From Posets to Spheres

Kshitij Bansal

Chennai Mathematical Institute

Paris, June 25, 2009

 A set P with a partial order "≤" is called a poset, and denoted (P, ≤).

- A set P with a partial order " \leq " is called a poset, and denoted (P, \leq) .
- Unique minimal (maximal) element

- A set P with a partial order " \leq " is called a poset, and denoted (P, \leq) .
- Unique minimal (maximal) element: $\hat{0}$ ($\hat{1}$).

- A set P with a partial order " \leq " is called a poset, and denoted (P, \leq) .
- Unique minimal (maximal) element: $\hat{0}$ ($\hat{1}$).
- Bounded

- A set P with a partial order " \leq " is called a poset, and denoted (P, \leq) .
- Unique minimal (maximal) element: $\hat{0}$ ($\hat{1}$).
- Bounded: has both $\hat{0}$ and $\hat{1}$.

- A set P with a partial order " \leq " is called a poset, and denoted (P, \leq) .
- Unique minimal (maximal) element: $\hat{0}$ ($\hat{1}$).
- Bounded: has both $\hat{0}$ and $\hat{1}$.
- Pure

- A set P with a partial order " \leq " is called a poset, and denoted (P, \leq) .
- Unique minimal (maximal) element: $\hat{0}$ ($\hat{1}$).
- Bounded: has both $\hat{0}$ and $\hat{1}$.
- Pure: All maximal chains of same length.

- A set P with a partial order " \leq " is called a poset, and denoted (P, \leq) .
- Unique minimal (maximal) element: $\hat{0}$ ($\hat{1}$).
- Bounded: has both $\hat{0}$ and $\hat{1}$.
- Pure: All maximal chains of same length.
- Graded

- A set P with a partial order " \leq " is called a poset, and denoted (P, \leq) .
- Unique minimal (maximal) element: $\hat{0}$ ($\hat{1}$).
- Bounded: has both $\hat{0}$ and $\hat{1}$.
- Pure: All maximal chains of same length.
- Graded: Pure and bounded.

- A set P with a partial order " \leq " is called a poset, and denoted (P, \leq) .
- Unique minimal (maximal) element: $\hat{0}$ ($\hat{1}$).
- Bounded: has both $\hat{0}$ and $\hat{1}$.
- Pure: All maximal chains of same length.
- Graded: Pure and bounded.
- Thin

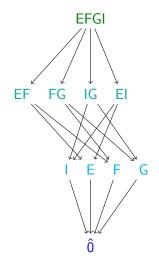
- A set P with a partial order " \leq " is called a poset, and denoted (P, \leq) .
- Unique minimal (maximal) element: $\hat{0}$ ($\hat{1}$).
- Bounded: has both $\hat{0}$ and $\hat{1}$.
- Pure: All maximal chains of same length.
- Graded: Pure and bounded.
- Thin: All interval of length 2 have cardinality 4.

• Interval [x, y]: set of all z such that $x \le z \le y$.

- Interval [x, y]: set of all z such that $x \le z \le y$.
- Atoms and coatoms of a poset

- Interval [x, y]: set of all z such that $x \le z \le y$.
- Atoms and coatoms of a poset, and of an interval.

A graded poset



Definition

A regular cell complex Δ is a finite collection of balls σ in a Hausdorff space $\|\Delta\| = \bigcup_{\sigma \in \Delta} \sigma$ such that

(i) the interiors $\mathring{\sigma}$ partition $\|\Delta\|$ (i.e. every $x \in \|\Delta\|$ lies in exactly one $\mathring{\sigma}$), and

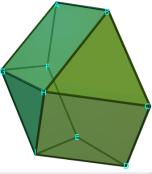
(ii) the boundary $\delta\sigma$ is a union of some members of Δ , for all σ in Δ .

An example

Definition

A regular cell complex Δ is a finite collection of balls σ in a Hausdorff space $\|\Delta\| = \bigcup_{\sigma \in \Delta} \sigma$ such that

- (i) the interiors $\mathring{\sigma}$ partition $\|\Delta\|$ (i.e. every $x \in \|\Delta\|$ lies in exactly one $\mathring{\sigma}$), and
- (ii) the boundary $\delta\sigma$ is a union of some members of Δ , for all σ in Δ .



Some regular cell complex terminology

Let Δ be a regular cell complex.

- The balls σ in Δ are called the *closed cells* of Δ, their interiors ở are the *open cells*.
- The space $\|\Delta\|$ is called the *underlying space* of Δ .
- If T ≃ ||∆||, then ∆ is said to provide (via the homeomorphism) a regular cell decomposition of the space T.
- The face poset *F*(Δ) = (Δ, ≤) is the set of closed cells ordered by containment. The augmented face poset *F*(Δ) = *F*(Δ) ∪ {0, 1} is the face poset enlarged by new elements such that 0 < σ < 1 for all σ in Δ.
- The 0-cells and 1-cells are called *vertices* and *edges*, respectively.
- If $\sigma, \tau \in \Delta$ and $\sigma \subseteq \tau$ then σ is said to be a *face* of τ .

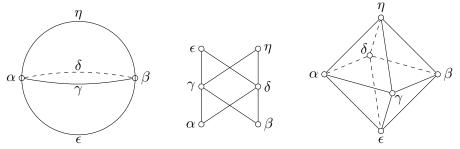
- Γ ⊆ Δ is a subcomplex of Δ if τ ∈ Γ implies that every face of τ also belongs to Γ.
- dim $\Delta = \max_{\sigma \in \Delta} \dim \sigma$.

. . .

 Δ is *pure* if all maximal cells have the same dimension (i.e., every cell is contained in a (dim Δ)-dimensional cells).

Order complex associated with a poset

With any poset *P* we assosiate its *order compelex*, $\Delta_{ord}(P)$ as a simplicial complex whose vertices are the elements of P and whose simplices are the chains $x_0 < x_1 < \cdots < x_k$ in P.



Shellability

Definition

Let Δ be a pure *d*-dimensional regular cell complex. A linear oredering $\sigma_1, \sigma_2 \dots \sigma_t$ of its maximal cells is called a *shelling* if either d = 0, or if $d \ge 1$ and the following conditions are satisfied:

- $\delta \sigma_j \cap (\bigcup_{i=1}^{j-1} \delta \sigma_i)$ is pure and (d-1)-dimensional, for $2 \leq j \leq t$. (in other words, the intersection of the boundary of the *j*-th closed cell with the union of the boundary of the first j-1 cells,
- 2 $\delta \sigma_j$ has a shelling in which the (d-1)-cells of $\delta \sigma_j \cap (\bigcup_{i=1}^{j-1} \delta \sigma_i)$ come first, for $2 \leq j \leq t$, and

3 $\delta \sigma_1$ has a shelling.

An *n*-dimensional analogue of a triangle.

An *n*-dimensional analogue of a triangle.

An *n*-dimensional analogue of a triangle.

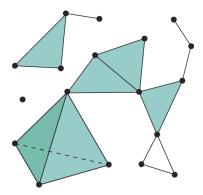
- 0-simplex: Point
- 1-simplex: Line segment
- 2-simplex: Triangle (with the interior)
- 3-simplex: Tertrahedron (with the interior)

Simplicial complex

Intutively, it is a topological space constructed by "gluing together" points, lines, triangles, and their *n*-dimensional couterparts.

Simplicial complex

Intutively, it is a topological space constructed by "gluing together" points, lines, triangles, and their *n*-dimensional couterparts.

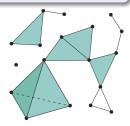


Simplicial complex

Definition

A (geometric) simplicial complex Δ is a set of simplices that satifies the following conditions:

- (i) Any face of a simplex from Δ is also in Δ .
- (ii) The intersection of any two simplices $\sigma_1, \sigma_2 \in \Delta$ is a face of both σ_1 and σ_2 .



PL spheres

Formally,

PL spheres

Formally,

Definition

A (geometric) simplicial complex Δ is a *PL d-ball* if it is "PL homeomorphic" to the *d*-simplex. It is a *PL d-sphere* if it is PL homeomorphic to the boundary of the (d + 1)-simplex.

PL spheres

Formally,

Definition

A (geometric) simplicial complex Δ is a *PL d-ball* if it is "PL homeomorphic" to the *d*-simplex. It is a *PL d-sphere* if it is PL homeomorphic to the boundary of the (d + 1)-simplex.

Informally, a simplicial complex is a PL 2-ball if it is (PL) isomporphic to a subdivision of a triangle.

Formally,

Definition

A (geometric) simplicial complex Δ is a *PL d-ball* if it is "PL homeomorphic" to the *d*-simplex. It is a *PL d-sphere* if it is PL homeomorphic to the boundary of the (d + 1)-simplex.

Informally, a simplicial complex is a PL 2-ball if it is (PL) isomporphic to a subdivision of a triangle. Similarily, it is a PL 2-sphere if it is (PL) isomorphic to a subdivision of the boundary of a tetrahedron.

Formally,

Definition

A (geometric) simplicial complex Δ is a *PL d-ball* if it is "PL homeomorphic" to the *d*-simplex. It is a *PL d-sphere* if it is PL homeomorphic to the boundary of the (d + 1)-simplex.

Informally, a simplicial complex is a PL 2-ball if it is (PL) isomporphic to a subdivision of a triangle. Similarily, it is a PL 2-sphere if it is (PL) isomorphic to a subdivision of the boundary of a tetrahedron. See pictures on the board.

Theorem

- (i) The union of two PL d-balls, whose intersection is a PL (d 1)-ball lying in the boundary of each, is a PL d-ball.
- (ii) The union of two PL d-balls, which intersect along their boundaries, is a PL d-sphere.

From Posets to Spheres

Kshitij Bansal

Chennai Mathematical Institute

Paris, June 25, 2009