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Abstract

We analyze the relaxation time of a ferromagnetic d–dimensional
growth model on the lattice. The model is characterized by d param-
eters which represent the activation energies of a site, depending on
the number of occupied nearest neighbours. This model is a natural
generalisation of the model studied by Dehghanpour and Schonmann
[DS97a], where the activation energy of a site with more than two
occupied neighbours is zero.

1 Introduction

Growth models have been extensively studied in many cases of physical
relevance. Our model can be obtained with a particular choice of the pa-
rameters for Richardson’s model on the lattice [Ric73] and it is closely
related to the models studied by Eden [Ede61], Kesten and Schonmann
[KS95], and specifically Dehghanpour and Schonmann [DS97a], with which
it shares the same physical motivation, i.e., the study of the relaxation from
a metastable state to the stable phase of a thermodynamic ferromagnetic
system. In many physical cases, this event is triggered by the formation,
growth and coalescence of many droplets of the stable phase in the midst
of the metastable one. The model we study in this paper is inspired by the
metastable behavior of the kinetic Ising model in the infinite-volume regime
for small magnetic field and vanishing temperature. This regime was stud-
ied by Dehghanpour and Schonmann in the two dimensional case [DS97b].
The main ideas were presented in a simplified model in [DS97a]. We study
here the model corresponding to the d–dimensional case. There are several
problems to extend the approach of Dehghanpour and Schonmann when
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†Università di Roma “Tor Vergata”, dipartimento di matematica, via della ricerca

scientifica 00133 Roma Italy, E-mail: manzo.fra@gmail.com

1

http://arxiv.org/abs/1001.3990v1


there are more than two activation energies. One of them is to control the
speed of growth of large supercritical droplets. In the model with two acti-
vation energies, this was achieved with the technology of the “chronological
paths” introduced by Kesten and Schonmann [KS95]. We did not manage
to adapt this technology to deal with the three dimensional Ising model.
In this paper, we present an alternative new strategy to control the speed
of growth. This strategy relies on coupling arguments, where we consider
specific boundary conditions called sandwich boundary conditions, as was
done to analyze the bootstrap percolation model [CC99, CM02]. We hope
to apply this strategy to control the growth of the supercritical droplets
in the context of the three dimensional Ising model in the regime of low
temperatures.

The model is an irreversible gas model on the lattice Z
d. Sites are

occupied at exponential times with rates that depend on the number of
occupied neighbors. More precisely, our model is characterized by a set
of parameters Γn, n = 0, . . . , d that represent the activation energy of a
“critical droplet” in dimension n. When a site has i ≤ d occupied neighbors,
its occupation rate is exp(−βΓd−i). When a site has d or more occupied
neighbors, its occupation rate is 1. A natural choice for ferromagnetic
systems is to assume

Γ0 ≤ Γ1 ≤ · · · ≤ Γd .

We start from the void configuration in infinite volume or in a finite cube
and look at the time τd when a given site, for instance the origin, is oc-
cupied. The scaling behavior of τd as β goes to ∞ can be obtained with
the help of the following simplified heuristics. The rate of creation of nu-
clei (namely, isolated occupied sites) is exp(−βΓd). Once a nucleus has
appeared, it starts to grow, yet its speed of growth increases with its size.
Let l(τ) be the typical diameter of a droplet grown from a nucleus after a
time τ . At time 2τ , the origin is likely to have been reached by any nu-
cleus created at distance l(τ) before time τ . The relaxation time τd should
be such that the rate of creation of a nucleus within the space time cone
l(τd)

d × τd is of order one. It turns out that l(τ) behaves as follows when
β goes to ∞:

l
(
exp(βK)

)
∼

{
1 if K < Γd−1

exp
(
β(K − κd−1)

)
if K ≥ Γd−1

Suppose that τd scales as exp(βκd) when β goes to ∞. The value κd will
be the smallest value K such that

l
(
exp(βK)

)d
exp(βK) exp(−βΓd)

is of order 1. Since Γd ≥ Γd−1, then K has to be larger than Γd−1, and it
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satisfies therefore

exp
(
dβ(K − κd−1)

)
exp(βK) exp(−βΓd) = 1 .

This equation yields

K =
Γd + dκd−1

d+ 1
.

We conclude finally that

κd = max
(
Γd−1,

Γd + dκd−1

d+ 1

)
.

2 Main result

Our configuration space is {0, 1}Λ, where Λ is a subset of Zd (possibly equal
to Z

d itself). A configuration is thus a map σ : Λ → { 0, 1 }, and a site
x ∈ Λ is empty (respectively occupied) in the configuration σ if σ(x) = 0
(respectively σ(x) = 1). Sites which are occupied remain occupied forever.
To define the dynamics, we consider a family of i.i.d. Poisson processes with
rate one, associated with the sites in Z

d. For x ∈ Z
d, i ≥ 1, we denote by

τ(x, i) the i–th arrival time of the Poisson process associated with x. With
each arrival time, we associate a uniform random variable U(x, i) in [0, 1],
independent of the Poisson processes and of the other uniform variables.
We build a Markov process (σΛ,t)t≥0 with the help of these random objects.
At time 0, we start from the empty configuration:

∀x ∈ Z
d σΛ,0(x) = 0 .

We describe now the updating procedure of our process. Let N(x, σ) be
the number of occupied neighbors of the site x in the configuration σ, i.e.,

N(x, σ) =
∑

y∈Λ:|x−y|=1

σ(y) .

The rate at which a site becomes occupied depends only on the number of
its occupied neighbors. These rates are given by a non–decreasing sequence

c(0) ≤ c(1) ≤ · · · ≤ c(2d) .

A site x can become occupied only at a time corresponding to an arrival of
its associated Poisson process. Suppose that t = τ(x, i) for some i ≥ 1 and
that x was not occupied before time t. With probability one, all the arrival
times are distinct and only the state of the site x can change at time t. If

U(x, i) ≤ c
(
N(x, σΛ,t(x))

)
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then x becomes occupied at time t, otherwise it stays vacant. If the set Λ
is finite, the above rules define a Markov process (σΛ,t)t≥0. Whenever Λ
is infinite, one has to be more careful, because there is an infinite number
of arrival times in any finite time interval and it is not possible to order
them in an increasing sequence. However, because the rates are bounded,
changes in the system propagate at a finite speed, and a Markov process
can still be defined by taking the limit of finite volume processes (see [Lig05]
for more details). Whenever Λ = Z

d, we drop it from the notation, and
we write (σt)t≥0 for the infinite volume process in Z

d. We will deal with
exponentially small rates. However we need to have a sufficiently loose
asymptotic condition in order to perform our inductive proof, so that we
can compare the process in dimension d with a d − 1 dimensional process
satisfying the same condition.

Hypothesis on the rates. We suppose that the occupation rates c(n),
0 ≤ n ≤ 2d, depend on a parameter β > 0 and that the following limits
exist:

∀n ∈ { 0, . . . , d } lim
β→∞

1

β
ln cβ(n) = −Γd−n ,

∀n ∈ { d, . . . , 2d } lim
β→∞

1

β
ln cβ(n) = 0 .

Moreover, we suppose that

Γ0 ≤ Γ1 ≤ · · · ≤ Γd .

For 0 ≤ n ≤ d, the parameter Γn represents the activation energy of a
critical droplet in dimension n. The conditions imposed on the sequence
Γn, 0 ≤ n ≤ d, simplify substantially the analysis and they are satisfied
by the growth model associated to the metastability problem for the low–
temperature Ising model. We define a sequence of critical constants κi for
0 ≤ i ≤ d by setting κ0 = Γ0 and

∀i ∈ { 1, . . . , d } κi = max
(
Γi−1,

Γi + iκi−1

i+ 1

)
.

Thus we have

κd = max
(
Γd−1,

Γd + dΓd−2

d+ 1
, . . . ,

Γd + · · ·+ Γd−i + (d− i)Γd−i−2

d+ 1
, . . . ,

Γd + · · ·+ Γ3 + 3Γ1

d+ 1
,
Γd + · · ·+ Γ2 + 2Γ0

d+ 1
,
Γd + · · ·+ Γ1 + Γ0

d+ 1

)
.

Our main result states that, in infinite volume, the relaxation time of the
system scales as exp(βκd).

4



Theorem 2.1 (Infinite volume.) Let κ > 0 and let τβ = exp(βκ).
• If κ < κd, then

lim
β→∞

P
(
στβ (0) = 1

)
= 0 .

• If κ > κd, then
lim
β→∞

P
(
στβ (0) = 0

)
= 0 .

The first step of the proof consists in reducing the problem to some growth
processes in a finite volume. Indeed, if κ < K and we set

τβ = exp(βκ) , Λβ = Λ(expβK) ,

then
lim

β→∞
P
(
στβ (0) = σΛβ ,τβ (0)

)
= 1 .

This follows from a simple large-deviation estimate based on the fact that
the maximum rate in the model is 1, see lemma 1 of [DS97b] for the com-
plete proof. Let us shift next our attention to finite volumes. We have
two possible scenarios for the growth process in order to fill completely a
cube. If the cube is small, the system relaxes via the formation of a single
nucleus that grows until filling the entire volume. If the cube is large, a
more efficient mechanism consists in creating many droplets that grow and
eventually coalesce. The critical side length of the cubes separating these
two mechanisms scales exponentially with β as exp(βLd), where

Ld =
Γd − κd

d
.

There are three main factors controlling the relaxation time:

Nucleation. Within a box of sidelength exp(βL), the typical time when
the first nucleus appears is of order exp(β(Γd − dL)).
Initial growth. The typical time to grow a nucleus into a droplet travel-
ling at the asymptotic speed is exp(βΓd−1).
Asymptotic growth. A droplet travelling at the asymptotic speed covers
a region of diameter exp(βL) in a time exp(β(L+ κd−1)).

The statement concerning the nucleation time contains no mystery. Let us
try to explain the statements on the growth of the droplets. Once a nucleus
is born, it starts to grow at speed exp(−βΓd−1). As the droplet grows, the
speed of growth increases, because the number of choices for the creation
of a new protuberance attached to the droplet is of order the surface of the
droplet. Thus the speed of growth of a droplet of size exp(βK) is

exp(β(K(d− 1)− Γd−1)) .
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When K reaches the value Ld−1, the speed of growth is limited by the
time needed for the protuberance to cover an entire face of the droplet.
This time corresponds to the d− 1 relaxation time and the droplet reaches
its asymptotic speed, of order exp(−βκd−1). The time needed to grow a
nucleus into a droplet travelling at the asymptotic speed is

∑

1≤i≤exp(βLd−1)

expβ
(
Γd−1 −

d− 1

β
ln i

)

and it is still of order exp(βΓd−1). With the help of the above facts, we
can obtain easily an upper bound on the relaxation time in a box Λβ of
sidelength exp(βL). Indeed, the relaxation time is smaller than the sum

(
time for nucleation
in the box Λβ

)
+




time to grow a nucleus
into a droplet travelling
at the asymptotic speed


 +

(
time to cover
the box Λβ

)

∼ exp(β(Γd − dL)) + exp(βΓd−1) + exp(β(L+ κd−1))

which is of order

exp
(
βmax

(
Γd − dL,Γd−1, L+ κd−1

))
.

Optimizing over the size of the box Λβ , we conclude that the relaxation
time in infinite volume satisfies

τd ≤ exp
(
β inf

L
max

(
Γd − dL,Γd−1, L+ κd−1

))
.

Let us now try to obtain a lower bound on the relaxation time. Suppose
that we examine the state of the origin at a time exp(βκ). The origin
becomes occupied when it is covered by a droplet. This droplet can result
either from the growth of a single nucleus or from the coalescence of several
droplets. Since the speed of propagation of the effects is finite, the state of
the origin at time exp(βκ) is unlikely to have been influenced by any event
occurring outside the box of sidelength exp(2βκ). Thus all the subsequent
computations can be restricted to this box. In particular, a droplet which
covers the origin before time exp(βκ) has to be born inside this box, mean-
ing that the oldest site of the droplet belongs to this box. Let us consider
the box Λβ of sidelength exp(βL). We can envisage two scenarios. If the
droplet which covers the origin is born inside the box Λβ , then nucleation
has occurred inside this box. If the droplet which covers the origin is born
outside the box Λβ , then it has grown into a droplet of diameter at least
1
2
exp(βL) in order to reach the origin. Thus the relaxation time is larger
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than

min

((
time for nucleation
in the box Λβ

)
,

(
time to grow a nucleus into

a droplet of diameter 1
2 exp(βL)

))

∼ min
(
exp(β(Γd − dL)) , exp(βΓd−1) +

1

2
exp(β(L+ κd−1))

)

which is of order

exp
(
βmin

(
Γd − dL,max(Γd−1, L+ κd−1)

))
.

By optimizing over the size of the box Λβ , we conclude that the relaxation
time in infinite volume satisfies

τd ≥ exp
(
β sup

L
min

(
Γd − dL,max(Γd−1, L+ κd−1)

))
.

Since the optimal value of L solves Γd − dL = L + κd−1, the two con-
stants appearing in the exponential in the lower and upper bounds for the
relaxation time coincide, they are equal to

κd = max
(
Γd−1,

Γd + dκd−1

d+ 1

)
.

We state next precisely the finite volume results that we will prove.

Terminology. We say that a probability P(·) is exponentially small in β
(written in short ES) if it satisfies

lim sup
β→∞

1

β
lnP(·) < 0 .

We say that a probability P(·) is super–exponentially small in β (written
in short SES) if it satisfies

lim
β→∞

1

β
lnP(·) = −∞ .

Theorem 2.2 (Exponential volume.) Let L > 0 and let Λβ = Λ(exp(βL))
be a cubic box of sidelength exp(βL). Let κ > 0 and let τβ = exp(βκ).
• If κ < max(Γd − dL, κd), then

lim
β→∞

P
(
σΛβ;τβ (0) = 1

)
= 0

and this probability is exponentially small in β.
• If κ > max(Γd − dL, κd), then

lim
β→∞

P
(
∃x ∈ Λβ σΛβ ;τβ (x) = 0

)
= 0

and this probability is super–exponentially small in β.
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The hardest part of theorem 2.2 is the upper bound on the relaxation time,
i.e., the first case where κ < max(Γd − dL, κd). The first ingredient in the
proof is a lower bound on the time needed to create a large droplet.

Proposition 2.3 Let L > 0 and let Λβ = Λ(exp(βL)) be a cubic box of
sidelength exp(βL). Let κ < Γd−1 and let τβ = exp(βκ). The probability
that an occupied cluster in σΛβ;τβ has diameter larger than β is super–
exponentially small in β.

The key result for the inductive proof is the following control on the size
of the clusters in the configuration. We set

Ld =
Γd − κd

d
.

Theorem 2.4 Let L > 0 and let Λβ = Λ(exp(βL)) be a cubic box of
sidelength exp(βL). Let κ < κd and let τβ = exp(βκ). The probability
that an occupied cluster in σΛβ;τβ has diameter larger than exp(βLd) is
super–exponentially small in β.

By using theorem 2.4 inductively, we are able to show that the asymp-
totic speed of the droplets inside the box Λβ is of order exp(−βκd−1). The
proofs of proposition 2.3 and of theorem 2.4 involve both a bootstrap ar-
gument to control the coalescence of the droplets. In fact, one could make
a general statement to control the maximal size of an occupied cluster at
a given time. Yet it turns out that only the initial growth and the asymp-
totic speed of the droplets are relevant to compute the relaxation time, the
intermediate stage of growth of the droplets is not a limiting factor.

3 Graphical construction

Throughout the paper, we use the standard graphical construction [DS97b].
All our processes are defined on the same probability space and they are
built with the help of the arrival times of independent Poisson processes
and the associated uniform random variables

τ(x, i) , U(x, i) , i ≥ 1 , x ∈ Z
d .

This provides a natural coupling between the different growth processes.
The process in a set Λ with boundary conditions ρ is denoted by

(σρ
Λ,t)t≥0 .
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This coupling preserves the natural order on the configurations. A configu-
ration α is included in a configuration ρ, which we denote by α ≤ ρ, if every
site occupied in α is also occupied in ρ. The growth process in a box Λ start-
ing from the configuration α will always remain smaller than the growth
process in Λ starting from a larger configuration ρ. The growth processes in
a box Λ associated to different boundary conditions are also coupled in the
same way, and the coupling respects the order on the boundary conditions,
meaning that larger boundary conditions lead to larger growth processes.
We rely repeatedly on this coupling in order to compare our model with
simpler or lower-dimensional processes.

4 Bootstrap

Following [DS97b], we control the effect of the coalescence of the droplets
with a bootstrap-percolation argument. We recall next the standard boot-
strap procedure. Let A be a finite subset of Z

d. We start with a con-
figuration η ∈ {0, 1}A and we occupy iteratively all the sites which have
at least two occupied neighbors, until exhaustion. Since the procedure is
monotonic and the volume is finite, the algorithm will stop after a finite
number of steps. We denote by bootstrap(η) the final configuration ob-
tained by bootstraping η. This final configuration is an union of occupied
parallelepipeds, which are pairwise at distance larger than or equal to two.
Following [AL88], we say that a set E ⊂ Z

d is internally spanned in the
configuration η if it is entirely covered in the final configuration of the
dynamics restricted to E. More precisely, the initial configuration is the
restriction of η to E and the dynamics runs on the sites of E without taking
into account sites outside E.

We will use the supremum norm, given by

∀x = (x1, . . . , xd) ∈ Z
d |x|∞ = max

1≤i≤d
|xi| .

We denote by d∞ the distance associated to the supremum norm and we
define the d∞ diameter diam∞ C of a subset C of Zd by

diam∞ C = sup
{
|x− y|∞ : x, y ∈ C

}
.

Thus diam∞ C is the sidelength of the minimal cube surrounding C. The
following lemma is a key observation of Aizenman and Lebowitz [AL88].

Lemma 4.1 If a set C is internally spanned in a configuration η then for
all integer k ≥ 1 such that 2k+1 < diam∞ C there exists a subset D of C
which is internally spanned in η and such that k ≤ diam∞ D ≤ 2k + 1.
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We give the sketch of the proof, which can be found in [AL88]. It relies on
the fact that if η ≤ ξ ≤ bootstrap(η), then bootstrap(ξ) = bootstrap(η).
For this reason, we are free to change the updating order without affecting
the final configuration. The idea is then to realize the bootstrap percolation
by occupying a single site at each step. If the maximal diameter of the
clusters present in the configuration is k before one step of the algorithm,
then right after occupying one site, the new maximal diameter is between
k and 2k + 1. Looking at the evolution of the maximal diameter of the
occupied clusters, we get the thesis.

5 Proof of proposition 2.3

Let L > 0 and let Λβ = Λ(exp(βL)) be a cubic box of sidelength exp(βL).
Let κ < Γd−1 and let τβ = exp(βκ). Let α be the random configuration
defined as follows. For x ∈ Λβ , we set α(x) = 1 if there exists i ≥ 1 such
that τ(x, i) ≤ τβ and U(x, i) ≤ cβ(1), otherwise we set α(x) = 0. The law
of the configuration α is the Bernoulli product law with parameter pβ given
by

pβ = 1− exp
(
− cβ(1)τβ

)
.

Taking logarithm, we see that

lim
β→∞

1

β
ln pβ = −Γd−1 + κ < 0.

Let bootstrap(α) be the configuration obtained by bootstraping α. The
configuration σΛβ;τβ is smaller than or equal to bootstrap(α). Indeed, in
order to grow beyond bootstrap(α), the process would have to occupy a
site outside bootstrap(α) having 0 or 1 occupied neighbors, but all these
events until time τβ were already recorded in the initial configuration α.
Proposition 2.3 is therefore implied by the following lemma.

Lemma 5.1 The probability that there exists an occupied cluster in the
configuration bootstrap(α) whose d∞ diameter is larger than β is super–
exponentially small in β.

Proof. We say that a box is crossed if, after applying the bootstrap
operator restricted to the box, there is an occupied connected set joining
two opposite faces of the box. By lemma 4.1, if there is an occupied cluster
in bootstrap(α) whose d∞ diameter is larger than β, then there exists an
internally–spanned cluster in bootstrap(α) with diameter between β and
2β+1. Let Qβ be a cube of minimal side length containing such a cluster.
The cube Qβ has to be crossed in one of the d directions parallel to the
axis, say for instance the vertical one. If there is an horizontal strip in Qβ
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of height 2 which is void in the configuration α then the box Qβ cannot be
crossed vertically. Thus

P
(
Qβ is crossed vertically

)

≤ P

(
each horizontal strip in Qβ of height 2 is
non void in the initial configuration α

)

≤ P

(
one fixed horizontal strip in Qβ of height 2
is non void in the initial configuration α

)β/2−1

≤
(
1− (1− pβ)

2(2β+1)d−1)β/2−1
.

To complete the estimate, we count the number of possible choices for the
box Qβ:

P

(
there is an occupied cluster in bootstrap(α)

whose d∞ diameter is larger than β

)

≤ |Λβ| × 3β × dP
(
Qβ is crossed vertically

)

≤ 3dβ exp(βdL)
(
1− (1− pβ)

2(2β+1)d−1)β/2−1

and this last bound is SES. �

6 Proof of theorem 2.4

In this section we prove theorem 2.4 with the help of an induction over the
dimension d. The main point here is the bound on the asymptotic speed
of growth of a droplet. Our approach gives a bound on the probability of
a “too fast” growth. Since this bound is super-exponential, while both the
volume and the time we are considering are exponential, we end up with
a deterministic computation rather than a large-deviation estimate as in
[DS97b]. This fact allows to avoid all combinatorial problems like counting
the number of “chronological paths” and it is the main technical difference
with the method used in [DS97b]. Heuristically, the process evolves as if
the droplets were growing one shell after the other, filling the sites on one
face before passing to the next. Since all the sites on a face are neighbors
of an occupied site in the droplet, this growth mechanism is analogous
to a nucleation and growth mechanism in dimension d − 1. We use the
d − 1 dimensional bound on the size of the clusters to show that, up to
SES events, a too–fast growth has to take place into a parallelepiped with
“small” base. This is a SES bound, and the result holds in any exponential
volume. Throughout the section, we let

Λβ = Λ(exp(βL))
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be a cubic box of sidelength exp(βL), where L > 0. Let κ < κd and let
τβ = exp(βκ). Coalescence is a nontrivial effect only if L ≥ Ld, since
otherwise the number of droplets formed in Λβ before time τβ is finite.
Theorem 2.4 needs to be proved only for L ≥ Ld.

6.1 Dilation, bootstrap and erosion

The procedure we are going to define is a modified version of standard
bootstrap percolation and is specifically suited to our setting. The same
results can be obtained by rescaling the lattice as in [DS97b] and using
the standard bootstrap percolation arguments developed in [AL88, CM02].
We denote by d∞ the distance associated to the supremum norm, given
by

∀x, y ∈ Z
d d∞ (x, y) = |x− y|∞ = max

1≤i≤d
|xi − yi| .

Let Λ be a subset of Zd, let η be a configuration in {0, 1}Λ and let l ≥ 0.
We define the dilated configuration dilate(η, l) by occupying all the sites of
Λ which are at a d∞ distance strictly less than l from a site occupied in η:

∀x ∈ Λ dilate(η, l)(x) =

{
1 if ∃ y ∈ Λ d∞ (x, y) < l , η(y) = 1

0 otherwise

We define the eroded configuration erode(η, l) by emptying all the sites of
Λ which are at a d∞ distance strictly less than l from an empty site in η:

∀x ∈ Λ erode(η, l)(x) =

{
0 if ∃ y ∈ Λ d∞ (x, y) < l , η(y) = 0

1 otherwise

Dilation and erosion are classical operations in mathematical morphology.
Let η be the random configuration defined as follows. For x ∈ Λβ , we

set η(x) = 1 if there exists i ≥ 1 such that τ(x, i) ≤ τβ and U(x, i) ≤ cβ(0),
otherwise we set η(x) = 0. The law of the configuration η is the Bernoulli
product law with parameter pβ given by

pβ = 1− exp
(
− cβ(0)τβ

)
.

Taking logarithm, we see that

lim
β→∞

1

β
ln pβ = −Γd + κ .

Let bootstrap(η) be the configuration obtained by bootstraping η.
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Proposition 6.1 Let ρ be the configuration obtained by dilating η with
a distance β−1 exp(βLd) and then bootstraping it:

ρ = bootstrap(dilate(η, β−1 exp(βLd))) .

The probability that there is an occupied cluster in ρ whose d∞ diameter
is larger than exp (βLd) is super–exponentially small in β.

Proof. By lemma 4.1, if there is an occupied cluster in ρ whose d∞
diameter is larger than exp (βLd), then there exists an internally–spanned
cluster in ρ with diameter between exp (βLd) and 2 exp (βLd) + 1. Let Qβ

be a cube of minimal side length containing such a cluster. The cube Qβ has
to be crossed in one of the d directions parallel to the axis, say for instance
the vertical one. Let Q′

β be the parallelepiped having the same center and
the same height as Qβ and whose sidelengths in the other directions are
three times the sidelength of Qβ. If there is an horizontal strip in Q′

β of

height 3β−1 exp (βLd) which is void in the initial configuration η, then there
is an horizontal strip in Qβ of height 2 which is void in the intermediate
configuration

dilate(η, β−1 exp(βLd))

and the box Qβ cannot be crossed vertically after the bootstraping. Thus

P
(
Qβ is crossed vertically in ρ

)
≤

P

(
each horizontal strip in Q′

β of height 3β−1 exp (βLd)

is non void in the initial configuration η

)

≤ P

(
one fixed horizontal strip in Q′

β of height 3β−1 exp (βLd)

is non void in the initial configuration η

)β/3

≤
(
1− exp

(
9d−1 exp((d− 1)βLd)× 3β−1 exp (βLd)× ln(1− pβ)

))β/3

≤
(
−9dβ−1exp(dβLd)× ln(1− pβ)

)β/3

and this last bound is SES because dLd + Γd = κd. To complete the
estimate, we count the number of possible choices for the box Qβ :

P

(
there is an occupied cluster in ρ whose
d∞ diameter is larger than expβLd

)

≤ |Λβ | × 3 exp(βLd)× dP
(
Qβ is crossed vertically in ρ

)

and the last term is SES. �

Let ξ be the erosion of ρ with a distance (2β)
−1

exp(βLd), i.e.,

ξ = erode(ρ, (2β)
−1

exp(βLd)) . (6.2)
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Since ρ was obtained after applying the bootstrap procedure, it is a union
of occupied parallelepipeds, which are pairwise at distance larger than two.
After applying the erosion operator, we obtain again an union of occu-
pied parallelepipeds, which are pairwise at distance larger than or equal
to (2β)

−1
exp(βLd). Moreover we dilated η with a distance β−1 exp(βLd)

before the bootstrap, thus the configuration η is still included in ξ, so that
all the sites where nucleation has occurred before time τβ are occupied in
the configuration η. By attractivity of the process, we have

σΛβ,τβ ≤ ση
Λβ ,τβ

≤ σξ
Λβ,τβ

and because of the definition of η, no nucleation occurs in the growth
process starting from η until the time τβ. We are thus able to compare
σΛβ,τβ with a process where nucleation events are cancelled, that we define
in the next section. The crucial problem is then to control the speed of
growth of the droplets and to show that, up to a SES event, the non–
nucleating process starting from ξ is still included in ρ at time τβ.

6.2 Control of the speed of growth

In this section, we study the growth process where the nucleation is can-
celled and we prove our key estimate to control the speed of growth of the
droplets. The initial speed of growth of a nucleus is exp(−βΓd−1). For a
droplet of size exp(βK), the speed is

exp
(
β((d− 1)K − Γd−1)

)

for K < Ld−1 and exp(−βκd−1) for K ≥ Ld−1. It turns out that the time
needed to create a droplet travelling at the asymptotic speed is exp(βΓd−1),
which is of the same order as the time needed to grow the initial nucleus
into a droplet of diameter β. Hence we need only to control the speed of
droplets having a diameter larger than exp(βLd−1), which travel at the
asymptotic speed.
Non–nucleating processes. We define a non-nucleating process

(σ̃Λβ,t)t≥0

associated to the rates

c̃(0) = 0 , c̃(n) = c(n) , 1 ≤ n ≤ 2d .

In this process, a site cannot become occupied unless one of its neighbors
is occupied. The activation energies for this process are given by

Γ̃(d) = ∞ , Γ̃(n) = Γ(n) , 0 ≤ n < d .

14



In the sequel, the various processes where nucleation is suppressed are
denoted with a tilde above the symbol of the process.
Floor boundary conditions. Let R be a cylinder with basis a d − 1
dimensional cubic box Λd−1 and height H, i.e., of the form

R = Λd−1 × { 0, . . . , H } .

We call floor of R its bottom face Λd−1 × { 0 } and ceiling of R its top
face Λd−1 × {H }. We call floor boundary conditions on R the boundary
condition defined by the following configuration ρ:

∀x ∈ Z
d ρ(x) =

{
1 if x ∈ Λd−1 × {−1 }

0 otherwise

The process (σ̃ρ
R;t)t≥0 in R with the floor boundary conditions is denoted

by
(σ̃−

R;t)t≥0 .

We say that a configuration crosses R if it contains a cluster included in
R which connects the floor and the ceiling.

Proposition 6.3 Let d ≥ 2 and let K > 0. Let Rβ be the cylinder

Rβ = Λd−1(exp (βK))× { 0, . . . , β } .

Let κ < κd−1 and τβ = exp(βκ). Suppose that theorem 2.4 has been proved
in dimension d− 1. Then the probability that σ̃−

Rβ ;τβ
crosses Rβ is SES.

Proof. We start with the case K > Ld−1 and we set

Λd−1
β = Λd−1(exp(βLd−1)) .

We use theorem 2.4 to show that, most likely, the cluster that crosses Rβ

is contained in a smaller parallelepiped of basis Λd−1
β , i.e., a parallelepiped

which is a translate of

Tβ = Λd−1
β × { 0, . . . , β } .

To this end, let us consider the process obtained from (σ̃−
R;t)t≥0 by occu-

pying all the sites in each non empty column, and its projection (σ̂t)t≥0 on
the floor Rβ defined for t ≥ 0 by

∀x̂ ∈ Λd−1
β σ̂t(x̂) =

{
0 if σ̃−

Rβ ;t
(x̂, i) = 0 for all i ∈ { 0, . . . , β }

1 if σ̃−
Rβ ;t

(x̂, i) = 1 for some i ∈ { 0, . . . , β }

15



The process (σ̂t)t≥0 is a (d− 1)-dimensional process with rates satisfying

cβ(n+ 1) ≤ ĉβ(n) ≤ 2cβ(n+ 1) + (β − 2)cβ(n) , 0 ≤ n ≤ d− 1 .

In terms of activation energies,

Γ̂(n) = Γ(n) , 0 ≤ n ≤ d− 1 .

The idea is to use the (d − 1)-dimensional bounds on the size of (σ̂t)t≥0

and attractivity to bound the size of the clusters of (σ̃−
t )t≥0. Let Large be

the event

Large =





there is an occupied cluster in σ̃−
Rβ;τβ

whose projection on the floor of Rβ

has a diameter larger than exp (βLd−1)



 .

By theorem 2.4 in dimension d−1, since κ < κd−1, the probability that an
occupied cluster in σ̂τβ has diameter larger than exp(βLd−1) is SES. Since
the volume of Rβ is exponential, the probability of the event Large is SES.
We write then

P(σ̃−
Rβ;τβ

crosses Rβ) ≤ P(Large) + P
(
{ σ̃−

Rβ ;τβ
crosses Rβ} \ {Large }

)

≤ SES + P

(
there is a translate y + Tβ of Tβ included
in Rβ such that σ̃−

y+Tβ ;τβ
crosses y + Tβ

)

≤ SES + |Rβ| P(σ̃
−
Tβ ;τβ

crosses Tβ) .

In the last step, we used the fact that the model is translation invariant.
We conclude by showing that

P(σ̃−
Tβ ;τβ

crosses Tβ)

is also SES, reducing ourselves to the case whereK ≤ Ld−1. We shall couple
the process (σ̃−

Tβ;t
)t≥0 with floor boundary conditions in Tβ with another

simpler process.
Sandwich boundary conditions. We call slice a parallelepiped with
height 2 and basis Λd−1

β , which is a translate of

Σ = Λd−1
β × { 0, 1 } .

We call sandwich boundary conditions on Σ the boundary condition defined
by the following configuration ρ:

∀x ∈ Z
d ρ(x) =

{
1 if x ∈ Λd−1

β × {−1, 2 }

0 otherwise

16



We denote by (σ̃=
Σ;t)t≥0 the process in Σ evolving with the sandwich bound-

ary conditions ρ.
Multilayer process. Let us partition the cylinder Tβ into translated slices
as

Tβ =

β/2⋃

i=0

Σi ,

where
Σi = Λd−1

β × { 2i, 2i+ 1 } = Σ+ (0, . . . , 0, 2i) .

We define the multilayer process (σ̃≡
Tβ;t

)t≥0 using the same graphical con-
struction as (σ̃Tβ ;t)t≥0 but we use sandwich boundary conditions in each
slice. More precisely, we set

∀i ∈ { 1, . . . , β/2 } ∀x ∈ Σi ∀t ≥ 0 σ̃≡
Tβ ;t

(x) = σ̃=
Σi;t

(x) .

A key point is that, once we put sandwich boundary conditions around
each slice, the processes in the slices become independent of each other.
Thanks to the coupling, the process (σ̃≡

Tβ;t
)t≥0 is always above the process

(σ̃−
Tβ;t

)t≥0. Therefore, if σ̃−
Tβ;τβ

crosses Tβ , so does σ̃≡
Tβ ;τβ

and at least a
nucleus must appear in each slice. Thus

P
(
σ̃−
Tβ ;τβ

crosses Tβ

)
≤ P

(
σ̃≡
Tβ ;τβ

crosses Tβ

)

≤ P
(
σ̃=
Σi;τβ

is not void for 1 ≤ i ≤ β/2
)

≤ P
(
σ̃=
Σ;τβ

is not void
)β/2−1

.

Yet

P
(
σ̃=
Σ;τβ

is void
)
= P

(
for any x ∈ Σ, there is no
nucleation at x before τβ

)

= P

(
there is no nucleation
at the origin before τβ

)|Σ|

=
(
exp

(
− cβ(1) τβ

))|Σ|

= exp
(
− 2 |Λd−1

β | cβ(1) τβ

)

= exp−
(
2 exp

(
β(d− 1)K + ln cβ(1) + βκ

))
.

Since K ≤ Ld−1 and κ < κd−1, we have

lim
β→∞

1

β

(
β(d− 1)K + ln cβ(1) + βκ

)
= (d− 1)K − Γd−1 + κ < 0
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and there exists a positive constant δ such that, for β large enough,

P
(
σ̃=
Σ;τβ

is void
)
≥ exp−

(
2 exp(−βδ)

)
.

Reporting in the previous inequality, we get

P
(
σ̃=
Tβ ;τβ

crosses Tβ

)
≤

(
1− exp−

(
2 exp(−βδ)

))β/2−1

.

Hence the above probability is also SES. �

Corollary 6.4 Let d ≥ 2 and let K,L > 0. Let Rβ be the cylinder

Rβ = Λd−1(exp (βK))× { 0, . . . , exp(βL) } .

Let κ > 0 be such that κ < L + κd−1 and τβ = exp(βκ). Suppose that
theorem 2.4 has been proved in dimension d−1. Then the probability that
σ̃−
Rβ ;τβ

crosses Rβ is SES.

Proof. For i ∈ N, let τi be the first time when a site of the layer

Λd−1(exp (βK))× { iβ }

becomes occupied in the process (σ̃=
Rβ ;t

)t≥0. Let us set

l =

⌊
exp(βL)

β

⌋
.

With these definitions, we see that if σ̃=
Rβ ;τβ

crosses Rβ, then τl ≤ τβ. Yet

τl =
∑

0≤i<l

τi+1 − τi

and moreover, by using the Markov property and the attractivity of the
process, we see that, for any i ≥ 0, the time τi+1 − τi stochastically domi-
nates the time τ1. Therefore

P(τl ≤ τβ) ≤ P

(
∃i < l τi+1 − τi ≤ l−1 exp(βκ)

)

≤ l P
(
τ1 ≤ l−1 exp(βκ)

)
.

By hypothesis, we have κ − L < κd−1. Proposition 6.3 implies that this
last bound is SES. �
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6.3 Conclusion of the proof of theorem 2.4

We proceed now by induction over the dimension d. The case of dimension
0 is straightforward. In this case the lattice Z

0 is reduced to the singleton
{0} and κ0 = Γ0, L0 = 0. In particular, it is impossible to see an occupied
cluster of diameter strictly larger than 0. Let d ≥ 1. Suppose that the result
has been proved in dimension d− 1. Let L > 0 and let Λβ = Λ(exp(βL))
be a d–dimensional cubic box of sidelength exp(βL). Let κ < κd and let
τβ = exp(βκ).

We apply corollary 6.4 to show that, up to a SES event, σΛβ,τβ is in-
cluded in the configuration ρ. Indeed, suppose that it is not the case.
Then the configuration σ̃ξ

Λβ,τβ
is also not included in ρ. Yet the config-

uration ξ is an union of occupied parallelepipeds, which are pairwise at
distance larger than or equal to (2β)

−1
exp(βLd) (see (6.2)), and the con-

figuration ρ is obtained from ξ by dilating these parallelepipeds with a
distance (2β)

−1
exp(βLd). We consider the first time and place when the

process (σ̃ξ
Λβ,t

)t≥0 occupies a site not occupied in ρ. This happens close to
the boundary of a face F of one of the parallelepipeds Q occupied in ρ. Let
Rβ be the cylinder included in Q having for basis this face F and for height

(2β)
−1

exp(βLd). By corollary 6.4, the probability that σ̃−
Rβ ;τβ

crosses Rβ

is SES. Since the number of choices of times and places above is exponen-
tial in β, we conclude that, up to a SES event, the configuration σΛβ,τβ is
included in ρ. This estimate, together with proposition 6.1, implies theo-
rem 2.4.

7 Proof of the upper bound of theorem 2.2

Let L > 0 and let Λβ = Λ(exp(βL)) be a cubic box of sidelength exp(βL).
Let κ < max(Γd − dL, κd) and let τβ = exp(βκ). We distinguish three
different cases.

• First case: κ < Γd − dL. If the origin is occupied at time τβ for the
growth process in Λβ , then a nucleation must have taken place in the box
Λβ before the time τβ , thus

P
(
σΛβ ;τβ (0) = 1

)
≤ |Λβ|

(
1− exp

(
− cβ(0)τβ

))
.

Taking logarithm, we see that

lim sup
β→∞

1

β
lnP

(
σΛβ;τβ (0) = 1

)
≤ dL− Γd + κ .

Yet κ < Γd − dL and the probability that the origin is occupied at time τβ
for the growth process in Λβ is therefore ES in β.
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• Second case: κ < Γd−1. Let Λ′
β = Λ(3β) be a cubic box of sidelength

3β. Suppose that the origin is occupied at time τβ for the growth process
in Λβ . The droplet which has reached the origin is either born inside the
box Λ′

β or outside of it. In the first scenario, a nucleation event must have
taken place in the box Λ′

β before the time τβ . In the second scenario there
is an occupied cluster in σΛβ;τβ with diameter larger than β. We have thus

P
(
σΛβ;τβ (0) = 1

)
≤ P

(
a nucleation event takes
place in Λ′

β before τβ

)

+P

(
there is an occupied cluster in σΛβ;τβ

whose d∞ diameter is larger than β

)
.

Proceeding as in the first case, we bound the probability of a nucleation by

|Λ′
β |
(
1− exp

(
− cβ(0)τβ

))

which is ES in β since κ < Γd−1 ≤ Γd. By proposition 2.3, the probability
that an occupied cluster in σΛβ;τβ has diameter larger than β is super–
exponentially small in β.

• Third case: κ < κd. Let Λ
′
β = Λ

(
3 exp(βLd)

)
be a cubic box of sidelength

3 exp(βLd). Suppose that the origin is occupied at time τβ for the growth
process in Λβ . The droplet which has reached the origin is either born
inside the box Λ′

β or outside of it. In the first scenario, a nucleation event
must have taken place in the box Λ′

β before the time τβ . In the second
scenario there is an occupied cluster in σΛβ ;τβ with diameter larger than
exp(βLd). We have thus

P
(
σΛβ;τβ (0) = 1

)
≤ P

(
a nucleation event takes
place in Λ′

β before τβ

)

+P

(
there is an occupied cluster in σΛβ;τβ

whose d∞ diameter is larger than exp(βLd)

)
.

Proceeding as in the first case, we bound the probability of a nucleation by

|Λ′
β |
(
1− exp

(
− cβ(0)τβ

))
.

Taking logarithm, we see that

lim sup
β→∞

1

β
lnP

(
a nucleation event takes
place in Λ′

β before τβ

)
≤ dLd − Γd + κ < 0 .

By proposition 2.3, the probability that an occupied cluster in σΛβ;τβ has
diameter larger than exp(βLd) is super–exponentially small in β.

20



In the three cases, the probability

P
(
σΛβ;τβ (0) = 1

)

is ES in β.

8 Proof of the lower bound of theorem 2.2

We prove here part 2 of theorem 2.2 by induction over the dimension d.
Let us consider first the case d = 0. We have then κ0 = Γ0. The box Λβ is
reduced to the singleton { 0 }. Let κ > κ0 and let τβ = exp(βκ). We have

P
(
σΛβ ;τβ (0) = 0

)
= exp−(cβ(0)τβ) = exp−(cβ(0) exp(βκ)) .

Since by hypothesis,

lim
β→∞

1

β
ln cβ(0) = −Γ0

we conclude that the above probability is SES. We suppose now that d ≥ 1
and that the result has been proved in dimension d− 1. Let L > 0 and let
Λβ = Λ(exp(βL)) be a cubic box of sidelength exp(βL). Let κ > 0 and let
τβ = exp(βκ). Let ε > 0. We define the nucleation time τnucleation in Λβ

as
τnucleation = inf

{
t ≥ 0 : ∃x ∈ Λβ σΛβ;t(x) = 1

}
.

We have
∀t > 0 P(τN > t) = exp

(
− |Λβ | cβ(0) t

)
.

Therefore, up to a SES event, the first nucleus in the box Λβ appeared
before time

exp
(
β
(
Γd − dL+ ε

))
.

For i ≥ 1, we define the first time τ i when there is an occupied paral-
lelepiped of diameter larger than or equal to i in Λβ , i.e.,

τ i = inf

{
t ≥ 0 :

there is an occupied parallelepiped included in Λβ

whose d∞ diameter is larger than or equal to i

}

The restriction of the process (σΛβ;t)t≥0 to the sites which are the neigh-
bors of a face of an occupied parallelepiped is a d− 1 dimensional growth
process whose rates satisfy the hypothesis of our model. From the induc-
tion hypothesis, we know that, up to a SES event, the d − 1 dimensional
process in a box of sidelength exp(βK) is fully occupied at a time

exp
(
β
(
max(Γd−1 − (d− 1)K, κd−1) + ε

))
.
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This implies that, up to a SES event, the box Λβ is fully occupied at time

τ exp(βL) ≤ τnucleation +
∑

1≤i<exp(βL)

(τ i+1 − τ i) ≤ exp
(
β
(
Γd − dL+ ε

))

+
∑

1≤i<exp(βL)

2d exp
(
β
(
max(Γd−1 −

d− 1

β
ln i, κd−1) + ε

))

We consider two cases.
• First case: L ≤ Ld−1. Notice that L0 = 0, hence this case can happen
only whenever d ≥ 2. In this case, we have

∀i < exp(βL) κd−1 ≤ Γd−1 −
d− 1

β
ln i

and
∑

1≤i<exp(βL)

exp
(
βmax(Γd−1 −

d− 1

β
ln i, κd−1)

)

≤ exp(βΓd−1)
∑

1≤i<exp(βL)

1

id−1

≤ exp(βΓd−1)
∑

1≤i<exp(βL)

1

i
≤ βL exp(βΓd−1) .

• Second case: L > Ld−1. We have then

∑

exp(βLd−1)≤i<exp(βL)

exp
(
βmax(Γd−1 −

d− 1

β
ln i, κd−1)

)

≤
(
exp(βL)− exp(βLd−1)

)
exp(βκd−1)

≤ exp
(
β(L+ κd−1)

)
.

We conclude that, in both cases, for any ε > 0, up to a SES event, the box
Λβ is fully occupied at a time

2dβL exp(βε)
(
exp

(
β(Γd − dL)

)
+ exp(βΓd−1) + exp

(
β(L+ κd−1)

))
.

Therefore, for any κ such that

κ > max
(
Γd − dL,Γd−1, L+ κd−1

)

the probability that the box Λβ is not fully occupied at a time exp(βκ) is
SES. If L ≤ Ld then

max
(
Γd − dL,Γd−1, L+ κd−1

)
= Γd − dL
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and we have the desired estimate. Suppose next that L > Ld. By the
previous result, we know that, for any κ > κd, up to a SES event, a box
of sidelength exp(βLd) is fully occupied at a time exp(βκ). We cover Λβ

by boxes of sidelength exp(βLd). Such a cover contains at most exp(βdL)
boxes, thus

P (Λβ is not fully occupied at time τβ)

≤ P

(
there exists a box included in Λβ of sidelength
exp(βLd) which is not fully occupied at time τβ

)

≤ exp(βdL)P

(
the box Λ(exp(βLd)) is not
fully occupied at time τβ

)
.

The last probability being SES, we are done.
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