT <8L2r* ~ U B(mi,ri)) =0 or ng_l = 00.

el’ el’

Because for each i in I’ r; is smaller than r(x;,¢),

ag-1(1 —5)27’?_1 < HTHQNIL) < o0
il

and therefore the first case occurs, so that we may select a finite subset I5 of I’ such that

Hd*1<3L2T* ~ U B(wi,ri)) < €.

i€ls
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4 POLYHEDRAL APPROXIMATION

We have a finite number of disjoint closed balls B(x;,r;), i € I5. By increasing slightly all the radii
r;, we can keep the balls disjoint, each r; strictly smaller than min(r*,ng,r(x;,€),e,n) for i in I,
and get the stronger inequality

Hd*1<8L2r* ~ U é(w,,m)) < €.

i€ls
For each ¢ in I5, let P; be a convex open polygon inside the hyperplane hyp(z;, vy (x;)) such that

disc(x;, 74, v (x;)) C Py C disc(zi, (1 + 6), vr(z)),
‘HI2(0P;) — ad,Qrg_Ql < 504(1,27’?_2 ,
]Hdil(Pi) — ad,lrg_l\ < 504(1,17";-1_1.
We set 1 = Md(1+ 6) (hence p < e < 1). Let ¢ belong to I5. Let D; be the cylinder
D; = cyl(P;, M6(1 + 0)r;)

of basis P; and height 2ir;. The point x; belongs to dLa,~, the radius r; is smaller than n and r*,
so that

Vx € OL N B(zi,r;) do (x,hyp(xi,vL(xi))) < Mé|lx — ]2,

whence 0
OL N B(x;,r;) C cyl (disc(xi,rl-,vL(azi)),M&“i) c D;.

We will approximate F by L inside 2 and we will push the interfaces T' N 9*(Q \ F) and T2 N 9*F
into 2. We next handle the regions close to I' inside the family of balls B(x;,r;), i € Iy UI,UI3Uly.
We will modify adequately the set F' to ensure that no significant interface is created within these
balls. Our technique consists in building a small flat cylinder centered on I'" which we add (for
indices in I; U I3) or remove (for indices in I3 U I4) to the set F'. We have to design carefully this
operation in order not to create any significant additional interface. This is the place where we tie
together the covering of the boundary and the inner approximation. Recall that we already chose
a family of polygons P;, ¢ € Iy Ul U I3U I4. For i € I; U Is, we simply define D; to be the cylinder

D, = Cyl(PZ', M050(1 + 50)7“2‘) R

see figure [fl The construction of the cylinders associated to the indices i € I3 U I is more com-
plicated. Our technique consists in choosing carefully the height ¢; of the cylinders cyl(FP;,t;) for
1 € Is U Iy. We examine separately the indices in I3 and 1.

e Balls indexed by 3. Let ¢ belong to I35. Because of the condition imposed on &, we have

|£d(B(xi,ri) NL)— ozdrzd/2| < vadrg +e < 2y ozdrzd.
Since in addition
|Ed(B(xi,ri) N Q) — adr;j/2| < Wozdrld,

it follows that

o

Ed(B(xi, r)N(QN L) < 3y adrd

i
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4 POLYHEDRAL APPROXIMATION

D; = Cyl(Pi, My, 50(1 + 607‘7;))

nB;
is included

this layer

Figure 6: The cylinder D; for i € I} U I5.
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4 POLYHEDRAL APPROXIMATION

Thanks to the choice of the polygon P;, we have then

/ HI (—tva(zs) + P) ~ L) dt < LYB(xi,r) N (2~ L)) < 3yagré.
QWTi<t<ﬂTi

The condition on v yields in particular \/y — 2y > /7/2. Hence there exists ¢; €]2yr;, \/7r;[ such
that
d—1 7 d—1
H ((—tivalxs) + P) N L) < 6y/yagr; .

Let D; be the cylinder D; = cyl(P;, t;).
e Balls indexed by 1I;. Let ¢ belong to I,. Because of the condition imposed on &, we have
|£d(B(xi,ri) NQ~NL))— ozdr;i/2| < vadrg +e < 2y ozdrg.
Since in addition
]Ld(B(wi,ri) N Q) — adrg/Ql < ’yadrld,
it follows that
Ed(B(wi,ri) NL) < 3y adrg.
Thanks to the choice of the polygon P;, we have then

/ Hd_l((—tvg(wi) +P)NL)dt < Ed(B(xi,ri) NL) < 3’yadr§l.
27Ti<t<ﬂTi

(( Z‘UQ('CL‘/L) Z) L) < 6\/_yOZd’I“Z 1

Let D; be the cylinder D; = cyl(P;,t;) (see figure [[). We have now built the whole family of
cylinders Dy, ¢ € Iy U I, U I3 U Iy U I5. Moreover, the sets
[¢] [¢]
D;, ieUlLUI3Uly, B(yj,Sj), J € JoUJi U Jy,
cover completely I'. It remains now to cover the region

[¢] (e}
Rg = QNJIL ~ U Dz N U B(yj,Sj).
i€ l1UloUlsUILUT5 jeJoUJ1UJ2

Since R3 does not intersect I', the distance

1
P=34 dist(T', R3)
is positive and also R3 is compact. From the preceding inequalities, we deduce that
[¢]
HEY(Rs) < HEYQNOL ~ OLgy) + HL (aLW < U D,)
i€l
(o]
< e+ Hdil (aLgr* AN U B(.%'Z',Ti)> < 2e.

i€l5
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4 POLYHEDRAL APPROXIMATION

HA=L((P; — tiva(z;)) N L)
is small

thin strand

included in L \

D; = Cyl(l:'i7 tl‘)

Figure 7: The cylinder D; for i € I4.
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4 POLYHEDRAL APPROXIMATION

By the definition of the Hausdorff measure H?~!, there exists a collection of balls B(yj,sj), j € Js,
such that:

Vi€ Js 0<Sj<p, B(yj,sj)ﬂngé@,

0
R3 C U B(y]’sj)’
JEJ3

g ad,ls?_l < 3e.
VISEE

By compactness, we might assume in addition that J3 is finite. For j € J3, let x; belong to
B(y;,s;) N Rz and let Q; be the cube Q(x;,4s;). We set

P = ((smL)u U boiu Qj>\ U oiv U @
i€l1UlsUl5 je1 1€loUly jeJoUJ2UJ3

The sets éj, J€JoUJiU Sy U Js, l%i, 1€l UlyUl3 U4 U I5 cover 0L UT, therefore

oP U oou U 0,

i€ l1UloUlsUl4UIs jeJoUJ1UJ2UJ3

thus P is polyhedral and 0P is transverse to I'. Since the sets

(8

(e}
D;, iehUlz, Qj, Jje€N
cover completely fl, while the sets
D;, 1€lbUlyUl5, Qj, je€JoUJoyUJs

do not intersect fl, then T is included in the interior of P. Similarly, the sets

(8

(o]
D;, ic€lhyUly, Qj, jeJ
cover completely f2, while the sets
D;, 1el1UlI3UI5, Qj, J€JJoUJiUJs

do not intersect f2, thus T is included in the interior of the complement of P. We next check that
the set P N ) approximates the initial set [’ with respect to the volume. We have

(PNQ)AF C (LAF)U U D; U U Qj

1€ TUIoUIsUI4 U J€JoUJ1UJ2UJT3

whence

LY(PNQAF) < e+
Z 20zd_17“§l_1(1 + do)\/ri + Z 2ad_1r§l_1(1 + 0)Yr; + Z ad(25j)d .

i€l1UlUl3Ul, i€ls jeJoUJ1UJ2UJ3

31



4 POLYHEDRAL APPROXIMATION

Yet each r; is smaller than -,

Z agrd™t < oD,

1€eTUloUIs3Uly,

> agr{t <2niH(QNOL) <

i€ls

(VmaxHETHO*F N Q) +¢),

Vmin
> aais{T <33y + 4dyFHTND)) + 3¢,
J€JoUJ1UJ2UJT3

so that
6e

LYPNYAF) < e+ 6AHTHT) + — (Vmax HEHOF N Q) + €)

Vmin
+3- Qd%(?w +4dFHEYD) + €)

We estimate next the capacity of P. To do this, we examine the intersection of AP N with each
polyhedral cylinder. For ¢ € I; U Is, we use the obvious inclusion

PNnQNnoD; C QNaD;.

For i € I3U I U5, the sets 9P NQNAID; require more attention. We consider separately the indices
of 13, I4 and 15.
e Cylinders indexed by I5. Let ¢ in I3. We have

[¢]
QNOPNAD; C QN (OD; ~ L)U U Q; .
Jj€JoUJ1UJ2UJ3
Yet, thanks to the construction of the cylinder D,
(o] (o]
HIHQNAD; \ L) < HIY(—twa(x) + P) ~ L) + HI2(OP)2/Ar;
< 6\/§adrf_1 + 2ad,27’g—22\/§m < 6y/7(ag+ ad,g)rg_l )
e Cylinders indexed by I4. Let i in I;. We have
QNOPNID; C QN (dD;NL)U U 9Q; .
j€JoUJ1UJ2UJ3
Yet, thanks to the construction of the cylinder D,
HIYQNaD; N L) < HEY(~tivalz:) + P) 0 L) + HE2OP)2 /4
< 6y/qaari ™t + 204 9?22 /Ar < 6/ (0 + ago)rdTt.
e Cylinders indexed by I5. Let ¢ in I5. We set

G; = disc (azz —Yrivp(z;), V1 — zb?ri,vL(xi)) .

We claim that thoe set G is included in the interior of L. Indeed, G; C B(wz;,r;) N OD;, yet
OL N B(x;,r;) C D;, therefore G; %oes not intersect L. Since vy (x;) is the exterior normal vector
to L at x;, then G; is included in L. The definition of the set P implies that

dPNG; C U o,

j€JoUJ1UJ2UJ3
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4 POLYHEDRAL APPROXIMATION

whence

QNAPNAD; C (dD; ~ G;)U U 9Q; .

j€JoUJ1UJ2UJ3

Yet

Hd_l((?Dl-\ (P + Yrivp(x;)) \G<) < 20— 27“ 221 + g 1rd 1(1+5 (1 1/)2)(‘1_1)/2)
< d—1 (1 — p2)d-1)/2))
! (1520 18— (1))

Finally, we conclude that

anor ¢ |J @napyulJ@npi~Du|J@naniniL)

i€l1Ulo i€l €1y

U U(&DZ \Gi)U U 8Q]

i€l Jj€JoUJ1UJ2UJT3

Therefore

< > / ) dH (x )+ymaXZHd—1(maDi\E)
QmE)D

i€l1Uly ISTE
+ Vmax »_ HTH(QNOD; N L)
i€y
+ Z < DYHIY(P) 4 vmax HE 1((9D N (P + Yo (x;)) GZ))
i€l

+ Vmax Z Hdil(an) :

j€JoUJ1UJ2UJ3
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4 POLYHEDRAL APPROXIMATION

We use now the various estimates obtained in the course of the approximation. We get

IQ(P) < Z (ad 17“ (1 + 50) (UQ(.%’Z)) + VmaxQd— 27“ 2M050(1 + 50) >
1€l Ulo

+ Z Vmax (6ﬁ(ad + Oédfg)rg_1>
i€l3Uly
+ 3 (0a a1 + Ol (a)
i€ls
Q—
+ Vmax®d— 1rd 1< ﬂlﬁ +14+6— (1 — 1/}2)(d_1)/2))
Qg1
+ Z Vmaxad,ﬂd*ls?_l
j€JoUJ1UJ2UJ3
1 + 5 )
S V(valu)) dHE1 (1)
2611 B(x;,ri)NO* (QNF)
1 —l— do _
2y valy) M (1)
ZEI B(zi,ri)N B*F
L L+o )
T Z/ vr(y)) dH (y)
icls B(xi,r:) OBL
+ oq—
+ Z Vmax®d— 1Td 1< ld 25 +6\/— ad d2+4 d2¢
1€1UlUI3UI U5 -1 Qd—1

Y140 (1— ¢2)<d—1>/2> + Va2 13 (3 + 4dﬁﬁd—1(r) +e)

L+ 0 d-1 d—1
: </F108*(Q\F) Vo)) aH ) + / v(valy) dH™(y)

11—~ T2No*F
viv d—1
# [ vtonyan <y>>
+2(HNT) + 1N QN BL))ymax(

Y140 (1— ¢2)<d—1>/2> ¥ Vo <2d—13(37 + 4dﬁHd‘1(F)) + 3e>

d+06d 2+406d721/}
Og—1

1—}—50
< Tao(F
< 1—W( o(F) +e¢)
ZLa(F _
+2<Hd—1(r)+”ma“—()+€)umax< d- 25 +6\r0‘d+ =2 4 5o 4 424 2e>
Vmin Og—1 Qg—1

o Vi (21713(37 + 4y 7HH(D)) + 35)
where we have used the inequality 1) < € in the last step. We have also use the inclusions

Viel, B(zir)Nd*(Q~F) c T'Nno* QN F),
Viel, B(zyr)Nd'F c T?’No*F

Since dg, 9,7y, e can be chosen arbitrarily small, we have obtained the desired approximation. [J
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5 POSITIVITY OF ¢q

5 Positivity of %

We suppose that
/ rdA(z) < oo, 9)
[0,400[

We will prove that ¢q > 0 if and only if A(0) < 1—pc(d). In fact we know that if the condition (@)
is satisfied,
A(0) <1 —=pc(d) <= v, vv)>0 <= Vo, r(v)>0.

Thus, the implication .
A0)>1—=p(d) = ¢a=0

is trivial. We suppose that A(0) < 1 — p.(d). Since v satisfies the weak triangle inequality, the
function v — v(v) is continuous, and so as soon as A(0) < 1 — p.(d) and (@) is satisfied, we have

Vmin = rrslilnu > 0.

If P is a polyhedral set, then H~1((OP N Q) ~ (9*P NQ)) = 0. We then obtain that
b0 > Umin X Inf{H* (S N Q)|S hypersurface that cuts I'' from I'? in 1, d(S,I'' UT?) > 0}.

We recall that the hypersurface S cuts I'! from I'? in Q if S intersects any continuous path from a
point in T'! to a point in I'? that is included in . We consider such a hypersurface S C R%, and we
want to bound from below the quantity H% (S N Q) independently on S.

The idea of the proof is the following. We consider a path from I'! to I'? in . We construct a
tubular neighbourhood of this path of diameter depending only on the domain and not on the path
itself that lies in € except at its endpoints. Then we prove that it is not very deformed compared
to a straight tube. Since S has to cut this tube, we obtain the desired lower bound H* (SN Q).

For i = 1,2, we can find x; in T'¥ and r; > 0 such that I' N B(x;,r;) € T% and T'N B(x;,7;) is
a C! hypersurface. We denote by vq(z;) the exterior normal unit vector to Q at x;, and by To/(z;)
the hyperplane tangent to I' at z;. Since I' is of class C! in a neighbourhood of z; and Q is a
Lipschitz domain, applying lemma [Il we know that for all § > 0, there exists € > 0 depending on
(Q,I, 'Y, T2 21, 25) such that for i = 1,2 we have

QN B(x;,2¢) is connected ,
I'N B(w,2e) C Va(Ta(x;),2esin6) N B(x;, 2¢)
I'N B(x;,2) C Tt
We fix 6 small enough to have 2esinf < £/2. We define
A; = To(x;) N B(xzi,e) and D; = cyl(4;,¢),

and then R
Q=QUDiUDsy,

where Dl is the interior of D; for ¢ = 1,2. We define

X; = {ZEB”,IZ'Z-UQ(xZ‘) >6/2} C ﬁ
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Then X; C Q< Q. Each path r from a point y; € X; to a point y3 € X5 contains a path 7’ from a
point y} € T'! to a point 34 € T'? such that 7' C Q, thus S intersects 7. We consider the set

Vi = {2 € Xj|da(2,0X;) > ¢/8}.

Let g1 € Vi, g2 € Vo such that da(y;,0X;) > €/4 for : = 1,2. Since Qis obviously connected by arc,
there exists a path 7 from g to g5 in Q. The path 7 is compact and Ois open, so 0 = dy(7, 6@) > 0.
We thus can find a path r included in Vy(7, min(§/2,/8)) which is a C* submanifold of RY of
dimension 1 and which has one endpoint, denoted by 31, in Vi, and the other one, denoted by s,
in VQ.

As we explained previously, da(r, 6@) > 0, so there exists a positive n; such that Va(r,n;) C Q.
We can suppose that 71 < /16, to obtain that B(y;,m) C X; for i = 1,2. For all z in r we denote
by N,(z) the hyperplane orthogonal to r at z, and by N;/(z) the subset of N,.(z) composed of the
points of N,(z) that are at distance smaller than or equal to n of z. The tubular neighbourhood
of r of radius 7, denoted by tub(r,n), is the set of all the points z in R? such that there exists a
geodesic of length smaller than or equal to n from z that meets r orthogonally, i.e.,

tub(r,) = |J N2(2),

zer

(see for example [I7]). We have a picture of this tubular neighbourhood on figure 8 Since r is a
compact C* submanifold of R? which is complete, there exists a 1, > 0 small enough such that for
all n < 1o, the tubular neighbourhood of r of diameter 7 is well defined by a C*°-diffeomorphism
(see for example [3], Theorem 2.7.12; or [I7]), i.e., there exists a C*°-diffeomorphism v from

Nr'" = {(z,v), z€r,ve N (2)}

to tub(r,n). We choose a positive n smaller than min(n;,72). We stress the fact that this n depends
on (Q,T,T!,T?) but not on S.

Let (I,h) be a parametrisation of class C* of r, i.e., I = [a,b] is a closed interval of R,
h: 1 — ris a C*°-diffeomorphism which is an immersion. Let z be in r, and u, = h~!(z) € I.
The vector h/(u,) is tangent to r at z, and there exists some vectors (e2(2),...,e4(2)) such that
(B! (us), e2(2), ...,eq(2)) is a direct basis of R%. There exists a neighbourhood U, of u, in I such
that for all u € U,, (W (u),e2(2),...,eq(2)) is still a basis of R?, since A’ is continuous. Indeed
the condition for a family of vectors (a,...,aq) to be a basis of R? is an open condition, be-
cause it corresponds to det((aq,...,aq)) > 0 where det is the determinant of the matrix. We
apply the Gram-Schmidt process to the basis (h'(u),e2(2),...,eq(2)) to obtain a direct orthonor-
mal basis (A (u)/||h' ()|, v2(u, 2), ..., v4(u, 2)) of R for all w € U,, such that the dependence
of (W' (w)/||W (w)l,va(u,2),...;v4(u,2)) on u € U, is of class C*°. We remark that the family
(va(u, 2), ...,vg(u, z)) is a direct orthonormal basis of N,.(h(u)) for all u € U,. We have associ-
ated with each z € r a neighbourhood U, of u, = h~!(z) in I, we can obviously suppose that
U, is an interval which is open in I. Since (U,,z € r) is a covering of the compact I, we can
extract a finite covering (Uj,j = 1,...,n) from it. We can choose this family to be minimal, i.e.,
such that (Uj;,j € {1,...,n} \ jo) is not a covering of I for any jo € {1,...,n}. We then reorder the
(Uj,j =1,...,n) (keeping the same notation) by the increasing order of their left end point in I C R.
Since the family (U;) is minimal, each point of I belongs either to a unique set Uj, j € {1,...,n}, or
to exactly two sets U; and Ujq; for j € {1,...,n—1}. We denote by a; the middle of the non-empty
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tub(r,n)

Figure 8: Construction of tub(r,n).
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open interval U; N U4 for j € {1,...,n — 1}, and by (A’ (w)/||h (w),v2(u, ), ..., va(u, j)) the direct
orthonormal basis defined previously on U; for j € {1,...,n}. We want to construct a family of
direct orthonormal basis (A’ (u)/||h ()|, f2(u), ..., f4(u)) of R? such that the function:

Yiue e W)/ @), f2(u), .., fa(u)

is of class C*°. We have to define a concatenation of the (h'(w)/||h'(u)|[,v2(u, j), ..., va(u, j)) over
the different sets U;. For u € [a, a1], we define

d(u) = (W (W)/IW (W], v2(u, 1), ..., va(u, 1)) .

Thus the function v defined on [a, a1] is of class C°*°. On U3y NU;y we have defined two different direct
orthonormal basis (h'(u)/||R/ (u)||, v2(u,7), ..., va(u,j)) for j =1 and j = 2 that have the same first
vector. Let ¢ : UyNUy — SO4_1(R) be the function of class C* that associates to each u € U1 NUy
the matrix of change of basis from (va(u,2), ...,v4(u,2)) to (va(u,1),...,v4(u, 1)).

If by is the right end point of U3 NUs, then ¢ is in particular defined on [a1,b1]. Let g1 be a C*°-
diffeomorphism from [aq, b1 to [aq, 0o which is strictly increasing (so g1(a1) = a1) and such that all
the derivatives of g at a; are null. Then ¢ 0g; 1is defined on [a1, 400 and all its derivatives at aq
are equal to those of ¢;. We then transform all the orthonormal basis (va(u, j), ..., vq(u, j)) of R4~
for j > 2 and u > a; by the change of basis ¢; o g; 1 and we denote the new direct orthonormal
basis of R~! obtained this way by (V2(u,j), ..., 0q(u, j)). We then define 1 on Jay, as] by

d(u) = (B (u)/[|W ()], V2(u,2), .., Va(u, 2))

and we remark that v(u) still defines a direct orthonormal basis of RY. The function v is of class
C® on [a,as], including at a;. We iterate this process with the family of basis

(R (w)/IIB ()], D2(u, §), -, Da(u, 5)) s § =2, ...

at asg, etc..., finitely many times since we work with a finite covering of I. We obtain in the end a
function

Yohtir— 50,1 (R)

which is of class C*°, and for all z € 7, the set of the points of R? that have for first coordinate 0 in
the basis 1 o h=1(z) is exactly the hyperplane N,(z).
For each t = (ta,...,t4_1) € {z € R¥1|d(z,0) < n}, the set

re = {y € RY|3z € r, y has coordinates (0, %, ...,t4_1) in the basis 1) o h™1(2)}
is a continuous path (even of class C*°) from a point in X; to a point in X, therefore
rNSNQ # @.
Moreover, since d(S,T! UT'?) > 0, we obtain that
rNSNQ # . (10)

For each y € tub(r,n), there exists a unique z, € r such that y € N,(z,), so we can associate to y
its coordinates (0,t2(y), ..., ta(y)) in the basis ¢y o h~1(z,). We define the projection p of tub(r,n) on
N/ (y1) that associates to each y in tub(r,n) the point of coordinate (0,t2(y),...,t4(y)) in the basis
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toh~1(y1). Then pis of class C* as is o h~ 1. If 2 belongs to N, (y1), and t(2) = (t2(2), ..., t4(2)),
then we know by equation (I{) that there exists a point on 7, that intersects S in Q. Moreover,
Ty(2) is exactly the set of the points y of tub(r, 1) whose image p(y) by this projection is the point
z. Thus

p(SNtub(r,n) NQ) = N (y1).

T

Since tub(r,n) is compact, p is a Lipschitz function on tub(r,n), and so there exists a constant K,
depending on p, hence on €2, r, 1, but not on &, such that

HEHSNQ) > HEYS Ntub(r,n) NQ) > KHEH(p(S Ntub(r,n) > Kag .
This ends the proof of the positivity of ¢g when A(0) < 1 —p(a).
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Lévy and Frédéric Paulin for helpful discussions.

References

[1] Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of bounded variation and free
discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press Oxford Uni-
versity Press, New York, 2000.

[2] P. Assouad and T. Quentin de Gromard. Sur la dérivation des mesures dans R". 1998. Un-
published note.

[3] Marcel Berger and Bernard Gostiaux. Géométrie différentielle. Librairie Armand Colin, Paris,
1972. Maitrise de mathématiques, Collection U/Série “Mathématiques”.

[4] A.S. Besicovitch. A general form of the covering principle and relative differentiation of additive
functions. II. Proc. Cambridge Philos. Soc., 42:1-10, 1946.

[5] Béla Bollobas. Graph theory, volume 63 of Graduate Texts in Mathematics. Springer-Verlag,
New York, 1979. An introductory course.

[6] Raphaél Cerf. Large deviations for three dimensional supercritical percolation. Astérisque,
(267):vi+177, 2000.

[7] Raphaél Cerf and Marie Théret. Lower large deviations for the maximal flow through a domain
of R% in first passage percolation. Available from arxiv.org/abs/0907.5501.

[8] Raphaél Cerf and Marie Théret. Upper large deviations for the maximal flow through a domain
of R? in first passage percolation. Available from arxiv.org/abs/0907.5499.

[9] Raphaél Cerf. The Wulff crystal in Ising and percolation models. In Ecole d’Eté de Probabilités
de Saint Flour, number 1878 in Lecture Notes in Mathematics. Springer-Verlag, 2006.

[10] E. De Giorgi, F. Colombini, and L. C. Piccinini. Frontiere orientate di misura minima e
questioni collegate. Scuola Normale Superiore, Pisa, 1972.

39



REFERENCES REFERENCES

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Ennio De Giorgi. Nuovi teoremi relativi alle misure (r — 1)-dimensionali in uno spazio ad r
dimensioni. Ricerche Mat., 4:95-113, 1955.

Lawrence C. Evans and Ronald F. Gariepy. Measure theory and fine properties of functions.
Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.

K. J. Falconer. The geometry of fractal sets, volume 85 of Cambridge Tracts in Mathematics.
Cambridge University Press, Cambridge, 1986.

Herbert Federer. Geometric measure theory. Die Grundlehren der mathematischen Wis-
senschaften, Band 153. Springer-Verlag New York Inc., New York, 1969.

O. Garet. Capacitive flows on a 2d random net. To be published in Annals of Applied Probability,
2006. Available from arxiv.org/abs/math/0608676v2.

Enrico Giusti. Minimal surfaces and functions of bounded variation, volume 80 of Monographs
in Mathematics. Birkh&user Verlag, Basel, 1984.

Alfred Gray. Tubes, volume 221 of Progress in Mathematics. Birkh&user Verlag, Basel, second
edition, 2004. With a preface by Vicente Miquel.

Harry Kesten. Aspects of first passage percolation. In Ecole d’Eté de Probabilités de Saint
Flour XIV, number 1180 in Lecture Notes in Mathematics. Springer-Verlag, 1984.

Harry Kesten. Surfaces with minimal random weights and maximal flows: a higher dimensional
version of first-passage percolation. Illinois Journal of Mathematics, 31(1):99-166, 1987.

Serge Lang. Differential manifolds. Springer-Verlag, New York, second edition, 1985.

Umberto Massari and Mario Miranda. Minimal surfaces of codimension one, volume 91 of
North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 1984. Notas
de Matematica [Mathematical Notes|, 95.

Pertti Mattila. Geometry of sets and measures in Euclidean spaces, volume 44 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995. Fractals and
rectifiability.

T. Quentin de Gromard. Strong approximation of sets in BV (). Proceedings of the Royal
Society of Edinburgh, 138(A):1291-1312, 2008.

R. Rossignol and M. Théret. Law of large numbers for the maximal flow through tilted cylinders
in two-dimensional first passage percolation. Available from arxiv.org/abs/0907.5112, 2009.

R. Rossignol and M. Théret. Lower large deviations and laws of large numbers for maximal
flows through a box in first passage percolation. Available from arxiv.org/abs/0801.0967v2,
2009.

Marie Théret. Upper large deviations for maximal flows through a tilted cylinder. Available
from arxiv.org/abs/0907.0614, 2009.

Yu Zhang. Critical behavior for maximal flows on the cubic lattice. Journal of Statistical
Physics, 98(3-4):799-811, 2000.

40



REFERENCES REFERENCES

[28] Yu Zhang. Limit theorems for maximum flows on a lattice. Available from
arxiv.org/abs/0710.4589, 2007.

[29] William P. Ziemer. Weakly differentiable functions, volume 120 of Graduate Texts in Mathe-
matics. Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation.

41



	First definitions and main result
	Computation of 
	Geometric notations
	Flow in a cylinder
	Max-flow min-cut theorem
	Definition of 
	Continuous min-cut

	State of the art
	Existing laws of large numbers
	Large deviations for n
	Lower large deviations
	Upper large deviations


	Polyhedral approximation
	Positivity of 

