
Chapter 3 : Power Series.

1 Definitions and first properties
Definition 1.1. A power series is a series of functions

∑
fn where fn : z 7→ anz

n,
(an) being a sequence of complex numbers. Depending on the cases, we will consider
either the complex variable z, or the real variable x.

Notations 1.2. For r ≥ 0, we will note ∆r = {z ∈ C | |z| < r}, Kr = {z ∈
C | |z| ≤ r} and Cr = {z ∈ C | |z| = r}.

Lemma 1.3. [Abel’s lemma] Let
∑
anz

n be a power series. We suppose that there
exists z0 ∈ C∗ such that the sequence (anz

n
0 ) is bounded. Then, for all r ∈]0, |z0|[,∑

anz
n normally converges on the compact Kr.

Remark 1.4.
• Note that it implies the absolute convergence on ∆|z0|, ie ∀z ∈ ∆|z0|,

∑
|anzn|

converges.
• Of course if we suppose

∑
|an|rn convergent, we directly have the normal

convergence on Kr (cf. ∀z ∈ Kr, |anzn| ≤ |an|rn).

Proof. Let z be in Kr, we have

|anzn| ≤ |an|rn = |anzn0 |
(

r

|z0|

)n
= O

((
r

|z0|

)n)
,

which gives the result.

Definition 1.5. We call the radius of convergence of the power series
∑
anz

n the
number

R = sup{r ≥ 0 | (anr
n) bounded} ∈ R+

= R+ ∪ {+∞}.

It will sometimes be noted RCV (
∑
anz

n).

Theorem 1.6. Let R be the RCV of a power series
∑
anz

n.
• For all r < R,

∑
anz

n normally converges on the compact Kr.
• For all z such that |z| > R, anzn

n∞9 0.

Remark 1.7. It implies the absolute convergence on ∆R.

Proof. The Abel’s lemma gives the first point : ∀r ∈ [0, R[, ∃r′ ∈]r,R] such that
(anr

′n) is bounded, which implies the normal convergence on Kr. For the second
point, it’s the contraposition of anzn → 0⇒ (anz

n) bounded ⇒ |z| ≤ R.

1



Corollary 1.8. With the same hypothesis, R = sup{r ≥ 0 |
∑
anr

n converges} =

inf{r ≥ 0 |
∑
anr

n diverges} ∈ R+
.

Proof. Let’s note R′ = sup{r ≥ 0 |
∑
anr

n converges} and R′′ = inf{r ≥
0 |

∑
anr

n diverges}. First, R′ ≤ R′′ : if not, R′′ < R′ and ∃r ∈]R′′, R′] such
that

∑
anr

n converges, so we would have (anr
n) bounded and convergence on ∆r

(cf. 1.4), and thus R′′ ≥ r, absurd. By the first point of the theorem, R′ ≥ R.
By the second point, R′′ ≤ R. So we have R ≤ R′ ≤ R′′ ≤ R, which gives the
result.

Remark 1.9.
• With the same kind of proof, one can show that we also have R = sup{r ≥

0 | anrn → 0}.
• To sum up, if we note C the domain of convergence of a power series which
has a radius of convergence R, we have

∆R ⊂ C ⊂ KR

and we have absolute convergence on ∆R.

Definition 1.10. We call ∆R = {z ∈ C | |z| < R} the (open) disk of convergence.

Remark 1.11. We can’t say anything a priori about the convergence of a power
series on the circle CR, as we will see in the examples.

Examples 1.12.
• RCV (

∑
zn) = 1 since the constant sequence (1) is bounded (⇒ RCV ≥ 1)

and
∑

1 diverges (⇒ RCV ≤ 1). In fact there’s no point in C1 where there
is oconvergence (|z| = 1⇒ zn 9 0).
• RCV (

∑
zn/n) = 1 since (1/n) bounded (⇒ RCV ≥ 1) and

∑
1/n diverges

(⇒ RCV ≤ 1). Here, the only point of C1 where the power series diverges
is 1 : if z = eiθ 6= 1,

∑
zn/n converges iff <(

∑
zn/n) and =(

∑
zn/n)

converge, ie iff
∑

cos(nθ)/n and
∑

sin(nθ)/n converge. But we’ve already
seen that the first one converges iff eiθ 6= 1, and the same proof shows that
it’s the same for the second one.

Exercise 1.13. [Hadamard theorem] Prove that this definition of the radius of
convergence is equivalent to the first one :

R = (lim sup |an|1/n)−1

2 Few methods to find the RCV
Proposition 2.1. Let

∑
anz

n be a power series and z0 ∈ C. Then :
• If

∑
anz

n
0 converges but

∑
|anzn0 | diverges, then RCV = |z0|.

• Same conclusion if
∑
anz

n
0 diverges but anzn0 → 0.

Proof. For the first point, we have RCV ≥ |z0| (cf. 1.8), but we can’t have RCV >
|z0| (cf. 1.6). The second point is a consequence of 1.8 and 1.9.

Proposition 2.2. Let
∑
anz

n and
∑
bnz

n be two power series, and Ra, Rb their
RCV. We have an = O(bn)⇒ Ra ≥ Rb.
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Proof. Let z ∈ ∆Rb
, we have anzn = O(bnz

n) and
∑
|bnzn| converges (cf. 1.6),

so
∑
anz

n converges. By 1.8 we conclude Ra ≥ Rb.

Remark 2.3. We can’t say that (anz
n = O(bnz

n) and
∑
bnz

n converges)⇒
∑
anz

n

converges because we’re not in the case bnzn ∈ R+ for n big enough (bnzn ∈ C).

Corollary 2.4. With the same notations, we have an ∼ bn ⇒ Ra = Rb.

Proof. ∼ ⇒ O.

Proposition 2.5. Suppose an 6= 0 for n big enough. Then (with 1/0 = +∞ and
1/+∞ = 0) :

∃ lim

∣∣∣∣an+1

an

∣∣∣∣ = l ∈ R+ ⇒ RCV =
1

l
.

Proof. We have
∣∣∣∣an+1z

n+1

anzn

∣∣∣∣→ l|z|. By De D’Alembert rule, |z| < 1/l⇒
∑
anz

n

converges, and RCV ≥ 1/l (cf. 1.8). Similarly, if |z| > 1/l,
∑
anz

n diverges, and
RCV ≤ 1/l.

Proposition 2.6. Let
∑
anz

n a power series and R its RCV. Then for all α ∈ R
the RCV Rα of the power series

∑
nαanz

n is also R.

Proof. Let r < R and ρ ∈]r,R[. We have

nαanr
n = nα

(
r

ρ

)n
︸ ︷︷ ︸
→0

anρ
n︸ ︷︷ ︸

→0

⇒ (nαanr
n) bounded ⇒ Rα ≥ R.

This is true for all
∑
anz

n, and for all α, so we also have, with β = −α,

R = RCV (
∑
nβ(nαanz

n)) ≥ RCV (
∑
nαanz

n) = Rα.

Examples 2.7.
• By 2.5, RCV (

∑
zn/n!) = +∞.

• By 2.5, RCV (
∑
n!zn) = 0.

• By 2.6, RCV (
∑
zn/n2) = 1 and we have normal convergence on K1.

• We can abusively note
∑
z2n/5n the power series defined by a2n+1 = 0 and

a2n = 5−n for all n. But we can’t apply directly 2.5. However, it’s clear
that we have convergence on ∆√5 and divergence on its complementary, so
RCV =

√
5.

Proposition 2.8. Let Ra and Rb be the RCV of
∑
anz

n and
∑
bnz

n. Then Ra+b =
RCV (

∑
(an + bn)zn) ≥ m = min{Ra, Rb}, with equality if Ra 6= Rb. Moreover,

on ∆m, we have ∑
(an + bn)zn =

∑
anz

n +
∑
bnz

n.

Proof. For all z ∈ ∆m,
∑
anz

n and
∑
bnz

n absolutely converges. Hence
∑

(an +
bn)zn also does : Ra+b ≥ m and the additivity of limits of sequences gives the
additivity formula. If Ra < Rb, for all z ∈ ∆Rb

\KRa
we have anzn 9 0 and

bnz
n → 0, thus (an + bn)zn 9 0, and Ra+b ≤ Ra = m.
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Example 2.9. Let
∑
anz

n =
∑
zn and

∑
bnz

n =
∑

((1/2)n − 1)zn, we have
Ra = 1 = Rb (use 2.5 for the second one). As an + bn = (1/2)n, the domain of
convergence of the

∑
(an + bn)zn is clearly ∆2, so Ra+b = 2 > m.

The nest result is obvious :

Proposition 2.10. For all λ ∈ C∗,
∑
anz

n and
∑
λanz

n have the same RCV R.
Moreover, on ∆R, we have ∑

λanz
n = λ

∑
anz

n.

Proposition 2.11. Let Ra and Rb be the RCV of
∑
anz

n and
∑
bnz

n. Then
Ra?b = RCV ((

∑
anz

n) ? (
∑
bnz

n)) ≥ m = min{Ra, Rb}. Moreover, on ∆m, we
have

(
∑
anz

n) ? (
∑
bnz

n) = (
∑
anz

n)(
∑
bnz

n).

Proof. For all z ∈ ∆m,
∑
|anzn| and

∑
|bnzn| absolutely converges. Hence the

Cauchy product (
∑
|anzn|) ? (

∑
|bnzn|) converges (cf. ch1). But

∀n,

∣∣∣∣∣
n∑
k=0

akz
kbn−kz

n−k

∣∣∣∣∣ ≤
n∑
k=0

|akzk||bn−kzn−k|,

so we get Ra?b ≥ m and the result given about the Cauchy product in chapter 1
gives the formula.

Examples 2.12.
• We don’t have the same result as for the addition if Ra 6= Rb : Let

∑
anz

n

and
∑
bnz

n be defined by a0 = 1/2, b0 = −2 and an = −1/2n+1, bn = −3
for n ≥ 1. We have

∑
anz

n = 1−
∑
n≥0 z

n/2n+1,
∑
bnz

n = 1−3
∑
n≥0 z

n,
so Ra = 2 6= Rb = 1. We also have∑

anz
n = 1− 1/2

1− (z/2)
=
z − 1

z − 2
∀z ∈ ∆2,

and
∑
bnz

n = 1− 3
1

1− z
=
z − 2

z − 1
∀z ∈ ∆1.

Hence by 2.11 (
∑
anz

n) ? (
∑
bnz

n) = 1 on ∆1, so if we note cn =∑n
k=0 akbn−k, we have c0 = 1 and cn = 0 for n ≥ 1. Thus Ra?b =

RCV (
∑
cnz

n) = +∞ > m.
• Let R,R′ be the RCV of

∑
anz

n and
∑
sn(a)zn. We have

∑
sn(a)zn =

(
∑
anz

n) ? (
∑
zn), hence R′ ≥ min{1, R}. We also have∑

anz
n =

∑
sn(a)zn −

∑
sn−1(a)zn =

∑
sn(a)zn − z

∑
n≥1 sn(a)zn,

which gives R ≥ R′. Thus we have

min{1, R} ≤ R′ ≤ R

which gives R = R′ if 1 ≥ R.

3 Properties of the sum
We’ve already seen :

Theorem 3.1. Let
∑
anz

n be a power series and R its RCV.
∑
anz

n normally
converges on every Kr, r < R, which leads to the continuity of the sum function
on ∆R.
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Remark 3.2. If ∃z0 ∈ CR such that
∑
anz

n
0 absolutely converges, then we have

normal convergence (and continuity) on KR.

Theorem 3.3. [Radial continuity] Let’s suppose that
∑
anz

n
0 converges for z0 ∈

CR. Then
∑
anz

n uniformally converges on [0, z0], ie t 7→
∑
anz

n
0 t
n uniformally

converges on [0, 1].

Proof. We note sn(t) =
∑n
k=0 akz

k
0 t
k for t ∈ [0, 1] and rn =

∑∞
k=n+1 akz

k
0 . By

Abel’s formula we obtain

sn(t) =
∑n
k=0(rk−1 − rk)tk =

n∑
k=0

(tk+1 − tk)rk︸ ︷︷ ︸
fn(t)

−tn+1rn + r−1.

For ε > 0, ∃N such that n ≥ N ⇒ |rn| ≤ ε, hence, forall n ≥ N, p ≥ 1, t ∈ [0, 1]

|fn+p(t)− fn(t)| ≤
n+p∑
k=n+1

|rk|(tk − tk+1) ≤ ε(tn+1 − tn+p+1) ≤ ε,

and |tn+1rn| ≤ ε,

so (sn) uniformally converges.

Remark 3.4. The Leibniz criterion can also be used in the case of a decreasing
real sequence (an) which converges to zero. Suppose R = 1, then for x ∈ [−1, 0],∑
anx

n satisfies the hypothesis of the Leibliz criterion ; so we get |
∑∞
k=n+1 anx

n| ≤
|anxn| ≤ an which proves the uniform convergence on [−1, 0], and thus the conti-
nuity in −1.

We can deduce from the radial continuity a new result about the Cauchy product
- compare with the one obtained in ch.1 :

Corollary 3.5. Let
∑
cn be the Cauchy product of

∑
an and

∑
bn. We suppose

that
∑
an,

∑
bn and

∑
cn converge to A, B and C. Then C = AB.

Proof. The three power series f(x) =
∑
anx

n, g(x) =
∑
bnx

n and h(x) =∑
cnx

n have a RCV≥ 1, hence absolutely converge for |x| < 1 so we can ap-
ply the theorem of chapter 1 and get f(x)g(x) = h(x) for these x. But by the
radial continuity theorem we can apply the double limit theorem for x → 1 to
obtain the result.

Definition 3.6. We call derivative series (resp. primitive series) of a power series∑
anz

n the power series defined by
∑

(n+ 1)an+1z
n (resp.

∑
n≥1(an−1/n)zn).

Remark 3.7. We know that they have the same RCV than
∑
anz

n, thanks to 2.6
and 2.4 :

∑
(n + 1)an+1z

n converges iff z
∑

(n + 1)an+1z
n =

∑
n≥1 nanz

n

converges ; and
∑
n≥1(an−1/n)zn = z

∑
(an/(n+ 1))zn with an/(n+ 1) ∼ an/n.

Theorem 3.8. Let
∑
anx

n (real variable) be a power series, f its sum, g (resp. F )
the sum of its derivative (resp. primitive) series and R its RCV. Then, on ]−R,R[,
f is C1 with f ′ = g, and F is the only primitive of f such that F (0) = 0.

Remark 3.9. This implies

∀x ∈]−R,R[,
∞∑
n=0

an
n+ 1

xn+1 =

∫ x

0

( ∞∑
n=0

ant
n

)
dt.

5



Proof. Replacing f by F , the first assertion immediately gives the second one.
But if we note fn(x) = anx

n, we have fn C1 with f ′n(x) = nanx
n−1 for n ≥ 1

(f ′0 = 0). Hence
∑
f ′n is the derivatives series of

∑
anx

n which normally converges
on each [−r, r] ⊂] − R,R[ (cf. 3.7), and we know that it implies :

∑
fn C1 on

[−r, r] and f ′ = (
∑
fn)′ =

∑
f ′n = g. We conclude with the fact that ]−R,R[=

∪0<r<R[−r, r].

Corollary 3.10. The sum function f of a power series
∑
anx

n with RCV= R is
C∞ on ]−R,R[, and f (p) is the sum function of∑ (n+ p)!

n!
an+px

n.

The RCV of these power series is also R.

Remark 3.11. This implies

∀p, f (p)(0)

p!
= ap

Corollary 3.12. If we have
∑
n≥0 anx

n =
∑
n≥0 bnx

n on ] − R,R[ (both power
series converging on this interval), then an = bn for all n.

Proof. The difference of the sum functions is 0. Hence, all its derivatives at 0 are
0.

4 RPS functions
Definition 4.1. Given a complex number z0 and a function f : U → C defined
on a neighborhood U ⊂ C of z0, we say that f is representable by a power series
(=RPS) or analytic at z0 if ∃r > 0 and a power series

∑
anz
′n with RCV≥ r such

that ∆(z0, r) = {z ∈ C | |z0 − z| < r} ⊂ U and

∀z ∈ ∆(z0, r), f(z) =
∑
an(z − z0)n.

Remark 4.2.
• For f = R → C and z0 = x0, replace U by an interval I 3 x0 and ∆(z0, r)
by ∆(x0, r) ∩ R =]− r + x0, x0 + r[= I(x0, r).
• Most results will be given relatively to z0 = 0, but only for convenience. The
generalization is just the consequence of

f RPS at z0 ⇔ f(z0 + •) is RPS at 0.

Definition 4.3. f : U ⊂ C → C is said to be analytic if f is RPS at any point of
U .

Proposition 4.4. Let f be representable by
∑
anz

n at 0 on ∆(0, r). Then f is
analytic on ∆(0, r).

Proof. Let z0 ∈ ∆(0, r) and ρ = r − |z0|. For z ∈ ∆(z0, ρ) we have

f(z) =

∞∑
n=0

an((z − z0) + z0)n

=

∞∑
n=0

n∑
m=0

(
an

(
n

m

)
zn−m0 (z − z0)m

)
=

∞∑
m=0

( ∞∑
n=m

an

(
n

m

)
zn−m0

)
(z − z0)m

.
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The last equality is a consequence of the Fubini theorem given in ch1 with am,n =
an
(
n
m

)
zn−m0 (z − z0)m (with the convention

(
n
m

)
= 0 if m > n). We just have for

example to check that
∑
n

∑
m |am,n| is finite :

∑
n

∑
m |am,n| =

∞∑
n=0

|an|(|z − z0|+ |z0|)n =

∞∑
n=0

|an|r′n,

with 0 ≤ r′ < ρ+ |z0| = r hence
∑
|an|r′n converges and we have the result.

Remark 4.5. For z0 ∈ ∆(0, r), it’s important to notice that f is RPS at z0 on the
bigger disk centered at z0 and contained in ∆(0, r), which is ∆(z0, r − |z0|).

From 3.10, we get a necessary condition for f to be RPS :

Proposition 4.6. If f : I → C is representable by
∑
anx

n at 0, then ∃r > 0
such that I(0, r) ⊂ I, with f C∞ on I(0, r). Moreover we necessarily have an =
f (n)(0)/n!.

Example 4.7. of a function which is not RPS :

f : R→ R, x 7→
{

0 if x ≤ 0
exp(−1/x2) if x > 0

By induction, one can prove that f is C∞ on R with all derivatives = 0 for all x ≤ 0
and f (p)(x) = Pp(1/x) exp(1/x2) for x > 0, Pp being a polynomial. Hence if f
representable by

∑
anx

n, an = f (n)(0)/n! = 0 ⇒ f = 0 on I(0, r) for r > 0,
which is false.

Definition 4.8. For f : I ⊂ R→ C C∞ we note for all a, x ∈ I

Tn(f, a, •) : x 7→
n∑
k=0

f (k)(a)

k!
(x− a)k

the Taylor polynomial of f at a,

Rn(f, a, •) : x 7→ f(x)−
n∑
k=0

f (k)(a)

k!
(x− a)k

the Taylor remainder of f at a, and

T (f, a, •) : x 7→
∞∑
k=0

f (k)(a)

k!
(x− a)k

the Taylor series of f at a.

Corollary 4.9. A function f : I → C is RPS at 0 iff ∃r > 0 such that I(0, r) ⊂ I
such that f is C∞ on I(0, r) and

∀x ∈ I(0, r), Rn(f, 0, x)
n∞−−→ 0.

In such a case, f is representable by its Taylor series at 0.

Remark 4.10.
• Of course we have the same result replacing 0 by a - just use fa = f(•+ a).

7



• About the Taylor remainder : one can prove by induction, using integrations
by parts, that we have, for f Cn+1 :

Rn(f, a, x) =

∫ x

a

(x− t)n

n!
f (n+1)(t)dt

This implies, for example, that

|Rn(f, a, x)| ≤
∫ x

a

∣∣∣∣ (x− t)nn!

∣∣∣∣ |f (n+1)(t)|dt

≤ max[(a,x)] |f (n+1)|
∫ x

a

∣∣∣∣ (x− t)nn!

∣∣∣∣ dt
= max[(a,x)] |f (n+1)|

∣∣∣∣∫ x

a

(x− t)n

n!
dt

∣∣∣∣
because the sign of x− t is constant on [(a, x)] (= [a, x] if a ≤ x, = [x, a] if
not). Hence we have

|Rn(f, a, x)| ≤ max
[(a,x)]

|f (n+1)| |a− t|
n+1

(n+ 1)!

This gives a sufficient condition for f C∞ to be RPS at a :

∃r > 0, ∃M ≥ 0, ∀x ∈ [a− r, a+ r], ∀n, |f (n)(t)| ≤M.

(|a− t|n+1/(n+ 1)!→ 0 since RCV (
∑
zn/n!) = +∞).

Proposition 4.11. Let
∑
anz

n a power series with RCV= R > 0, sum function f .
We suppose a0 6= 0. Then 1/f is RPS at 0.

Proof. We can suppose a0 = 1 (consider f ← f/a0). Let’s first prove

Lemma 4.12. RCV (
∑
unz

n) > 0 ⇔ ∃q > 0, |un| ≤ qn.

Proof. For ⇒, we note r = RCV (
∑
unz

n) > 0. Fix r′ ∈]0, r[ : we have (unr
′n)

bounded by some constant M ≥ 1, and we get ∀n, |un| ≤ M(1/r′)n ≤ qn with
q = M/r′. For the other implication we have un = O(qn), hence RCV (

∑
unz

n) ≥
RCV (

∑
qnzn) = 1/q > 0.

If 1/f is RPS
∑
bnz

n on ∆(0, R′) ⊂ ∆(0, R), we get (cf. 2.11) on ∆(0, R′)

(
∑

anz
n) ? (

∑
bnz

n) = (
∑

anz
n)(
∑

bnz
n) = 1 (1)

which implies (cf. 3.12)

b0 = 1 and ∀n ≥ 1, bn = −a1bn−1 − · · · − anb0.

Let q > 0 such that |an| ≤ qn and let’s prove by induction that |bn| ≤ q′n with
q′ = 2q. This is true for n = 0 and if |bn−1| ≤ q′n−1, we have

|bn| ≤
n∑
k=1

|ak||bn−k| ≤
n∑
k=1

qkq′n−k =

n∑
k=1

1

2k
q′n ≤ q′n.
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Hence by the lemma we have RCV (
∑
bnz

n) = Rb > 0 and the formula 1 proves
that that the sum function of

∑
bnz

n is equal to 1/f on ∆(0,min{R,Rb}).

Remark 4.13. About the composition of two RPS functions : Suppose f(z) =∑
anz

n on ∆(0, R) and g(z) =
∑
bnz

n on ∆(0, R′) with b0 = 0 = g(0) : then
∃ρ < R′ such that z ∈ ∆(0, ρ) ⇒ g(z) ∈ ∆(0, R) by continuity of g, and for
z ∈ ∆(0, ρ), we have f(g(z)) =

∑
n ang(z)n. But, by Cauchy product, gn is RPS

on ∆(0, ρ), and we can note g(z)n =
∑
p bn,pz

p for some complex numbers bn,p.
Hence,

f(g(z)) =
∑
n

∑
p anbn,pz

p =
∑
p(
∑
n anbn,p)z

p

if we can apply the Fubini theorem to the double series (anbn,p).

5 Classical examples
Definition 5.1. We note exp(z) = ez, cos z and sin z the sum functions of the
following power series :∑ zn

n!
,
∑ (−1)n

(2n)!
z2n and

∑ (−1)n

(2n+ 1)!
z2n+1.

Remark 5.2.
• The three power series have RCV= ∞ : we already know that for the first

one. But if we note these series respectively
∑
anz

n,
∑
bnz

n and
∑
cnz

n

(an = 1/n!) we remark that |bn| ≤ an and |cn| ≤ an.
• Following this definition, we clearly have, for z ∈ C,

cos(−z) = cos z and sin(−z) = − sin z.

Proposition 5.3. We have the following facts :

1. The derivative series of exp, sin and cos are respectively exp, cos and − sin.

2. For all z, z′ ∈ C, ez+z′ = ezez
′
.

3. For all z ∈ C, cos z + i sin z = eiz.

4. For all z ∈ C, ez = lim
n∞

(1 + z
n )n.

Proof. The first point is a consequence of 3.8. For 2, we use the Cauchy product
(and RCV (

∑
zn/n!) =∞, so we have absolute convergence everywhere) to get

ezez
′

=
∑
n≥0

(
n∑
k=0

(−1)k

k!
zk

(−1)n−k

(n− k)!
z′n−k

)
=
∑
n≥0

(z + z′)n

n!
= ez+z

′
.

With the notations of 5.2, bn + icn = inan so we get 3. Let’s prove 4 : we note
E = N ⊂ R and for all k ∈ N (with the convention

(
n
k

)
= 0 if k > n),

αk

∣∣∣∣∣∣
E → C

n 7→
(
n

k

)
1

nk
zk

,

so we get for all n ∈ E,

A(n) =
(

1 +
z

n

)n
=

+∞∑
k=0

αk(n).

9



Let’s try to apply the double-limit theorem for n→∞ : we first have for all k ≥ 0

∀n ≥ k, αk(n) =
zk

k!

k−1∏
i=0

(
1− i

n

)
n∞−−→ zk

k!
.

But we also have

∀n ≥ k, |αk(n)| =

∣∣∣∣∣zkk!

k−1∏
i=0

(
1− i

n

)∣∣∣∣∣ ≤ |z|kk!
,

and this inequality is also true for n < k : we have the normal convergence (cf.∑
|z|n/n! converges). The double-limit theorem gives the result.

Remark 5.4. As a consequence of 5.2 and 3 we have

cos z =
eiz + e−iz

2
and sin z =

eiz − e−iz

2i
.

Lemma 5.5. We note E = {x ∈ R+ | cos(x) = 0}. Then ∃α = inf E ∈ R∗+.

Proof. We just have to prove that E 6= ∅. If not, cosx > 0 for all x ≥ 0 (cf.
cos 0 = 1 and cos is continuous). This would imply the strict convexity of − cos
on R+, which cannot happen since for all x ∈ R+, − cosx < 0 (the only negative
convex functions on R+ are the constant functions).

Definition 5.6. The constant 2α will be noted π.

Corollary 5.7. We have the following facts :

1. For all x ∈ R, cos2 x+ sin2 x = 1.

2. eiπ/2 = i, which implies ∀x ∈ R, cos(x+ π
2 ) = − sinx and sin(x+ π

2 ) = cosx.

3. eiπ = −1, which implies ∀x ∈ R, cos(π−x) = − cosx and sin(π−x) = sinx.

4. ei2π = 1, which implies the 2π-periodicity of the functions of the real variable
x 7→ sinx, cosx.

Proof. Using the continuity and the algebraic properties of τ : z 7→ z̄, we have for
all z ∈ C,

exp z = τ

(
lim
n∞

n∑
k=0

zk

k!

)
= lim

n∞

(
τ

(
n∑
k=0

zk

k!

))
= lim

n∞

(
n∑
k=0

z̄k

k!

)
= exp z̄.

Hence for z = ix ∈ iR, by 5.3.2, we have (eix)−1 = e−ix = eix, which gives
|eix| = 1 and then 1. But cos(π/2) = 0, so 5.3.3 implies eiπ/2 = i. Then eiπ =
(eiπ/2)2 = −1 and ei2π = (eiπ/2)4 = 1. Just take the real and imaginary parts of
eixeiλπ = ei(x+λ)π for λ ∈ {1/2, 1, 2} to obtain the complementary assertions in 2,
3 and 4.

Remark 5.8.
• More generally for a, b ∈ R, the classical trigonometric formulas{

cos(a+ b) = cos a cos b− sin a sin b
sin(a+ b) = cos a sin b+ sin a cos b

are a consequence of eiaeib = ei(a+b).
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• The hyperbolic sine and cosine are defined as follow for z ∈ C :
sinh z = −i sin(iz) =

∑ z2n+1

(2n+ 1)!
=
ez − e−z

2

cosh z = cos(iz) =
∑ z2n

(2n)!
=
ez + e−z

2

generalizing the definition known for x ∈ R.

Example 5.9. There’s a classical way to calculate the sum of power series of the
form

∑
P (n)zn/n! for a given polynomial P ∈ C[X]. First the RCV is +∞ by

De D’Alembert rule. Then the idea is to decompose P on the base {1, X,X(X −
1), . . . , X(X−1) . . . (X−d+1)} if degP = d. Practically, with

∏−1
i=0(X− i) = 1,

degP = d ⇒ ∃!(a0, . . . , ad) ∈ Cd+1 | P =

d∑
k=0

ak

k−1∏
i=0

(X − i)

⇒
∑
n≥0

P (n)

n!
zn =

d∑
k=0

ak
∑
n≥0

n . . . (n− k + 1)

n!
zn

⇒
∑
n≥0

P (n)

n!
zn =

d∑
k=0

ak
∑
n≥k

n . . . (n− k + 1)

n!
zn

⇒
∑
n≥0

P (n)

n!
zn =

d∑
k=0

ak
∑
n≥k

zn

(n− k)!
=

d∑
k=0

akz
kez

Theorem 5.10. The function x ∈ R 7→ − ln(1− x) is representable by the power
series

∑
n≥1 x

n/n on ]− 1, 1[.

Proof. More precisely, we have : the primitive series of
∑
zn (which has RCV= 1)

is
∑
n≥1 z

n/n. Hence we have the result since ln is defined on R∗+ as the primitive
F of x 7→ 1/x such that F (1) = 0.

Definition 5.11. We define the complex logarithm as the sum of the power series
−
∑
n≥1(1− z)n/n, defined on ∆(1, 1), and we note it ln z.

Proposition 5.12. We have
• for all z ∈ ∆(1, 1), exp(ln z) = z ;
• for all z ∈ ∆(0, ln 2), ln(exp z) = z.

Proof. Following 4.13, we write, for z ∈ ∆1,

lnn(1− z) = (−1)n(
∑
k≥1 z

k/k)n = (−1)n
∑
k≥0 ak,nz

k,

and we set bk,n = (−1)nak,nz
k/n!. We have |bk,n| = ak,n|z|k/n! because ak,n ≥ 0

(cf. αn ≥ 0, βn ≥ 0⇒
∑n
k=0 αkβn−k ≥ 0), hence the series

∑
k≥0 |bk,n| converges

to (−1)n lnn(1− |z|)/n!. Since the series
∑

(− ln(1− |z|))n/n! converges, we can
apply the Fubini’s theorem, which gives (cf. 4.13) :

exp(ln(1− z)) =
∑
k≥0

∑
n≥0

ak,n
n!

 zk =
∑
k≥0

ckz
k.

The point is that we know that this quantity is 1 − x if z = x ∈] − 1, 1[. Thus,
by 3.12, we have c0 = 1, c1 = −1 and ck = 0 if k > 1. Finally we get the result
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exp(ln(1− z)) = 1− z.

For the other assumption, we first remark that the left member is well defined :

z ∈ ∆(0, ln 2)⇒ |ez − 1| = |
∑
n≥1 z

n/n!| ≤
∑
n≥1 |z|n/n! = e|z| − 1 ∈ [0, 1[.

Then we write

ln(exp z) = ln(1− (1− ez)) =
∑
n≥1

∑
k≥0 bk,n.

with this time bk,n = (−1)nak,nz
k/n, where

(−1)n
∑
k≥0 ak,nz

k = (1− ez)n = (−1)n(
∑
p≥1 z

p/p!)n

Again, by induction (and using the definition of the coefficients of the Cauchy
product), one can show that ak,n ≥ 0. This implies |bk,n| = ak,n|z|k/n and thus∑

k≥0 |bk,n| =
∑
k≥0 ak,n|z|k/n = (−1)n(1− e|z|)n/n = (e|z| − 1)n/n

with e|z| − 1 ∈ [0, 1[⊂] − 1, 1[. Hence
∑
n≥1(e|z| − 1)n/n converges and we can,

here again, apply the Fubini’s theorem. The end of the proof is the same as in the
first case, using the known results when z = x ∈]−∞, ln 2[.

Proposition 5.13. For all x ∈]− 1, 1[ :

1. arctan(x) =
∑
n≥0

(−1)n

2n+ 1
x2n+1

2. arctanh(x) =
∑
n≥0

x2n+1

2n+ 1
=

1

2
ln

1 + x

1− x

3. ∀α /∈ N, (1 + x)α =
∑
n≥0

(
α

n

)
xn with

(
α

n

)
=
α(α− 1) . . . (α− n+ 1)

n!
and(

α

0

)
= 1.

4.
1√

1− x2
=
∑
n≥0

(2n)!

22n(n!)2
x2n

5. arcsin(x) =
∑
n≥0

(2n)!

22n(n!)2
x2n+1

2n+ 1

6.
1√

1 + x2
=
∑
n≥0

(−1)n
(2n)!

22n(n!)2
x2n

7. arcsinh(x) =
∑
n≥0

(−1)n
(2n)!

22n(n!)2
x2n+1

2n+ 1

Proof. 1 and 2 follow from 3.8 ; 5 and 7 follow from 3.8 and 4 and 6, which follow
from 3. So, let’s prove 3 : the only power series which can represent x 7→ (1 + x)α

is the one given, which is the Taylor series of φ. The power series
∑(

α
n

)
xn has

RCV= 1 by the ratio test and if we note S its sum function we have

S′(x) =
∑
n≥0

(
α

n+ 1

)
(n+ 1)xn =

∑
n≥0

(
α

n

)
(α− n)xn = αS(x)− xS′(x).

Hence, since S(0) = 1, S(x) = (1 + x)α for all x ∈]− 1, 1[.
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