
The pivotal set of a Boolean function
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Abstract

We define the pivotal set of a Boolean function and we prove a funda-
mental inequality on its expected size, when the inputs are independent
random coins of parameter p. We give two complete proofs of this inequal-
ity. Along the way, we obtain the classical Margulis–Russo formula. We
give a short proof of the classical Hoeffding inequality for i.i.d. Bernoulli
random variables, and we use it to derive more complex deviations inequal-
ities associated to the pivotal set. We follow finally Talagrand’s footsteps
and we discuss a beautiful inequality that he proved in the uniform case.

1 Introduction

A boolean function is a function which takes only two values 0 and 1, it trans-
forms a very complex input into a binary result. Consider for instance a function
of an image which is meant to answer a complex question, like:
• Is there a trumpet somewhere in the image?
Or for more serious and important applications:
• Airport safety: Based on the scanner image, should a luggage be checked?
• Medicine: Is there a suspicion of cancer in the MRI image?
While the first question can be easily answered by anyone, the second can only
be answered properly by qualified baggage screeners, and the third by skilled
doctors. Today, neural networks are trained on huge databases using deep learn-
ing techniques and they achieve excellent results on these problems, which we
only dreamed of twenty years ago. In each case, the outcome of the learning
process can be seen as a boolean function of the pictures, albeit a very complex
one, which depends on billions of parameters. A related problem is to guess
the value of a boolean function when only partial information is available. The
difficulty is to understand which part of the input of the boolean function plays
a crucial role to decide its output. The analysis of boolean functions has grown
into a very active field of research, due to its multiple applications in several
branches of science (see for instance the book of O’Donnell [7]). Our goal here
is to introduce the notion of the pivotal set, which is indeed pivotal in the un-
derstanding of a boolean function. We state and prove in full detail a basic and
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classical inequality controlling the expected size of the pivotal set. This proof is
not new, it is certainly known to experts in the field, however we feel it worth
presenting and discussing the full details, all the more that introductory texts
on Boolean functions typically rely on tools from the Fourier analysis to derive
it. We shall then develop deviations estimates associated to this inequality,
which will gradually lead us to a beautiful inequality due to Talagrand. This
inequality is a part of a vast circle of ideas originating in harmonic analysis,
which Talagrand developed to obtain several revolutionary inequalities. We will
mention only two of these: Talagrand’s famous concentration inequality and the
isoperimetric inequality on the hypercube [9]. The inequality presented here re-
lies on some concentration estimates, but it goes in the opposite direction to
the isoperimetric inequality.

The project to revisit some intermediate results of Talagrand, with an adap-
tation to the biased case, started two years ago. The recent attribution of the
Abel prize to Talagrand prompted me to conclude this project, indeed this is
an opportunity to explain an important contribution of Talagrand which is less
known than his other accomplishments. However, before embarking into this
program, we need to introduce some notation and to precise the model we shall
study.
The pivotal set. Let n ≥ 1 and let f be a boolean function defined on
Ω = { 0, 1 }n, i.e.,

f : ω =
(
ω(1) · · ·ω(n)

)
7→ f(ω) ∈ { 0, 1 } .

Given a configuration ω, we say that the i–th coordinate ω(i) of ω is pivotal if
the value of f(ω) is decided by ω(i), or equivalently, if changing the value of
ω(i) changes the value of f . More precisely, for ω ∈ Ω and i ∈ { 1, . . . , n }, we
denote by ωi (respectively ωi) the configuration ω where the i–th component is
set to 1 (respectively to 0), that is,

ωi(j) =

{
ω(j) if j ̸= i

1 if j = i
, ωi(j) =

{
ω(j) if j ̸= i

0 if j = i
.

The i–th coordinate ω(i) is said to be pivotal for the function f in the configura-
tion ω if f(ωi) ̸= f(ωi). We denote by P(f, ω) the set of the pivotal coordinates
of ω for f . In general, little can be said on the pivotal set, because it depends in
a complicated way on both ω and f . So we will focus on the specific situation
where f is non–decreasing, meaning that

∀ω ∈ Ω ∀i ∈ { 1, . . . , n } f(ωi) ≤ f(ωi) ,

and the configuration ω is chosen randomly. The pivotal set P(f, ω) becomes
de facto a random subset of { 1, . . . , n }.
Randomness. To go further, we must specify the random distribution of ω.
We fix a parameter p in [0, 1] and, to decide the status of each component ω(i),
we draw a coin of parameter p, the coins being independent. For p = 1

2 , this
corresponds to the uniform distribution over Ω.
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Influences. The probability that the i–th coordinate belongs to P(f, ω) is
called the influence of the coordinate i. It provides a mean of quantifying the
importance of one specific coordinate to the output of the boolean function, and
also to compare the relative importance of two distinct coordinates. The sum of
the influences of all the coordinates is called the total influence, or the averaged
sensitivity.

So, why is it important to control the pivotal set of a boolean function?
Friedgut’s junta theorem tells that, whenever the total influence of a function
f is small, the function f can be approximated by a junta, that is a function
depending on a small number of coordinates. With the help of this result,
O’Donnell and Servidio [8] developed an algorithm able to learn a monotone
function f to any constant accuracy, in time polynomial in n and in the decision
tree size of f . On a more general level, the links between the structure of a
boolean function f and the probabilistic properties of its pivotal set are complex
and still mysterious. A famous theorem of Benjamini, Kalai and Schramm [1]
states that, if the sum of the squares of the influences of a function is small,
then it is noise sensitive: even if two inputs are highly correlated, the outputs
of the function might be highly non–correlated. The noise sensitivity theorem
relies on the deep inequality due to Talagrand that we shall present at the end
of this text.

We come now to the first mathematical result presented here. A simple ex-
change between summation and expectation shows that the total influence is in
fact equal to the expected size of the pivotal set. It turns out that, surprisingly,
we can compute an explicit upper bound on the expected size of the pivotal set.

Theorem 1.1. For any non–decreasing boolean function f , we have

E
(
|P(f)|

)
≤

√
nE(f)

p(1− p)
. (1.1)

Naturally, the symbol E is the expectation with respect to the probability P on
Ω defined by

∀ω ∈ Ω P (ω) =
∏

1≤i≤n

pω(i)(1− p)1−ω(i) ,

and we remove the variable ω in the expectations, for instance

E(f) =
∑
ω∈Ω

f(ω)P (ω) .

To the best of our knowledge, this result was proved for the first time by Friedgut
and Kalai (see lemma 6.1 in [3]). Benjamini, Kalai and Schramm quote this
result (theorem 3.3 in [1]) and they mentioned that it is a consequence of [2]
(although it does not appear explicitly there).

Application to the majority function. Suppose that the configuration ω
represents the votes in an election, and that the votes are independent and follow
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a Bernoulli distribution. The function f is taken to be the majority function,
which is equal to 1 if there is a majority of votes equal to 1 and 0 otherwise. In
this model, all the votes play the same role, so that E

(
|P(f)|

)
= nP (1 is pivotal)

and theorem 1.1 yields that

P (1 is pivotal) ≤ 1√
np(1− p)

, (1.2)

hence the probability that a fixed vote plays a decisive role goes to 0. Moreover,
in the uniform case p = 1/2, the inequality (1.2) captures the correct order,
indeed it can be proved that

P (1 is pivotal) ∼
√

2

πn
as n → ∞ .

However the constant in inequality (1.1) is not optimal. In fact, the original ar-
gument of Friedgut and Kalai [3] consisted in proving that the majority function
maximizes E

(
|P(f)|

)
over all the boolean functions f .

Our first major goal is to provide the most elementary proof of theorem 1.1.
The key idea consists in expressing the probability that a site i is pivotal with
the help of a discrete derivative operator δi. As a by product, this proof yields
another important formula due to Margulis and Russo. We shall next work to
obtain a better control on the pivotal set, with a technique involving the Parseval
formula in Fourier analysis. It is the strategy employed in modern textbooks
on boolean functions to prove theorem 1.1 (see theorem 2.33 of [7]), in fact it
yields a stronger result. In order to understand better the link between pivotal
coordinates and the value of f , we shall compute the conditional expectation
of the size of the pivotal set knowing the value of the function. Our second
major goal is to obtain more complex deviations inequalities associated to the
pivotal set. The key tool here is the classical Hoeffding inequality (to make
the text self–contained, we give a short proof for the case of i.i.d. Bernoulli
random variables). In the end, we extend to the Bernoulli product measure
of parameter p an inequality that Talagrand proved in the case p = 1/2. We
follow finally Talagrand’s footsteps and we discuss a beautiful inequality that
he proved in the uniform case p = 1/2. Talagrand’s inequality is a far–reaching
extension of theorem 1.1. The starting point is the deviations inequality that is
developed in the second major goal of the text. The very statement and proof
of the inequality testify to Talagrand’s virtuosity. The noise sensitivity theorem
of Benjamini, Kalai and Schramm [1] relies in a crucial way upon a further
generalization of this inequality.

2 The discrete derivative δi

The first step to prove the inequality (1.1) is to express |P(f, ω)| with the help
of the discrete derivative of f along the i–th component, which is defined as
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∀ω ∈ Ω δif(ω) = f(ωi)− f(ωi) . (2.1)

Indeed, the i–th coordinate ω(i) of ω is pivotal if and only if δif(ω) = 1, therefore

|P(f, ω)| =
n∑

i=1

δif(ω) . (2.2)

Taking the expectation and using the linearity, we obtain

E
(
|P(f, ω)|

)
= E

( n∑
i=1

δif(ω)
)

=

n∑
i=1

E
(
δif(ω)

)
. (2.3)

We have now to evaluate

E
(
δif(ω)

)
= E

(
f(ωi)

)
− E

(
f(ωi)

)
. (2.4)

To that end, we will rely on a little trick, recorded in the next lemma. The
simplicity of the calculation should not make us underestimate its power.

Lemma 2.1. Let f be an arbitrary function defined on Ω with values in R. For
any i ∈ { 1, . . . , n }, we have∑

ω∈Ω

f(ω)ω(i)P (ω) =
∑
ω∈Ω

p f(ωi)P (ω) . (2.5)

Proof. The identity (2.5) can be verified in several ways. Our presentation is a
bit heavy, but it does not make appeal to any new notation. So, we write∑

ω∈Ω

f(ω)ω(i)P (ω) =
∑

ω(1),··· ,ω(n)∈{0,1}

f
(
ω(1) · · ·ω(n)

)
ω(i)

∏
1≤j≤n

pω(j)(1−p)1−ω(j)

=
∑
ω(1)

· · ·
∑

ω(i−1)

∑
ω(i+1)

· · ·
∑
ω(n)

f
(
ω(1) · · ·ω(i− 1) 1ω(i+ 1) · · ·ω(n)

)
× p

∏
1≤j≤n

j ̸=i

pω(j)(1− p)1−ω(j)

=
∑
ω(1)

· · ·
∑

ω(i−1)

∑
ω(i+1)

· · ·
∑
ω(n)

f
(
ωi
)
P (ωi) . (2.6)

Now the summand f
(
ωi
)
P (ωi) does not depend any more on ω(i), so we rein-

troduce artificially the summation over ω(i) by writing

f
(
ωi
)
P (ωi) =

∑
ω(i)

f
(
ωi
)
pP (ω) . (2.7)

We plug the equation (2.7) into (2.6) and we obtain the identity (2.5).
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The next corollary presents the analogous formula dealing with 1−ω(i) instead
of ω(i). Of course, this formula could be obtained with a direct computation,
but we will derive it from lemma 2.1.

Corollary 2.2. For any function f from Ω to R and for any i ∈ { 1, . . . , n },
we have ∑

ω∈Ω

f(ω)
(
1− ω(i)

)
P (ω) =

∑
ω∈Ω

(1− p) f(ωi)P (ω) . (2.8)

Proof. For ω ∈ Ω, we denote by ω the configuration obtained by flipping all the
components of ω:

∀j ∈ { 1, . . . , n } ω(j) = 1− ω(j) .

Of course, the distribution of ω under P is the same as the distribution of ω
under P1−p, hence∑

ω∈Ω

f(ω)
(
1− ω(i)

)
P (ω) =

∑
ω∈Ω

f(ω)
(
1− ω(i)

)
P1−p(ω)

=
∑
ω∈Ω

f(ω)ω(i)P1−p(ω) . (2.9)

We apply lemma 2.1 to the function ω 7→ f(ω) and the probability measure
P1−p and we get∑

ω∈Ω

f(ω)ω(i)P1−p(ω) =
∑
ω∈Ω

(1− p) f
(
ωi
)
P1−p(ω)

= (1− p)
∑
ω∈Ω

f(ωi)P1−p(ω) = (1− p)
∑
ω∈Ω

f
(
ωi

)
Pp(ω) . (2.10)

Putting together formulas (2.9) and (2.10), we obtain (2.8).

Taking advantage of lemma 2.1 and corollary 2.2, we have

E
(
f(ωi)

)
− E

(
f(ωi)

)
=
∑
ω∈Ω

f(ω)
(ω(i)

p
− 1− ω(i)

1− p

)
P (ω) . (2.11)

3 Computation of E
(
|P(f)|

)
The righthand side of formula (2.4) has been computed in formula (2.11). In
order to rewrite this last formula in a more concise form, we introduce the
random variable Xi defined by

∀ω ∈ Ω Xi(ω) =
ω(i)

p
− 1− ω(i)

1− p
, (3.1)

and, substituting (2.11) into (2.4), we obtain

E
(
fXi

)
= E

(
δif
)
. (3.2)
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In the next step, we sum this formula over i ∈ { 1, . . . , n } and we get∑
1≤i≤n

E
(
fXi

)
=

∑
1≤i≤n

E
(
δif
)
. (3.3)

In the final step, we put the sum inside the expectation, we combine the above
formula with the initial identity (2.2) and we get the formula stated in the next
proposition.

Proposition 3.1. For any non–decreasing boolean function f , we have

E
(
|P(f)|

)
= E

(
Snf

)
, (3.4)

where Sn is the random sum Sn = X1 + · · ·+Xn.

In fact, lemma 2.1, corollary 2.2 and proposition 3.1 can be viewed as simple
consequences of the following elementary formulas. Let ω(1) be a Bernoulli
random variable with parameter p:

P (ω(1) = 0) = 1− p , P (ω(1) = 1) = p .

Let f be a function from { 0, 1 } to R. We have

f(1)− f(0) = E

(
f(ω(1))

(ω(1)
p

− 1− ω(1)

1− p

))
. (3.5)

To prove directly formula (3.2), we compute E
(
fXi

)
with the help of Fubini’s

theorem. More precisely, we fix the variables ω(1), . . . , ω(i−1), ω(i+1), . . . , ω(n)
and we compute first the expectation with respect to ω(i). This amounts to take
the conditional expectation of f given ω(1), . . . , ω(i−1), ω(i+1), . . . , ω(n). From
formula (3.5), we have

E
(
fXi |ω(1), . . . , ω(i− 1), ω(i+ 1), . . . , ω(n)

)
=

δif
(
ω(1), . . . , ω(i− 1), ·, ω(i+ 1), . . . , ω(n)

)
. (3.6)

Naturally, the resulting function does not depend any more on the variable
ω(i). Taking the expectation of formula (3.6), we obtain formula (3.2). To be
frank, this is just another presentation of the computation done in the proof
of lemma 2.1, which might look more natural for readers acquainted with the
conditional expectation, but which is not as elementary.

4 Completion of the proof of theorem 1.1

We start from the formula of proposition 3.1:

E
(
|P(f)|

)
= E

(
Snf

)
=
∑
ω∈Ω

Sn(ω)f(ω)P (ω) . (4.1)
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A straightforward application of the Cauchy–Schwarz inequality gives∣∣∣∑
ω∈Ω

Sn(ω)f(ω)P (ω)
∣∣∣ ≤ √(∑

ω∈Ω

(
Sn(ω)

)2
P (ω)

)(∑
ω∈Ω

(
f(ω)

)2
P (ω)

)
.

This inequality can be rewritten in a more concise form with the help of the
expectation E as ∣∣E(Snf

)∣∣ ≤ √
E
(
(Sn)2

)
E
(
(f)2

)
. (4.2)

The random variable Sn is the sum of n i.i.d. centered variables, so that

E
(
(Sn)

2
)
=

∑
1≤i≤n

E
(
(Xi)

2
)
=

n

p(1− p)
. (4.3)

Putting together (4.1), (4.2) and (4.3), we obtain the inequality stated in theo-
rem 1.1.

5 The Margulis–Russo formula

We state here an important consequence of proposition 3.1.

Proposition 5.1. For any non–decreasing boolean function f , we have

d

dp
E(f) = E

(
|P(f)|

)
. (5.1)

The Margulis–Russo formula (5.1) is very convenient to study the response of
E(f) to a slight variation of the parameter p, for instance to analyze threshold
phenomena. Once we have proposition 3.1, the proof is straightforward. We
take the derivative of E(f) with respect to the parameter p:

d

dp
E(f) =

d

dp

∑
ω∈Ω

f(ω)P (ω) =
∑
ω∈Ω

f(ω)
d

dp
P (ω) .

We differentiate P (ω) either as an n–fold product, or through its logarithmic
derivative. Indeed, we have

∀ω ∈ Ω lnP (ω) =
∑

1≤i≤n

(
ω(i) ln p+ (1− ω(i)) ln(1− p)

)
.

Whichever way, we get, for any ω ∈ Ω,

d

dp
P (ω) =

∑
1≤i≤n

Xi(ω)P (ω) = Sn(ω)P (ω) , (5.2)

whence
d

dp
E(f) = E

(
fSn

)
,

and formula (5.1) follows immediately from proposition 3.1.
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6 An alternative proof via Bessel’s inequality

Techniques coming from the Fourier analysis play a central role in the study of
boolean functions. We will show here how a stronger result than theorem 1.1
can be derived from the classical Bessel inequality. We use the random variable
Xi defined in (3.1) and the formula (3.2) to write

P
(
i is pivotal for f

)
= E

(
fXi

)
. (6.1)

We endow the space F(Ω,R) of the functions from Ω to R with the scalar
product

(f, g) ∈ F(Ω,R) 7→ ⟨f, g⟩ =
∑
ω∈Ω

f(ω)g(ω)P (ω) .

We denote by || · ||2 the associated norm on F(Ω,R). This turns F(Ω,R) into a
Hilbert space. Moreover the n random variables X1, . . . , Xn form an orthogonal
family, more precisely we have

∀i, j ∈ { 1, . . . , n } ⟨Xi, Xj⟩ =

 0 if i ̸= j ,
1

p(1− p)
if i = j .

(6.2)

From this perspective, the quantity E
(
fXi

)
is simply the scalar product ⟨f,Xi⟩

and a direct application of Bessel’s inequality yields that∑
1≤i≤n

⟨f,Xi⟩2

⟨Xi, Xi⟩2
≤
(
||f ||2

)2
= E(f) . (6.3)

Combining the identities (6.1), the little computation (6.2) and inequality (6.3),
we obtain the inequality stated in the next proposition.

Proposition 6.1. For any non–decreasing boolean function f , we have∑
1≤i≤n

(
P
(
i is pivotal for f

))2
≤ E(f)

p(1− p)
. (6.4)

This last inequality (6.4) is in fact stronger than the inequality (1.1). Indeed,
it follows from the Cauchy–Schwarz inequality that

E
(
|P(f)|

)
=

∑
1≤i≤n

P
(
i is pivotal for f

)
≤
√
n
∑

1≤i≤n

(
P
(
i is pivotal for f

))2
,

and using (6.4) to bound the last term, we recover the inequality (1.1).

7 The conditional expectation of |P(f)|
We will be interested in controlling the cardinality of the pivotal set for f when-
ever the function f is equal to 1. Our first step in this direction consists in
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derivating a formula involving the conditional expectation E
(
|P(f)|

∣∣ f = 1
)
.

We focus again on the specific situation where f is non–decreasing. In this case,
whenever a coordinate i is pivotal for f , the value of f is equal to ω(i). Moreover
the status of the coordinate i itself is independent of the fact that i is pivotal
or not, therefore

P
(
i ∈ P(f), f = 1

)
= P

(
i ∈ P(f), ω(i) = 1

)
= P

(
i ∈ P(f)

)
p , (7.1)

which we rewrite as

P
(
i ∈ P(f)

)
=

1

p
P
(
i ∈ P(f), f = 1

)
. (7.2)

Summing equation (7.2) over i, and putting the summation inside the expecta-
tion, we obtain

E
(
|P(f)|

)
=

1

p
E
(
|P(f)| f

)
. (7.3)

The identities (3.4) and (7.3) yield

E
(
Snf

)
=

1

p
E
(
|P(f)| f

)
. (7.4)

Dividing finally by P (f = 1), we obtain the formula stated in the next lemma.

Lemma 7.1. For any non–decreasing boolean function f , we have

E
(
Sn

∣∣ f = 1
)
=

1

p
E
(
|P(f)|

∣∣ f = 1
)
. (7.5)

The previous formula (7.5) is very interesting. Indeed, it tells us that, whenever
the boolean function f takes the value 1, the expected size of the pivotal set
coincides with the conditional expectation of Sn knowing that f = 1. Up to an
affine rescaling, the sum Sn is a binomial random variable and probabilists know
very well how to control the binomial distribution in various regimes. Ultimately,
we would like to link the size of the pivotal set P(f) to the probability P (f =
1). Our strategy to do so is the following. Suppose that the righthand side
of (7.5) is large. This forces that the conditional law of Sn knowing that f = 1
is concentrated on subsets of Ω where Sn is large, but these sets have small
probability, so for the ratio E(Snf)/P (f = 1) to be large, the event f = 1 must
also have a small probability.

8 Hoeffding’s inequality

The key tool to complete the previous program is the classical Hoeffding in-
equality [4]. The general version of the inequality deals with sums of indepen-
dent bounded variables. We restate next the inequality for the specific case
which concerns us, namely the sum Sn. Recall that Sn is the random sum
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Sn = X1+ · · ·+Xn, where the variables X1, . . . , Xn are i.i.d. with distribution
given by

∀i ∈ { 1, . . . , n } P
(
Xi =

1

p

)
= p , P

(
Xi = − 1

1− p

)
= 1− p .

We provide a detailed proof of Hoeffding’s inequality in this case. The proof is
short (one page) and elementary, but it is quite tricky.

Proposition 8.1. For any n ≥ 1 and any p ∈ [0, 1], we have

∀u > 0 P
(
|Sn| ≥ u

)
≤ 2 exp

(
− 2p2(1− p)2u2

n

)
. (8.1)

Proof. Let u > 0 be fixed and let λ > 0 be an additional parameter, to be
chosen later. We write

P
(
Sn ≥ u

)
= P

(
λSn ≥ λu

)
= P

(
exp

(
λSn

)
≥ exp(λu)

)
≤ exp(−λu)E

(
exp

(
λSn

))
, (8.2)

where we have applied the Markov inequality in the last step. Using the fact
that the variables Xi are i.i.d., we compute then

E
(
exp

(
λSn

))
=

∏
1≤i≤n

E
(
exp

(
λXi

))
= ϕ(λ)n , (8.3)

where we have set ϕ(λ) = E
(
exp

(
λX1

))
. The explicit expression of ϕ(λ) is

ϕ(λ) = E
(
exp

(
λX1

))
= p exp

(
λ/p

)
+ (1− p) exp

(
− λ/(1− p)

)
.

Using the convexity of the exponential, we see that ϕ(λ) ≥ 1 for any λ ∈ R.
We take advantage of this inequality to perform a little symmetrization trick:
for any λ > 0, we have

ϕ(λ) ≤ ϕ(λ)ϕ(−λ) = p2 + 2p(1− p) cosh
( λ

p(1− p)

)
+ (1− p)2 . (8.4)

The function cosh is even and satisfies 1 ≤ cosh(x) ≤ exp(x2/2), so from the
inequality (8.4) we deduce that

ϕ(λ) ≤ cosh
( λ

p(1− p)

)
≤ exp

( λ2

2p2(1− p)2

)
. (8.5)

Substituting this inequality back in (8.3) and (8.2), we obtain

P
(
Sn ≥ u

)
≤ exp

(
− λu+

nλ2

2p2(1− p)2

)
. (8.6)

It remains to choose the optimal value for λ. Obviously, we obtain the best
inequality with λ = up2(1− p)2/n, i.e.,

∀u > 0 P
(
Sn ≥ u

)
≤ exp

(
− p2(1− p)2u2

2n

)
. (8.7)
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The same inequality holds for P
(
Sn ≤ −u

)
(it suffices to change p into 1 − p

and to apply the previous inequality to −Sn). The sum of these two inequalities
yields the inequality (8.1) and creates the factor 2 there. To be honest, our proof
yields a suboptimal constant in the exponential: the 2 comes in the denominator
in formula (8.7). A little refinement in the above chain of inequalities would
give the inequality (8.1) with the 2 in the numerator.

9 An exponential inequality

With the Hoeffding inequality in the hand, we shall complete the program de-
scribed at the end of section 7 and we shall prove the following general expo-
nential inequality, which does not even require that the boolean function f is
monotone.

Proposition 9.1. For any boolean function f defined on { 0, 1 }n, we have

∀p ∈ [0, 1] P (f = 1) ≤ 2 exp
(
− 1

2n

(
p(1− p)E

(
Sn

∣∣ f = 1
))2)

. (9.1)

Proof. We start with

E
(
|Sn|

∣∣ f = 1
)
=

1

P (f = 1)

∫
{ f=1 }

|Sn| dP . (9.2)

Using Fubini’s theorem, we rewrite the integral in (9.2) as follows:∫
{ f=1 }

|Sn| dP =

∫
Ω

(∫ +∞

0

1u≤|Sn| du

)
f dP =

∫ +∞

0

P
(
|Sn| ≥ u, f = 1

)
du .

Let t > 0 and let us split this integral in two:∫ +∞

0

P
(
|Sn| ≥ u, f = 1

)
du =

∫ t

0

· · ·+
∫ +∞

t

· · ·

≤ tP (f = 1) +

∫ +∞

t

P
(
|Sn| ≥ u

)
du . (9.3)

Reporting (9.3) in (9.2), we have

E
(
|Sn|

∣∣ f = 1
)
≤ 1

P (f = 1)

∫ +∞

t

P
(
|Sn| ≥ u

)
du + t . (9.4)

Now Sn is the sum of n i.i.d. centered random variables X1, . . . , Xn satisfying

∀i ∈ { 1, . . . , n } − 1

1− p
≤ Xi ≤ 1

p
.

Substituting Hoeffding’s inequality (8.1) into (9.4), we obtain

E
(
|Sn|

∣∣ f = 1
)
≤ 2

P (f = 1)

∫ +∞

t

exp
(
− 2p2(1− p)2u2

n

)
du + t . (9.5)

12



We make the change of variable 2p(1− p)u =
√
nv, so that (9.5) becomes

E
(
|Sn|

∣∣ f = 1
)
≤

√
n

p(1− p)P (f = 1)

∫ +∞

2p(1−p)t√
n

exp
(
− v2

2

)
dv + t . (9.6)

Recalling that this inequality holds for any t > 0, we replace t by
√
nt

2p(1−p) and
we get

E
(
|Sn|

∣∣ f = 1
)
≤

√
n

p(1− p)

(
1

P (f = 1)

∫ +∞

t

exp
(
− v2

2

)
dv +

t

2

)
. (9.7)

The righthand quantity admits a unique global minimum at the point t∗ =√
2 ln(2/P (f = 1)) and we conclude that

E
(
|Sn|

∣∣ f = 1
)
≤ 1

p(1− p)

√
2n ln

2

P (f = 1)
. (9.8)

We rewrite this inequality in exponential form as

P (f = 1) ≤ 2 exp
(
− p2(1− p)2

2n

(
E
(
|Sn|

∣∣ f = 1
))2)

. (9.9)

We use finally the fact that∣∣∣E(Sn

∣∣ f = 1
)∣∣∣ ≤ E

(
|Sn|

∣∣ f = 1
)
, (9.10)

to obtain the inequality (9.1) of the proposition.

In the case of a non–decreasing boolean function f , thanks to lemma 7.1, we
can rewrite pE

(
Sn

∣∣ f = 1
)
as E

(
|P(f)|

∣∣ f = 1
)
and we get immediately the

following corollary.

Corollary 9.2. For any non–decreasing boolean function f defined on { 0, 1 }n,
we have

∀p ∈ [0, 1] P (f = 1) ≤ 2 exp
(
− 1

2n

(
(1− p)E

(
|P(f)|

∣∣ f = 1
))2)

. (9.11)

This is a deviations inequality: it tells us that, if the conditional expectation of
the cardinality of the pivotal set is larger than

√
n, then it becomes extremely

unlikely that the function f takes the value 1.

10 Following Talagrand’s footsteps

In fact, the technique employed in the proof of proposition 9.1 to bound the ex-
pectation E

(
|Sn|

∣∣A) has been used routinely in various contexts by Talagrand.
It is presented in his most recent book (see lemma 2.3.2 in [11]). Notably, Ta-
lagrand used this technique to derive a beautiful inequality on the correlation
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on increasing sets in his influential work [10]. However, only the very begin-
ning of the proof of the correlation inequality involves this technique, i.e., the
first step of the proof of Proposition 2.2 in [10]. This kind of upper bound
is such a routine for Talagrand that the detailed proof of our proposition 9.1
corresponds essentially to 6 lines in [10]! So, what is the point of the previ-
ous computations? A major difference with [10] is that we deal here with the
Bernoulli product measure of parameter p, whereas Talagrand was considering
the uniform case p = 1/2. So the subgaussian inequality of the uniform case is
replaced here by Hoeffding’s inequality. Another difference is that the constants
in Talagrand’s inequality are not explicit (Talagrand did not care about their
values), whereas we do provide explicit values here. Let us proceed a bit further
along the computations of Talagrand. We implement now the second step of
Proposition 2.2 in [10] in our biased context and we see where it leads. We first
improve proposition 9.1 to get the following deviations inequality.

Proposition 10.1. For any boolean function f , we have

P (f = 1) ≤ 2 exp
(
− 1

2

∑
1≤i≤n

(
p(1− p)E

(
Xif

∣∣ f = 1
))2)

. (10.1)

Proof. The proof follows the same strategy than the proof of proposition 9.1,
the difference being that, instead of Sn, we work with the random variable S̃n

given by

S̃n =
∑

1≤i≤n

αiXi , (10.2)

where the αi’s are non–negative real numbers such that
∑

1≤i≤n(αi)
2 = 1. Let

t > 0. Formula (9.4) holds for S̃n as well:

E
(
|S̃n|

∣∣ f = 1
)
≤ 1

P (f = 1)

∫ +∞

t

P
(
|S̃n| ≥ u

)
du + t . (10.3)

Now S̃n is the sum of n i.i.d. centered random variables which satisfy

∀i ∈ { 1, . . . , n } − αi

1− p
≤ αiXi ≤ αi

p
. (10.4)

Applying the more general Hoeffding’s inequality [4] to S̃n, we get

∀u > 0 P
(
|S̃n| ≥ u

)
≤ 2 exp

(
− 2p2(1− p)2u2

)
. (10.5)

We perform then exactly the same step as in the proof of proposition 9.1, except
that the factor n is replaced by 1. This way we obtain the following inequality:

E
(
|S̃n|

∣∣ f = 1
)
≤ 1

p(1− p)

√
2 ln

2

P (f = 1)
. (10.6)
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We use the inequality
∣∣E(S̃n

∣∣ f = 1
)∣∣ ≤ E

(
|S̃n|

∣∣ f = 1
)
and we rewrite the

inequality (10.6) in exponential form to get

P (f = 1) ≤ 2 exp
(
− 1

2
p2(1− p)2

(
E
(
S̃n

∣∣ f = 1
))2)

. (10.7)

Using the linearity of the expectation, we have

E(S̃nf) =
∑

1≤i≤n

αiE(Xif) ,

whence, dividing by P (f = 1),

E
(
S̃n

∣∣ f = 1
)
=

∑
1≤i≤n

αiE
(
Xif

∣∣ f = 1
)
. (10.8)

The time has come to choose the αi’s. We take

∀i ∈ { 1, . . . , n } αi =
E
(
Xif

∣∣ f = 1
)√ ∑

1≤j≤n

(
E
(
Xjf

∣∣ f = 1
))2 .

With this choice, the equation (10.8) together with the inequality (10.7) yield
the inequality (10.1) of the proposition.

Naturally, proposition 10.1 is stronger than proposition 9.1: a routine applica-
tion of the Cauchy–Schwarz inequality shows that the inequality (9.1) is im-
plied by the inequality (10.1). In the specific case where the function f is
non–decreasing, we have, thanks to formulas (6.1) and (7.2),

E
(
Xif

∣∣ f = 1
)
=

1

p
P
(
i ∈ P(f)

∣∣ f = 1
)
, (10.9)

so that proposition 10.1 yields the following corollary, which is an improvement
of corollary 9.2.

Corollary 10.2. For any non–decreasing boolean function f , we have

P (f = 1) ≤ 2 exp
(
− 1

2

∑
1≤i≤n

(
(1− p)P

(
i ∈ P(f)

∣∣ f = 1
))2)

. (10.10)

At this point, we have generalized to the Bernoulli product measure of param-
eter p an inequality that Talagrand proved in the case where p = 1/2. Indeed,
denoting by µ = P1/2 the uniform measure on {0, 1}n, Talagrand’s inequality
can be stated as follows: there exists a universal constant K such that, for any
boolean function f , we have∑

1≤i≤n

(∫
fXi dµ

)2
≤ Kµ(f = 1)2 ln

e

µ(f = 1)
. (10.11)
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Clearly, we can rewrite the inequality (10.11) in an exponential form to get
an inequality similar to (10.1), albeit with non explicit constants (remember
that Talagrand did not care about their values). In fact, the main purpose of
Talagrand was to improve this first inequality (stated in Proposition 2.2 of [10]).
This first inequality was just a little warm–up before starting the real work!

11 The magic of Talagrand

So, how did Talagrand proceed to go further? Noticing that proposition 10.1
holds for any boolean function, he applied it to the indicator function of the
event { k ∈ P(f) }, where f is a non–decreasing boolean function. This yields

P
(
k ∈ P(f)

)
≤ 2 exp

(
− 1

2

∑
1≤i≤n

(
p(1− p)E

(
Xi1{ k∈ P(f) }

∣∣ k ∈ P(f)
))2)

.

The variable Xk and the event { k ∈ P(f) } are independent, therefore

E
(
Xk1{ k∈ P(f) }

)
= 0 .

Using formula (6.1) in the reverse direction, we can rewrite the expectation for
i ̸= k as follows:

∀i ̸= k E
(
Xi1{ k∈ P(f) }

)
= E

(
XiXkf

)
, (11.1)

and the previous inequality becomes, in a non exponential form similar to Ta-
lagrand’s first inequality (10.11),∑

1≤i≤n
i̸=k

(
E
(
XiXkf

))2
≤ 2

p2(1− p)2

(
P
(
k ∈ P(f)

))2
ln
( 2

P
(
k ∈ P(f)

)) .
Next, we note c(p) = 2p−2(1− p)−2 and we sum this inequality over k to get∑

1≤i,k≤n
i̸=k

(
E
(
XiXkf

))2
≤ c(p)

∑
1≤k≤n

(
P
(
k ∈ P(f)

))2
ln
( 2

P
(
k ∈ P(f)

)) .
Finally, in one of those feats of strength for which only he has the secret, Ta-
lagrand proved the following much stronger inequality for the uniform measure
µ = P1/2: there exists a universal constant K such that, for any non–decreasing
boolean function f , we have∑
1≤i,k≤n

i̸=k

(∫
fXiXk dµ

)2
≤ K

∑
1≤k≤n

µ
(
k ∈ P(f)

)2
ln

K∑
1≤k≤n µ

(
k ∈ P(f)

)2 .

(11.2)
The considerable improvement lies in the presence of the sum inside the loga-
rithm. Talagrand’s proof is beautiful and mysterious. It rests on a complicated
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intermediate result which involves a sort of bootstrap mechanism. The in-
equality (11.2) attracted the interest of several researchers and led to numerous
unexpected developments. For instance, the whole theory of noise sensitivity
of Benjamini, Kalai and Schramm [1] was born with a generalization of this
inequality. An important question was whether inequality (11.2) holds for the
product measure P for p ̸= 1/2. It is known that the inequalities involving
the uniform measure can in principle be generalized to the Bernoulli product
measure. Keller [5] has designed a procedure to deduce automatically some
inequalities for the biased measure from inequalities involving the uniform mea-
sure. Anyway, the natural approach consists in adapting the proofs written for
the uniform measure, as we did in this paper for the first inequality of Talagrand.
However, this might turn out to be very difficult in some cases. After more than
twenty years, Talagrand’s inequality has been extended to the biased case by
Keller and Kindler [6], with a new proof which is simpler than the original proof
of Talagrand. Even more, they managed to prove the inequality for any boolean
function, non necessarily non–decreasing. However, upon inspection, it seems
that the proof of Talagrand would work also for any boolean function!
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