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Université Paris Sud,
91405 Orsay Cedex–France

E-mail: Raphael.Cerf@math.u-psud.fr
Telephone: 01 69 15 60 24

Suggested running head:

Large deviations for the cluster shape in 2D supercritical percolation

1991 Mathematics Subject Classification. 82B43 60F10.

Key words and phrases. supercritical percolation, large deviations, random sets, Wulff construction.
I thank Professor G. Grimmett for his helpful advice, and for his invitation to visit the Statistical

Laboratory of Cambridge during the winter 1996; I was supported by EPSRC grant GR/J31896.

Typeset by AMS-TEX

1



1. Introduction

In this paper we continue to investigate questions related to large deviations principles
for random sets. The simplest result of this kind, namely the analog of the Cramér theorem
for random sets was proved in [3]. Our true goal is to obtain a formulation of the Wulff
construction in dimension three. The main obstacle is to get rid of the skeleton coarse
graining technique, which is essential for the current proofs of the Wulff construction in
dimension two [1]. The work presented here is an intermediate step towards this goal.
Here we prove large deviations principles for the finite cluster shape in the Hausdorff and
L1 metric. Although we rely here on the skeleton coarse graining technique, we think that
the formulation of the large deviations principles themselves is robust and that they might
be obtained with a very different strategy, which is likely to be implemented successfully
in higher dimension. This program is completed in [4].

We consider Bernoulli bond percolation on the square lattice in which edges are inde-
pendently open with probability p and closed with probability 1 − p. It is known that
this model has a phase transition at pc = 1/2: for p < pc the open clusters are finite and
for p > pc there exists a unique infinite open cluster [11,13]. In the percolating phase
where p > pc, the probability that the origin belongs to a finite open cluster of diameter
of order N goes to zero as N goes to infinity. Our aim is to study the shapes of the large
finite open clusters. Let C be the open cluster containing the origin. Conditionally on the
event that C is finite, we prove that
• as N goes to ∞, the laws of the random compact sets C/N satisfy a large deviations
principle with respect to the Hausdorff metric;
• let f(N) be a function from N to R such that f(N)/ lnN → +∞ and f(N)/N → 0 as
N goes to ∞; the laws of the random compact sets {x ∈ R2 : d(x,C) ≤ f(N) }/N (where
d(x,C) is the distance from x to C) satisfy a large deviations principle with respect to the
L1 metric associated to the planar Lebesgue measure.
The two rate functions are suitable surface energies and they coincide on regular sets.
To build them, we first extract from the percolation model a direction dependent surface
tension (as done in [1]). The value of the surface tension in a given direction characterizes
the asymptotic exponential decay of the probability of seeing a small flat interface in this
direction. The surface energy of a regular set is simply the linear integral of the surface
tension along the boundary of the set. This surface energy then characterizes the asymp-
totic exponential decay of the probability that the rescaled open cluster containing the
origin is close to the given set. We apply the second large deviations principle to estimate
the asymptotic behavior of the probability that the random set {x : d(x,C) ≤ f(N) } has
a finite area larger than N2. This provides a link with the Wulff construction.

2. The model

We consider the square site lattice Z2, the dual square site lattice (Z∗)2 = Z2+(1/2, 1/2)
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and the plane R2. For x = (x1, x2) in Z2 we set x∗ = x+ (1/2, 1/2). We define the usual
norms:

|x|1 = |x1|+ |x2| , |x|2 =
√
x2

1 + x2
2 , |x|∞ = max(|x1|, |x2|) .

On the plane R2 we will mostly use the Euclidean norm | |2. For S a subset of Z2

we denote by |S| its cardinality. We turn Z2 into a graph by adding edges between all
pairs x, y of points of Z2 such that |x − y|1 = 1. The set of all edges between nearest
neighbor sites of Z2 is denoted by E2. A path in (Z2,E2) is an alternating sequence
x0, e0, x1, e1, · · · , en−1, xn, · · · of distinct vertices xi and edges ei, where ei is the edge
between xi and xi+1 (we adopt here the definition of [11], which is slightly different from
the one used in [1]). If the path terminates at some vertex xn it is said to connect x0

to xn. A circuit in (Z2,E2) is an alternating sequence x0, e0, x1, e1, · · · , en−1, xn, en, x0

such that x0, e0, x1, e1, · · · , en−1, xn is a path and en is the edge between xn and x0. Two
paths are disjoint if they have no edges in common. The set of all edges between nearest
neighbor sites of (Z∗)2 is denoted by (E∗)2 and we define analogously paths, circuits in
(E∗)2. The nearest neighbor Bernoulli bond percolation model on the square lattice at
density p is defined by independently choosing each edge of E2 to be open with probability
p or closed with probability 1 − p. We denote by P the product probability measure on
the configuration space Ω = {0, 1}E2

. Two subsets of sites S1, S2 of Z2 are connected in
the configuration ω if there is a path of open edges in ω connecting a site of S1 to a site of
S2. Let ω be a configuration. The open clusters in ω are the connected components of the
graph having vertex set Z2 and the open edges of ω only. We will often consider an open
cluster as a set of sites by looking only at its set of vertices. We define C = C(ω) to be the
open cluster containing the origin in ω (which is reduced to {0} if 0 is not connected to
any other site by open edges). In dimension two, the model is self dual. A given edge e of
E2 is closed if and only if the unique dual edge e∗ of (E∗)2 which intersects e is open and
vice–versa. Each finite open cluster of ω is surrounded by an innermost circuit of open
dual edges in ω (see for instance [11, Proposition 9.2]). It is known that the model has a
phase transition at pc = 1/2: for p < pc the open clusters are finite and for p > pc there
exists a unique infinite open cluster [11,13]. We work with a fixed value p > pc.

We finally recall briefly two fundamental correlation inequalities. To a configuration ω,
we associate the set K(ω) = { e ∈ E2 : ω(e) = 1 }. Let A,B be two events. The disjoint
occurrence A ◦B of A and B is the event{

ω such that there exists a subset H of K(ω) such that, if ω′, ω′′ are the configu–
–rations determined by K(ω′) = H,K(ω′′) = K(ω) \H, then ω′ ∈ A and ω′′ ∈ B

}
.

There is a natural order on Ω defined by the relation: ω1 ≤ ω2 if and only if all open
edges in ω1 are open in ω2. An event is said to be increasing (respectively decreasing) if
its characteristic function is non decreasing (respectively non increasing) with respect to
this partial order. Suppose the two events A,B are both increasing (or both decreasing).
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The Harris–FKG inequality [8,12] says that P (A ∩B) ≥ P (A)P (B).
The van den Berg–Kesten inequality [2] says that P (A ◦B) ≤ P (A)P (B).

3. Large deviations for the finite cluster shape

We denote by B the Borel σ–algebra of R2 and by K the collection of the compact
subsets of R2. The Euclidean distance between two compact sets K1,K2 of R2 is

d(K1,K2) = min{ |x1 − x2|2 : x1 ∈ K1, x2 ∈ K2 } .

The r–neighborhood of a compact set K is the set

V(K, r) = {x ∈ R2 : d(x,K) ≤ r } .

The diameter of a compact set K is diamK = max{ |y − x|2 : x, y ∈ K }.
We endow K with the Hausdorff metric DH :

∀K1,K2 ∈ K DH(K1,K2) = max{ max
x1∈K1

d(x1,K2), max
x2∈K2

d(x2,K1)} .

If K belongs to K and U is a subset of K, we set also DH(K,U) = inf{DH(K,U) : U ∈ U }.
The metric space (K, DH) is complete. Let Kc be the subset of K consisting of connected
sets i.e.

Kc = {K ⊂ R2 : K compact and connected } .

We claim that Kc is a closed subspace of (K, DH). Indeed, let (Kn)n∈N be a sequence of
connected compact sets converging to K. Suppose K is not connected, so that there exist
two open disjoint sets U, V such that K ⊂ U ∪ V and K ∩ U 6= ∅, K ∩ V 6= ∅. For n
sufficiently large, we will also have Kn ⊂ U ∪V , Kn ∩U 6= ∅, Kn ∩V 6= ∅, which is absurd
since Kn is connected.

We consider also the metric Dλ on B associated to the planar Lebesgue measure:

∀B1, B2 ∈ B Dλ(B1, B2) =
∫
|χB1 − χB2 | dλ = λ(B1∆B2) ,

where λ is the Lebesgue measure on R2 and ∆ is the symmetric difference operator. In
fact Dλ is not a metric on B, but rather on the set of equivalence classes modulo Lebesgue
negligible sets.

We define an equivalence relation on B by: B1 is equivalent to B2 if and only if B1 is a
translate of B2 (i.e. there exists x in R2 such that B1 = x+B2). The class of an element
B of B is denoted by B and we denote by B the quotient set of the equivalence classes
associated to this relation. If U is a subset of B we define U = {U : U ∈ U }. The set K
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(respectively B) is endowed with the quotient metric DH (respectively Dλ) associated to
DH (respectively Dλ): for any K1,K2 in K, we define

DH(K1,K2) = inf
x1,x2∈R2

DH(K1 + x1,K2 + x2) = DH(K1,K2)

and we proceed analogously to define Dλ from Dλ.
In the supercritical regime where 1 > p > pc = 1/2, the origin belongs to a finite

open cluster with probability strictly between 0 and 1. We denote by P̂ the measure
P conditioned on this event i.e. P̂ (·) = P (·/|C| < ∞). Under P̂ , the open cluster
C containing the origin is a random compact set. We next state our large deviations
principles, using the Freidlin–Wentzell presentation [9]. The rate functions σgH and σgλ
are built in the next section.

Theorem 3.1. Under P̂ , the family of the laws of (C/N)N∈N on the space K equipped
with the Hausdorff metric DH satisfies a large deviations principle with good rate function
σgH and speed N :
(i) upper bound: ∀u ≥ 0 ∀δ > 0 ∀α > 0 ∃N0 ∀N ≥ N0

P̂
(
DH(C/N,ΦH(u)) ≥ δ

)
≤ exp−Nu(1− α) ,

where ΦH(u) = {K ∈ Kc : σgH(K) ≤ u } .
(ii) lower bound: ∀K ∈ Kc ∀δ > 0 ∀α > 0 ∃N0 ∀N ≥ N0

P̂
(
DH(C/N,K) ≤ δ

)
≥ exp−NσgH(K)(1 + α) .

Remark. The rate function σgH is infinite on the set K \ Kc; hence the non connected
compact sets do not intervene in the statement of the large deviations principle.

We recall that the r–neighborhood of K is V(K, r) = {x ∈ R2 : d(x,K) ≤ r }.

Theorem 3.2. Let f(N) be a function from N to R such that

lim
N→∞

f(N)/ lnN = +∞ , lim
N→∞

f(N)/N = 0 .

Under P̂ , the family of the laws of (V(C, f(N))/N)N∈N on the space B equipped with the
metric Dλ satisfies a large deviations principle with good rate function σgλ and speed N :
(i) upper bound: ∀u ≥ 0 ∀δ > 0 ∀α > 0 ∃N0 ∀N ≥ N0

P̂
(
Dλ(V(C, f(N))/N,Φλ(u)) ≥ δ

)
≤ exp−Nu(1− α) ,
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where Φλ(u) = {B ∈ B : σgλ(B) ≤ u } .
(ii) lower bound: ∀B ∈ B ∀δ > 0 ∀α > 0 ∃N0 ∀N ≥ N0

P̂
(
Dλ(V(C, f(N))/N,B) ≤ δ

)
≥ exp−Nσgλ(B)(1 + α) .

Remark. The sets ΦH(u) and Φλ(u) are translation invariant so that for any K in K,
we have for instance DH(K,ΦH(u)) = inf{DH(K,K ′) : K ′ ∈ ΦH(u) } = DH(K,ΦH(u))
(notice that ΦH(u) should be understood as a set of elements of K in the last expression).

Remark. The Freidlin–Wentzell formulation of the large deviations principle is equivalent
to the more classical one. For instance the result of theorem 3.1 can be rewritten as follows.
For any Borel subset U of Kc,

− inf {σgH(U) : U ∈ interior(U) } ≤ lim inf
N→∞

1
N

lnP (C/N ∈ U)

≤ lim sup
N→∞

1
N

lnP (C/N ∈ U) ≤ − inf {σgH(U) : U ∈ closure(U) }

where interior(U) and closure(U) are the interior and the closure of U with respect to the
Hausdorff metric on K associated to DH .

We next show how Theorem 3.2 is related to the two dimensional Wulff construction
for the percolation model. We define the Wulff constant ω(p) at density p by

ω(p) = inf{ gp(∂K) : K ∈ KJc , λ(K) ≥ 1 } .

where ∂K is the topological boundary of K and KJc is the class of the connected compact
sets K such that R2 \K has a finite number of bounded components, the boundaries of
which are disjoint Jordan curves. The variational problem defining the Wulff constant is
a problem of the isoperimetric type. Up to a translation, there exists a unique set in KJc
realizing the above minimum, described by the Wulff construction

W = {x ∈ R2 : x · y ≤ g(y) for all y in R2 }

(where g is the direction–dependent surface tension of the model and x · y is the usual
scalar product between x, y in R2). See [1] and the references therein for more details.

Corollary 3.3. Let f(N) be a function from N to R such that

lim
N→∞

f(N)/ lnN = +∞ , lim
N→∞

f(N)/N = 0 .
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We have
lim
N→∞

1
N

ln P̂
(
λ(V(C, f(N))) ≥ N2

)
= −ω(p)σ(p) .

Proof. Clearly, we have the equality
{
λ(V(C, f(N))) ≥ N2

}
=
{
λ(V(C, f(N))/N) ≥ 1

}
.

Let A = {B ∈ B : λ(B) ≥ 1 }. Since (V(C, f(N))/N)N∈N satisfies a large deviations
principle, we have also

− inf {σgλ(B) : B ∈ intλA} ≤ lim inf
N→∞

1
N

ln P̂
(
λ(V(C, f(N))/N) ≥ 1

)
,

lim sup
N→∞

1
N

ln P̂
(
λ(V(C, f(N))/N) ≥ 1

)
≤ − inf {σgλ(B) : B ∈ adhλA}

where intλA is the interior of A with respect to the Dλ metric, adhλA is its closure. We
have adhλA = A and intλA = {B ∈ B : λ(B) > 1 }. Clearly, for any ε > 0,

inf { gλ(B) : B ∈ B, λ(B) > 1 } ≤ inf{ gλ((1 + ε)K) : K ∈ KJc , λ(K) ≥ 1 } = (1 + ε)ω(p) .

The set {K ∈ KJc : gλ(K) < ∞, λ(K) > 1 } is dense into the set {B ∈ B : gλ(B) <
+∞, λ(B) > 1 } for the Dλ metric, and therefore

inf { gλ(B) : B ∈ B, λ(B) ≥ 1 } ≥ inf{ gλ((1− ε)B) : B ∈ B, gλ(B) < +∞, λ(B) > 1 }
= inf{ gλ((1− ε)K) : K ∈ KJc , λ(K) > 1 } ≥ (1− ε)ω(p) .

Letting ε go to zero, we get

inf { gλ(B) : B ∈ intλA} = inf { gλ(B) : B ∈ adhλA} = ω(p)

which implies the claim of the corollary. �

4. Construction of the rate functions

The aim of this section is to build the rate functions σgH and σgλ and to study some
of their properties. An important issue is to obtain good rate functions which are lower
semicontinuous and have compact level sets [6]. For x∗, y∗ two dual sites we denote by
x∗ ↔ y∗ the event that x∗ is connected to y∗ by a path of open dual edges. We sum up in
the next proposition several properties of the surface tension (see [1] for the proofs).

Proposition 4.1. The limit

σ(p) = − lim
n→∞

1
n

lnP (0∗ ↔ (n, 0)∗)
7



exists and is positive for p > pc. Furthermore, there exists a convex continuous function
gp from R2 to R satisfying the following property: for any x in Q2, for any k in Z such
that kx is in Z2,

σ(p)gp(x) = − lim
n→∞

1
nk

lnP (0∗ ↔ (nkx)∗) .

In addition, for any x in Z2, we have

P (0∗ ↔ x∗) ≤ exp−σ(p)gp(x) .

The function g (we drop the subscript p in the sequel) is homogeneous i.e.

∀t ∈ R ∀x ∈ R2 g(tx) = |t|g(x) ,

it is symmetric with respect to the axis and the diagonals i.e.

∀x1, x2 ∈ Z2 g(x1, x2) = g(−x1, x2) = g(x1,−x2) = g(x2, x1) ,

and it defines a norm equivalent to the Euclidean norm:

∀x ∈ R2 1√
2
|x|2 ≤ |x|∞ ≤ g(x) ≤ |x|1 ≤

√
2|x|2 .

In the subsequent definitions we will use the function g introduced in proposition 4.1.
We recall that a planar Jordan curve γ is a closed simple curve of the plane R2. By γ
we mean either the image of the curve (that is the set of the points of R2 belonging to
the curve) or a parametrization of the curve, that is a continuous map γ from [0, 1] to R2

such that γ(0) = γ(1). The Jordan curve theorem says that the complement of a Jordan
curve γ consists of two components, each of which has γ as its boundary, one which is
unbounded (the exterior of γ, denoted by ext γ) and one which is bounded (the interior of
γ, denoted by int γ).
The topological boundary of a compact set K is denoted by ∂K. We say that an element
K of Kc is regular if R2\K has a finite number of bounded components and the boundaries
of the components of R2 \K are disjoint Jordan curves. The boundary of the unbounded
component of R2 \K is called the external boundary of K, the boundaries of the bounded
components of R2 \K are called the inner boundaries of K. We denote by KJc the class
of the regular connected compact sets. For K in KJc with external boundary γ0 and inner
boundaries γ1, · · · , γr (so that ∂K = γ0 ∪ · · · ∪ γr), we define its g–perimeter by

g(∂K) =
r∑
i=0

g(γi) ,
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where for γ a Jordan curve, we set

g(γ) = sup
0<t1<···<tl<1

∑
j

g(γ(tj+1)− γ(tj))

(the supremum being taken over all finite subdivisions of [0, 1]). A Jordan curve γ is said
to be rectifiable if g(γ) is finite. Remark that the g–perimeter of a regular compact set K
depends only on its boundary ∂K. We recall next a useful tool introduced in [1].

Definition 4.2. Let A be a subset of R2. Its one dimensional g–Hausdorff measure µg(A)
is

µg(A) = lim
ε→0

(
inf

{
2
∑
i∈I

εi

})
,

the infimum being taken over all countable families (εi)i∈I such that 0 < εi ≤ ε for all i
in I and there exists a family (xi)i∈I of points of R2 with A ⊂

⋃
i∈I{x : g(x− xi) < εi }.

Lemma 4.3. Let γ be a rectifiable curve. We have µg(γ) ≤ g(γ). If γ is self avoiding
then µg(γ) = g(γ).

This lemma is proved in [1, Lemma A.2]. We next state three lemmas which are the
keys in order to prove the lower semicontinuity of g with respect to the Hausdorff metric.

Lemma 4.4. Let A be a subset of R2 and let (γn)n∈N be a sequence of Jordan curves such
that for any x belonging to A, limn→∞ d(x, γn) = 0. Then lim infn→∞ g(γn) ≥ µg(A) .

Proof. We need only to consider the case where lim infn→∞ g(γn) is finite and A is bounded.
Passing to a subsequence, we may assume that the sequence (g(γn))n∈N converges. Now
the lengths of all the curves γn are bounded; we can choose a parametrization of the curves
on the interval [0, 1] which is proportional to the arc length. With these parametrizations,
the functions t ∈ [0, 1] 7→ γn(t) are Lipschitz and the Lipschitz constants are uniformly
bounded so that the functions (γn) form an equicontinuous family. Moreover the functions
(γn) are uniformly bounded. In fact,

sup
n,t
|γn(t)|2 ≤ sup

x∈A
|x|2 + sup

n
d(A, γn) +

√
2 sup

n
g(γn) .

By the Ascoli theorem, the sequence (γn)n∈N admits a subsequence which converges uni-
formly to a curve γ′ (notice that γ′ is not necessarily self avoiding). Fix a subdivision
t0 = 0 < t1 < · · · < tl < 1 = tl+1 of [0, 1]. We have

lim
n→∞

g(γn) ≥ lim
n→∞

l∑
i=0

g(γn(ti+1)− γn(ti)) ≥
l∑
i=0

g(γ′(ti+1)− γ′(ti))
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whence, by taking the supremum of the righthand side with respect to all possible subdivi-
sions, we get limn→∞ g(γn) ≥ g(γ′). Moreover the uniform convergence of γn to γ′ implies
that DH(γn, γ′) converges to 0. Let x belong to A. By hypothesis limn→∞ d(x, γn) = 0
whence d(x, γ′) = 0 and x belongs to γ′. Therefore A ⊂ γ′, and applying lemma 4.3 we
get g(γ′) ≥ µg(γ′) ≥ µg(A). �

Lemma 4.5. Let O be a connected open set with compact closure. There exists a sequence
(On)n∈N of increasing connected open subsets of O such that:

∀n ∈ N ∀x ∈ On d(x, ∂O) > 1/n and
⋃
n∈N

On = O .

Proof. Let n belong to N. We define a relation Rn on the points of O by: xRny if and
only if there exists a continuous path γ : [0, 1] → O such that γ(0) = x, γ(1) = y and
d(γ(t), ∂O) > 1/n for all t in [0, 1]. For any pair x, y of points of O there exists n0 such
that xRny for all n larger than n0. In fact, O is an open connected subset of R2 and
is thus arcwise connected. Thus there exists a continuous path γ : [0, 1] → O such that
γ(0) = x, γ(1) = y. Since γ([0, 1]) does not intersect ∂O and is compact, the distance
d(γ([0, 1]), ∂O) is positive. It follows that xRny as soon as d(γ([0, 1]), ∂O) > 1/n. Let
us fix a point x0 in O and let C(x0, n) be its equivalence class for the relation Rn. Then
(C(x0, n))n∈N is an increasing sequence of open connected sets satisfying the requirements
of the lemma. �

Lemma 4.6. Let K belong to KJc and let (Kn)n∈N be a sequence in KJc converging
to K for the Hausdorff metric DH . Let γ0 (respectively γn0 ) be the external boundary of
K (resp. Kn) and let γ1, · · · , γr (resp. γn1 , · · · , γnφ(n)) be the inner boundaries of K (resp.
Kn). Then for each i in {0 · · · r}, there exists a sequence of integers (ρi(n))n∈N such that
0 ≤ ρi(n) ≤ φ(n) for all n and

∀x ∈ γi lim
n→∞

d(x, γnρi(n)) = 0 .

Proof. We denote by B0, · · · , Br the components of R2 \K, so that γi = ∂Bi for each i in
{0 · · · r}. Let ε be a positive real number. By lemma 4.5, there exists a positive δ (smaller
than ε) and connected open sets Bδi for each i in {0 · · · r} such that Bδi ⊂ Bi and

∀x ∈ ∂Bi d(x,Bδi ) ≤ ε , ∀x ∈ Bδi d(x, ∂Bi) > δ .

Let n0 be such that DH(K,Kn) < δ for n ≥ n0. For n ≥ n0, Kn is included in R2 \ Bδi
so that none of the curves γnj , 0 ≤ j ≤ φ(n), intersect Bδi . Therefore Bδi is included in
a component of R2 \ Kn. Either Bδi ⊂ ext γn0 and we set m = 0 or there exists j in
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{1 · · ·φ(n)} such that Bδi ⊂ int γnj and we set m = j. Let x belong to ∂Bi = γi. There
exists y in Bδi such that d(x, y) ≤ ε and z in Kn such that d(x, z) < ε. In particular, y
does not belong to Kn so that the segment [y, z] intersects γnm and d(x, γnm) < ε. Thus we
have proved that

∀i ∈ {0 · · · r} lim
n→∞

inf
1≤m≤φ(n)

sup
x∈γi

d(x, γnm) = 0

which is the desired result. �

Proposition 4.7. The g–perimeter is lower semicontinuous on the space (KJc , DH) i.e.
for any K in KJc , any sequence (Kn)n∈N in KJc converging to K for the Hausdorff metric
DH , we have lim infn→∞ g(∂Kn) ≥ g(∂K).

Remark. It is essential to work only with connected sets to have the lower semicontinuity
of g with respect to the Hausdorff metric.

Proof. Let K belong to KJc and let (Kn)n∈N be a sequence in KJc converging to K. Let
γ0 (respectively γn0 ) be the external boundary of K (resp. Kn) and let γ1, · · · , γr (resp.
γn1 , · · · , γnφ(n)) be the inner boundaries of K (resp. Kn). We apply lemma 4.6:

∀i ∈ {0 · · · r} ∃(ρi(n))n∈N ∀x ∈ γi lim
n→∞

d(x, γnρi(n)) = 0 .

Passing again to a subsequence, we may impose that for all i, j in {0 · · · r}

either [∀n ∈ N ρi(n) = ρj(n) ] or [∀n ∈ N ρi(n) 6= ρj(n) ] .

We define an equivalence relation ∼ on {0 · · · r} by: i ∼ j if ρi(n) = ρj(n) for all n ∈ N.
Let π be an equivalence class for this relation. Denoting by ρπ(n) the common value ρi(n)
for i in π, we have

∀i ∈ π ∀x ∈ γi lim
n→∞

d(x, γnρπ(n)) = 0

and lemma 4.4 implies that lim infn→∞ g(γnρπ(n)) ≥ g(
⋃
i∈π γi) =

∑
i∈π g(γi) (recall that

the curves γi are disjoint since K is regular). Let P be the set of the equivalence classes
of the relation ∼. We have g(∂Kn) ≥

∑
π∈P g(γnρπ(n)) whence

lim inf
n→∞

g(∂Kn) ≥
∑
π∈P

lim inf
n→∞

g(γnρπ(n)) ≥
∑
π∈P

∑
i∈π

g(γi) =
r∑
i=0

g(γi) = g(∂K) . �
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Proposition 4.8. The g–perimeter is lower semicontinuous on the space (KJc , Dλ) i.e.
for any K in KJc , any sequence (Kn)n∈N in KJc converging to K for the metric Dλ, we
have lim infn→∞ g(∂Kn) ≥ g(∂K).

Proof. The lower semicontinuity of g in this case is a consequence of the functional defini-
tion of the perimeter. Let B = {x ∈ R2 : g(x) ≤ 1 } be the unit ball of the norm induced
by g. The usual scalar product between x, y in R2 is denoted by x · y. The Wulff shape
associated to the convex function g is the polar set of B i.e.

W = {x ∈ R2 : x · y ≤ g(y) for all y in R2 } = {x ∈ R2 : x · y ≤ 1 for all y in B } .

By duality, the polar set of W is in turn B [15]. As a consequence, for any x in R2, we
have g(x) = supy∈W x · y. Let γ be a Jordan curve and let K be the closure of the interior
of γ. We have then (see for instance [10, Definition 1.1])

g(γ) =
∫
g(∇χK) dλ = sup

{ ∫
χK divφdλ : φ of class C1 from R2 to W

}
.

This formula implies the lower semicontinuity of g with respect to the metric Dλ [10,
Theorem 1.9]. One could also propose an argument similar to [14, 6.1.3, Lemma 1]. �

We extend the g–perimeter to K on one hand and to B on the other hand by setting,

∀K ∈ K gH(K) = inf
{

lim inf
n→∞

g(∂Kn) : (Kn)n∈N ∈ (KJc )N, lim
n→∞

DH(K,Kn) = 0
}
,

∀B ∈ B gλ(B) = inf
{

lim inf
n→∞

g(∂Kn) : (Kn)n∈N ∈ (KJc )N, lim
n→∞

Dλ(B,Kn) = 0
}
.

By propositions 4.7, 4.8, the g–perimeter was lower semicontinuous on the set KJc , hence the
previous definition makes sense i.e. gH and gλ coincide and are equal to g on KJc . However
these two maps do not agree in general on K. For instance, if we consider a segment [x, y],
we have gH([x, y]) = 2g(y − x) whereas gλ([x, y]) = 0. Notice that a segment [x, y] does
not belong to KJc . Also if K is not connected then gH(K) is infinite (in this case K is
not the limit in the Hausdorff metric of a sequence of connected sets) but gλ(K) might be
finite. We next prove that gH and gλ are subadditive.

Proposition 4.9. For any K1,K2 in Kc such that K1∩K2 6= ∅, we have gH(K1∪K2) ≤
gH(K1) + gH(K2). For any B1, B2 in B, we have gλ(B1 ∪B2) ≤ gλ(B1) + gλ(B2).

Remark. The condition K1 ∩K2 6= ∅ ensures that K1 ∪K2 is connected.

Proof. Suppose first that K1,K2 belong to KJc . Since ∂(K1∪K2) is included in ∂K1∪∂K2,
we have g(∂(K1 ∪K2)) ≤ g(∂K1) + g(∂K2) (we recall that g is a Hausdorff measure, see
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lemma 4.3). We consider now the case of arbitrary elements K1,K2 of Kc such that
K1 ∩K2 6= ∅. Let (K1

n)n∈N, (K2
n)n∈N be sequences in KJc such that

lim
n→∞

DH(K1
n,K1) = 0 , lim

n→∞
g(∂K1

n) = gH(K1) ,

lim
n→∞

DH(K2
n,K2) = 0 , lim

n→∞
g(∂K2

n) = gH(K2) .

Let x belong to K1 ∩K2 and let ε be a positive real number. For n large enough, K1
n and

K2
n intersect the closed ball B(x, ε) of center x and radius ε. Thus the set K1

n∪K2
n∪B(x, ε)

is connected and belongs to KJc whence

gH(K1
n ∪K2

n ∪B(x, ε)) ≤ gH(K1
n) + gH(K2

n) + gH(B(x, ε)) .

Letting n go to infinity, we obtain, using the lower semicontinuity of gH ,

gH(K1 ∪K2 ∪B(x, ε)) ≤ gH(K1) + gH(K2) + gH(B(x, ε)) .

As ε goes to zero, K1∪K2∪B(x, ε) converges to K1∪K2 for the Hausdorff metric DH and
gH(B(x, ε)) goes to zero. Using again the lower semicontinuity of gH , we get gH(K1∪K2) ≤
gH(K1) + gH(K2). The proof is similar for the function gλ. �

We finally define gH and gλ on the quotient sets K and B:

∀K ∈ K gH(K) = gH(K) , ∀B ∈ B gλ(B) = gλ(B) ,

which makes sense since gH and gλ are translation invariant on K and B.

Proposition 4.10. The maps gH : K ∈ (K, DH) 7→ gH(K) and gλ : B ∈ (B, Dλ) 7→ gλ(B)
are lower semicontinuous. For t positive the level set {K ∈ Kc : gH(K) ≤ t } is compact
in (Kc, DH), the level set {B ∈ B : gλ(B) ≤ t } is compact in (B, Dλ).

Proof. The lower semicontinuity of gH and gλ are mere consequences of their definition,
together with propositions 4.7, 4.8. Let (Kn)n∈N be a sequence in Kc such that gH(Kn) ≤ t
for all n in N. For each n we can assume that the origin belongs to Kn (since Kn is defined
up to a translation). Since the diameter of an element of Kc is bounded by its gH–perimeter
(up to a multiplicative constant), there exists a bounded set B such that

K ∈ Kc, 0 ∈ K, gH(K) ≤ t =⇒ K ⊂ B .

Thus the sets Kn are subsets of B. For any compact set K0, the subset {K ∈ K : K ⊂ K0 }
of K is itself compact with respect to the metric DH [5, Theorem II-5]. Hence (Kn)n∈N
admits a subsequence converging for the metric DH ; the same subsequence of (Kn)n∈N
converges for the metric DH .

13



Let (Bn)n∈N be a sequence in B such that gλ(Bn) ≤ t for all n in N. If infinitely many
of the sets Bn are Lebesgue negligible we can extract a subsequence converging to the
empty set for Dλ. If not, passing to a subsequence, we may suppose that none of them is
negligible. Let U be a neighborhood of the origin. We can choose the sets Bn such that
λ(Bn ∩ U) is positive for all n (since Bn is defined up to a translation and λ(Bn) > 0).
Since the norm defined by g is equivalent to the Euclidean norm (see proposition 4.1), then
the Euclidean perimeters of the sets Bn are uniformly bounded i.e. supn

∫
|∇χBn | dλ is

finite. We claim that there exists a bounded set B such that Bn \ B is negligible for all
n. In fact, if E is an element of B and U , V are two subsets of E of positive Lebesgue
measure, then gλ(E) ≥ d(U, V )/

√
2 (any compact in KJc approximating E has to visit

U and V so that its diameter is larger than d(U, V )). By Theorem 6.1.4 of [14], we can
extract a subsequence of (Bn)n∈N which converges with respect to the metric Dλ. We
can equivalently apply Theorem 1.19 of [10]: the sequence of functions (χBn)n∈N is a
sequence of functions in L1(B) whose BV–norms are uniformly bounded, hence it admits
a converging subsequence. �

5. Proofs of the large deviations principles

The proofs of the large deviations upper bounds rely on the coarse–graining procedure
introduced in [1,7].

Geometrical constructions. Let M be a positive real number. We successively define
the notion of M–skeleton of a dual circuit and M–skeleton of a connected set of sites.
Let γ be a dual Jordan curve (that is the image of γ is a dual circuit) of diameter larger
than M . The M–skeleton of γ, denoted by γ(M), is defined as follows. We set s0 = γ(0),
t0 = 0, and for n ≥ 0,

tn+1 = inf { t > tn : γ(t) ∈ (Z∗)2, |γ(t)− γ(tn)|2 ≥M } , sn+1 = γ(tn+1) .

By l we denote the largest index n such that tn is finite. The M–skeleton of γ is then the
ordered sequence of dual sites γ(M) = [s0, s1, · · · , sl].
Let A be a connected set of sites of Z2 (i.e. two arbitrary points of A are connected by a
path of edges in A). Let

Ã =
⋃
x∈A
{ y : |x− y|∞ ≤ 1/2 } .

The set Ã is an element of KJc . The external boundary γ0 of Ã and the inner boundaries
of Ã are dual circuits. The M–skeleton S(A) of A is empty if the diameter of Ã is less
than M ; otherwise it is the union of the M–skeleton of γ0 and the M–skeletons of the
inner boundaries of Ã whose diameters are larger than M , say γ1, · · · , γr. We denote the
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M–skeletons of these circuits by γ(M)
i = [si0, · · · , sili ] for i in {0 · · · r}, and we define

I(S(A)) =
r∑
i=0

( li∑
j=0

g(sij+1 − sij)
)
,

(with the convention that sili+1 = si0) and also cardS(A) = l0 + · · ·+ lr+r.

Lemma 5.1. There exist two positive constants a0, a1 such that for any M–skeleton S we
have a0M cardS ≤ I(S) ≤ a1M cardS.

Proof. This lemma is a mere consequence of the fact that the norm defined by g is equiv-
alent to the Euclidean norm | |2 (see proposition 4.1). �

To A we associate an approximate shape A(M) following the method introduced in [7,
section 2.10]. If the M–skeleton of A is empty then A(M) = {a} where a is any point of A.
Otherwise, we draw all the segments [sij , s

i
j+1], 0 ≤ i ≤ r, 0 ≤ j ≤ li, and we denote by

L(S(A)) the union of these polygonal lines. The set R2 \L(S(A)) splits up into a collection
of connected components with exactly one unbounded component. A component is called a
minus component if any path that connects its interior points with points of the unbounded
component and intersects the polygonal lines of the skeleton L(S(A)) in a finite number
of points, intersects them in an odd number of points. The set A(M) is the closure of the
union of all the minus components. By construction, A(M) is connected.

Lemma 5.2. For any connected set of sites A, any positive M , we have gH(A(M)) ≤
I(S(A)) and gλ(A(M)) ≤ I(S(A)).

Remark. We believe that these inequalities are in fact equalities (but we won’t use it).

Proof. Let (Ak)1≤k≤m be the minus components of R2 \ L(S(A)). By proposition 4.9,
gH(A(M)) ≤

∑m
k=1 gH(Ak). However, for each k, the set Ak is connected, and ∂Ak is

an union of polygonal lines included in the union of the segments [sij , s
i
j+1], 0 ≤ i ≤ r,

0 ≤ j ≤ li. Moreover, the definition of minus components implies that, for k 6= k′,
∂Ak ∩ ∂Ak′ is finite (if it were infinite, it would contain a non–trivial segment, and this
segment would separate two distinct minus components, which is absurd). It follows that

m∑
k=1

gH(Ak) =
m∑
k=1

g(∂Ak) ≤
r∑
i=0

( li∑
j=0

g(sij+1 − sij)
)

= I(S(A)) .

The proof for gλ(A(M)) is similar. �

The next two lemmas estimate the distance between A and A(M).
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Lemma 5.3. For any connected set of sites A, any positive M , we have DH(A,A(M)) ≤
2M + 3 .

Proof. If the M–skeleton of A is empty, the result holds. Otherwise let γ0 be the external
circuit of Ã and let γ1, · · · , γr be the inner boundaries of Ã of diameter larger than M .
It follows from the construction of the skeleton that DH(γi, γ

(M)
i ) ≤ M + 1 for all i in

{0 · · · r}. Let x belong to A.
• If d(x, γ0 ∪ · · · ∪ γr) ≤M + 1 then d(x,A(M)) ≤ 2M + 2.
• If d(x, γ0∪· · ·∪γr) > M+1 then x is in a minus component so that x belongs to A(M).
Conversely, let x belong to A(M).
• If d(x, γ(M)

0 ∪ · · · ∪ γ(M)
r ) ≤M + 1 then d(x,A) ≤ 2M + 3.

• If d(x, γ(M)
0 ∪ · · · ∪ γ(M)

r ) > M + 1 then x is inside γ0 and outside of γ1, · · · , γr so that
d(x,A) ≤M + 1. �

Lemma 5.4. There exists a positive constant a2 such that for any connected set of sites A,
any M larger than 1, we have

∀t > 2M + 3 Dλ(V(A, t), A(M)) ≤ a2M
−1(t+M)2I(S(A)) .

Proof. For t larger than 2M+3, we have by lemma 5.3 that A(M) ⊂ V(A, t) ⊂ V(A(M), 2t).
Therefore Dλ(V(A, t), A(M)) ≤ λ(V(A(M), 2t) \A(M)). Any point in V(A(M), 2t) \A(M) is
at distance at most 2t+M + 1 from the skeleton of A. Using lemma 5.1, it follows that

λ
(
V(A(M), 2t) \A(M)

)
≤ π(2t+M + 1)2cardS(A) ≤ 4π

a0
M−1(t+M)2I(S(A))

which gives the desired result. �

Two probabilistic estimates.

Lemma 5.5. For any M–skeleton S, we have P̂ (S(C) = S) ≤ exp−σI(S).

Proof. We suppose that the skeleton S is the union of the M–skeletons γ(M)
i = [si0, · · · , sili ],

0 ≤ i ≤ r. The event {S(C) = S} is included in the disjoint occurrence of events {s00 ↔
s01}◦· · ·◦{s0l0−1 ↔ s0l0}◦{s

0
l0
↔ s00}◦{s10 ↔ s11}◦· · ·◦{s1l1−1 ↔ s1l1}◦{s

1
l1
↔ s10}◦· · ·◦{sr0 ↔

sr1}◦· · ·◦{srlr−1 ↔ srlr}◦{s
r
lr
↔ sr0}. An application of the van den Berg–Kesten inequality

yields the result. �

Lemma 5.6. There exist two positive constants a3, a4 such that

∀d P̂ (diamC ≥ d) ≤ a3 exp−a4d .
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Proof. If the diameter of C is n, there exist two dual sites x∗, y∗ such that |x∗ − y∗|2 ≥ n,
|x∗|2 ≤ n, |y∗|2 ≤ n and there is an open dual path from x∗ to y∗. Therefore, setting
a = infx:|x|2=1 σg(x), we have P̂ (diamC = n) ≤ π2(n+ 1)4 exp−an so that

P̂ (diamC ≥ d) ≤
+∞∑
n=d

π2(n+ 1)4 exp−an

from which the desired conclusion follows easily. �

Proof of the upper bound (i) of theorem 3.1. Let c be a large positive real number, to
be chosen later. We set M = c lnN . We build the approximate shape C(M). By lemma 5.3,
we have DH(C,C(M)) ≤ 2M + 3. For N large enough, so that (2M + 3)/N < δ/2, we have
therefore

P̂ (DH(C/N,ΦH(u)) ≥ δ) ≤ P̂ (DH(C(M)/N,ΦH(u)) ≥ δ/2) .

However, C(M)/N is an element of Kc; its distance to the set ΦH(u) is positive, thus
σgH(C(M)) > uN . Moreover lemma 5.2 implies that gH(C(M)) ≤ I(S(C)). Thus

P̂ (DH(C/N,ΦH(u)) ≥ δ) ≤ P̂ (σI(S(C)) ≥ uN) .

The next lemma shows that we get the desired upper bound if we choose c larger than
a5/α.

Lemma 5.7. Suppose that M ≥ c lnN . There exist a positive constant a5 and an inte-
ger N0 such that for N ≥ N0, for any u ≥ 0,

P̂ (σI(S(C)) ≥ uN) ≤ exp−uN(1− a5/c) .

Proof. Let a be such that a > u/a4 (a4 is the constant appearing in lemma 5.6). We have

P̂ (σI(S(C)) ≥ uN) ≤ P̂ (σI(S(C)) ≥ uN, diamC ≤ aN) + P̂ (diamC > aN).

By lemma 5.6, P̂ (diamC > aN) ≤ a3 exp−a4aN ≤ a3 exp−uN .
We estimate now the term

P̂ (σI(S(C)) ≥ uN, diamC ≤ aN) =
∑
n

∑
S∈A(n,u,a,N)

P̂ (S(C) = S)

where A(n, u, a,N) is the set of M–skeletons S such that σI(S) ≥ uN , cardS = n, and
there exists a connected set of sites containing the origin of diameter less than aN whose
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M–skeleton is S (it is the set of the M–skeletons of cardinality n which are the M–
skeleton of a cluster C satisfying σI(S(C)) ≥ uN , diamC ≤ aN , 0 ∈ C). The number of
M–skeletons in A(n, u, a,N) is at most πn(aN + 1)2nnn ≤ exp 8n lnN for N large enough
(of course we have that n ≤ π(aN + 1)2 since all the points of the M–skeleton are at a
distance at most aN from the origin). Let b be such that 8 < σa0b (the constant a0 is the
one appearing in lemma 5.1). For S in A(n, u, a,N), we write, using lemma 5.1,

σI(S) = σI(S)(1− b/c) + (b/c)σI(S) ≥ uN(1− b/c) + σa0b n lnN

and we use the estimate of lemma 5.5 to get

P̂ (σI(S(C)) ≥ uN, diamC ≤ aN) ≤
∑
n

∑
S∈A(n,u,a,N)

exp−σI(S)

≤
∑
n

∑
S∈A(n,u,a,N)

exp
(
− uN(1− b/c)− σa0b n lnN

)
≤ exp

(
− uN(1− b/c)

)∑
n

exp
(

(8− σa0b)n lnN
)

≤ exp−uN(1− a5/c)

for any a5 > b and N large enough, since σa0b > 8. �

Proof of the upper bound (i) of theorem 3.2. We set M = f(N). We build the
approximate shape C(M). We have

P̂ (Dλ(V(C, f(N))/N,Φλ(u)) ≥ δ) ≤
P̂ (Dλ(V(C, f(N))/N,C(M)/N) ≥ δ/2) + P̂ (Dλ(C(M)/N,Φλ(u)) ≥ δ/2) .

Lemma 5.4 implies that Dλ(V(C, f(N)), C(M)) ≤ 4a2f(N)I(S(C)) whence

P̂ (Dλ(V(C, f(N))/N,C(M)/N) ≥ δ/2) ≤ P̂ (σI(S(C)) ≥ σN2δ/(8a2f(N))) .

In addition, if Dλ(C(M)/N,Φλ(u)) ≥ δ/2 then gλ(C(M)) > Nu and by lemma 5.2, we have
also σI(S(C)) > Nu, thus

P̂ (Dλ(C(M)/N,Φλ(u)) ≥ δ/2) ≤ P̂ (σI(S(C)) ≥ Nu) .

Combining the two previous inequalities, we obtain that

P̂ (Dλ(V(C, f(N))/N,Φλ(u)) ≥ δ) ≤
P̂ (σI(S(C)) ≥ σN2δ/(8a2f(N))) + P̂ (σI(S(C)) ≥ Nu) .

The desired upper bound follows from lemma 5.7 and the hypothesis that as N goes to
infinity, f(N)/ lnN goes to infinity and f(N)/N goes to zero. �
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Proof of the lower bound (ii) of theorem 3.1. Let r be positive and let x∗, y∗ be two
dual sites. The event that there exists an open dual path from x∗ to y∗ whose Hausdorff
distance to the segment [x∗, y∗] is less than r is denoted by x∗ r←→ y∗.

Lemma 5.8. Let φ(n) be a function such that limn→∞ φ(n) = +∞. For any dual site x∗,
we have

lim
n→∞

1
n

lnP (0∗
φ(n)←→ nx∗) = −σg(x) .

Proof. Clearly P (0∗
φ(n)←→ nx∗) ≤ P (0∗ ↔ nx∗) so that

lim sup
n→∞

1
n

lnP (0∗
φ(n)←→ nx∗) ≤ −σg(x) .

Let ε be a real number in ]0, 1[. For any m in N, there exists N(m) such that

(1− ε)P (0∗ ↔ mx∗) ≤ P (0∗
N(m)←→ mx∗) .

Let n0 be such that φ(n) ≥ N(m) for n ≥ n0. Let n = km + l be the Euclidean division
of n by m. Then the event

{ 0∗
N(m)←→ mx∗, mx∗

N(m)←→ 2mx∗, · · · (k − 1)mx∗
N(m)←→ kmx∗, kmx∗

N(m)←→ nx∗ }

is included in the event { 0∗
φ(n)←→ nx∗ }. Using the Harris–FKG inequality and the trans-

lation invariance of the model, we obtain

P (0∗
φ(n)←→ nx∗) ≥ P (0∗

N(m)←→ mx∗)k P (0∗
N(m)←→ lx∗) .

Thus

1
n

lnP (0∗
φ(n)←→ nx∗) ≥ 1

n

⌊ n
m

⌋
lnP (0∗

N(m)←→ mx∗) +
1
n

lnP (0∗
N(m)←→ lx∗)

whence
lim inf
n→∞

1
n

lnP (0∗
φ(n)←→ nx∗) ≥ 1

m
lnP (0∗ ↔ mx∗) +

1
m

ln(1− ε) .

Letting m go to infinity, we get the result. �

Lemma 5.9. Let γ be a Jordan curve and let δ be a positive real number. By Loop∗(γ, δ)
(respectively Loop(γ, δ)) we denote the event that there exists a dual circuit L∗ of open
edges of (E∗)2 (resp. a circuit L of open edges of E2) such that DH(γ, L∗) < δ (resp.
DH(γ, L) < δ). Let α be any positive real number. There exists N0 such that for N ≥ N0

we have

P (Loop∗(Nγ,Nδ)) ≥ exp−Nσg(γ)(1 + α), P (Loop(Nγ,Nδ)) ≥ exp−Nα .
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Proof. We do the proof for the dual circuit; the other case is similar, using the fact that
the surface tension corresponding to paths in E2 is zero in the supercritical regime. Let
< P0, · · · , Pl > be a polygonal line such that

DH(γ,< P0, · · · , Pl >) < δ/2 , g(< P0, · · · , Pl >) ≤ g(γ)(1 + α/2)

(by < P0, · · · , Pl > we denote the polygonal line consisting of the segments [P0, P1], · · · ,
[Pl−1, Pl], [Pl, P0]). We have that (with the convention Pl+1 = P0)

P (Loop∗(Nγ,Nδ)) ≥ P (NP ∗k
Nδ/2−1←→ NP ∗k+1, 0 ≤ k ≤ l)

(NP ∗k is the dual site closest to NPk or any of them if there are several closest dual sites).
Using the Harris–FKG inequality we obtain

P (Loop∗(Nγ,Nδ)) ≥
l∏

k=0

P (NP ∗k
Nδ/2−1←→ NP ∗k+1) .

Lemma 5.8 implies that

lim inf
N→∞

1
N

lnP (Loop∗(Nγ,Nδ)) ≥ −
l∑

k=0

σg(Pk+1 − Pk) ≥ −σg(γ)(1 + α/2)

from which the desired result follows. �

Let us first remark that we need only to prove the lower bound for arbitrary small values
of δ. That is we might suppose that δ is smaller than any value δ0 > 0, possibly depending
on K. Moreover, for any K in Kc containing the origin, we have

P̂ (DH(C/N,K) ≤ δ) ≥ P̂ (DH(C/N,K) ≤ δ) ≥ P̂ (DH(C/N,K ∪ {x : |x|2 ≤ δ/2}) ≤ δ′)

for any δ′ smaller than δ/2. Therefore it is enough to prove the lower bound for a connected
compact set K containing the origin in its interior and with a value of δ much smaller than
d(0, ∂K).

By the very definition of the gH–perimeter, there exists a set K ′ belonging to KJc such
that DH(K,K ′) < δ/3, gH(K ′) ≤ gH(K)(1+α/4). Let γ′0 be the external boundary of K ′

and let γ′1, · · · , γ′r be its inner boundaries. Let O′ be the interior of K ′. Since K ′ belongs
to KJc , then O′ is connected and K ′ is the closure of O′. We apply lemma 4.5 to O′: there
exists an open connected subset O′′ of O′ and a positive η such that, if we denote by K ′′

the closure of O′′, DH(K ′,K ′′) < δ/3 and for any x in K ′′, d(x, ∂K ′) > η. We might
in addition assume that the origin belongs to O′′. By lemma 5.9 and the Harris–FKG
inequality, for N sufficiently large,

P (Loop∗(Nγ′0, Nη/2), · · · ,Loop∗(Nγ′r, Nη/2)) ≥
r∏

k=0

P (Loop∗(Nγ′k, Nη/2))

≥
r∏

k=0

exp−Nσg(γ′k)(1 + α/4) ≥ exp−NσgH(K)(1 + α/4)2 .
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The measure P restricted to the set of edges included in NK ′′ is independent from the
events Loop∗(Nγ′0, Nη/2), . . . , Loop∗(Nγ′r, Nη/2) (these events depend only on the edges
whose endpoints are at a distance less than Nη/2 from the boundary of NK ′). Let ρ > 0
and let γ be a Jordan curve such that

DH(γ,K ′′) < ρ, 0 ∈ γ, γ ∩ ∂K ′′ = ∅ .

Such a curve exists because K ′′ is the closure of the open connected set O′′ and also O′′

contains the origin. Let ψ be such that 0 < ψ < d(γ, ∂K ′′). Clearly ψ is less than ρ. Let
L be a circuit around the origin such that d(0, L) > 2ρN, |L| ≤ 20ρN . For ρ sufficiently
small, any connected set whose Hausdorff distance to Nγ is less than ρN intersects L (it
has to meet the interior and the exterior of L). We have then

P̂ (DH(C/N,K) ≤ δ) ≥ P̂ (DH(C/N,K ′) ≤ 2δ/3) ≥
P (Loop∗(Nγ′0, Nη/2), · · · ,Loop∗(Nγ′r, Nη/2), Loop(Nγ,Nψ), 0↔ L,L is open) ≥
P (Loop∗(Nγ′0, Nη/2), · · · ,Loop∗(Nγ′r, Nη/2))P (Loop(Nγ,Nψ))P (0↔ L)P (L open)

≥ exp−NσgH(K)(1 + α/4)2 P (Loop(Nγ,Nψ)) p40ρN .

In the penultimate step we have used the independence between the occurrence of the
events Loop∗(Nγ′k, Nη/2) and the configuration restricted to NK ′′, as well as the Harris–
FKG inequality. By lemma 5.9, we have lim infN→∞(1/N) lnP (Loop(Nγ,Nψ)) = 0 . We
obtain thus

lim inf
N→∞

1
N

ln P̂ (DH(C/N,K) ≤ δ) ≥ −σgH(K)(1 + α/4)2 + 40ρ ln p

and letting ρ go to zero we get the result. �

Proof of the lower bound (ii) of theorem 3.2. Let us first remark that we need only
to prove the lower bound for arbitrary small values of δ. That is we might suppose that δ
is smaller than any value δ0 > 0, possibly depending on B. Moreover, for any set B in B,
for any x in R2, we have

P̂ (Dλ(C/N,B) ≤ δ) ≥ P̂ (Dλ(C/N,B + x) ≤ δ)

so that we will prove a lower bound for the righthand side. By the very definition of
the gλ–perimeter, there exists a set K ′ belonging to KJc such that Dλ(B,K ′) < δ/4,
gλ(K ′) ≤ gλ(B)(1 + α/4). Let γ′0 be the external boundary of K ′ and let γ′1, · · · , γ′r be
its inner boundaries. Let O′ be the interior of K ′. Since K ′ belongs to KJc , then O′ is
connected and K ′ is the closure of O′. We apply lemma 4.5 to O′: there exist an open
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connected set O′′ and a positive η such that, if we denote by K ′′ the closure of O′′, we
have

Dλ(K ′,K ′′) < δ/4, ∀x′′ ∈ K ′′ d(x′′, ∂K ′) > η .

We might assume that the origin belongs to O′′ (otherwise we simply translate the sets
B,K ′,K ′′) and that η is so small that Dλ(V(K ′, η),K ′) < δ/4. By lemma 5.9 and the
Harris–FKG inequality, for N sufficiently large,

P (Loop∗(Nγ′0, Nη/2), · · · ,Loop∗(Nγ′r, Nη/2)) ≥ exp−Nσgλ(K ′)(1 + α/4) .

The measure P restricted to the set of edges included in NK ′′ is independent from the
events Loop∗(Nγ′0, Nη/2), . . . , Loop∗(Nγ′r, Nη/2) (these events depend only on the edges
whose endpoints are at a distance less than Nη/2 from the boundary of NK ′). Moreover,
whenever these events happen and whenever N is large enough so that f(N)/N < η/2, we
have that V(C, f(N)) ⊂ V(NK ′, ηN). Let C ′′ be the open cluster containing the origin in
the configuration restricted to NK ′′. Clearly C ′′ is a subset of C. Any set E such that:
E ⊂ V(K ′, η), Dλ(E ∩K ′′,K ′′) ≤ δ/4 satisfies Dλ(E,K ′) ≤ 3δ/4. It follows that

P̂ (Dλ(V(C, f(N))/N,B) ≤ δ) ≥ P̂ (Dλ(V(C, f(N))/N,K ′) ≤ 3δ/4)
≥ P (Loop∗(Nγ′k, Nη/2), 0 ≤ k ≤ r, Dλ(NK ′′ ∩ V(C ′′, f(N)), NK ′′) ≤ N2δ/4)

≥ exp−Nσgλ(B)(1 + α/4)2 P (Dλ(NK ′′ ∩ V(C ′′, f(N)), NK ′′) ≤ N2δ/4) .

Let ρ be a positive real number smaller than δ/4. Let L be a circuit around the origin
such that d(0, L) > N

√
ρ/π, |L| ≤ 10N

√
ρ/π. For ρ sufficiently small, so that the ball

{x : |x|2 < 20
√
ρ/π} is included in K ′′, any connected set E satisfying Dλ(E,NK ′′) < ρN2

necessarily intersects the circuit L (it has to meet the interior and the exterior of L). For
t ≥ 0, we denote by A(t) the event that there exists an open cluster E in NK ′′ such that
Dλ(NK ′′ ∩ V(E, f(N)), NK ′′) < t. This event is increasing, whence by the Harris–FKG
inequality

P (Dλ(NK ′′ ∩ V(C ′′, f(N)), NK ′′) ≤ N2δ/4) ≥

P (A(ρN2), 0↔ L,L is open) ≥ P (A(ρN2)) p20
√
ρ/πN .

We apply lemma 4.5 to O′′: there exist an open connected set O′′′ and a positive µ such
that, if we denote by K ′′′ the closure of O′′′, we have

Dλ(K ′′,K ′′′) < ρ, ∀x′′′ ∈ K ′′′, d(x′′′, ∂K ′′) > µ .

Let A0 be the event: there exists an open cluster C0 in NK ′′ such that for any x′′′ in
NK ′′′, we have d(x,C0) ≤ f(N). We have the inclusion A0 ⊂ A(ρN2). Let A1 be the
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event that there is no open dual path in NK ′′ of diameter larger than f(N). We claim
that for N large enough, we have also A1 ⊂ A0. Suppose indeed that the event A1 occurs.
We first show that there is inside NK ′′ an open cluster C0 of diameter larger than f(N)
which intersects NK ′′′. Let y in Z2 and r > 0 be such that the ball {x : |x− y|2 < rN } is
included in NK ′′′ and let N be large enough so that f(N) < min{rN/2, µN−2}. If all the
open clusters intersecting the ball {x : |x−y|2 < rN } have a diameter smaller than f(N),
then the set {x : ∃z |y − z|2 < rN/2, z ↔ x } is included in the ball {x : |x− y|2 < rN }.
It is surrounded by an innermost circuit of open dual edges (see [11, Proposition 9.2]) of
diameter at least rN/2 > f(N), contradicting the occurrence of A1. Thus there exists an
open cluster C0 in NK ′′ of diameter larger than f(N) which intersects NK ′′′. We next
show that this open cluster C0 is such that V(C0, f(N)) contains NK ′′′. Suppose there
exists x′′′ in NK ′′′ such that d(x′′′, C0) > f(N). By [11, Proposition 9.2], there exists a
circuit γ∗ of dual edges surrounding C0. This dual circuit γ∗ separates the plane into two
components, and both have a diameter larger or equal than f(N): one contains C0, the
other contains {x : |x − x′′′|2 ≤ f(N) }. Hence the diameter of γ∗ is larger than f(N).
Moreover γ∗ has to meet the set V(NK ′′′, 2) because C0 ∩NK ′′′ 6= ∅, x′′′ ∈ NK ′′′ and γ∗

separates C0 and x′′′ (since NO′′′ is open and connected, and therefore arcwise connected,
then there exists a path of edges in V(NK ′′′, 2) connecting x′′′ and C0; this path necessarily
intersects γ∗). The edges of γ∗ contained in NK ′′ are dual edges which are open, whereas
the edges of γ∗ not included in NK ′′ may be either open or closed (since we consider the
configuration restricted to NK ′′ to define C0 we have no information on the status of the
edges not included in NK ′′).
• If all the edges of γ∗ belong to NK ′′ then they are all open dual edges and γ∗ is an open
dual circuit of diameter larger than f(N).
• If some of the edges of γ∗ do not belong to NK ′′, then γ∗ meets the complement of NK ′′.
Since it also meets the set V(NK ′′′, 2) and the distance between NK ′′′ and the complement
of NK ′′ is larger than µN , then it contains a dual path of diameter larger than µN − 2
whose edges are all included in NK ′′ and are therefore open.
We see finally that for N large enough so that f(N) < min{rN/2, µN − 2}, the event A1

is included in A0. We estimate the probability of A1 by

1− P (A1) ≤ |NK ′′ ∩ (Z∗)2|2 exp−af(N) ≤ 16(diamK ′′)4N4 exp−af(N)

(with a = infx:|x|2=1 σg(x)). Putting together the previous inequalities, we get

P̂ (Dλ(V(C, f(N))/N,B) ≤ δ) ≥(
exp−Nσgλ(B)(1 + α/4)2

)
(1− 16(diamK ′′)4N4 exp−af(N))p20

√
ρ/πN

We deduce from this inequality that

lim inf
N→∞

1
N

ln P̂ (Dλ(V(C, f(N))/N,B) ≤ δ) ≥ −σgλ(B)(1 + α/4)2 + 20
√
ρ/π ln p
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and letting ρ go to zero we get the result. �

Remark. We introduce the third set K ′′′ in the last step of the preceding proof to ensure
that an open dual path of diameter less than f(N) cannot destroy the connection between
two large regions (which might happen with K ′′).
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R. Cerf, Université Paris Sud, Mathématique, Bâtiment 425, 91405 Orsay Cedex–France
E-mail address: Raphael.Cerf@math.u-psud.fr

24


