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Upper large deviations for the maximal �ow through adomain of R
d in �rst passage per
olationRaphaël CerfUniversité Paris Sud, Laboratoire de Mathématiques, bâtiment 42591405 Orsay Cedex, Fran
eE-mail: r
erf�math.u-psud.frandMarie ThéretÉ
ole Normale Supérieure, Département Mathématiques et Appli
ations, 45 rue d'Ulm75230 Paris Cedex 05, Fran
eE-mail: marie.theret�ens.frAbstra
t: We 
onsider the standard �rst passage per
olation model in the res
aled graph Z

d/nfor d ≥ 2, and a domain Ω of boundary Γ in R
d. Let Γ1 and Γ2 be two disjoint open subsets of Γ,representing the parts of Γ through whi
h some water 
an enter and es
ape from Ω. We investigatethe asymptoti
 behaviour of the �ow φn through a dis
rete version Ωn of Ω between the 
orrespond-ing dis
rete sets Γ1

n and Γ2
n. We prove that under some 
onditions on the regularity of the domainand on the law of the 
apa
ity of the edges, the upper large deviations of φn/nd−1 above a 
ertain
onstant are of volume order.AMS 2000 subje
t 
lassi�
ations: 60K35.Keywords : First passage per
olation, maximal �ow, minimal 
ut, large deviations.1 First de�nitions and main resultWe use many notations introdu
ed in [5℄ and [6℄. Let d ≥ 2. We 
onsider the graph (Zd

n, Ed
n) havingfor verti
es Z

d
n = Z

d/n and for edges E
d
n, the set of pairs of nearest neighbours for the standard L1norm. With ea
h edge e in E

d
n we asso
iate a random variable t(e) with values in R

+. We supposethat the family (t(e), e ∈ E
d
n) is independent and identi
ally distributed, with a 
ommon law Λ: thisis the standard model of �rst passage per
olation on the graph (Zd

n, Ed
n). We interpret t(e) as the
apa
ity of the edge e; it means that t(e) is the maximal amount of �uid that 
an go through theedge e per unit of time.We 
onsider an open bounded 
onne
ted subset Ω of R

d su
h that the boundary Γ = ∂Ω of Ωis pie
ewise of 
lass C1 (in parti
ular Γ has �nite area: Hd−1(Γ) < ∞). It means that Γ is in
ludedin the union of a �nite number of hypersurfa
es of 
lass C1, i.e., in the union of a �nite number of
C1 submanifolds of R

d of 
odimension 1. Let Γ1, Γ2 be two disjoint subsets of Γ that are open in
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1 FIRST DEFINITIONS AND MAIN RESULT
Γ. We want to de�ne the maximal �ow from Γ1 to Γ2 through Ω for the 
apa
ities (t(e), e ∈ E

d
n).We 
onsider a dis
rete version (Ωn,Γn,Γ1

n,Γ2
n) of (Ω,Γ,Γ1,Γ2) de�ned by:





Ωn = {x ∈ Z
d
n | d∞(x,Ω) < 1/n} ,

Γn = {x ∈ Ωn | ∃y /∈ Ωn , 〈x, y〉 ∈ E
d
n} ,

Γi
n = {x ∈ Γn | d∞(x,Γi) < 1/n , d∞(x,Γ3−i) ≥ 1/n} for i = 1, 2 ,where d∞ is the L∞-distan
e, the notation 〈x, y〉 
orresponds to the edge of endpoints x and y (see�gure 1).

Γ2

Γ1

Γ1
n

Γ2
n

Γ Γn

Figure 1: Domain Ω.We shall study the maximal �ow from Γ1
n to Γ2

n in Ωn. Let us de�ne properly the maximal�ow φ(F1 → F2 in C) from F1 to F2 in C, for C ⊂ R
d (or by 
ommodity the 
orresponding graph

C ∩ Z
d/n). We will say that an edge e = 〈x, y〉 belongs to a subset A of R

d, whi
h we denote by
e ∈ A, if the interior of the segment joining x to y is in
luded in A. We de�ne Ẽ

d
n as the set of all theoriented edges, i.e., an element ẽ in Ẽ

d
n is an ordered pair of verti
es whi
h are nearest neighbours.We denote an element ẽ ∈ Ẽ

d
n by 〈〈x, y〉〉, where x, y ∈ Z

d
n are the endpoints of ẽ and the edge isoriented from x towards y. We 
onsider the set S of all pairs of fun
tions (g, o), with g : E

d
n → R

+and o : E
d
n → Ẽ

d
n su
h that o(〈x, y〉) ∈ {〈〈x, y〉〉, 〈〈y, x〉〉}, satisfying:

• for ea
h edge e in C we have
0 ≤ g(e) ≤ t(e) ,

• for ea
h vertex v in C r (F1 ∪ F2) we have
∑

e∈C : o(e)=〈〈v,·〉〉

g(e) =
∑

e∈C : o(e)=〈〈·,v〉〉

g(e) ,where the notation o(e) = 〈〈v, .〉〉 (respe
tively o(e) = 〈〈., v〉〉) means that there exists y ∈ Z
d
n su
hthat e = 〈v, y〉 and o(e) = 〈〈v, y〉〉 (respe
tively o(e) = 〈〈y, v〉〉). A 
ouple (g, o) ∈ S is a possiblestream in C from F1 to F2: g(e) is the amount of �uid that goes through the edge e, and o(e) givesthe dire
tion in whi
h the �uid goes through e. The two 
onditions on (g, o) express only the fa
t2



1 FIRST DEFINITIONS AND MAIN RESULTthat the amount of �uid that 
an go through an edge is bounded by its 
apa
ity, and that there isno loss of �uid in the graph. With ea
h possible stream we asso
iate the 
orresponding �ow
flow(g, o) =

∑

u∈F2 , v /∈C : 〈u,v〉∈Ed
n

g(〈u, v〉)1o(〈u,v〉)=〈〈u,v〉〉 − g(〈u, v〉)1o(〈u,v〉)=〈〈v,u〉〉 .This is the amount of �uid that 
rosses C from F1 to F2 if the �uid respe
ts the stream (g, o). Themaximal �ow through C from F1 to F2 is the supremum of this quantity over all possible 
hoi
es ofstreams
φ(F1 → F2 in C) = sup{flow(g, o) | (g, o) ∈ S} .We re
all that we 
onsider an open bounded 
onne
ted subset Ω of R

d whose boundary Γ ispie
ewise of 
lass C1, and two disjoint open subsets Γ1 and Γ2 of Γ. We denote by
φn = φ(Γ1

n → Γ2
n in Ωn)the maximal �ow from Γ1

n to Γ2
n in Ωn. We will investigate the asymptoti
 behaviour of φn/nd−1when n goes to in�nity. More pre
isely, we will show that the upper large deviations of φn above a
ertain 
onstant φ̃Ω are of volume order. The des
ription of φ̃Ω will be given in se
tion 2. Here westate the pre
ise theorem:Theorem 1. We suppose that d(Γ1,Γ2) > 0. If the law Λ of the 
apa
ity of an edge admits anexponential moment:
∃θ > 0

∫

R+

eθxdΛ(x) < +∞ ,then there exists a �nite 
onstant φ̃Ω su
h that for all λ > φ̃Ω,
lim sup

n→∞

1

nd
log P[φn ≥ λnd−1] < 0 .Remark 1. In the theorem 1 we need to impose that d(Γ1,Γ2) > 0 be
ause otherwise we 
annot besure that φ̃Ω < ∞, as we will see in se
tion 4. Moreover, if d(Γ1,Γ2) = 0, there exists a set of edgesof 
onstant 
ardinality (not depending on n) 
ontaining paths from Γ1

n to Γ2
n through Ωn for all nalong the 
ommon boundary of Γ1 and Γ2, and so it may be su�
ient for these edges to have ahuge 
apa
ity to obtain that φn is abnormally big too. Thus, we 
annot hope to obtain upper largedeviations of volume order (see [9℄ for a 
ounter-example).Remark 2. The large deviations we obtain are of the relevant order. Indeed, if all the edges in Ωnhave a 
apa
ity whi
h is abnormally big, then the maximal �ow φn will be abnormally big too. Theprobability for these edges to have an abnormally large 
apa
ity is of order exp−Cnd for a 
onstant

C, be
ause the number of edges in Ωn is C ′nd for a 
onstant C ′.Remark 3. In the two 
ompanion papers [2℄ and [3℄, we prove in fa
t that φ̃Ω is the almost surelimit of φn/nd−1 when n goes to in�nity, and that the lower large deviations of φn/nd−1 below φ̃Ωare of surfa
e order. 3



2 COMPUTATION OF φ̃Ω2 Computation of φ̃Ω2.1 Geometri
 notationsWe start with some geometri
 de�nitions. For a subset X of R
d, we denote by Hs(X) the s-dimensional Hausdor� measure of X (we will use s = d − 1 and s = d − 2). The r-neighbourhood

Vi(X, r) of X for the distan
e di, that 
an be the Eu
lidean distan
e if i = 2 or the L∞-distan
e if
i = ∞, is de�ned by

Vi(X, r) = {y ∈ R
d | di(y,X) < r} .If X is a subset of R

d in
luded in an hyperplane of R
d and of 
odimension 1 (for example a nondegenerate hyperre
tangle), we denote by hyp(X) the hyperplane spanned by X, and we denote by

cyl(X,h) the 
ylinder of basis X and of height 2h de�ned by
cyl(X,h) = {x + tv |x ∈ X , t ∈ [−h, h]} ,where v is one of the two unit ve
tors orthogonal to hyp(X) (see �gure 2). For x ∈ R

d, r ≥ 0 and
h

h

v

x X

Figure 2: Cylinder cyl(X,h).a unit ve
tor v, we denote by B(x, r) the 
losed ball 
entered at x of radius r.2.2 Flow in a 
ylinderHere are some parti
ular de�nitions of �ows through a box. It is important to know them, be
auseall our work 
onsists in 
omparing the maximal �ow φn in Ωn with the maximal �ows in small
ylinders. Let A be a non degenerate hyperre
tangle, i.e., a box of dimension d − 1 in R
d. Allhyperre
tangles will be supposed to be 
losed in R

d. We denote by v one of the two unit ve
torsorthogonal to hyp(A). For h a positive real number, we 
onsider the 
ylinder cyl(A,h). Theset cyl(A,h) r hyp(A) has two 
onne
ted 
omponents, whi
h we denote by C1(A,h) and C2(A,h).For i = 1, 2, let Ah
i be the set of the points in Ci(A,h) ∩ Z

d
n whi
h have a nearest neighbour in

Z
d
n r cyl(A,h):

Ah
i = {x ∈ Ci(A,h) ∩ Z

d
n | ∃y ∈ Z

d
n r cyl(A,h) , 〈x, y〉 ∈ E

d
n} .Let T (A,h) (respe
tively B(A,h)) be the top (respe
tively the bottom) of cyl(A,h), i.e.,

T (A,h) = {x ∈ cyl(A,h) | ∃y /∈ cyl(A,h) , 〈x, y〉 ∈ E
d
n and 〈x, y〉 interse
ts A + hv}4



2 COMPUTATION OF φ̃Ω 2.3 Max-�ow min-
ut theoremand
B(A,h) = {x ∈ cyl(A,h) | ∃y /∈ cyl(A,h) , 〈x, y〉 ∈ E

d
n and 〈x, y〉 interse
ts A − hv} .For a given realisation (t(e), e ∈ E

d
n) we de�ne the variable τ(A,h) = τ(cyl(A,h), v) by

τ(A,h) = τ(cyl(A,h), v) = φ(Ah
1 → Ah

2 in cyl(A,h)) ,and the variable φ(A,h) = φ(cyl(A,h), v) by
φ(A,h) = φ(cyl(A,h), v) = φ(B(A,h) → T (A,h) in cyl(A,h)) ,where φ(F1 → F2 in C) is the maximal �ow from F1 to F2 in C, for C ⊂ R

d (or by 
ommodity the
orresponding graph C ∩Z
d/n) de�ned previously. The dependen
e in n is impli
it here, in fa
t we
an also write τn(A,h) and φn(A,h) if we want to emphasize this dependen
e on the mesh of thegraph.2.3 Max-�ow min-
ut theoremThe maximal �ow φ(F1 → F2 in C) 
an be expressed di�erently thanks to the max-�ow min-
uttheorem (see [1℄). We need some de�nitions to state this result. A path on the graph Z

d
n from v0to vm is a sequen
e (v0, e1, v1, ..., em, vm) of verti
es v0, ..., vm alternating with edges e1, ..., em su
hthat vi−1 and vi are neighbours in the graph, joined by the edge ei, for i in {1, ...,m}. A set E ofedges in C is said to 
ut F1 from F2 in C if there is no path from F1 to F2 in C r E. We 
all E an

(F1, F2)-
ut if E 
uts F1 from F2 in C and if no proper subset of E does. With ea
h set E of edgeswe asso
iate its 
apa
ity whi
h is the variable
V (E) =

∑

e∈E

t(e) .The max-�ow min-
ut theorem states that
φ(F1 → F2 in C) = min{V (E) |E is a (F1, F2)-
ut } .2.4 De�nition of νThe asymptoti
 behaviour of the res
aled expe
tation of τn(A,h) for large n is well known, thanksto the almost subadditivity of this variable. We re
all the following result:Theorem 2. We suppose that ∫

[0,+∞[
x dΛ(x) < ∞ .Then for ea
h unit ve
tor v there exists a 
onstant ν(d,Λ, v) = ν(v) (the dependen
e on d and Λ isimpli
it) su
h that for every non degenerate hyperre
tangle A orthogonal to v and for every stri
tlypositive 
onstant h, we have

lim
n→∞

E[τn(A,h)]

nd−1Hd−1(A)
= ν(v) .5



2.5 Continuous min-
ut 2 COMPUTATION OF φ̃ΩFor a proof of this proposition, see [8℄. We emphasize the fa
t that the limit depends on thedire
tion of v, but not on h nor on the hyperre
tangle A itself.In fa
t, Rossignol and Théret proved in [8℄ that under some moment 
onditions and/or some
ondition on A, ν(v) is the limit of the res
aled variable τn(A,h)/(nd−1Hd−1(A)) almost surely andin L1. We also know, thanks to the works of Kesten [6℄, Zhang [11℄ and Rossignol and Théret [8℄that the variable φn(A,h)/(nd−1Hd−1(A)) satis�es the same law of large numbers in the parti
ular
ase where A is a straight hyperre
tangle, i.e., a hyperre
tangle of the form ∏d−1
i=1 [0, ki] × {0} forsome ki > 0.We re
all some geometri
 properties of the map ν : v ∈ Sd−1 7→ ν(v), under the only 
onditionon Λ that E(t(e)) < ∞. They have been stated in se
tion 4.4 of [8℄. There exists a unit ve
tor

v0 su
h that ν(v0) = 0 if and only if for all unit ve
tor v, ν(v) = 0, and it happens if and only if
Λ(0) ≥ 1−pc(d), where pc(d) is the 
riti
al parameter of the bond per
olation on Z

d. This propertyhas been proved by Zhang in [10℄. Moreover, ν satis�es the weak triangle inequality, i.e., if (ABC)is a non degenerate triangle in R
d and vA, vB and vC are the exterior normal unit ve
tors to thesides [BC], [AC], [AB] in the plane spanned by A, B, C, then

H1([AB])ν(vC ) ≤ H1([AC])ν(vB) + H1([BC])ν(vA) .This implies that the homogeneous extension ν0 of ν to R
d, de�ned by ν0(0) = 0 and for all w in

R
d,

ν0(w) = |w|2ν(w/|w|2) ,is a 
onvex fun
tion; in parti
ular, sin
e ν0 is �nite, it is 
ontinuous on R
d. We denote by νmin(respe
tively νmax) the in�mum (respe
tively supremum) of ν on Sd−1.The last result we re
all is Theorem 4 in [9℄ 
on
erning the upper large deviations of the variable

φn(A,h) above ν(v):Theorem 3. We suppose that
∃γ > 0

∫

[0,+∞[
eγx dΛ(x) < ∞ .Then for every unit ve
tor v and every non degenerate hyperre
tangle A orthogonal to v, for everystri
tly positive 
onstant h and for every λ > ν(v) we have

lim inf
n→∞

−1

ndHd−1(A)h
log P

[
φn(A,h)

nd−1Hd−1(A)
≥ λ

]
> 0 .We shall rely on this result for proving Theorem 1. Moreover, Theorem 1 is a generalisation ofTheorem 3, where we work in the domain Ω instead of a parallelepiped.2.5 Continuous min-
utWe give here a de�nition of φ̃Ω in terms of the map ν. When a hypersurfa
e S is pie
ewise of 
lass

C1, we say that S is transverse to Γ if for all x ∈ S ∩ Γ, the normal unit ve
tors to S and Γ at xare not 
ollinear; if the normal ve
tor to S (respe
tively to Γ) at x is not well de�ned, this propertymust be satis�ed by all the ve
tors whi
h are limits of normal unit ve
tors to S (respe
tively Γ) at
y ∈ S (respe
tively y ∈ Γ) when we send y to x - there is at most a �nite number of su
h limits.We say that a subset P of R

d is polyhedral if its boundary ∂P is in
luded in the union of a �nite6



2 COMPUTATION OF φ̃Ω 2.5 Continuous min-
utnumber of hyperplanes. For ea
h point x of su
h a set P whi
h is on the interior of one fa
e of ∂P ,we denote by vP (x) the exterior unit ve
tor orthogonal to P at x. For A ⊂ R
d, we denote by ◦

A theinterior of A. We de�ne φ̃Ω by
φ̃Ω = inf

{
IΩ(P )

∣∣∣∣∣
P ⊂ Rd , Γ1 ⊂

◦
P , Γ2 ⊂

◦

Rd r P
P is polyhedral , ∂P is transverse to Γ

}
,where

IΩ(P ) =

∫

∂P∩Ω
ν(vP (x)) dHd−1(x) .See �gure 3 to have an example of su
h a polyhedral set P .

Γ2vP (x)

Γ1 Ω

∂P

∂Ω

P

x

Figure 3: A polyhedral set P as in the de�nition of φ̃Ω.The de�nition of the 
onstant φ̃Ω is not very intuitive. We propose to de�ne the notion of a
ontinuous 
utset to have a better understanding of this 
onstant. We say that S ⊂ R
d 
uts Γ1from Γ2 in Ω if every 
ontinuous path from Γ1 to Γ2 in Ω interse
ts S. In fa
t, if P is a polyhedralset of R

d su
h that
Γ1 ⊂

◦
P and Γ2 ⊂

◦

R
d

r P ,then ∂P ∩ Ω is a 
ontinuous 
utset from Γ1 to Γ2 in Ω. Sin
e ν(v) is the average amount of �uidthat 
an 
ross a hypersurfa
e of area one in the dire
tion v per unit of time, it 
an be interpretedas the 
apa
ity of a unitary hypersurfa
e orthogonal to v. Thus IΩ(P ) 
an be interpreted as the
apa
ity of the 
ontinuous 
utset ∂P ∩ Ω de�ned by P . The 
onstant φ̃Ω is the solution of a min
ut problem, be
ause it is equal to the in�mum of the 
apa
ity of a 
ontinuous 
utset that satis�essome spe
i�
 properties. 7



4 THE CONSTANT φ̃Ω IS FINITE3 Sket
h of the proofWe �rst prove that φ̃Ω is �nite, i.e., that there exists a polyhedral set P ⊂ R
d su
h that ∂P istransverse to Γ and

Γ1 ⊂
◦
P , Γ2 ⊂

◦

R
d

r P .Then, we 
onsider su
h a polyhedral set P whose 
apa
ity IΩ(P ) is 
lose to φ̃Ω. We 
onstru
t aset Ω′ that 
ontains a small neighbourhood of Ω, thus Ω′ 
ontains Ωn for all large n, and su
h that
Hd−1(∂P ∩ (Ω′

r Ω)) is very small. We need the property that ∂P is transverse to Γ to obtainthis 
ontrol on Hd−1(∂P ∩ (Ω′
r Ω)). We want to 
onstru
t a (Γ1

n,Γ2
n)-
ut in Ωn that is 
lose to

∂P ∩Ω′. We 
over ∂P ∩Ω′ with 
ylinders of arbitrarily small height; this is the reason why we needto 
onsider a polyhedral set P . A part of ∂P ∩ Ω′ of very small area is missing in this 
overing.We 
onstru
t then a (Γ1
n,Γ2

n)-
ut in Ωn with the help of 
utsets in the 
ylinders 
onstru
ted on
∂P ∩Ω′. To a
hieve this, we have to add edges to 
over the part of ∂P ∩Ω′ missing in the 
overingby the 
ylinders, and to glue together the 
utsets in the di�erent 
ylinders. Thanks to the studyof the upper large deviations for the maximal �ow through 
ylinders made in [9℄, we obtain thatthe probability that the �ow φn is greater than IΩ(P )nd−1 goes to zero. We want to prove thatthis probability de
ays exponentially fast in nd. For that purpose, we have to 
onsider a 
olle
tionof 
ardinality of order n of possible sets of edges we 
an add to 
onstru
t the 
utset in Ωn, and to
hoose the set that has the minimal 
apa
ity.4 The 
onstant φ̃Ω is �niteTo prove that φ̃Ω < ∞, it is su�
ient to exhibit a set P satisfying all the 
onditions given in thede�nition of φ̃Ω. Indeed, if su
h a set P exists, then

φ̃Ω ≤ νmaxH
d−1(∂P ∩ Ω) < ∞sin
e a polyhedral set has �nite perimeter in Ω. We will 
onstru
t su
h a set P . The idea of theproof is the following. We will 
over Γ1 with small hyper
ubes whi
h are transverse to Γ1 and atpositive distan
e of Γ2. Then, by 
ompa
tness, we will extra
t a �nite 
overing. We will denote by

P the union of the hyper
ubes of this �nite 
overing. Then P satis�es the desired properties.We prove a geometri
 lemma:Lemma 1. Let Γ be an hypersurfa
e (that is a C1 submanifold of R
d of 
odimension 1) and let Kbe a 
ompa
t subset of Γ. There exists a positive M = M(Γ,K) su
h that:

∀ε > 0 ∃ r > 0 ∀x, y ∈ K |x − y|2 ≤ r ⇒ d2(y, tan(Γ, x)) ≤ M ε |x − y|2 .(tan(Γ, x) is the tangent hyperplane of Γ at x).Proof :By a standard 
ompa
tness argument, it is enough to prove the following lo
al property:
∀x ∈ Γ ∃M(x) > 0 ∀ε > 0 ∃ r(x, ε) > 0 ∀y, z ∈ Γ ∩ B(x, r(x, ε))

d2(y, tan(Γ, z)) ≤ M(x) ε |y − z|2 .8



4 THE CONSTANT φ̃Ω IS FINITEIndeed, if this property holds, we 
over K by the open balls B
o
(x, r(x, ε)/2), x ∈ K, we extra
t a�nite sub
over B

o
(xi, r(xi, ε)/2), 1 ≤ i ≤ k, and we set

M = max{M(xi) : 1 ≤ i ≤ k } , r = min{ r(xi, ε)/2 : 1 ≤ i ≤ k } .Let now y, z belong to K with |y − z|2 ≤ r. Let i be su
h that y belongs to B(xi, r(xi, ε)/2). Sin
e
r ≤ r(xi, ε)/2, then both y, z belong to the ball B(xi, r(xi, ε)) and it follows that

d2(y, tan(Γ, z)) ≤ M(xi) ε |y − z|2 ≤ M ε |y − z|2 .We turn now to the proof of the above lo
al property. Sin
e Γ is an hypersurfa
e, for any xin Γ there exists a neighbourhood V of x in R
d, a di�eomorphism f : V 7→ R

d of 
lass C1 anda (d − 1) dimensional ve
tor spa
e Z of R
d su
h that Z ∩ f(V ) = f(Γ ∩ V ) (see for instan
e [4℄,

3.1.19). Let A be a 
ompa
t neighbourhood of x in
luded in V . Sin
e f is a di�eomorphism, themaps y ∈ A 7→ df(y) ∈ End(Rd), u ∈ f(A) 7→ df−1(u) ∈ End(Rd) are 
ontinuous. Therefore theyare bounded:
∃M > 0 ∀y ∈ A ||df(y)|| ≤ M , ∀u ∈ f(A) ||df−1(u)|| ≤ M(here ||df(x)|| = sup{ |df(x)(y)|2 : |y|2 ≤ 1 } is the standard operator norm in End(Rd)). Sin
e f(A)is 
ompa
t, the di�erential map df−1 is uniformly 
ontinuous on f(A):

∀ε > 0 ∃δ > 0 ∀u, v ∈ f(A) |u − v|2 ≤ δ ⇒ ||df−1(u) − df−1(v)|| ≤ ε .Let ε be positive and let δ be asso
iated to ε as above. Let ρ be positive and small enough sothat ρ < δ/2 and B(f(x), ρ) ⊂ f(A) (sin
e f is a C1 di�eomorphism, f(A) is a neighbourhood of
f(x)). Let r be su
h that 0 < r < ρ/M and B(x, r) ⊂ A. We 
laim that M asso
iated to x and rasso
iated to ε, x answer the problem. Let y, z belong to Γ ∩ B(x, r). Sin
e [y, z] ⊂ B(x, r) ⊂ A,and ||df(ζ)|| ≤ M on A, then

|f(y) − f(x)|2 ≤ M |y − x|2 ≤ Mr < ρ , |f(z) − f(x)|2 < ρ ,

|f(y) − f(z)|2 < δ , |f(y) − f(z)|2 < M |y − z|2 .We apply next a 
lassi
al lemma of di�erential 
al
ulus (see [7℄, I, 4, Corollary 2) to the map f−1and the interval [f(z), f(y)] (whi
h is in
luded in B(f(x), ρ) ⊂ f(A)) and the point f(z):
|y − z − df−1(f(z))(f(y) − f(z))|2 ≤

|f(y) − f(z)|2 sup { ||df−1(ζ) − df−1(f(z))|| : ζ ∈ [f(z), f(y)] } .The right�hand member is less than M |y − z|2 ε. Sin
e z + df−1(f(z))(f(y) − f(z)) belongs to
tan(Γ, z), we are done.

�We 
ome ba
k to our 
ase. The boundary Γ of Ω is pie
ewise of 
lass C1, i.e., it is in
luded ina �nite union of C1 hypersurfa
es, whi
h we denote by (S1, ..., Sp). The hypersurfa
es S1, . . . , Spbeing C1 and the set Γ 
ompa
t, the maps x ∈ Γ 7→ vSk
(x), 1 ≤ k ≤ p (where vSk

(x) is the unitnormal ve
tor to Sk at x) are uniformly 
ontinuous:
∀δ > 0 ∃η > 0 ∀k ∈ { 1, . . . , p } ∀x, y ∈ Sk ∩ Γ |x − y|2 ≤ η ⇒

∣∣vSk
(x) − vSk

(y)
∣∣
2

< δ .9



4 THE CONSTANT φ̃Ω IS FINITELet η∗ be asso
iated to δ = 1 by this property. Let k ∈ { 1, . . . , p }. The set Sk ∩ Γ is a 
ompa
tsubset of the hypersurfa
e Sk. Applying the previous lemma, we get:
∃Mk ∀δ0 > 0 ∃ ηk > 0 ∀x, y ∈ Sk ∩ Γ |x − y|2 ≤ ηk ⇒ d2

(
y, tan(Sk, x)

)
≤ Mkδ0|x − y|2 .Let M0 = max1≤k≤p Mk and let δ0 in ]0, 1/2[ be su
h that M0δ0 < 1/2. For ea
h k in { 1, . . . , p },let ηk be asso
iated to δ0 as in the above property and let

η0 = min
(

min
1≤k≤p

ηk, η∗,
1

8d
dist(Γ1,Γ2)

)
.We build a family of 
ubes Q(x, r), indexed by x ∈ Γ and r ∈]0, rΓ[ su
h that Q(x, r) is a 
ube
entered at x of side length r whi
h is transverse to Γ. For x ∈ R

d and k ∈ { 1, . . . , p }, let pk(x) bea point of Sk ∩ Γ su
h that
|x − pk(x)|2 = inf

{
|x − y|2 : y ∈ Sk ∩ Γ

}
.Su
h a point exists sin
e Sk ∩ Γ is 
ompa
t. We de�ne then for k ∈ { 1, . . . , p }

∀x ∈ R
d vk(x) = vSk

(pk(x)) .We de�ne also
dr = inf

v1,...,vp∈Sd−1
max
b∈Bd

min
1 ≤ k ≤ r

e ∈ b

(
|e − vi|2, | − e − vi|2

)where Bd is the 
olle
tion of the orthonormal basis of R
d and Sd−1 is the unit sphere of R

d. Let ηbe asso
iated to dr/4 as in the above 
ontinuity property. We set
rΓ =

η

2d
.Let x ∈ Γ. By the de�nition of dr, there exists an orthonormal basis bx of R

d su
h that
∀e ∈ bx ∀k ∈ { 1, . . . , p } min

(
|e − vk(x)|2, | − e − vk(x)|2

)
>

dr

2
.Let Q(x, r) be the 
ube 
entered at x of sidelength r whose sides are parallel to the ve
tors of bx.We 
laim that Q(x, r) is transverse to Γ for r < rΓ. Indeed, let y ∈ Q(x, r) ∩ Γ. Suppose that

y ∈ Sk for some k ∈ { 1, . . . , p }, so that vk(y) = vSk
(y) and |x − pk(x)|2 < drΓ. In parti
ular, wehave |y − pk(x)|2 < 2drΓ < η and |vSk

(y) − vk(x)|2 < dr/4. For e ∈ bx,
dr

2
≤ |e − vk(x)|2 ≤ |e − vSk

(y)|2 + |vSk
(y) − vk(x)|2when
e

|e − vSk
(y)|2 ≥

dr

2
−

dr

4
=

dr

4
.This is also true for −e, therefore the fa
es of the 
ube Q(x, r) are transverse to Sk.Now we 
onsider the 
olle
tion

(Q̊(x, r), x ∈ Γ1, r < rΓ) .10



5 DEFINITION OF THE SET Ω′It 
overs Γ1. By 
ompa
tness of Γ1, we 
an extra
t a �nite 
overing (Q̊(xi, ri), i ∈ I) from this
olle
tion. We de�ne
P = ∪i∈IQ(xi, ri) ,We 
laim that P satis�es all the hypotheses in the de�nition of φ̃Ω. Indeed, P is obviously polyhedraland transverse to Γ. Moreover, we know that

Γ1 ⊂
◦
P ,and sin
e d(P,Γ2) > 0 we also obtain that

Γ2 ⊂
◦

R
d

r P .5 De�nition of the set Ω′Let λ be in ]φ̃Ω,+∞[. We are studying
P[φn ≥ λnd−1] .Suppose �rst that φ̃Ω > 0. There exists a positive s su
h that λ > φ̃Ω(1 + s)2. By de�nition of φ̃Ω,for every positive s, there exists a polyhedral subset P of R

d, su
h that ∂P is transverse to Γ,
Γ1 ⊂

◦
P , Γ2 ⊂

◦

R
d

r Pand
IΩ(P ) ≤ φ̃Ω(1 + s) .Then λ > IΩ(P )(1 + s) and

P[φn ≥ λnd−1] ≤ P[φn ≥ IΩ(P )(1 + s)nd−1] .Sin
e ∂P is transverse to Γ, we know that there exists δ0 > 0 (depending on λ, P and Γ) su
h thatfor all δ ≤ δ0,
Hd−1(∂P ∩ (V2(Ω, δ) r Ω)) ≤

sIΩ(P )

2νmax
.Thus, for any set Ω′ satisfying Ω ⊂ Ω′ ⊂ V2(Ω, δ0), we have

∫

∂P∩Ω′

ν(vP (x))dHd−1(x) ≤ IΩ(P )(1 + s/2) ,then λ > (1 + s/2)(
∫
∂P∩Ω′

ν(vP (x))dHd−1(x)) and
P[φn ≥ λnd−1] ≤ P

[
φn ≥

(∫

∂P∩Ω′

ν(vP (x))dHd−1(x)

)
(1 + s/2)nd−1

]
.Suppose now that φ̃Ω = 0. Then for an arbitrarily �xed s ∈]0, 1[, there exists a polyhedralsubset P of R

d, su
h that ∂P is transverse to Γ,
Γ1 ⊂

◦
P , Γ2 ⊂

◦

R
d

r P11



6 EXISTENCE OF A FAMILY OF (Γ1
N ,Γ2

N )-CUTSand
IΩ(P ) ≤

λ

1 + s
,and thus λ > IΩ(P )(1 + s). If IΩ(P ) > 0, we 
an use exa
tly the same argument as previously. Wesuppose that IΩ(P ) = 0. We know as previously that there exists δ0 > 0 (depending on λ, P and

Γ) su
h that for all δ ≤ δ0,
Hd−1(∂P ∩ (V2(Ω, δ) r Ω)) <

λ

νmax(1 + s/2)
.Thus, in any 
ase, we obtain that there exists δ0 > 0 su
h that, for any set Ω′ satisfying Ω ⊂ Ω′ ⊂

V2(Ω, δ0), we have
P[φn ≥ λnd−1] ≤ P

[
φn ≥

(∫

∂P∩Ω′

ν(vP (x))dHd−1(x)

)
(1 + s/2)nd−1

]
.We will 
onstru
t a parti
ular set Ω′ satisfying Ω ⊂ Ω′ ⊂ V2(Ω, δ0). In the previous se
tion, wehave asso
iated to ea
h 
ouple (x, r) in Γ×]0, rΓ[ a hyper
ube Q(x, r) 
entered at x, of sidelength r,and whi
h is transverse to Γ. Using exa
tly the same method, we 
an build a family of hyper
ubes

(Q′(x, r), x ∈ Γ, r < r(Γ,P ))su
h that Q′(x, r) is 
entered at x, of sidelength r, and it is transverse to Γ and ∂P . The family
(
◦

Q′(x, r), x ∈ Γ, r < min(r(Γ,P ), δ0/(2d)))is a 
overing of the 
ompa
t set Γ, thus we 
an extra
t a �nite 
overing from this 
olle
tion, wedenote it by (
◦

Q′(xi, ri), i ∈ J). We de�ne
Ω′ = Ω ∪

⋃

i∈J

◦

Q′(xi, ri) .Sin
e ri ≤ δ0/(2d) for all i ∈ J , we have Ω′ ⊂ V2(Ω, δ0). Moreover, ∂P is transverse to the boundary
Γ′ of Ω′. Finally, if we de�ne

δ1 = min
i∈J

ri/2 ,we know that V2(Ω, δ1) ⊂ Ω′, and thus for all n ≥ 2d/δ1, we have Ωn ⊂ Ω′.6 Existen
e of a family of (Γ1
n, Γ

2
n)-
utsIn this se
tion we prove that we 
an 
onstru
t a family of disjoint (Γ1

n,Γ2
n)-
uts in Ωn. Let ζ be a �xed
onstant larger than 2d. We 
onsider a parameter h < h0 = d(∂P,Γ1 ∪ Γ2). For k ∈ {0, ..., ⌊hn/ζ⌋}we de�ne

P (k) = {x ∈ R
d | d(x, P ) ≤ kζ/n} ,and for k ∈ {0, ..., ⌊hn/ζ⌋ − 1} we de�ne

U(k) = (
◦

R
d

r Pk+1) r
◦
P k

= {x ∈ R
d | kζ/n ≤ d(x, P ) < (k + 1)ζ/n} ,and M′(k) = U(k) ∩ Ω′ (see �gure 4). We will prove the following lemma:12



6 EXISTENCE OF A FAMILY OF (Γ1
N ,Γ2

N )-CUTS

Γ2

Γ1

Γ Γ′

P
M

′(k)

ζ/n

kζ/n

U(k)Figure 4: The sets P , U(k) and M′(k).Lemma 2. There exists N large enough su
h that for all n ≥ N , every path on the graph (Zd
n, Ed

n)from Γ1
n to Γ2

n in Ωn 
ontains at least one edge whi
h is in
luded in the set M′(k) for k ∈
{0, ..., ⌊hn/ζ⌋ − 1}.This lemma states pre
isely that for all k ∈ {0, ..., ⌊hn/ζ⌋ − 1}, M′(k) 
ontains a (Γ1

n,Γ2
n)-
utin Ωn.Proof :Let k ∈ {0, ..., ⌊hn/ζ⌋ − 1}. Let γ be a dis
rete path from Γ1

n to Γ2
n in Ωn. In parti
ular, γ is
ontinuous, so we 
an parametrise it : γ = (γt)0≤t≤1. There exists N large enough su
h that for all

n ≥ N , we have
Ωn ⊂ Ω′ , Γ1

n ⊂ V2(Γ
1, 2d/n) ⊂

◦
P k , and Γ2

n ⊂ V2(Γ
2, 2d/n) ⊂

◦

R
d

r Pk+1 .Sin
e γ is 
ontinuous, we know that there exists t1, t2 ∈]0, 1[ su
h that
t1 = sup{t ∈ [0, 1] | γt ∈

◦
P k} ,

t2 = inf{t ≥ t1 | γt ∈
◦

R
d

r Pk+1} .Sin
e
◦
P k ∪ U(k) ∪

◦

R
d

r Pk+1is a partition of R
d, we know that (γt)t1≤t<t2 , whi
h is a 
ontinuous path, is in
luded in U(k). Thelength of (γt)t1≤t<t2 is larger than d(γt1 , γt2). The segment [γt1 , γt2 ] interse
ts

{x ∈ R
d | d(x, P ) = (k + 1/2)ζ/n}at a point z, and we know that

V2(z, ζ/(2n)) ⊂
◦

V (k) .13



7 COVERING OF ∂P ∩ Ω′ BY CYLINDERSThus d(γt1 , γt2) ≥ ζ/n, and then the length of (γt)t1≤t<t2 is larger than ζ/n. Finally, γ is 
omposedof edges of length 1/n, and ζ ≥ 2d, so (γt)t1≤t<t2 , and thus γ, 
ontains at least one edge whi
h isin
luded in U(k). Noti
ing that for all n ≥ N ,
γ ⊂ Ωn ⊂ Ω′ ,we obtain that this edge belongs to U(k) ∩ Ω′ = M′(k).

�7 Covering of ∂P ∩ Ω′ by 
ylindersFrom now on we only 
onsider n ≥ N . A

ording to lemma 2, we know that ea
h set M′(k) for
k ∈ {0, ..., ⌊hn/ζ⌋ − 1} 
ontains a (Γ1

n,Γ2
n)-
ut in Ωn, thus if we denote by M ′(k) the set of theedges in
luded in M′(k), we obtain

φn ≤ min{V (M ′(k)) , k ∈ {0, ..., ⌊hn/ζ⌋ − 1}} .However, we do not have estimates on V (M ′(k)) that allow us to 
ontrol φn using only the previousinequality. The estimates we 
an use are the one of the upper large deviations for the maximal �owfrom the top to the bottom of a 
ylinder (Theorem 3). In this se
tion, we will transform our familyof 
uts (M ′(k)) by repla
ing a huge part of the edges in ea
h M′(k) by the edges of minimal 
utsetsin 
ylinders.We denote by Hi, i = 1, ...,N the interse
tion of the fa
es of ∂P with Ω′. For ea
h i = 1, ...,N ,we denote by vi the exterior normal unit ve
tor to P along Hi. We will 
over ∂P ∩Ω′ by 
ylinders,ex
ept a surfa
e of Hd−1 measure 
ontrolled by a parameter ε. To explain the 
onstru
tion of a
utset we will do with a huge number of 
ylinders, we present �rst the simpler 
onstru
tion of a
utset using one 
ylinder. Let R be a hyperre
tangle that is in
luded in Hj for a j ∈ {1, ...,N},and let B be the 
ylinder de�ned by
B = {x + tvj |x ∈ R , t ∈ [0, h]} ,where h ≤ h0 is the same parameter as previously. The 
ylinder B is built on ∂P ∩ Ω′, in R

d
r

◦
P .We re
all that h0 = d(∂P,Γ1 ∪ Γ2) > 0, so we know that d(B,Γ1 ∪ Γ2) > 0. We denote by Ea theset of the edges in
luded in

Ea = {x + tvj |x ∈ R , d(x, ∂R) < ζ/n , t ∈ [0, h]} .The set Ea is a neighbourhood in B of the "verti
al" fa
es of B, i.e., the fa
es of B that are 
ollinearto vj. We denote by Eb a set of edges in B that 
uts the top R + hvj from the bottom R of B.Let M ′(k) be the set of the edges in
luded in M′(k), for a k ∈ {0, ..., ⌊hn/ζ⌋ − 1}. Let B′ be thethinner 
ylinder
B′ = {x + tvj |x ∈ R , d(x, ∂R) ≥ ζ/n , t ∈ [0, h]} .Thus for all k ∈ {0, ..., ⌊hn/ζ⌋ − 1}, the set of edges

(M ′(k) ∩ (Rd
r B′)) ∪ Ea ∪ Eb14



7 COVERING OF ∂P ∩ Ω′ BY CYLINDERS
Ea

Eb

B

B′

M
′(k) ∩ (Rd

r B′)

∂P ∩ Ω′P

Ω′
r P

kζ/n

ζ/n

ζ/n

Figure 5: Constru
tion of a (Γ1
n,Γ2

n)-
ut in Ωn using a 
utset in a 
ylinder.
uts Γ1
n from Γ2

n in Ωn. Indeed, the set of edges M ′(k) is already a 
ut between Γ1
n and Γ2

n in Ωn.We remove from it the edges that are inside B′ whi
h is in the interior of B, and we add to ita 
utset Eb from the top to the bottom of B, and the set of edges Ea that glue together Eb and
M ′(k) ∩ (Rd

r B′). This property is illustrated in the �gure 5.Remark 4. In this �gure, we have represented Eb as a surfa
e (so a path in dimension 2) thatseparates the top from the bottom of the 
ylinder to illustrate the fa
t that Eb 
uts all dis
retepaths from the bottom to the top of B. A
tually, we 
an mention that it is possible to de�ne anobje
t whi
h 
ould be the dual of an edge in dimension d ≥ 2 (as a generalization of the dual of aplanar graph). This obje
t is a plaquette, i.e., a hypersquare of sidelength 1/n that is orthogonalto the edge and 
uts it in its middle, and whose sides are parallel to the hyperplanes of the axis.Then the dual of a 
utset is a hypersurfa
e of plaquettes, thus the �gure 5 is somehow intuitive.We do exa
tly the same 
onstru
tion, but with a large number of 
ylinders, that will almost
over ∂P ∩ Ω′. We 
onsider a �xed ε > 0. There exists a l su�
iently small (depending on F , Pand ε) su
h that there exists a �nite 
olle
tion (Ri,j, i = 1, ...,N , j = 1, ..., Ni) of hypersquares ofside l of disjoint interiors satisfying Ri,j ⊂ Hi for all i ∈ {1, ...,N} and j ∈ {1, ..., Ni}, and for all
i ∈ {1, ...,N},

{x ∈ Hi | d(x, ∂Hi) ≥ εHd−2(∂Hi)
−1N−1} ⊂

Ni⋃

j=1

Ri,j ⊂

⊂ {x ∈ Hi | d(x, ∂Hi) ≥ εHd−2(∂Hi)
−1N−12−1} .15



7 COVERING OF ∂P ∩ Ω′ BY CYLINDERSWe immediately obtain that
Hd−1


(∂P ∩ Ω′) r

N⋃

i=1

Ni⋃

j=1

Ri,j


 ≤ ε .We remark that ∫

∂P∩Ω′

ν(vP (x))dHd−1(x) ≥
N∑

i=1

Nil
d−1ν(vi) ,so that

P[φn ≥ λnd−1] ≤ P

[
φn ≥ (1 + s/2)nd−1

N∑

i=1

Nil
d−1ν(vi)

]
.Let h < h0. For all i ∈ {1, ...,N} and j ∈ {1, ..., Ni}, we de�ne

Bi,j = {x + tvi |x ∈ Ri,j , t ∈ [0, h]} .Sin
e all the Bi,j are at stri
tly positive distan
e of ∂Hi, there exists a positive h1 su
h that for all
h < h1, the 
ylinders Bi,j have pairwise disjoint interiors. We thus 
onsider h < min(h0, h1) (see�gure 6 for example). At this point, we 
ould de�ne a neighbourhood of the verti
al fa
es of ea
h

Γ′

Γ′

Hi

Bi,j

Ω′
r P

P

h

Figure 6: Covering of ∂P ∩ Ω′ by 
ylinders.
ylinder Bi,j, and do the same 
onstru
tion as in the previous example with one 
ylinder. A
tually,we need to 
hoose a little bit more 
arefully the sets of edges we de�ne along the verti
al fa
es of the16



7 COVERING OF ∂P ∩ Ω′ BY CYLINDERS
ylinders. We will not 
onsider only ea
h 
ylinder Bi,j, but also thinner versions of these 
ylindersof the type
Bi,j(k) = {x + tvj |x ∈ Ri,j , d(x, ∂Ri,j) > kζ/n , t ∈ [0, h]}for di�erent values of k. We will then 
onsider the edges in
luded in a neighbourhood of the verti
alfa
es of ea
h Bi,j(k) (see the set Wi,j(k) above), and 
hoose k to minimize the 
apa
ity of the unionover i and j of these edges. The reason why we need this optimization is also the reason why webuilt a family (M ′(k)) of 
utsets and not only one 
utset from Γ1

n to Γ2
n in Ωn, we will try to explainit in remark 5.Here are the pre
ise de�nitions of the sets of edges. We still 
onsider the same 
onstants ζbigger than 2d and h < min(h0, h1). We de�ne another positive 
onstant η that we will 
hoose later(depending on P , s and Ω). For i in {1, ...,N} and j in {1, ..., Ni} we re
all the de�nition of Bi,j:

Bi,j = {x + tvi |x ∈ Ri,j , t ∈ [0, h]} ,and we de�ne the following subsets of R
d:

B′
i,j = {x + tvi |x ∈ Ri,j , d(x, ∂Ri,j) > η , t ∈ [0, h]} ,

∀k ∈ {0, ..., ⌊ηn/ζ − 1⌋} , Wi,j(k) = {x ∈ Bi,j | kζ/n ≤ d2(x, ∂Ri,j + Rvi) < (k + 1)ζ/n} ,

∀k ∈ {0, ..., ⌊hnκ/ζ − 1⌋} , M(k) = M′(k) r


⋃

i,j

B′
i,j


 ,(see �gures 7 and 8). We denote by Wi,j(k) the set of the edges in
luded in Wi,j(k) and we

l

l

Wi,j(k)

Bi,j
ζ/n

kζ/n

Ri,j

h

vi

Figure 7: The set Wi,j(k).de�ne W (k) = ∪i,jWi,j(k). We also denote by M(k) the edges in
luded in M(k). Exa
tly as in17



7 COVERING OF ∂P ∩ Ω′ BY CYLINDERS
P

Ω′
r P

H1

H2

H1

H2

a

: M1(k): M3(k)

: M2(k)

H1 ∩ H2

Γ′

M(k)

a
b

∪jB1,j

∂H1 ∩ Γ′

a
b

Γ′

h

∪jB2,j

a = kζ/n

b = (k + 1)ζ/n

∂H1 ∩ Γ′

∂P

∂P

c

c = 2ηFigure 8: The set M(k).the 
onstru
tion of a 
utset with one 
ylinder, we obtain a 
utset that is built with 
utsets in ea
h
ylinders Bi,j. Indeed, if we denote by Ei,j a set of edges that is a 
utset from the top to thebottom of Bi,j (oriented towards the dire
tion given by vi), then for ea
h k1 ∈ {0, ..., ⌊ηn/ζ − 1⌋}and k2 ∈ {0, ..., ⌊hn/ζ − 1⌋}, the set of edges:
⋃

i = 1, ...,N
j = 1, ..., Ni

Ei,j ∪ W (k1) ∪ M(k2)


ontains a 
utset from Γ1
n to Γ2

n in Ωn. We dedu
e that
φn ≤

∑

i,j

φBi,j
+ min

k1

V (W (k1)) + min
k2

V (M(k2)) . (1)18



8 CONTROL OF THE CARDINALITY OF THE SETS OF EDGES W AND M8 Control of the 
ardinality of the sets of edges W and MFor the sake of 
larity, we do not re
all the sets in whi
h the parameters take its values, we alwaysassume that they are the following: i ∈ {1, ...,N}, j ∈ {1, ..., Ni}, k1 ∈ {0, ..., , ⌊ηn/ζ − 1⌋} and
k2 ∈ {0, ..., ⌊hn/ζ − 1⌋}. We have to evaluate the number of edges in the sets W (k1) and M(k2)to 
ontrol the terms mink1

V (W (k1)) and mink2
V (M(k2)) in (1). There exist 
onstants c1(d,Ω),

c2(P, d,Ω) su
h that
card W (k1) ≤ c1

Hd−1(∂P ∩ Ω′)

ld−1
ζld−2hnd−1 ≤ c2l

−1hnd−1 .The 
ardinality of M(k2) is a little bit more 
ompli
ated to 
ontrol. We will divide M(k) (respe
-tively M(k)) into three parts: M(k) ⊂ M1(k) ∪ M2(k) ∪ M3(k) (respe
tively M(k) ⊂ M1(k) ∪
M2(k) ⊂ M3(k)), that are represented in �gure 8.We de�ne R′

i,j = {x ∈ Ri,j | d(x, ∂Ri,j) > η} whi
h is the basis of B′
i,j. The set M1(k) is atranslation of the sets Hi r (∪Ni

j=1R
′
i,j) along the dire
tion given by vi enlarged with a thi
kness

ζ/(nκ):
M1(k) ⊂

N⋃

i=1

{x + tvi |x ∈ Hi r (∪Ni

j=1R
′
i,j) , t ∈ [kζ/n, (k + 1)ζ/n[} .Here we have an in
lusion and not an equality be
ause M1(k) 
an be a trun
ated version of thisset (trun
ated at the jun
tion between the translates of two di�erent fa
es). Sin
e we know that

Hd−1


(∂P ∩ Ω′) r

N⋃

i=1

Ni⋃

j=1

Ri,j


 ≤ ε ,and

Hd−1




N⋃

i=1

Ni⋃

j=1

(Ri,j r R′
i,j)


 ≤

Hd−1(∂P ∩ Ω′)

ld−1
ld−2η = Hd−1(∂P ∩ Ω′)l−1η ,we have the following bound on the 
ardinality of M1(k):

card(M1(k)) ≤ c3(ε + l−1η)nd−1 ,for a 
onstant c3(d, P,Ω,Ω′).The part M2(k) 
orresponds to the edges in
luded in the "bends" of the neighbourhood of ∂Plo
ated around the boundary of the fa
es of ∂P in Ω′, denoted by M2(k), i.e.:
M2(k) ⊂

⋃

i,j

(V2(Hi ∩ Hj, (k + 1)ζ/n) r V2(Hi ∩ Hj, kζ/n)) ,and there exists a 
onstant c4(d, P,Ω′) su
h that
card M2(k) ≤ c4|kζ/n|d−2nd−1 ≤ c4h

d−2nd−1 .The last part M3(k) 
orresponds to the part ofM(k) that is near the boundary Γ′ of Ω′. Indeed,
Γ′ is not orthogonal to ∂P , thus for some k, the set M(k) may 
ontain edges that are not in
ludedin

N⋃

i=1

{x + tvi |x ∈ Hi r (∪Ni

j=1R
′
i,j) , t ∈ [kζ/n, (k + 1)ζ/n[} ,19



8 CONTROL OF THE CARDINALITY OF THE SETS OF EDGES W AND Mneither in
⋃

i,j

(V2(Hi ∩ Hj, (k + 1)ζ/n) r V2(Hi ∩ Hj, kζ/n)) ,(see �gure 8). However, M(k) ⊂ U(k), the problem is to evaluate the di�eren
e of 
ardinalitybetween the di�erent M(k) due to the interse
tion of U(k) with Ω′. We have 
onstru
ted Ω′ su
hthat Γ′ is transverse to ∂P pre
isely to obtain this 
ontrol. The sets Γ′ and ∂P are polyhedralsurfa
es whi
h are transverse. We denote by (Hi, i ∈ I) (resp. (H′
j, j ∈ J)) the hyperplanes that
ontain ∂P (resp. Γ′), and by vi (resp. v′j) the exterior normal unit ve
tor to P along Hi (resp. Ω′along H′

j). The set Γ′ ∩ ∂P is in
luded in the union of a �nite number of interse
tions Hi ∩ H′
j oftransverse hyperplanes. To ea
h su
h interse
tion Hi ∩H′

j, we 
an asso
iate the angles between viand v′j , and between vi and −v′j, in the plane of dimension 2 spanned by vi and v′j. Ea
h su
h angleis stri
tly positive be
ause Hi is transverse to H′
j , and so the minimum θ0 over the �nite number ofde�ned angles is stri
tly positive. This θ0 and the measure Hd−2(∂P ∩ Γ′) give to us a 
ontrol onthe volume of M3(k), and thus on card(M3(k)), as soon as these sets belong to a neighbourhoodof ∂P ∩ Γ′ (see �gure 9). Thus, there exist h2(Ω
′, P ) > 0 and a 
onstant c5(d, P,Ω,Ω′) su
h that

Γ′

≥ θ0

∂P

M3(k)

M′(k)

kζ/n

ζ/n
≤ h

∂P ∩ Γ′

Figure 9: The set M3(k).for all h ≤ h2,
card(M3)(k) = c5hnd−1 .We 
on
lude that there exists a positive 
onstant c6(d, P,Ω,Ω′) su
h that

card M(k) ≤ c6(ε + l−1η + hd−2 + h)nd−1 .20



9 CALIBRATION OF THE CONSTANTS9 Calibration of the 
onstantsWe remark that the sets W (k) (resp., the sets M(k)) are pairwise disjoint for di�erent k. Then weobtain that
P[φn ≥λnd−1] ≤ P

[
φn ≥ (1 + s/2)nd−1

N∑

i=1

Nil
d−1ν(vi)

]

≤ P




N∑

i=1

Ni∑

j=1

φBi,j
≥ (1 + s/4)nd−1

N∑

i=1

Nil
d−1ν(vi)




+ P

[
min
k1

V (W (k1)) ≥ (s/8)nd−1
N∑

i=1

Nil
d−1ν(vi)

]

+ P

[
min
k2

V (M(k2)) ≥ (s/8)nd−1
N∑

i=1

Nil
d−1ν(vi)

]

≤
N∑

i=1

Ni∑

j=1

(
max

i,j
P[φBi,j

≥ ld−1ν(vi)(1 + s/4)nd−1]

)

+ P




c2l−1hnd−1∑

i=1

t(ei) ≥ (s/8)nd−1
N∑

i=1

Nil
d−1ν(vi)



⌊ηn/ζ⌋

+ P




c6(ε+l−1η+hd−2+h)nd−1∑

i=1

t(ei) ≥ (s/8)nd−1
N∑

i=1

Nil
d−1ν(vi)




2⌊hn/ζ⌋

.The terms
P[φBi,j

≥ ld−1ν(vi)(1 + s/4)nd−1]have already been studied in [9℄ (we re
alled it as Theorem 3 in this paper).It remains to study two terms of the type
P(n) = P




αnd−1∑

i=1

t(ei) ≥ βnd−1


 .As soon as β > αE(t) and the law of the 
apa
ity of the edges admits an exponential moment, theCramér theorem in R allows us to a�rm that

lim sup
n→∞

1

nd−1
logP(n) < 0 .Moreover, for all

ε ≤ ε0 =
1

2νmax

∫

P∩Ω′

ν(vP (x))dHd−1(x) ,21



9 CALIBRATION OF THE CONSTANTSwe have
N∑

i=1

Nil
d−1ν(vi) ≥

∫

∂P∩Ω′

ν(vP (x))dHd−1(x) − ενmax

≥
1

2

∫

∂P∩Ω′

ν(vP (x))dHd−1(x)

≥
νmin

2
Hd−1(∂P ∩ Ω′) .Thus, for all ε < ε0 and h < min(h0, h1, h2), if the 
onstants satisfy the two following 
onditions:

c2l
−1h < Hd−1(∂P ∩ Ω′)νminE(t(e))s/16 , (2)and

c6(ε + l−1η + hd−2 + h) < Hd−1(∂P ∩ Ω′)νminE(t(e))s/16 , (3)thanks Theorem 3 and the Cramér theorem in R, we obtain that
lim sup

n→∞

1

nd
log P[φn ≥ λnd−1] < 0 ,and theorem 1 is proved. We 
laim that it is possible to 
hoose the 
onstants su
h that 
onditions(2) and (3) are satis�ed. Indeed, we �rst 
hoose ε < ε0 su
h that

ε <
1

4

Hd−1(∂P ∩ Ω)νminE(t(e))s

16c6
.To this �xed ε 
orresponds a l. Knowing ε and l, we 
hoose h ≤ min(h0, h1, h2) and η su
h that

max(h, hd−2, l−1h, l−1η) <
1

4

Hd−1(∂P ∩ Ω′)νminE(t(e))s

16max(c2, c6)
.This ends the proof of theorem 1.Remark 5. We try here to explain why we built several sets W (k1) and M(k2), and not only one
ouple of su
h sets, that would have been su�
ient to 
onstru
t a 
utset from Γ1

n to Γ2
n in Ωn.To use estimates of upper large deviations of maximal �ows in 
ylinder we already know, we wantto 
ompare φn with ∑

i,j φBi,j
. Heuristi
ally, to 
onstru
t a (Γ1

n,Γ2
n)-
ut in Ωn from the unionof 
utsets in ea
h 
ylinder Bi,j, we have to add edges to glue together the di�erent 
utsets at the
ommon boundary of the small 
ylinders, and to extend these 
utsets to (∂P ∩Ωn)r

⋃N
i=1

⋃Ni

j=1 Ri,j.Yet we want to prove that the upper large deviations of φn are of volume order. If we only 
onsiderone possible set E of edges su
h that
φn ≤

∑

i,j

φBi,j
+ V (E) ,we will obtain that

P[φn ≥ λnd−1] ≤
∑

i,j

P[φBi,j
≥ ld−1ν(vi)(1 + s/4)nd−1]

+ P

[
V (E) ≥ nd−1

N∑

i=1

Nil
d−1ν(vi)s/4

]
.22
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