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Abstract: We consider the standard first passage percolation model in the rescaled graph Z?/n
for d > 2, and a domain Q of boundary I' in R%. Let I'' and I'? be two disjoint open subsets of T,
representing the parts of I' through which some water can enter and escape from 2. We investigate
the asymptotic behaviour of the flow ¢, through a discrete version 2, of 2 between the correspond-
ing discrete sets ', and I'2. We prove that under some conditions on the regularity of the domain
and on the law of the capacity of the edges, the upper large deviations of ¢,,/ n?=1 above a certain
constant are of volume order.
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1 First definitions and main result

We use many notations introduced in [5] and [6]. Let d > 2. We consider the graph (Z¢,E?) having
for vertices Z4 = Z9/n and for edges E, the set of pairs of nearest neighbours for the standard L*
norm. With each edge e in E¢ we associate a random variable ¢(e) with values in RT. We suppose
that the family (¢(e), e € EZ) is independent and identically distributed, with a common law A: this
is the standard model of first passage percolation on the graph (Z¢ EZ). We interpret t(e) as the
capacity of the edge e; it means that t(e) is the maximal amount of fluid that can go through the
edge e per unit of time.

We consider an open bounded connected subset Q of R? such that the boundary T' = 9 of Q
is piecewise of class C! (in particular T' has finite area: H% (') < o). It means that I" is included
in the union of a finite number of hypersurfaces of class C', i.e., in the union of a finite number of
C' submanifolds of R? of codimension 1. Let I'', I'? be two disjoint subsets of I" that are open in
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I'. We want to define the maximal flow from I'' to T'? through § for the capacities (¢(e),e € E%).
We consider a discrete version (€, T, 'L, T2) of (2,T,T'!,T?) defined by:

Qp = {2 €78 |do(x,Q) < 1/n},
I ={zeQ|ye,, (x,y) c EL},
' = {x €Ty |doo(z,T%) < 1/n, doo(z,I37%) >1/n} fori=1,2,

where d is the L*°-distance, the notation (z,y) corresponds to the edge of endpoints x and y (see
figure []).

Figure 1: Domain (2.

We shall study the maximal flow from T'} to T'2 in Q,. Let us define properly the maximal
flow ¢(F} — Fy in C) from Fy to I in C, for C C R (or by commodity the corresponding graph
C NZ%n). We will say that an edge e = (z,y) belongs to a subset A of R?, which we denote by
e € A, if the interior of the segment joining x to y is included in A. We define Efl as the set of all the
oriented edges, i.e., an element € in Eg is an ordered pair of vertices which are nearest neighbours.
We denote an element ¢ € E2 by ((x,y)), where z, y € ZZ are the endpoints of € and the edge is
oriented from x towards y. We consider the set S of all pairs of functions (g,0), with g : E¢ — R+
and 0 : B¢ — E< such that o((z,y)) € {{(z, 1)), ((y, x))}, satisfying:

e for each edge e in C we have
0 < gle) < te),

e for each vertex v in C ~\ (F} U Fy) we have

S g = 9(e).

e€C:o(e)=((v,)) e€C': o(e)=((-v))

where the notation o(e) = ((v,.)) (respectively o(e) = ({.,v))) means that there exists y € Z¢ such
that e = (v,y) and o(e) = ((v,y)) (respectively o(e) = ((y,v))). A couple (g,0) € S is a possible
stream in C from F} to Fy: g(e) is the amount of fluid that goes through the edge e, and o(e) gives
the direction in which the fluid goes through e. The two conditions on (g,0) express only the fact
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that the amount of fluid that can go through an edge is bounded by its capacity, and that there is
no loss of fluid in the graph. With each possible stream we associate the corresponding flow

flow(g,0) = > 9 V) Logtuo))=((u,) — 9 VD) Logtuo))=((v,u)) -
ueF, ,v¢C : (u,w)yekd

This is the amount of fluid that crosses C from Fj to Fy if the fluid respects the stream (g,0). The
maximal flow through C' from F} to F5 is the supremum of this quantity over all possible choices of
streams

¢(F1 — Fy in C) = sup{flow(g,0)|(g,0) € S}.

We recall that we consider an open bounded connected subset © of R? whose boundary T is
piecewise of class C', and two disjoint open subsets I'' and I'? of I'. We denote by
bn = ¢(F711 - F?L in )
the maximal flow from T’} to I'Z in ,,. We will investigate the asymptotic behaviour of ¢, /n?!
when n goes to infinity. More precisely, we will show that the upper large deviations of ¢, above a

certain constant ¢q are of volume order. The description of ¢q will be given in section Bl Here we
state the precise theorem:

Theorem 1. We suppose that d(T'',T2) > 0. If the law A of the capacity of an edge admits an
exponential moment:

30 >0 / P2 dA(z) < 400,
R+
then there exists a finite constant gfb\g/) such that for all A > g/b?),

1
lim sup — log P[¢,, > a1 < 0.
n

n—oo

Remark 1. In the theorem [l we need to impose that d(I'',T'?) > 0 because otherwise we cannot be
sure that g/b?) < 00, as we will see in section @l Moreover, if d(I'',T'?) = 0, there exists a set of edges
of constant cardinality (not depending on n) containing paths from I} to I'2 through €, for all n
along the common boundary of I'! and I'?, and so it may be sufficient for these edges to have a
huge capacity to obtain that ¢,, is abnormally big too. Thus, we cannot hope to obtain upper large
deviations of volume order (see [9] for a counter-example).

Remark 2. The large deviations we obtain are of the relevant order. Indeed, if all the edges in €,
have a capacity which is abnormally big, then the maximal flow ¢,, will be abnormally big too. The
probability for these edges to have an abnormally large capacity is of order exp —Cn for a constant
C, because the number of edges in €, is C'n? for a constant C’.

Remark 3. In the two companion papers [2] and [3], we prove in fact that % is the almost sure
limit of ¢,/ n%1 when n goes to infinity, and that the lower large deviations of ¢, / n?1 below ¢q
are of surface order.
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2 Computation of %

2.1 Geometric notations

We start with some geometric definitions. For a subset X of R? we denote by H*(X) the s-
dimensional Hausdorff measure of X (we will use s =d — 1 and s = d — 2). The r-neighbourhood
Vi(X,r) of X for the distance d;, that can be the Euclidean distance if i = 2 or the L>-distance if
i = 00, is defined by

Vi(X,r) = {y € R [di(y, X) <r}.

If X is a subset of R? included in an hyperplane of R? and of codimension 1 (for example a non
degenerate hyperrectangle), we denote by hyp(X) the hyperplane spanned by X, and we denote by
cyl(X, h) the cylinder of basis X and of height 2h defined by

cyl(X,h) = {x+tv|z e X, te|[—h,h|},

where v is one of the two unit vectors orthogonal to hyp(X) (see figure B). For x € R?, » > 0 and

Figure 2: Cylinder cyl(X,h).

a unit vector v, we denote by B(x,r) the closed ball centered at x of radius r.

2.2 Flow in a cylinder

Here are some particular definitions of flows through a box. It is important to know them, because
all our work consists in comparing the maximal flow ¢, in €, with the maximal flows in small
cylinders. Let A be a non degenerate hyperrectangle, i.e., a box of dimension d — 1 in R%. All
hyperrectangles will be supposed to be closed in R%. We denote by v one of the two unit vectors
orthogonal to hyp(A). For h a positive real number, we consider the cylinder cyl(A,h). The
set cyl(A, h) ~ hyp(A) has two connected components, which we denote by Ci(A, k) and Ca(A,h).
For ¢ = 1,2, let Azh be the set of the points in C;(A,h) N Z< which have a nearest neighbour in
78 < cyl(A, h):

Al = {z € Ci(A,h) NZ31 |3y € Zy N cyl(A, h), (z,y) € Eq}.
Let T'(A, h) (respectively B(A,h)) be the top (respectively the bottom) of cyl(A, h), i.e.,

T(A,h) = {x € cyl(A,h) |y ¢ cyl(A,h), (z,y) € ES and (z,y) intersects A + hv}
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and
B(A,h) = {z € cyl(A,h) |3y ¢ cyl(A,h), (z,y) € EL and (z,y) intersects A — hv} .
For a given realisation (¢(e),e € E%) we define the variable 7(A, h) = 7(cyl(A, h),v) by
(A, h) = 7(cyl(A, h),v) = ¢(AF — Al in cyl(A,h)),
and the variable ¢(A, h) = ¢(cyl(A, h),v) by
¢(A,h) = ¢(eyl(A,h),v) = ¢(B(A,h) — T(A, h) in cyl(A,h)),

where ¢(F; — Fy in C) is the maximal flow from Fy to Fy in C, for C C R¢ (or by commodity the
corresponding graph C'NZ%/n) defined previously. The dependence in n is implicit here, in fact we
can also write 7,(A4,h) and ¢, (A, h) if we want to emphasize this dependence on the mesh of the
graph.

2.3 Max-flow min-cut theorem

The maximal flow ¢(F; — F5 in C') can be expressed differently thanks to the max-flow min-cut
theorem (see [I]). We need some definitions to state this result. A path on the graph Z¢ from v
to vy, is a sequence (vg, €1,V1, ..., €m, Uy ) Of vertices vy, ..., vy, alternating with edges e, ..., e, such
that v;—1 and v; are neighbours in the graph, joined by the edge e;, for i in {1,...,m}. A set E of
edges in C'is said to cut Fy from F5 in C' if there is no path from Fj to F5 in C'~ E. We call E an
(Fy, Fy)-cut if E cuts Fy from Fy in C and if no proper subset of E does. With each set E of edges
we associate its capacity which is the variable

The max-flow min-cut theorem states that

¢(F1 — Fpin C) = min{ V(E) | E is a (I}, F»)-cut }.

2.4 Definition of v

The asymptotic behaviour of the rescaled expectation of 7,,(4, h) for large n is well known, thanks
to the almost subadditivity of this variable. We recall the following result:

Theorem 2. We suppose that

/ rdA(z) < co.
[0,4-00[

Then for each unit vector v there exists a constant v(d, A,v) = v(v) (the dependence on d and A is
implicit) such that for every non degenerate hyperrectangle A orthogonal to v and for every strictly
positive constant h, we have
Elr.(A, h
lim Elr(dh)] v(v).
n— 00 nd—lHd—l(A)
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For a proof of this proposition, see [§]. We emphasize the fact that the limit depends on the
direction of v, but not on A nor on the hyperrectangle A itself.

In fact, Rossignol and Théret proved in [§] that under some moment conditions and/or some
condition on A, v(v) is the limit of the rescaled variable 7, (A, h)/(n%""H?1(A)) almost surely and
in L'. We also know, thanks to the works of Kesten [6], Zhang [I1] and Rossignol and Théret [§]
that the variable ¢, (A, h)/(n?1HY1(A)) satisfies the same law of large numbers in the particular
case where A is a straight hyperrectangle, i.e., a hyperrectangle of the form Hf;ll [0, k;] x {0} for
some k; > 0.

We recall some geometric properties of the map v : v € S v(v), under the only condition
on A that E(t(e)) < oco. They have been stated in section 4.4 of [§]. There exists a unit vector
vo such that v(vg) = 0 if and only if for all unit vector v, v(v) = 0, and it happens if and only if
A(0) > 1—p.(d), where p.(d) is the critical parameter of the bond percolation on Z¢. This property
has been proved by Zhang in [I0]. Moreover, v satisfies the weak triangle inequality, i.e., if (ABC)
is a non degenerate triangle in R? and v4, vp and vc are the exterior normal unit vectors to the
sides [BC, [AC], [AB] in the plane spanned by A, B, C, then

HH([AB))v(ve) < HH[AC))v(vp) + HY ([BO)v(va).
This implies that the homogeneous extension vy of v to R?, defined by 14(0) = 0 and for all w in
R,
vo(w) = |wlar(w/|wlz),
is a convex function; in particular, since v is finite, it is continuous on R?. We denote by vmin
(respectively vpay) the infimum (respectively supremum) of v on S9!,

The last result we recall is Theorem 4 in [9] concerning the upper large deviations of the variable
on(A, h) above v(v):

Theorem 3. We suppose that
Jy >0 / e’ dA(z) < 0.
[0,+00]

Then for every unit vector v and every non degenerate hyperrectangle A orthogonal to v, for every
strictly positive constant h and for every X\ > v(v) we have

> .
nd—lfHd—l(A) — Al >0

. -1
hnH_l)gf W THI (A log P [

We shall rely on this result for proving Theorem [l Moreover, Theorem [ is a generalisation of
Theorem [3, where we work in the domain €2 instead of a parallelepiped.

2.5 Continuous min-cut

We give here a definition of aﬁgv) in terms of the map v. When a hypersurface S is piecewise of class
C!, we say that S is transverse to I' if for all z € SN T, the normal unit vectors to S and I" at «
are not collinear; if the normal vector to S (respectively to I') at z is not well defined, this property
must be satisfied by all the vectors which are limits of normal unit vectors to S (respectively T') at
y € S (respectively y € T') when we send y to x - there is at most a finite number of such limits.
We say that a subset P of R? is polyhedral if its boundary dP is included in the union of a finite
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number of hyperplanes. For each point z of such a set P which is on the interior of one face of 0P,
(o]

we denote by vp(z) the exterior unit vector orthogonal to P at x. For A C R? we denote by A the
interior of A. We define ¢q by

bq = inf {IQ(P)

PCcRYTIC P, T2CRIP ’
P is polyhedral , P is transverse to I'

where

Io(P) = /apmﬂ v(vp(x)) dH (z).

See figure [3] to have an example of such a polyhedral set P.

1-\2

Figure 3: A polyhedral set P as in the definition of ;5?2

The definition of the constant (fb?) is not very intuitive. We propose to define the notion of a
continuous cutset to have a better understanding of this constant. We say that S € R? cuts I'!
from I'? in Q if every continuous path from I'" to I'? in ) intersects S. In fact, if P is a polyhedral
set of R? such that

I''c P and T2 c RIP,

then P N Q is a continuous cutset from T'! to I'? in Q. Since v(v) is the average amount of fluid
that can cross a hypersurface of area one in the direction v per unit of time, it can be interpreted
as the capacity of a unitary hypersurface orthogonal to v. Thus Zo(P) can be interpreted as the
capacity of the continuous cutset OP N Q defined by P. The constant (/ﬁ?z is the solution of a min
cut problem, because it is equal to the infimum of the capacity of a continuous cutset that satisfies

some specific properties.
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3 Sketch of the proof

We first prove that &5?2 is finite, i.e., that there exists a polyhedral set P C R? such that OP is
transverse to I' and

I''c P, T2 c R~ P.

Then, we consider such a polyhedral set P whose capacity Zq(P) is close to g?b?z We construct a
set €0 that contains a small neighbourhood of €2, thus €’ contains Q,, for all large n, and such that
HILHOP N ('~ Q)) is very small. We need the property that P is transverse to T' to obtain
this control on HIL(OP N (' \ Q)). We want to construct a ('}, T2)-cut in Q, that is close to
OPNQY. We cover 0PN QY with cylinders of arbitrarily small height; this is the reason why we need
to consider a polyhedral set P. A part of 9P N Q' of very small area is missing in this covering.
We construct then a ('} T'2)-cut in Q, with the help of cutsets in the cylinders constructed on
0P NQ'. To achieve this, we have to add edges to cover the part of 9P N Q' missing in the covering
by the cylinders, and to glue together the cutsets in the different cylinders. Thanks to the study
of the upper large deviations for the maximal flow through cylinders made in [9], we obtain that
the probability that the flow ¢, is greater than Zo(P)n?"! goes to zero. We want to prove that
this probability decays exponentially fast in n%. For that purpose, we have to consider a collection
of cardinality of order n of possible sets of edges we can add to construct the cutset in £2,, and to
choose the set that has the minimal capacity.

4 The constant % is finite

To prove that g g?b?g < 00, it is sufficient to exhibit a set P satisfying all the conditions given in the
definition of ¢q. Indeed, if such a set P exists, then

g?b?z < VmaXdel((?PﬂQ) < 00

since a polyhedral set has finite perimeter in . We will construct such a set P. The idea of the
proof is the following. We will cover I'l with small hypercubes which are transverse to I'! and at
positive distance of re. Then, by compactness, we will extract a finite covering. We will denote by
P the union of the hypercubes of this finite covering. Then P satisfies the desired properties.

We prove a geometric lemma:

Lemma 1. Let T' be an hypersurface (that is a C' submanifold of R® of codimension 1) and let K
be a compact subset of I'. There exists a positive M = M(T', K) such that:

Ve>0 3r>0 Ve,ye K lt —yle <r = da(y,tan(I",2)) < Melx —yl2.

(tan(T', x) is the tangent hyperplane of T at x).

Proof :
By a standard compactness argument, it is enough to prove the following local property:

Veel IM(z)>0 VYe>0 3Fr(r,e) >0 Vy,zelNB(x,r(ze))
da(y,tan(l', 2)) < M(x)ely — 22
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(0]
Indeed, if this property holds, we cover K by the open balls B(z,7(x,¢)/2), x € K, we extract a
finite subcover B(x;,7(zi,¢)/2), 1 <1 <k, and we set

M =max{M(z;):1<i<k}, r=min{r(z,e)/2:1<i<k}.

Let now y, z belong to K with |y — z|o < r. Let 7 be such that y belongs to B(x;,r(x;,¢)/2). Since
r < r(x;,€)/2, then both y, z belong to the ball B(z;,r(z;,¢)) and it follows that

da(y,tan(l', 2)) < M(z)ely —zl2 < Mely — z|2.

We turn now to the proof of the above local property. Since I' is an hypersurface, for any x
in T there exists a neighbourhood V of x in R?, a diffeomorphism f : V +— R of class C! and
a (d — 1) dimensional vector space Z of RY such that Z N f(V) = f(I' N V) (see for instance [4],
3.1.19). Let A be a compact neighbourhood of z included in V. Since f is a diffeomorphism, the
maps y € A — df(y) € End(RY), u € f(A) — df ' (u) € End(R?) are continuous. Therefore they
are bounded:

IM>0 VyeA |ldf(y)ll <M, Vue f(A) [ldf(u)]| <M

(here ||df (z)|| = sup{ |df (x)(y)]2 : |yl2 < 1} is the standard operator norm in End(R%)). Since f(A)
is compact, the differential map df ~! is uniformly continuous on f(A):

Ve>0 36>0 Yu,ve f(A) |Ju—vp<d = |ldf ‘(w)—df ‘()| <e.

Let € be positive and let  be associated to € as above. Let p be positive and small enough so
that p < 0/2 and B(f(z),p) C f(A) (since f is a C' diffeomorphism, f(A) is a neighbourhood of
f(z)). Let r be such that 0 < r < p/M and B(x,r) C A. We claim that M associated to z and r
associated to e,z answer the problem. Let y,z belong to I' N B(z,r). Since [y, z] C B(x,r) C A,
and ||df (¢)|] < M on A, then

[f(y) = f(@)[e < Mly —zfo < Mr <p, [f(z) = f(z)l2 <p,
1) = fR)2 <6, [f(y) = f(2)l2 < Mly — 22

We apply next a classical lemma of differential calculus (see [7], I, 4, Corollary 2) to the map f~!
and the interval [f(2), f(y)] (which is included in B(f(z),p) C f(A)) and the point f(z):

ly =2 = df T (f)(f(y) = F(2))]2 <
f(y) = f(2)lesup {|df 7H(C) = df T (F ()l : ¢ € [f(2), F ()]}

The right-hand member is less than M|y — z|ae. Since z + df ~*(f(2))(f(y) — f(z)) belongs to
tan(T", z), we are done.

|

We come back to our case. The boundary I' of  is piecewise of class C!, i.e., it is included in

a finite union of C! hypersurfaces, which we denote by (S, ..., Sp). The hypersurfaces Sq,...,5,

being C! and the set I' compact, the maps z € I' — vg, (z), 1 < k < p (where vg, () is the unit
normal vector to Si at x) are uniformly continuous:

Yo>0 dIn>0 Vke{l,...,p} Vr,yeSyNT |x—y|2§77:>‘vgk(x)—vsk(y){2<5.

9
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Let n* be associated to § = 1 by this property. Let &k € {1,...,p}. The set Sy NT is a compact
subset of the hypersurface Si. Applying the previous lemma, we get:

AM Yoo >0 3y, > 0Va,y € Sy NT |z —ylo < mp = da(y, tan(S, 2)) < Mydolz — yl2-

Let My = maxi<p<p, My and let &y in ]0,1/2[ be such that Mydy < 1/2. For each kin {1,...,p},
let m be associated to dy as in the above property and let

1
Mo = min <1rgnkigpnk, n, @dist(rlfzﬁ :

We build a family of cubes Q(z,r), indexed by x € T' and r €]0,rp[ such that Q(x,r) is a cube
centered at x of side length 7 which is transverse to I'. For z € R® and k € {1,...,p}, let pp(x) be
a point of S NI such that

|z —pr(z)ls = inf {|z —ylo:yeSpnT}.
Such a point exists since S, NI is compact. We define then for k € {1,...,p}
Ve € R? vg(x) = vs, (pr(2)).

We define also

d, = inf max min e—vilo. | —e — v
T V1, 0p €541 bEB 1<k<r (’ 2‘27’ Z’Q)
ec€b

where By is the collection of the orthonormal basis of R% and S%~! is the unit sphere of R Let n
be associated to d,./4 as in the above continuity property. We set

Ui

T[‘:ﬁ.

Let 2 € T. By the definition of d,., there exists an orthonormal basis b, of R? such that

d

Veeb, Vke{l,...,p} min(|le—vg(z)l2,|—e—uvp(x)]2) > Er

Let Q(x,r) be the cube centered at = of sidelength r whose sides are parallel to the vectors of b,.

We claim that Q(z,r) is transverse to I' for r < rp. Indeed, let y € Q(z,7) NT'. Suppose that

y € S, for some k € {1,...,p}, so that vi(y) = vs, (y) and |z — pr(z)|2 < drr. In particular, we
have |y — pi(x)|2 < 2drr < n and |vg, (y) — vi(x)|2 < d,/4. For e € by,

d,
5 = le —vr(x)]2 < le—vs, (Y)l2 + |vs, (y) — vr(2)]2
whence
e—vs k> T - =2
SeWllz = 5 = =

This is also true for —e, therefore the faces of the cube Q(x,r) are transverse to Sk.
Now we consider the collection

(Q(x,T),ﬂ: ell,r< rT) .

10
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It covers I'l. By compactness of I'l, we can extract a finite covering (Q(wi,ri),i € I) from this
collection. We define
P = U’iEIQ(x’iari)a

We claim that P satisfies all the hypotheses in the definition of ;5?2 Indeed, P is obviously polyhedral
and transverse to I'. Moreover, we know that

rt cp,
and since d(P,T'2) > 0 we also obtain that
2 c R'\P.
5 Definition of the set ¢
Let A be in ]g/b?), +oo[. We are studying
Plp, > AndY).

Suppose first that ¢g > 0. There exists a positive s such that A > %(1 + 5)2. By definition of b0,
for every positive s, there exists a polyhedral subset P of R, such that P is transverse to I',

It c 103, IrZcRr4P
and .
Za(P) < ¢a(l +s).
Then A > Zo(P)(1 + s) and

Plpn > Al < P, > To(P)(1 + s)n® 1.

Since QP is transverse to I', we know that there exists dg > 0 (depending on A, P and I') such that
for all § < g,
SIQ(P)

2Vmax

HITHOP N (Vo(Q,0) Q) <

Thus, for any set Q' satisfying Q C Q' C V5(Q, &), we have
| vlor)int (@) < Zo(P)(1+ 5/2),
oPNQY
then A > (1 + s/2)([5pnq v(vp(2))dH ! (2)) and

Plg, > i1 < P [gbn > < /8 V(vp(x))de_l(x)> (1 +S/2)nd_1} .

PNQY

Suppose now that % = 0. Then for an arbitrarily fixed s €]0, 1], there exists a polyhedral
subset P of R, such that OP is transverse to I',

I'cP, I2cRP

11
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and

A
<
Ta(P) < 1+s’

and thus A > Zo(P)(1+s). If Zo(P) > 0, we can use exactly the same argument as previously. We

suppose that Zo(P) = 0. We know as previously that there exists dg > 0 (depending on A, P and
I') such that for all § < dp,

IS

Vmax(1 +8/2)

Thus, in any case, we obtain that there exists dy > 0 such that, for any set Q' satisfying Q C Q' C
V2(€2,00), we have

Plgp > An®"'] < P [qbn > < /a

We will construct a particular set Q' satisfying Q C Q' C Vo(£,dp). In the previous section, we
have associated to each couple (x,r) in I'x]0, rp[ a hypercube Q(z,7) centered at x, of sidelength r,
and which is transverse to I'. Using exactly the same method, we can build a family of hypercubes

(Q/(x,r),x elr< T(I‘,P))

such that Q'(z,r) is centered at z, of sidelength r, and it is transverse to I' and OP. The family

HITHOP N (Vo(Q,6) ~ Q) <

V(vp(x))del(x)> (1+ S/Q)ndl} .

PN

o

(Q'(x,r),x €T,r < min(r(pyp), do/(2d)))
is a covering of the compact set I', thus we can extract a finite covering from this collection, we
denote it by (é’(mi,ri),i € J). We define
O =QuU U QO,(.%'Z',TZ') .
icJ
Since r; < 60/(2d) for all i € J, we have ' C Vo(£, dp). Moreover, 9P is transverse to the boundary

I’ of €. Finally, if we define

01 = minr;/2,
ieJ

we know that Vo(2,61) € €, and thus for all n > 2d/d;, we have Q,, C .

6 Existence of a family of (I'. T'?)-cuts

In this section we prove that we can construct a family of disjoint ('}, T'2)-cuts in ,,. Let ¢ be a fixed
constant larger than 2d. We consider a parameter h < hg = d(OP,T1 UT?). For k € {0, ..., |hn/(|}
we define

P(k) = {z € R*|d(z, P) < k¢/n},

and for k € {0,..., |hn/C] — 1} we define

U(k) - (Rd N Pk+1) N Pk
= {z e RY|k(/n < d(z,P) < (k+1)¢/n},
and M'(k) =U(k) N (see figure ). We will prove the following lemma:

12



6 EXISTENCE OF A FAMILY OF (T'},T%,)-CUTS

Figure 4: The sets P, U(k) and M'(k).

Lemma 2. There exists N large enough such that for all n > N, every path on the graph (Zg,Eg)
from T} to T2 in Q, contains at least one edge which is included in the set M'(k) for k €

{0, ..., [hn/¢] —1}.

This lemma states precisely that for all k € {0, ..., |[hn/¢| — 1}, M’'(k) contains a (T}, T'2)-cut
in Q,,.

Proof :
Let k € {0,...,|hn/¢| — 1}. Let v be a discrete path from T’} to I'2 in ,. In particular, v is
continuous, so we can parametrise it : v = (7¢)o<t<1. There exists N large enough such that for all
n > N, we have

Q, c Q, Tl cwTh2d/n) c Pp, and T? c V(% 2d/n) C REN Py .

Since v is continuous, we know that there exists t1,ts €0, 1[ such that
o
t1 = sup{t € [0,1]| v € Py},

ty = inf{t > t;|v € RYN Pryy ).
Since .
PLUUK) URY N Py

is a partition of RY, we know that (7;)s, <¢<t,, Which is a continuous path, is included in ¢(k). The
length of (v¢)s, <t<t, is larger than d(v¢,, v, ). The segment [y, Vs, ] intersects

{z e RY|d(x, P) = (k+1/2)¢/n}

at a point z, and we know that
[}

Va(z,¢/(2n)) € V(K).

13



7 COVERING OF 9PN Q) BY CYLINDERS

Thus d(ve,,7t,) > (/n, and then the length of (v;)s <¢<t, is larger than ¢/n. Finally, + is composed
of edges of length 1/n, and ¢ > 2d, so (V4),<t<t,, and thus +, contains at least one edge which is
included in U(k). Noticing that for all n > N,

vyCcQ, cQ,

we obtain that this edge belongs to U (k) N Q' = M/ (k).

7 Covering of 0P N by cylinders

From now on we only consider n > N. According to lemma 2] we know that each set M’(k) for
k € {0,...,|hn/¢] — 1} contains a (I'},T2)-cut in €,, thus if we denote by M’'(k) the set of the
edges included in M’(k), we obtain

¢n < min{V(M'(k)), k € {0,..., |hn/¢]| — 1}}.

However, we do not have estimates on V(M'(k)) that allow us to control ¢,, using only the previous
inequality. The estimates we can use are the one of the upper large deviations for the maximal flow
from the top to the bottom of a cylinder (Theorem [B]). In this section, we will transform our family
of cuts (M’(k)) by replacing a huge part of the edges in each M’(k) by the edges of minimal cutsets
in cylinders.

We denote by H;,i =1,..., N the intersection of the faces of P with €. For each i =1,..., N/,
we denote by v; the exterior normal unit vector to P along H;. We will cover P N Q' by cylinders,
except a surface of H% ! measure controlled by a parameter e. To explain the construction of a
cutset we will do with a huge number of cylinders, we present first the simpler construction of a
cutset using one cylinder. Let R be a hyperrectangle that is included in Hj for a j € {1,..., N'},
and let B be the cylinder defined by

B = {z+tvjlz e R, te[0,h]},

where h < hg is the same parameter as previously. The cylinder B is built on P N €Y, in R% < P.
We recall that hg = d(OP,T' UT?) > 0, so we know that d(B,I'" UT?) > 0. We denote by E, the
set of the edges included in

o ={z+tvjlz e R, d(z,0R) <(/n,tec[0,h]}.

The set &, is a neighbourhood in B of the "vertical" faces of B, i.e., the faces of B that are collinear
to v;. We denote by Ej a set of edges in B that cuts the top R + hv; from the bottom R of B.
Let M'(k) be the set of the edges included in M'(k), for a k € {0,...,[hn/¢] — 1}. Let B’ be the

thinner cylinder
B' = {z+tvj|z € R,d(z,0R) > (/n,t € [0,h]}.

Thus for all k& € {0,..., |hn/¢] — 1}, the set of edges

(M'(E)yn (R¢\. B")) UE, UE,

14



7 COVERING OF 9PN Q' BY CYLINDERS

M (k)N (R~ B)
C/n/

oPN¢QY

Figure 5: Construction of a ('}, T'2)-cut in , using a cutset in a cylinder.

cuts T} from I'2 in Q,,. Indeed, the set of edges M’(k) is already a cut between I'} and I'2 in Q.
We remove from it the edges that are inside B’ which is in the interior of B, and we add to it
a cutset Fp from the top to the bottom of B, and the set of edges E, that glue together F} and
M'(k) N (R?~ B’). This property is illustrated in the figure Bl

Remark 4. In this figure, we have represented Ej, as a surface (so a path in dimension 2) that
separates the top from the bottom of the cylinder to illustrate the fact that Ej cuts all discrete
paths from the bottom to the top of B. Actually, we can mention that it is possible to define an
object which could be the dual of an edge in dimension d > 2 (as a generalization of the dual of a
planar graph). This object is a plaquette, i.e., a hypersquare of sidelength 1/n that is orthogonal
to the edge and cuts it in its middle, and whose sides are parallel to the hyperplanes of the axis.
Then the dual of a cutset is a hypersurface of plaquettes, thus the figure [l is somehow intuitive.

We do exactly the same construction, but with a large number of cylinders, that will almost
cover OP N €Y. We consider a fixed € > 0. There exists a [ sufficiently small (depending on F, P
and ¢) such that there exists a finite collection (R;;,i = 1,...,N,j = 1,...,N;) of hypersquares of
side [ of disjoint interiors satisfying R; ; C H; for all i € {1,...,N'} and j € {1,...,N;}, and for all
ie{l,...N},

N;
{x € Hy|d(x,0H;) > eH" ?(0H;) "N} ¢ | JRi; C
j=1
C {x € H;|d(z,0H;) > eH2(0H;) *N 1271,

15



7 COVERING OF 9PN Q) BY CYLINDERS

We immediately obtain that

We remark that

v(v Hd 1 N; 191y v(v;),
/E)Prm' ( () Z

so that
N

Plg, > At < P l% > (14 s/2n 1) " N w(wy)

i=1
Let h < hg. For all i € {1,..., N} and j € {1,..., N;}, we define

Bi; = {$+tvi|$€Ri7j,t€ [0,h]}.

Since all the B; ; are at strictly positive distance of 9H;, there exists a positive hy such that for all
h < hq, the cylinders B; ; have pairwise disjoint interiors. We thus consider ~ < min(hg, h1) (see
figure [0 for example). At this point, we could define a neighbourhood of the vertical faces of each

F/

QP

F/
Figure 6: Covering of 9P N by cylinders.

cylinder B; j, and do the same construction as in the previous example with one cylinder. Actually,
we need to choose a little bit more carefully the sets of edges we define along the vertical faces of the

16



7 COVERING OF 9PN Q' BY CYLINDERS

cylinders. We will not consider only each cylinder B; ;, but also thinner versions of these cylinders
of the type
B@j(k’) = {$ + tv; |$ S RZ'J' , d(IL‘,aRi’j) > k’C/n, te [0, h]}

for different values of k. We will then consider the edges included in a neighbourhood of the vertical
faces of each B (k) (see the set W (k) above), and choose k to minimize the capacity of the union
over ¢ and j of these edges. The reason why we need this optimization is also the reason why we
built a family (M’(k)) of cutsets and not only one cutset from '} to I'2 in €,,, we will try to explain
it in remark

Here are the precise definitions of the sets of edges. We still consider the same constants (
bigger than 2d and h < min(hg, h1). We define another positive constant n that we will choose later
(depending on P, s and Q). For i in {1,..., '} and j in {1,..., N;} we recall the definition of B; ;:

B;; = {z+tv; |z € R;;, te [0,h]},
and we define the following subsets of R%:
B} ; = {z+tvi|z € Rij, d(x,0R;;) >n, t €[0,h]},

Vk € {0,...,[nn/C — 1]}, Wi (k) = {xz € B;j|k(/n < ds(z,0R; ; + Rv;) < (k+1){/n},
Vk € {0, ..., [hnk/¢ — 1]}, M(k) = M'(k)~ (B, | .
2

(see figures [ and B). ~ We denote by W; ;(k) the set of the edges included in W; ;(k) and we

Figure 7: The set W; ;(k).

define W (k) = U; ;W; ;(k). We also denote by M (k) the edges included in M(k). Exactly as in

17



7 COVERING OF 9PN Q) BY CYLINDERS

: My (k) a=kG/n
B k) b= (k+1)¢/n
W k) c=2n

Figure 8: The set M(k).

the construction of a cutset with one cylinder, we obtain a cutset that is built with cutsets in each
cylinders B; ;. Indeed, if we denote by Ej;; a set of edges that is a cutset from the top to the
bottom of B; ; (oriented towards the direction given by v;), then for each k; € {0,..., [nn/{ — 1]}
and ko € {0, ..., |hn/¢ — 1]}, the set of edges:

U E; j UW (k1) UM (ks)
i=1,..N

j=1,..,N;

contains a cutset from I'} to I'2 in Q,. We deduce that

6n < Y 0, +min V(W (k) + min V(M (k). (1)
Y]

18



8 CONTROL OF THE CARDINALITY OF THE SETS OF EDGES W AND M

8 Control of the cardinality of the sets of edges W and M

For the sake of clarity, we do not recall the sets in which the parameters take its values, we always
assume that they are the following: 7 € {1,..,.N}, 7 € {1,...,N;}, k1 € {0,...,,[nn/¢ — 1]} and
ko € {0, ..., |hn/¢ — 1]}. We have to evaluate the number of edges in the sets W (k1) and M (k2)
to control the terms ming, V(W (k1)) and ming, V(M (k2)) in ([I). There exist constants c;(d,€2),
c2(P,d, ) such that

HITL(OP N QYY)

e CIThn T < el et

card W(ky) < &y

The cardinality of M (kg) is a little bit more complicated to control. We will divide M (k) (respec-
tively M(k)) into three parts: M (k) C M;y(k) U Ma(k) U Ms(k) (respectively M(k) C My (k) U
My (k) € M3(k)), that are represented in figure B

We define R ; = {z € R;;|d(z,0R;;) > n} which is the basis of B; ;. The set M;(k) is a
translation of the sets H; \ (ij:ilR;J) along the direction given by wv; enlarged with a thickness

¢/ (nr):
N

Mu(k) ¢ | J{z +tvi |z € Hy~ (U R] ), t € [kC/n, (k+1)¢/n[}.
i=1
Here we have an inclusion and not an equality because M (k) can be a truncated version of this
set (truncated at the junction between the translates of two different faces). Since we know that

N N;
ok (0PN Q,) AN U U R ;| <e,
i=1j=1
and
N N; d—1 /
_ H*™(OPNQ) 4 _ _
Hd 1 U U(Ri,j \Rg,j) < %ld 277 _ Hd 1(8PQQ/)Z 1777
i=1j=1
we have the following bound on the cardinality of M (k):
card(M;(k)) < es(e + 17 tp)nd=1,

for a constant cs(d, P,Q, ).
The part Ma(k) corresponds to the edges included in the "bends" of the neighbourhood of 0P
located around the boundary of the faces of P in ', denoted by Ms(k), i.e.:

Ma(k) € |JVa(Hi 0 Hy, (k4 1)¢/n) ~ Va(H; 0 Hj kG/n))
0,
and there exists a constant c4(d, P,Q) such that
card My (k) < cq|kC/n|4 20?1 < ¢hd2nd L,

The last part M3(k) corresponds to the part of M(k) that is near the boundary IV of €. Indeed,
I is not orthogonal to OP, thus for some k, the set M(k) may contain edges that are not included

n
N

U{o + toi |2 € Hi~ (U R ), t € [kG/n, (K + 1)¢/nl}
=1
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8 CONTROL OF THE CARDINALITY OF THE SETS OF EDGES W AND M

neither in

(J O(H: 0 Hy, (k + 1)¢/n) ~\ Va(H; 0 Hj kG /n))

]

(see figure ). However, M(k) C U(k), the problem is to evaluate the difference of cardinality
between the different M (k) due to the intersection of U (k) with Q'. We have constructed ' such
that I” is transverse to P precisely to obtain this control. The sets IV and P are polyhedral
surfaces which are transverse. We denote by (H;,i € I) (resp. ('H;, j € J)) the hyperplanes that
contain 0P (resp. I"), and by v; (resp. v’) the exterior normal unit vector to P along H; (resp. &'
along H’). The set I N OP is included in the union of a finite number of intersections H; N H; of
transverse hyperplanes. To each such intersection H; N H;, we can associate the angles between v;
and v, and between v; and —v7, in the plane of dimension 2 spanned by v; and v}. Each such angle
is strictly positive because H; is transverse to H;, and so the minimum 6, over the finite number of
defined angles is strictly positive. This 6y and the measure H¢2(9P NI") give to us a control on
the volume of M3(k), and thus on card(Ms(k)), as soon as these sets belong to a neighbourhood
of 9P NT’ (see figure [). Thus, there exist hy(Q', P) > 0 and a constant c5(d, P, 2, Q') such that

/— /C/n

\ <h
VL kC/n -

I‘V

Figure 9: The set M3(k).

for all A < ha,
card(Ms)(k) = eshn?!.

We conclude that there exists a positive constant cg(d, P,€2, Q") such that
card M(k) < cgle + 17+ h?2 4 B)nd=1,
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9 CALIBRATION OF THE CONSTANTS

9 Calibration of the constants

We remark that the sets W (k) (resp., the sets M(k)) are pairwise disjoint for different k. Then we
obtain that

N
Plp, >And 1] < P [% > (1+s/2)n%! ZNild_ly(vi)]
=1

N N, N
<SP I> Y op, =+ s/4nT Y NI ()
=1

i=1 j=1

N
+ P |min V(W (k) > (s/8)n? 1 Nild‘lv(vi)]

k
! i=1

N
+P n]gn V(M (kg)) > (s/8)nd_1 ZNild_lu(vi)]

i=1

N N;
oY (maxFlon,, > 1 w1+ 5/t )

<
i—1 =1 N 7
[col=1hnd—1 N [m/¢]
+P D te) = (s/8)n Y D NI (wy)
=l i=1
[c6(e+1~1n+hd—24h)nd—1 N 2|hn /]
+P Z t(e;) > (s/8)nd™1 Z Nl (v;)
i=1 =1

The terms
Plop,; > 1" w(v)(1 + s/4)n" ]

have already been studied in [9] (we recalled it as Theorem Blin this paper).
It remains to study two terms of the type

As soon as > «olE(t) and the law of the capacity of the edges admits an exponential moment, the
Cramér theorem in R allows us to affirm that

1
li —1 < 0.
imsup gy og P(n)

n—oo

Moreover, for all

- 1
g o =
=0 2Vmax

[ vteptanant ),
PN
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9 CALIBRATION OF THE CONSTANTS

we have

N
Z Nl w(v;) > / v(vp(x))dHY ™ (2) — eviman
prt oPNQY

l v(vp(z =1y
>3] @)@

> —”f;inﬁdfl(ap ne.
Thus, for all € < g and h < min(hg, h1, he), if the constants satisfy the two following conditions:
el th < HEYOP N QY ) vminE(t(e))s/16 (2)
and
co(e +17 '+ h2 +h) < HITHOP N Q) uminE(t(e))s/16, (3)
thanks Theorem [3] and the Cramér theorem in R, we obtain that
1
lim sup — log P[¢,, > a1 <o,
n—oo M
and theorem [1 is proved. We claim that it is possible to choose the constants such that conditions
@) and (@) are satisfied. Indeed, we first choose € < g¢ such that
l'Hd*l(@P N Q) vminE(t(e))s
4 1666 '

e <

To this fixed e corresponds a I. Knowing ¢ and [, we choose h < min(hg, h1, h2) and 7 such that

1 HELOP N Q) vminE(t(e))s

(NN WA
max(h, ; ) < 4 16 max(ca, cg)

This ends the proof of theorem [Il

Remark 5. We try here to explain why we built several sets W (ky) and M (k2), and not only one
couple of such sets, that would have been sufficient to construct a cutset from T} to I'2 in Q.
To use estimates of upper large deviations of maximal flows in cylinder we already know, we want
to compare ¢, with 3, . ép, ;. Heuristically, to construct a (TL,T'2)-cut in €, from the union
of cutsets in each cylinder B; ;, we have to add edges to glue together the different cutsets at the
common boundary of the small cylinders, and to extend these cutsets to (OPN€,) Uﬁ 1 U;V:'I R; ;.
Yet we want to prove that the upper large deviations of ¢,, are of volume order. If we only consider
one possible set E of edges such that

¢n <> 0B, +V(E),
.

we will obtain that

Plgn > A < Y Plgp,; > 17 w(v)(1 + s/4)n" ]
%,J

N
+P|V(E) > n® Y NI (v;)s/4
=1
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We can choose such a set E so that it contains less than én?~! edges for a small § (E is equal to
W (k1) U M (ke) for a fixed couple (k1, ko) for example), but the probability

éndfl

P Z t(e;) > Cnd1

i=1

does not decay exponentially fast with n¢ in general. To obtain this speed of decay, we have to
make an optimization over the possible choices of the set E, i.e., we choose E among a set of C'n
possible disjoint sets of edges Ffi, ..., Ecrpy; in this case, we obtain that

bn <D 0m,+  min V(E),
7/7]
and so

Plgn > A1 < > Plop,, > 17 w(v) (1 + s/4n]
i,J

C'n N

+ P |VE) =) Nt u(v)s/4] (4)
k=1 i=1

It is then sufficient to prove that for all k, P[V(E;) > C"n%"'] decays exponentially fast with n?~!

to conclude that the last term in (@) decays exponentially fast with n?. Theorem [ gives a control

on the terms
Blés,, > 1" (v;)(1 + s/4)n"].

The conclusion is that to obtain the volume order of the upper large deviations, the optimization
over the different possible values of k1 and ko is really important, even if it is not needed if we only
want to prove that P(¢, > An?!) goes to zero when n goes to infinity.
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