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Abstract

Let ρ and µ be two probability measures on R which are not the Dirac
mass at 0. We denote by H(µ|ρ) the relative entropy of µ with respect
to ρ. We prove that, if ρ is symmetric and µ has a finite first moment,
then

H(µ|ρ) ≥

(∫
R
z dµ(z)

)2

2

∫
R
z2 dµ(z)

,

with equality if and only if µ = ρ. We give an applicaion to the Curie-
Weiss model of self-organized criticality.
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1 Introduction

Given two probability measures µ and ρ on R, the relative entropy of µ with
respect to ρ (or the Kullback-Leibler divergence of ρ from µ) is

H(µ|ρ) =


∫
R
f(z) ln f(z) dρ(z) if µ� ρ and f =

dµ

dρ

+∞ otherwise ,

where dµ/dρ denotes the Radon-Nikodym derivative of µ with respect to ρ when
it exists. In this paper, we prove the following theorem:

Theorem 1. Let ρ and µ be two probability measures on R which are not the
Dirac mass at 0. If ρ is symmetric and if µ has a finite first moment, then

H(µ|ρ) ≥

(∫
R
z dµ(z)

)2

2

∫
R
z2 dµ(z)

,

with equality if and only if µ = ρ.

A remarkable feature of this inequality is that the lower bound does not de-
pend on the symmetric probability measure ρ. We found the following related
inequality in the literature (see lemma 3.10 of [1]): if ρ is a probability measure
on R whose first moment m exists and such that

∃v > 0 ∀λ ∈ R
∫
R

exp(λ(z −m)) dρ(z) ≤ exp

(
vλ2

2

)
,

then, for any probability measure µ on R having a first moment, we have

H(µ|ρ) ≥ 1

2v

(∫
R
z dµ(z)−m

)2

.

Our inequality does not require an integrability condition. Instead we assume
that ρ is symmetric.

The proof of the theorem is given in the following section. It consists in relating
the relative entropy H( · |ρ) and the Cramér transform I of (Z,Z2) when Z is a
random variable with distribution ρ. We then use an inequality on I which we
proved initially in [2]. We give here a simplified proof of this inequality.

In section 3, we apply the inequality of theorem 1 to the Curie-Weiss model of
self-organized criticality we designed in [2]. We prove that, if (X1

n, . . . , X
n
n ) has

the distribution

dµ̃n,ρ(x1, . . . , xn) =
1

Zn
exp

(
1

2

(x1 + · · ·+ xn)2

x2
1 + · · ·+ x2

n

)
1{x2

1+···+x2
n>0}

n∏
i=1

dρ(xi) ,

for any n ≥ 1, and if ρ is symmetric with compact support and such that
ρ({0}) < 1/

√
e, then, for any continuous function f : R −→ R,

∀ε > 0 lim
n→∞

µ̃n,ρ

(∣∣∣∣∣ 1

n

n∑
k=1

f(Xk
n)−

∫
R
f(z) dρ(z)

∣∣∣∣∣ ≥ ε
)

= 0 .
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2 Proof of the theorem

Let ρ and µ be two probability measures on R which are not the Dirac mass
at 0. We first recall that H(µ|ρ) ≥ 0, with equality if and only if µ = ρ.

We assume that ρ is symmetric and that µ has a finite first moment. We denote

F(µ) =

(∫
R
z dµ(z)

)2

2

∫
R
z2 dµ(z)

.

If µ = ρ then F(µ) = 0 = H(µ|ρ). From now onwards we suppose that µ 6= ρ.
If the first moment of µ vanishes or if its second moment is infinite, then we
have F(µ) = 0 < H(µ|ρ). Finally, if µ is such that H(µ|ρ) = +∞, then Jensen’s
inequality implies that

F(µ) ≤ 1/2 < H(µ|ρ).

In the following, we suppose that∫
R
z dµ(z) 6= 0,

∫
R
z2 dµ(z) < +∞ ,

and that H(µ|ρ) < +∞. This implies that µ � ρ and we set f = dµ/dρ. It
follows from Jensen’s inequality that, for any µ-integrable function Φ,∫

R
Φ dµ−H(µ|ρ) =

∫
R

ln

(
eΦ

f

)
dµ ≤ ln

∫
R

eΦ

f
dµ = ln

∫
R
eΦ dρ .

As a consequence

sup
Φ∈L1(µ)

{∫
R

Φ dµ− ln

∫
R
eΦ dρ

}
≤ H(µ|ρ) .

In order to make appear the first and second moments of ρ, we consider func-
tions Φ of the form z 7−→ uz + vz2, (u, v) ∈ R2. This way we obtain

I

(∫
R
z dµ(z),

∫
R
z2 dµ(z)

)
≤ H(µ|ρ) ,

where

∀(x, y) ∈ R2 I(x, y) = sup
(u,v)∈R2

{
ux+ vy − ln

∫
R
euz+vz

2

dρ(z)

}
.

The function I is the Cramér transform of (Z,Z2) when Z is a random variable
with distribution ρ. In our paper dealing with a Curie-Weiss model of self-
organized criticality [2], we proved with the help of the following inequality that,
under some integrability condition, the function (x, y) 7−→ I(x, y)−x2/(2y) has
a unique global minimum on R× ]0,+∞[ at

(
0,
∫
x2 dρ(x)

)
.

Proposition 2. If ρ is a symmetric probability measure which is not the Dirac
mass at 0, then

∀x 6= 0 ∀y 6= 0 I(x, y) >
x2

2y
.
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We present here a proof of this proposition which is simpler than in [2].

Proof. Let x 6= 0 and y 6= 0. By definition of I(x, y), we have

I(x, y) ≥ x× x

y
+ y ×

(
− x2

2y2

)
− ln

∫
R

exp

(
xz

y
− x2z2

2y2

)
dρ(z)

=
x2

2y
− ln

∫
R

exp

(
xz

y
− x2z2

2y2

)
dρ(z) .

Let (s, t) ∈ R2. By using the symmetry of ρ, we obtain∫
R

exp(sz − tz2) dρ(z) =

∫
R

exp(−sz − tz2) dρ(z)

=
1

2

(∫
R

exp(sz − tz2) dρ(z) +

∫
R

exp(−sz − tz2) dρ(z)

)
=

∫
R

cosh(sz) exp(−tz2) dρ(z) .

We choose now t = s2/2. We have the inequality

∀u ∈ R\{0} cosh(u) exp
(
−u2/2

)
< 1 .

Since ρ is not the Dirac mass at 0, the above inequality implies that

∀s 6= 0

∫
R

cosh(sz) exp

(
−s

2z2

2

)
dρ(z) < 1 .

We finally choose s = x/y and we get∫
R

exp

(
xz

y
− x2z2

2y2

)
dρ(z) < 1 .

As a consequence

I(x, y) ≥ x2

2y
− ln

∫
R

exp

(
xz

y
− x2z2

2y2

)
dρ(z) >

x2

2y
,

which is the desired inequality.

By applying the above proposition with

x =

∫
R
z dµ(z) 6= 0, y =

∫
R
z2 dµ(z) ∈ ]0,+∞[ ,

we obtain

H(µ|ρ) ≥ I
(∫

R
z dµ(z),

∫
R
z2 dµ(z)

)
> F(µ) .

This ends the proof of theorem 1.
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3 Application to the Curie-Weiss model of SOC

In [2], we designed the following model: Let ρ be a probability measure on R,
which is not the Dirac mass at 0. We consider an infinite triangular array of
real-valued random variables (Xk

n)1≤k≤n such that for all n ≥ 1, (X1
n, . . . , X

n
n )

has the distribution µ̃n,ρ, where

dµ̃n,ρ(x1, . . . , xn) =
1

Zn
exp

(
1

2

(x1 + · · ·+ xn)2

x2
1 + · · ·+ x2

n

)
1{x2

1+···+x2
n>0}

n∏
i=1

dρ(xi) ,

and Zn is the renormalization constant. In [2] and [4], we proved that this model
exhibits self-organized criticality: for a large class of symmetric distributions,
we proved the fluctuations of Sn = X1

n + · · · + Xn
n are of order n3/4 and the

limiting law is C exp(−λx4) dx for some C, λ > 0.

For any n ≥ 1, let us introduce the empirical measure

Mn =
1

n

(
δX1

n
+ · · ·+ δXn

n

)
.

The inequality of theorem 1 is the key ingredient to prove the following theorem:

Theorem 3. Let ρ be a symmetric probability measure on R with compact
support and such that ρ({0}) < 1/

√
e. Then, under µ̃n,ρ, the sequence (Mn)n≥1

converges weakly in probability to ρ, i.e., for any continuous function f from R
to R, we have

∀ε > 0 lim
n→∞

µ̃n,ρ

( ∣∣∣∣Mn(f)−
∫
R
f dρ

∣∣∣∣ ≥ ε) = 0 .

Let us prove this theorem. We suppose that there exists L > 0 such that the
support of ρ is [−L,L] or ]−L,L[. We denote byML

1 the space of all probability
measures on [−L,L] endowed with the topology of weak convergence. Let ε > 0
and let f be a continuous function from R to R. The set

Uε =

{
µ ∈ML

1 :

∣∣∣∣ ∫
R
f dµ−

∫
R
f dρ

∣∣∣∣ < ε

}
,

is open in ML
1 . Let n ≥ 1. We denote by θ̃n,ρ the law of (δY1 + · · ·+ δYn) /n

when Y1, . . . , Yn are n independent random variables with distribution ρ. We
have

µ̃n,ρ(Mn ∈ Ucε ) =
1

Zn

∫
Uc

ε

exp (nF(µ)) 1µ 6=δ0 dθ̃n,ρ(µ) .

The function F is continuous on ML
1 \{δ0}. Next, since F(δ1/k) = 1/2 for any

k ≥ 1, we notice that putting F(δ0) ≥ 1/2 is necessary to ensure that F is
upper semi-continuous. As a consequence we extend the definition of F onML

1

by putting F(δ0) = 1/2. We suppose that ρ({0}) < 1/
√
e so that

F(δ0) = 1/2 < − ln ρ({0}) = H(δ0|ρ) .

If µ ∈ ML
1 \{δ0} then theorem 1 implies that F(µ) ≤ H(µ|ρ) with equality if

and only if µ = ρ. Hence the function F −H( · |ρ) has a unique maximum on
ML

1 at ρ.
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Sanov’s theorem (theorem 6.2.10 of [3]) states that (θ̃n,ρ)n≥1 satisfies the large
deviation principle in ML

1 with speed n and governed by the good rate func-
tion H( · |ρ). As a consequence

liminf
n→+∞

1

n
lnZn ≥ liminf

n→+∞

1

n
ln θ̃n,ρ({δ0}c) ≥ − inf

µ6=δ0
H(µ|ρ) = 0 .

Since F is bounded (by 1/2) and is upper semi-continuous on ML
1 , Varadhan’s

lemma (see section 4.3 of [3]) implies that

limsup
n→+∞

1

n
ln µ̃n,ρ (Mn ∈ Ucε ) ≤ limsup

n→+∞

1

n
ln

∫
Uc

ε

enF(µ) dθ̃n,ρ(µ)− liminf
n→+∞

1

n
lnZn

≤ sup {F(µ)−H(µ|ρ) : µ ∈ Ucε } .

Since H( · |ρ) is a good rate function, F is upper semi-continuous and Ucε is a
closed subset of ML

1 which does not contain ρ, the unique maximum of the
function F −H( · |ρ), we get

sup {F(µ)−H(µ|ρ) : µ ∈ Ucε } < 0 .

As a consequence, there exists cε > 0 and nε ≥ 1 such that

∀n ≥ nε µ̃n,ρ (Mn ∈ Ucε ) ≤ exp(−ncε).

This implies the convergence in theorem 3.
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