Chapter 3 : Power Series.

1 Definitions and first properties

Definition 1.1. A power series is a series of functions $\sum f_{n}$ where $f_{n}: z \mapsto a_{n} z^{n}$, $\left(a_{n}\right)$ being a sequence of complex numbers. Depending on the cases, we will consider either the complex variable z, or the real variable x.

Notations 1.2. For $r \geq 0$, we will note $\Delta_{r}=\{z \in \mathbb{C}| | z \mid<r\}$, $K_{r}=\{z \in$ $\mathbb{C}||z| \leq r\}$ and $C_{r}=\{z \in \mathbb{C}| | z \mid=r\}$.

Lemma 1.3. [Abel's lemma] Let $\sum a_{n} z^{n}$ be a power series. We suppose that there exists $z_{0} \in \mathbb{C}^{*}$ such that the sequence $\left(a_{n} z_{0}^{n}\right)$ is bounded. Then, for all $\left.r \in\right] 0,\left|z_{0}\right|[$, $\sum a_{n} z^{n}$ normally converges on the compact K_{r}.

Remark 1.4.

- Note that it implies the absolute convergence on $\Delta_{\left|z_{0}\right|}$, ie $\forall z \in \Delta_{\left|z_{0}\right|}, \sum\left|a_{n} z^{n}\right|$ converges.
- Of course if we suppose $\sum\left|a_{n}\right| r^{n}$ convergent, we directly have the normal convergence on K_{r} (cf. $\left.\forall z \in K_{r},\left|a_{n} z^{n}\right| \leq\left|a_{n}\right| r^{n}\right)$.

Proof. Let z be in K_{r}, we have

$$
\left|a_{n} z^{n}\right| \leq\left|a_{n}\right| r^{n}=\left|a_{n} z_{0}^{n}\right|\left(\frac{r}{\left|z_{0}\right|}\right)^{n}=O\left(\left(\frac{r}{\left|z_{0}\right|}\right)^{n}\right),
$$

which gives the result.
Definition 1.5. We call the radius of convergence of the power series $\sum a_{n} z^{n}$ the number

$$
R=\sup \left\{r \geq 0 \mid\left(a_{n} r^{n}\right) \text { bounded }\right\} \in \overline{\mathbb{R}}^{+}=\mathbb{R}^{+} \cup\{+\infty\} .
$$

It will sometimes be noted $\operatorname{RCV}\left(\sum a_{n} z^{n}\right)$.
Theorem 1.6. Let R be the RCV of a power series $\sum a_{n} z^{n}$.

- For all $r<R, \sum a_{n} z^{n}$ normally converges on the compact K_{r}.
- For all z such that $|z|>R, a_{n} z^{n} \stackrel{n \infty}{\nrightarrow} 0$.

Remark 1.7. It implies the absolute convergence on Δ_{R}.
Proof. The Abel's lemma gives the first point : $\forall r \in\left[0, R\left[, \exists r^{\prime} \in\right] r, R\right]$ such that $\left(a_{n} r^{\prime n}\right)$ is bounded, which implies the normal convergence on K_{r}. For the second point, it's the contraposition of $a_{n} z^{n} \rightarrow 0 \Rightarrow\left(a_{n} z^{n}\right)$ bounded $\Rightarrow|z| \leq R$.

Corollary 1.8. With the same hypothesis, $R=\sup \left\{r \geq 0 \mid \sum a_{n} r^{n}\right.$ converges $\}=$ $\inf \left\{r \geq 0 \mid \sum a_{n} r^{n}\right.$ diverges $\} \in \overline{\mathbb{R}}^{+}$.

Proof. Let's note $R^{\prime}=\sup \left\{r \geq 0 \mid \sum a_{n} r^{n}\right.$ converges $\}$ and $R^{\prime \prime}=\inf \{r \geq$ $0 \mid \sum a_{n} r^{n}$ diverges $\}$. First, $R^{\prime} \leq R^{\prime \prime}:$ if not, $R^{\prime \prime}<R^{\prime}$ and $\left.\left.\exists r \in\right] R^{\prime \prime}, R^{\prime}\right]$ such that $\sum a_{n} r^{n}$ converges, so we would have $\left(a_{n} r^{n}\right)$ bounded and convergence on Δ_{r} (cf. 1.4), and thus $R^{\prime \prime} \geq r$, absurd. By the first point of the theorem, $R^{\prime} \geq R$. By the second point, $R^{\prime \prime} \leq R$. So we have $R \leq R^{\prime} \leq R^{\prime \prime} \leq R$, which gives the result.

Remark 1.9.

- With the same kind of proof, one can show that we also have $R=\sup \{r \geq$ $\left.0 \mid a_{n} r^{n} \rightarrow 0\right\}$.
- To sum up, if we note \mathfrak{C} the domain of convergence of a power series which has a radius of convergence R, we have

$$
\Delta_{R} \subset \mathfrak{C} \subset K_{R}
$$

and we have absolute convergence on Δ_{R}.
Definition 1.10. We call $\Delta_{R}=\{z \in \mathbb{C}| | z \mid<R\}$ the (open) disk of convergence.
Remark 1.11. We can't say anything a priori about the convergence of a power series on the circle C_{R}, as we will see in the examples.

Examples 1.12.

- $R C V\left(\sum z^{n}\right)=1$ since the constant sequence (1) is bounded $(\Rightarrow R C V \geq 1)$ and $\sum 1$ diverges $(\Rightarrow R C V \leq 1)$. In fact there's no point in C_{1} where there is oconvergence $\left(|z|=1 \Rightarrow z^{n} \nrightarrow 0\right)$.
- $R C V\left(\sum z^{n} / n\right)=1$ since $(1 / n)$ bounded $(\Rightarrow R C V \geq 1)$ and $\sum 1 / n$ diverges $(\Rightarrow R C V \leq 1)$. Here, the only point of C_{1} where the power series diverges is 1: if $z=e^{i \theta} \neq 1, \sum z^{n} / n$ converges iff $\Re\left(\sum z^{n} / n\right)$ and $\Im\left(\sum z^{n} / n\right)$ converge, ie iff $\sum \cos (n \theta) / n$ and $\sum \sin (n \theta) / n$ converge. But we've already seen that the first one converges iff $e^{i \theta} \neq 1$, and the same proof shows that it's the same for the second one.

Exercise 1.13. [Hadamard theorem] Prove that this definition of the radius of convergence is equivalent to the first one :

$$
R=\left(\lim \sup \left|a_{n}\right|^{1 / n}\right)^{-1}
$$

2 Few methods to find the RCV

Proposition 2.1. Let $\sum a_{n} z^{n}$ be a power series and $z_{0} \in \mathbb{C}$. Then :

- If $\sum a_{n} z_{0}^{n}$ converges but $\sum\left|a_{n} z_{0}^{n}\right|$ diverges, then $R C V=\left|z_{0}\right|$.
- Same conclusion if $\sum a_{n} z_{0}^{n}$ diverges but $a_{n} z_{0}^{n} \rightarrow 0$.

Proof. For the first point, we have $R C V \geq\left|z_{0}\right|$ (cf. 1.8), but we can't have $R C V>$ $\left|z_{0}\right|$ (cf. 1.6). The second point is a consequence of 1.8 and 1.9.

Proposition 2.2. Let $\sum a_{n} z^{n}$ and $\sum b_{n} z^{n}$ be two power series, and R_{a}, R_{b} their RCV. We have $a_{n}=O\left(b_{n}\right) \Rightarrow R_{a} \geq R_{b}$.

Proof. Let $z \in \Delta_{R_{b}}$, we have $a_{n} z^{n}=O\left(b_{n} z^{n}\right)$ and $\sum\left|b_{n} z^{n}\right|$ converges (cf. 1.6), so $\sum a_{n} z^{n}$ converges. By 1.8 we conclude $R_{a} \geq R_{b}$.

Remark 2.3. We can't say that $\left(a_{n} z^{n}=O\left(b_{n} z^{n}\right)\right.$ and $\sum b_{n} z^{n}$ converges $) \Rightarrow \sum a_{n} z^{n}$ converges because we're not in the case $b_{n} z^{n} \in \mathbb{R}^{+}$for n big enough ($b_{n} z^{n} \in \mathbb{C}$).

Corollary 2.4. With the same notations, we have $a_{n} \sim b_{n} \Rightarrow R_{a}=R_{b}$.
Proof. $\sim \Rightarrow O$.
Proposition 2.5. Suppose $a_{n} \neq 0$ for n big enough. Then (with $1 / 0=+\infty$ and $1 /+\infty=0$) :

$$
\exists \lim \left|\frac{a_{n+1}}{a_{n}}\right|=l \in \overline{\mathbb{R}}^{+} \Rightarrow R C V=\frac{1}{l} .
$$

Proof. We have $\left|\frac{a_{n+1} z^{n+1}}{a_{n} z^{n}}\right| \rightarrow l|z|$. By De D'Alembert rule, $|z|<1 / l \Rightarrow \sum a_{n} z^{n}$ converges, and $R C V \geq 1 / l$ (cf. 1.8). Similarly, if $|z|>1 / l, \sum a_{n} z^{n}$ diverges, and $R C V \leq 1 / l$.

Proposition 2.6. Let $\sum a_{n} z^{n}$ a power series and R its $R C V$. Then for all $\alpha \in \mathbb{R}$ the $R C V R_{\alpha}$ of the power series $\sum n^{\alpha} a_{n} z^{n}$ is also R.

Proof. Let $r<R$ and $\rho \in] r, R[$. We have

$$
n^{\alpha} a_{n} r^{n}=\underbrace{n^{\alpha}\left(\frac{r}{\rho}\right)^{n}}_{\rightarrow 0} \underbrace{a_{n} \rho^{n}}_{\rightarrow 0} \Rightarrow\left(n^{\alpha} a_{n} r^{n}\right) \text { bounded } \Rightarrow R_{\alpha} \geq R .
$$

This is true for all $\sum a_{n} z^{n}$, and for all α, so we also have, with $\beta=-\alpha$,

$$
R=R C V\left(\sum n^{\beta}\left(n^{\alpha} a_{n} z^{n}\right)\right) \geq R C V\left(\sum n^{\alpha} a_{n} z^{n}\right)=R_{\alpha} .
$$

Examples 2.7.

- By $2.5, R C V\left(\sum z^{n} / n!\right)=+\infty$.
- By 2.5, RCV $\left(\sum n!z^{n}\right)=0$.
- By 2.6, $R C V\left(\sum z^{n} / n^{2}\right)=1$ and we have normal convergence on K_{1}.
- We can abusively note $\sum z^{2 n} / 5^{n}$ the power series defined by $a_{2 n+1}=0$ and $a_{2 n}=5^{-n}$ for all n. But we can't apply directly 2.5 . However, it's clear that we have convergence on $\Delta_{\sqrt{5}}$ and divergence on its complementary, so $R C V=\sqrt{5}$.

Proposition 2.8. Let R_{a} and R_{b} be the $R C V$ of $\sum a_{n} z^{n}$ and $\sum b_{n} z^{n}$. Then $R_{a+b}=$ $R C V\left(\sum\left(a_{n}+b_{n}\right) z^{n}\right) \geq \mathfrak{m}=\min \left\{R_{a}, R_{b}\right\}$, with equality if $R_{a} \neq R_{b}$. Moreover, on $\Delta_{\mathfrak{m}}$, we have

$$
\sum\left(a_{n}+b_{n}\right) z^{n}=\sum a_{n} z^{n}+\sum b_{n} z^{n} .
$$

Proof. For all $z \in \Delta_{\mathfrak{m}}, \sum a_{n} z^{n}$ and $\sum b_{n} z^{n}$ absolutely converges. Hence $\sum\left(a_{n}+\right.$ $\left.b_{n}\right) z^{n}$ also does : $R_{a+b} \geq \mathfrak{m}$ and the additivity of limits of sequences gives the additivity formula. If $R_{a}<R_{b}$, for all $z \in \Delta_{R_{b}} \backslash K_{R_{a}}$ we have $a_{n} z^{n} \nrightarrow 0$ and $b_{n} z^{n} \rightarrow 0$, thus $\left(a_{n}+b_{n}\right) z^{n} \nrightarrow 0$, and $R_{a+b} \leq R_{a}=\mathfrak{m}$.

Example 2.9. Let $\sum a_{n} z^{n}=\sum z^{n}$ and $\sum b_{n} z^{n}=\sum\left((1 / 2)^{n}-1\right) z^{n}$, we have $R_{a}=1=R_{b}$ (use 2.5 for the second one). As $a_{n}+b_{n}=(1 / 2)^{n}$, the domain of convergence of the $\sum\left(a_{n}+b_{n}\right) z^{n}$ is clearly Δ_{2}, so $R_{a+b}=2>\mathfrak{m}$.

The nest result is obvious :
Proposition 2.10. For all $\lambda \in \mathbb{C}^{*}, \sum a_{n} z^{n}$ and $\sum \lambda a_{n} z^{n}$ have the same $R C V R$. Moreover, on Δ_{R}, we have

$$
\sum \lambda a_{n} z^{n}=\lambda \sum a_{n} z^{n}
$$

Proposition 2.11. Let R_{a} and R_{b} be the $R C V$ of $\sum a_{n} z^{n}$ and $\sum b_{n} z^{n}$. Then $R_{a \star b}=R C V\left(\left(\sum a_{n} z^{n}\right) \star\left(\sum b_{n} z^{n}\right)\right) \geq \mathfrak{m}=\min \left\{R_{a}, R_{b}\right\}$. Moreover, on $\Delta_{\mathfrak{m}}$, we have

$$
\left(\sum a_{n} z^{n}\right) \star\left(\sum b_{n} z^{n}\right)=\left(\sum a_{n} z^{n}\right)\left(\sum b_{n} z^{n}\right) .
$$

Proof. For all $z \in \Delta_{\mathfrak{m}}, \sum\left|a_{n} z^{n}\right|$ and $\sum\left|b_{n} z^{n}\right|$ absolutely converges. Hence the Cauchy product $\left(\sum\left|a_{n} z^{n}\right|\right) \star\left(\sum\left|b_{n} z^{n}\right|\right)$ converges (cf. ch1). But

$$
\forall n,\left|\sum_{k=0}^{n} a_{k} z^{k} b_{n-k} z^{n-k}\right| \leq \sum_{k=0}^{n}\left|a_{k} z^{k}\right|\left|b_{n-k} z^{n-k}\right|,
$$

so we get $R_{a * b} \geq \mathfrak{m}$ and the result given about the Cauchy product in chapter 1 gives the formula.

Examples 2.12.

- We don't have the same result as for the addition if $R_{a} \neq R_{b}$: Let $\sum a_{n} z^{n}$ and $\sum b_{n} z^{n}$ be defined by $a_{0}=1 / 2, b_{0}=-2$ and $a_{n}=-1 / 2^{n+1}, b_{n}=-3$ for $n \geq 1$. We have $\sum a_{n} z^{n}=1-\sum_{n \geq 0} z^{n} / 2^{n+1}, \sum b_{n} z^{n}=1-3 \sum_{n \geq 0} z^{n}$, so $R_{a}=2 \neq R_{b}=1$. We also have

$$
\begin{aligned}
& \sum a_{n} z^{n}=1-\frac{1 / 2}{1-(z / 2)}=\frac{z-1}{z-2} \forall z \in \Delta_{2}, \\
& \text { and } \sum b_{n} z^{n}=1-3 \frac{1}{1-z}=\frac{z-2}{z-1} \forall z \in \Delta_{1} .
\end{aligned}
$$

Hence by $2.11\left(\sum a_{n} z^{n}\right) \star\left(\sum b_{n} z^{n}\right)=1$ on Δ_{1}, so if we note $c_{n}=$ $\sum_{k=0}^{n} a_{k} b_{n-k}$, we have $c_{0}=1$ and $c_{n}=0$ for $n \geq 1$. Thus $R_{a \star b}=$ $R C V\left(\sum c_{n} z^{n}\right)=+\infty>\mathfrak{m}$.

- Let R, R^{\prime} be the RCV of $\sum a_{n} z^{n}$ and $\sum s_{n}(a) z^{n}$. We have $\sum s_{n}(a) z^{n}=$ $\left(\sum a_{n} z^{n}\right) \star\left(\sum z^{n}\right)$, hence $R^{\prime} \geq \min \{1, R\}$. We also have $\sum a_{n} z^{n}=\sum s_{n}(a) z^{n}-\sum s_{n-1}(a) z^{n}=\sum s_{n}(a) z^{n}-z \sum_{n \geq 1} s_{n}(a) z^{n}$, which gives $R \geq R^{\prime}$. Thus we have

$$
\min \{1, R\} \leq R^{\prime} \leq R
$$

which gives $R=R^{\prime}$ if $1 \geq R$.

3 Properties of the sum

We've already seen :
Theorem 3.1. Let $\sum a_{n} z^{n}$ be a power series and R its RCV. $\sum a_{n} z^{n}$ normally converges on every $K_{r}, r<R$, which leads to the continuity of the sum function on Δ_{R}.

Remark 3.2. If $\exists z_{0} \in C_{R}$ such that $\sum a_{n} z_{0}^{n}$ absolutely converges, then we have normal convergence (and continuity) on K_{R}.

Theorem 3.3. [Radial continuity] Let's suppose that $\sum a_{n} z_{0}^{n}$ converges for $z_{0} \in$ C_{R}. Then $\sum a_{n} z^{n}$ uniformally converges on $\left[0, z_{0}\right]$, ie $t \mapsto \sum a_{n} z_{0}^{n} t^{n}$ uniformally converges on $[0,1]$.
Proof. We note $s_{n}(t)=\sum_{k=0}^{n} a_{k} z_{0}^{k} t^{k}$ for $t \in[0,1]$ and $r_{n}=\sum_{k=n+1}^{\infty} a_{k} z_{0}^{k}$. By Abel's formula we obtain

$$
s_{n}(t)=\sum_{k=0}^{n}\left(r_{k-1}-r_{k}\right) t^{k}=\underbrace{\sum_{k=0}^{n}\left(t^{k+1}-t^{k}\right) r_{k}}_{f_{n}(t)}-t^{n+1} r_{n}+r_{-1}
$$

For $\epsilon>0, \exists N$ such that $n \geq N \Rightarrow\left|r_{n}\right| \leq \epsilon$, hence, forall $n \geq N, p \geq 1, t \in[0,1]$

$$
\begin{gathered}
\left|f_{n+p}(t)-f_{n}(t)\right| \leq \sum_{k=n+1}^{n+p}\left|r_{k}\right|\left(t^{k}-t^{k+1}\right) \leq \epsilon\left(t^{n+1}-t^{n+p+1}\right) \leq \epsilon \\
\text { and }\left|t^{n+1} r_{n}\right| \leq \epsilon
\end{gathered}
$$

so $\left(s_{n}\right)$ uniformally converges.
Remark 3.4. The Leibniz criterion can also be used in the case of a decreasing real sequence $\left(a_{n}\right)$ which converges to zero. Suppose $R=1$, then for $x \in[-1,0]$, $\sum a_{n} x^{n}$ satisfies the hypothesis of the Leibliz criterion ; so we get $\left|\sum_{k=n+1}^{\infty} a_{n} x^{n}\right| \leq$ $\left|a_{n} x^{n}\right| \leq a_{n}$ which proves the uniform convergence on $[-1,0]$, and thus the continuity in -1 .

We can deduce from the radial continuity a new result about the Cauchy product - compare with the one obtained in ch. 1 :

Corollary 3.5. Let $\sum c_{n}$ be the Cauchy product of $\sum a_{n}$ and $\sum b_{n}$. We suppose that $\sum a_{n}, \sum b_{n}$ and $\sum c_{n}$ converge to A, B and C. Then $C=A B$.

Proof. The three power series $f(x)=\sum a_{n} x^{n}, g(x)=\sum b_{n} x^{n}$ and $h(x)=$ $\sum c_{n} x^{n}$ have a $\mathrm{RCV} \geq 1$, hence absolutely converge for $|x|<1$ so we can apply the theorem of chapter 1 and get $f(x) g(x)=h(x)$ for these x. But by the radial continuity theorem we can apply the double limit theorem for $x \rightarrow 1$ to obtain the result.

Definition 3.6. We call derivative series (resp. primitive series) of a power series $\sum a_{n} z^{n}$ the power series defined by $\sum(n+1) a_{n+1} z^{n}$ (resp. $\left.\sum_{n \geq 1}\left(a_{n-1} / n\right) z^{n}\right)$.
Remark 3.7. We know that they have the same RCV than $\sum a_{n} z^{n}$, thanks to 2.6 and 2.4: $\sum(n+1) a_{n+1} z^{n}$ converges iff $z \sum(n+1) a_{n+1} z^{n}=\sum_{n \geq 1} n a_{n} z^{n}$ converges; and $\sum_{n \geq 1}\left(a_{n-1} / n\right) z^{n}=z \sum\left(a_{n} /(n+1)\right) z^{n}$ with $a_{n} /(n+1) \sim a_{n} / n$.
Theorem 3.8. Let $\sum a_{n} x^{n}$ (real variable) be a power series, f its sum, g (resp. F) the sum of its derivative (resp. primitive) series and R its $R C V$. Then, on $]-R, R[$, f is \mathcal{C}^{1} with $f^{\prime}=g$, and F is the only primitive of f such that $F(0)=0$.

Remark 3.9. This implies

$$
\forall x \in]-R, R\left[, \quad \sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1}=\int_{0}^{x}\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right) d t\right.
$$

Proof. Replacing f by F, the first assertion immediately gives the second one. But if we note $f_{n}(x)=a_{n} x^{n}$, we have $f_{n} \mathcal{C}^{1}$ with $f_{n}^{\prime}(x)=n a_{n} x^{n-1}$ for $n \geq 1$ $\left(f_{0}^{\prime}=0\right)$. Hence $\sum f_{n}^{\prime}$ is the derivatives series of $\sum a_{n} x^{n}$ which normally converges on each $[-r, r] \subset]-R, R\left[\right.$ (cf. 3.7), and we know that it implies: $\sum f_{n} \mathcal{C}^{1}$ on $[-r, r]$ and $f^{\prime}=\left(\sum f_{n}\right)^{\prime}=\sum f_{n}^{\prime}=g$. We conclude with the fact that $]-R, R[=$ $\cup_{0<r<R}[-r, r]$.
Corollary 3.10. The sum function f of a power series $\sum a_{n} x^{n}$ with $R C V=R$ is \mathcal{C}^{∞} on $]-R, R\left[\right.$, and $f^{(p)}$ is the sum function of

$$
\sum \frac{(n+p)!}{n!} a_{n+p} x^{n}
$$

The RCV of these power series is also R.
Remark 3.11. This implies

$$
\forall p, \quad \frac{f^{(p)}(0)}{p!}=a_{p}
$$

Corollary 3.12. If we have $\sum_{n \geq 0} a_{n} x^{n}=\sum_{n \geq 0} b_{n} x^{n}$ on $]-R, R[$ (both power series converging on this interval), then $a_{n}=b_{n}$ for all n.
Proof. The difference of the sum functions is 0 . Hence, all its derivatives at 0 are 0 .

4 RPS functions

Definition 4.1. Given a complex number z_{0} and a function $f: \mathcal{U} \rightarrow \mathbb{C}$ defined on a neighborhood $\mathcal{U} \subset \mathbb{C}$ of z_{0}, we say that f is representable by a power series ($=R P S$) or analytic at z_{0} if $\exists r>0$ and a power series $\sum a_{n} z^{\prime n}$ with $\mathrm{RCV} \geq r$ such that $\Delta\left(z_{0}, r\right)=\left\{z \in \mathbb{C}| | z_{0}-z \mid<r\right\} \subset \mathcal{U}$ and

$$
\forall z \in \Delta\left(z_{0}, r\right), f(z)=\sum a_{n}\left(z-z_{0}\right)^{n}
$$

Remark 4.2.

- For $f=\mathbb{R} \rightarrow \mathbb{C}$ and $z_{0}=x_{0}$, replace \mathcal{U} by an interval $I \ni x_{0}$ and $\Delta\left(z_{0}, r\right)$ by $\left.\Delta\left(x_{0}, r\right) \cap \mathbb{R}=\right]-r+x_{0}, x_{0}+r\left[=I\left(x_{0}, r\right)\right.$.
- Most results will be given relatively to $z_{0}=0$, but only for convenience. The generalization is just the consequence of

$$
f \text { RPS at } z_{0} \Leftrightarrow f\left(z_{0}+\bullet\right) \text { is RPS at } 0 .
$$

Definition 4.3. $f: \mathcal{U} \subset \mathbb{C} \rightarrow \mathbb{C}$ is said to be analytic if f is RPS at any point of \mathcal{U}.

Proposition 4.4. Let f be representable by $\sum a_{n} z^{n}$ at 0 on $\Delta(0, r)$. Then f is analytic on $\Delta(0, r)$.
Proof. Let $z_{0} \in \Delta(0, r)$ and $\rho=r-\left|z_{0}\right|$. For $z \in \Delta\left(z_{0}, \rho\right)$ we have

$$
\begin{aligned}
f(z) & =\sum_{n=0}^{\infty} a_{n}\left(\left(z-z_{0}\right)+z_{0}\right)^{n} \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{n}\left(a_{n}\binom{n}{m} z_{0}^{n-m}\left(z-z_{0}\right)^{m}\right) \\
& =\sum_{m=0}^{\infty}\left(\sum_{n=m}^{\infty} a_{n}\binom{n}{m} z_{0}^{n-m}\right)\left(z-z_{0}\right)^{m}
\end{aligned}
$$

The last equality is a consequence of the Fubini theorem given in ch1 with $a_{m, n}=$ $a_{n}\binom{n}{m} z_{0}^{n-m}\left(z-z_{0}\right)^{m}$ (with the convention $\binom{n}{m}=0$ if $m>n$). We just have for example to check that $\sum_{n} \sum_{m}\left|a_{m, n}\right|$ is finite :

$$
\sum_{n} \sum_{m}\left|a_{m, n}\right|=\sum_{n=0}^{\infty}\left|a_{n}\right|\left(\left|z-z_{0}\right|+\left|z_{0}\right|\right)^{n}=\sum_{n=0}^{\infty}\left|a_{n}\right| r^{\prime n}
$$

with $0 \leq r^{\prime}<\rho+\left|z_{0}\right|=r$ hence $\sum\left|a_{n}\right| r^{\prime n}$ converges and we have the result.
Remark 4.5. For $z_{0} \in \Delta(0, r)$, it's important to notice that f is RPS at z_{0} on the bigger disk centered at z_{0} and contained in $\Delta(0, r)$, which is $\Delta\left(z_{0}, r-\left|z_{0}\right|\right)$.

From 3.10, we get a necessary condition for f to be RPS :
Proposition 4.6. If $f: I \rightarrow \mathbb{C}$ is representable by $\sum a_{n} x^{n}$ at 0 , then $\exists r>0$ such that $I(0, r) \subset I$, with $f \mathcal{C}^{\infty}$ on $I(0, r)$. Moreover we necessarily have $a_{n}=$ $f^{(n)}(0) / n$!.

Example 4.7. of a function which is not RPS:

$$
f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \begin{cases}0 & \text { if } x \leq 0 \\ \exp \left(-1 / x^{2}\right) & \text { if } x>0\end{cases}
$$

By induction, one can prove that f is \mathcal{C}^{∞} on \mathbb{R} with all derivatives $=0$ for all $x \leq 0$ and $f^{(p)}(x)=P_{p}(1 / x) \exp \left(1 / x^{2}\right)$ for $x>0, P_{p}$ being a polynomial. Hence if f representable by $\sum a_{n} x^{n}, a_{n}=f^{(n)}(0) / n!=0 \Rightarrow f=0$ on $I(0, r)$ for $r>0$, which is false.

Definition 4.8. For $f: I \subset \mathbb{R} \rightarrow \mathbb{C} \mathcal{C}^{\infty}$ we note for all $a, x \in I$

$$
T_{n}(f, a, \bullet): x \mapsto \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

the Taylor polynomial of f at a,

$$
R_{n}(f, a, \bullet): x \mapsto f(x)-\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

the Taylor remainder of f at a, and

$$
T(f, a, \bullet): x \mapsto \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

the Taylor series of f at a.
Corollary 4.9. A function $f: I \rightarrow \mathbb{C}$ is RPS at 0 iff $\exists r>0$ such that $I(0, r) \subset I$ such that f is \mathcal{C}^{∞} on $I(0, r)$ and

$$
\forall x \in I(0, r), R_{n}(f, 0, x) \xrightarrow{n \infty} 0
$$

In such a case, f is representable by its Taylor series at 0 .
Remark 4.10.

- Of course we have the same result replacing 0 by a - just use $f_{a}=f(\bullet+a)$.
- About the Taylor remainder : one can prove by induction, using integrations by parts, that we have, for $f \mathcal{C}^{n+1}$:

$$
R_{n}(f, a, x)=\int_{a}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) d t
$$

This implies, for example, that

$$
\begin{aligned}
\left|R_{n}(f, a, x)\right| & \leq \int_{a}^{x}\left|\frac{(x-t)^{n}}{n!}\right|\left|f^{(n+1)}(t)\right| d t \\
& \leq \max _{[(a, x)]}\left|f^{(n+1)}\right| \int_{a}^{x}\left|\frac{(x-t)^{n}}{n!}\right| d t \\
& =\max _{[(a, x)]}\left|f^{(n+1)}\right|\left|\int_{a}^{x} \frac{(x-t)^{n}}{n!} d t\right|
\end{aligned}
$$

because the sign of $x-t$ is constant on $[(a, x)](=[a, x]$ if $a \leq x,=[x, a]$ if not). Hence we have

$$
\left|R_{n}(f, a, x)\right| \leq \max _{[(a, x)]}\left|f^{(n+1)}\right| \frac{|a-t|^{n+1}}{(n+1)!}
$$

This gives a sufficient condition for $f \mathcal{C}^{\infty}$ to be $R P S$ at a :

$$
\begin{aligned}
& \exists r>0, \exists M \geq 0, \forall x \in[a-r, a+r], \forall n,\left|f^{(n)}(t)\right| \leq M . \\
& \left(|a-t|^{n+1} /(n+1)!\rightarrow 0 \text { since } R C V\left(\sum z^{n} / n!\right)=+\infty\right)
\end{aligned}
$$

Proposition 4.11. Let $\sum a_{n} z^{n}$ a power series with $R C V=R>0$, sum function f. We suppose $a_{0} \neq 0$. Then $1 / f$ is RPS at 0 .

Proof. We can suppose $a_{0}=1$ (consider $f \leftarrow f / a_{0}$). Let's first prove
Lemma 4.12. $R C V\left(\sum u_{n} z^{n}\right)>0 \Leftrightarrow \exists q>0,\left|u_{n}\right| \leq q^{n}$.
Proof. For \Rightarrow, we note $r=R C V\left(\sum u_{n} z^{n}\right)>0$. Fix $\left.r^{\prime} \in\right] 0, r\left[\right.$: we have $\left(u_{n} r^{\prime n}\right)$ bounded by some constant $M \geq 1$, and we get $\forall n,\left|u_{n}\right| \leq M\left(1 / r^{\prime}\right)^{n} \leq q^{n}$ with $q=M / r^{\prime}$. For the other implication we have $u_{n}=O\left(q^{n}\right)$, hence $R C V\left(\sum u_{n} z^{n}\right) \geq$ $R C V\left(\sum q^{n} z^{n}\right)=1 / q>0$.

If $1 / f$ is $\operatorname{RPS} \sum b_{n} z^{n}$ on $\Delta\left(0, R^{\prime}\right) \subset \Delta(0, R)$, we get (cf. 2.11) on $\Delta\left(0, R^{\prime}\right)$

$$
\begin{equation*}
\left(\sum a_{n} z^{n}\right) \star\left(\sum b_{n} z^{n}\right)=\left(\sum a_{n} z^{n}\right)\left(\sum b_{n} z^{n}\right)=1 \tag{1}
\end{equation*}
$$

which implies (cf. 3.12)

$$
b_{0}=1 \text { and } \forall n \geq 1, b_{n}=-a_{1} b_{n-1}-\cdots-a_{n} b_{0}
$$

Let $q>0$ such that $\left|a_{n}\right| \leq q^{n}$ and let's prove by induction that $\left|b_{n}\right| \leq q^{\prime n}$ with $q^{\prime}=2 q$. This is true for $n=0$ and if $\left|b_{n-1}\right| \leq q^{\prime n-1}$, we have

$$
\left|b_{n}\right| \leq \sum_{k=1}^{n}\left|a_{k}\right|\left|b_{n-k}\right| \leq \sum_{k=1}^{n} q^{k} q^{\prime n-k}=\sum_{k=1}^{n} \frac{1}{2^{k}} q^{\prime n} \leq q^{\prime n}
$$

Hence by the lemma we have $R C V\left(\sum b_{n} z^{n}\right)=R_{b}>0$ and the formula 1 proves that that the sum function of $\sum b_{n} z^{n}$ is equal to $1 / f$ on $\Delta\left(0, \min \left\{R, R_{b}\right\}\right)$.

Remark 4.13. About the composition of two RPS functions: Suppose $f(z)=$ $\sum a_{n} z^{n}$ on $\Delta(0, R)$ and $g(z)=\sum b_{n} z^{n}$ on $\Delta\left(0, R^{\prime}\right)$ with $b_{0}=0=g(0)$: then $\exists \rho<R^{\prime}$ such that $z \in \Delta(0, \rho) \Rightarrow g(z) \in \Delta(0, R)$ by continuity of g, and for $z \in \Delta(0, \rho)$, we have $f(g(z))=\sum_{n} a_{n} g(z)^{n}$. But, by Cauchy product, g^{n} is RPS on $\Delta(0, \rho)$, and we can note $g(z)^{n}=\sum_{p} b_{n, p} z^{p}$ for some complex numbers $b_{n, p}$. Hence,

$$
f(g(z))=\sum_{n} \sum_{p} a_{n} b_{n, p} z^{p}=\sum_{p}\left(\sum_{n} a_{n} b_{n, p}\right) z^{p}
$$

if we can apply the Fubini theorem to the double series $\left(a_{n} b_{n, p}\right)$.

5 Classical examples

Definition 5.1. We note $\exp (z)=e^{z}, \cos z$ and $\sin z$ the sum functions of the following power series:

$$
\sum \frac{z^{n}}{n!}, \sum \frac{(-1)^{n}}{(2 n)!} z^{2 n} \text { and } \sum \frac{(-1)^{n}}{(2 n+1)!} z^{2 n+1}
$$

Remark 5.2.

- The three power series have $\mathrm{RCV}=\infty$: we already know that for the first one. But if we note these series respectively $\sum a_{n} z^{n}, \sum b_{n} z^{n}$ and $\sum c_{n} z^{n}$ ($a_{n}=1 / n!$) we remark that $\left|b_{n}\right| \leq a_{n}$ and $\left|c_{n}\right| \leq a_{n}$.
- Following this definition, we clearly have, for $z \in \mathbb{C}$,

$$
\cos (-z)=\cos z \text { and } \sin (-z)=-\sin z
$$

Proposition 5.3. We have the following facts :

1. The derivative series of exp, \sin and \cos are respectively \exp , \cos and $-\sin$.
2. For all $z, z^{\prime} \in \mathbb{C}, e^{z+z^{\prime}}=e^{z} e^{z^{\prime}}$.
3. For all $z \in \mathbb{C}, \cos z+i \sin z=e^{i z}$.
4. For all $z \in \mathbb{C}, e^{z}=\lim _{n \infty}\left(1+\frac{z}{n}\right)^{n}$.

Proof. The first point is a consequence of 3.8. For 2, we use the Cauchy product (and $R C V\left(\sum z^{n} / n!\right)=\infty$, so we have absolute convergence everywhere) to get

$$
e^{z} e^{z^{\prime}}=\sum_{n \geq 0}\left(\sum_{k=0}^{n} \frac{(-1)^{k}}{k!} z^{k} \frac{(-1)^{n-k}}{(n-k)!} z^{\prime n-k}\right)=\sum_{n \geq 0} \frac{\left(z+z^{\prime}\right)^{n}}{n!}=e^{z+z^{\prime}}
$$

With the notations of $5.2, b_{n}+i c_{n}=i^{n} a_{n}$ so we get 3. Let's prove 4 : we note $E=\mathbb{N} \subset \mathbb{R}$ and for all $k \in \mathbb{N}$ (with the convention $\binom{n}{k}=0$ if $k>n$),

$$
\alpha_{k} \left\lvert\, \begin{array}{rll}
E & \rightarrow & \mathbb{C} \\
n & \mapsto & \binom{n}{k} \frac{1}{n^{k}} z^{k},
\end{array}\right.
$$

so we get for all $n \in E$,

$$
A(n)=\left(1+\frac{z}{n}\right)^{n}=\sum_{k=0}^{+\infty} \alpha_{k}(n) .
$$

Let's try to apply the double-limit theorem for $n \rightarrow \infty$: we first have for all $k \geq 0$

$$
\forall n \geq k, \quad \alpha_{k}(n)=\frac{z^{k}}{k!} \prod_{i=0}^{k-1}\left(1-\frac{i}{n}\right) \xrightarrow{n \infty} \frac{z^{k}}{k!}
$$

But we also have

$$
\forall n \geq k, \quad\left|\alpha_{k}(n)\right|=\left|\frac{z^{k}}{k!} \prod_{i=0}^{k-1}\left(1-\frac{i}{n}\right)\right| \leq \frac{|z|^{k}}{k!},
$$

and this inequality is also true for $n<k$: we have the normal convergence (cf. $\sum|z|^{n} / n$! converges). The double-limit theorem gives the result.

Remark 5.4. As a consequence of 5.2 and 3 we have

$$
\cos z=\frac{e^{i z}+e^{-i z}}{2} \text { and } \sin z=\frac{e^{i z}-e^{-i z}}{2 i} .
$$

Lemma 5.5. We note $\mathcal{E}=\left\{x \in \mathbb{R}^{+} \mid \cos (x)=0\right\}$. Then $\exists \alpha=\inf \mathcal{E} \in \mathbb{R}_{+}^{*}$.
Proof. We just have to prove that $\mathcal{E} \neq \varnothing$. If not, $\cos x>0$ for all $x \geq 0$ (cf. $\cos 0=1$ and \cos is continuous). This would imply the strict convexity of $-\cos$ on \mathbb{R}_{+}, which cannot happen since for all $x \in \mathbb{R}_{+},-\cos x<0$ (the only negative convex functions on \mathbb{R}_{+}are the constant functions).

Definition 5.6. The constant 2α will be noted π.
Corollary 5.7. We have the following facts :

1. For all $x \in \mathbb{R}, \cos ^{2} x+\sin ^{2} x=1$.
2. $e^{i \pi / 2}=i$, which implies $\forall x \in \mathbb{R}, \cos \left(x+\frac{\pi}{2}\right)=-\sin x$ and $\sin \left(x+\frac{\pi}{2}\right)=\cos x$.
3. $e^{i \pi}=-1$, which implies $\forall x \in \mathbb{R}, \cos (\pi-x)=-\cos x$ and $\sin (\pi-x)=\sin x$.
4. $e^{i 2 \pi}=1$, which implies the 2π-periodicity of the functions of the real variable $x \mapsto \sin x, \cos x$.

Proof. Using the continuity and the algebraic properties of $\tau: z \mapsto \bar{z}$, we have for all $z \in \mathbb{C}$,

$$
\overline{\exp z}=\tau\left(\lim _{n \infty} \sum_{k=0}^{n} \frac{z^{k}}{k!}\right)=\lim _{n \infty}\left(\tau\left(\sum_{k=0}^{n} \frac{z^{k}}{k!}\right)\right)=\lim _{n \infty}\left(\sum_{k=0}^{n} \frac{\bar{z}^{k}}{k!}\right)=\exp \bar{z}
$$

Hence for $z=i x \in i \mathbb{R}$, by 5.3.2, we have $\left(e^{i x}\right)^{-1}=e^{-i x}=\overline{e^{i x}}$, which gives $\left|e^{i x}\right|=1$ and then 1. But $\cos (\pi / 2)=0$, so 5.3.3 implies $e^{i \pi / 2}=i$. Then $e^{i \pi}=$ $\left(e^{i \pi / 2}\right)^{2}=-1$ and $e^{i 2 \pi}=\left(e^{i \pi / 2}\right)^{4}=1$. Just take the real and imaginary parts of $e^{i x} e^{i \lambda \pi}=e^{i(x+\lambda) \pi}$ for $\lambda \in\{1 / 2,1,2\}$ to obtain the complementary assertions in 2 , 3 and 4.

Remark 5.8.

- More generally for $a, b \in \mathbb{R}$, the classical trigonometric formulas

$$
\left\{\begin{array}{l}
\cos (a+b)=\cos a \cos b-\sin a \sin b \\
\sin (a+b)=\cos a \sin b+\sin a \cos b
\end{array}\right.
$$

are a consequence of $e^{i a} e^{i b}=e^{i(a+b)}$.

- The hyperbolic sine and cosine are defined as follow for $z \in \mathbb{C}$:

$$
\left\{\begin{array}{l}
\sinh z=-i \sin (i z)=\sum \frac{z^{2 n+1}}{(2 n+1)!}=\frac{e^{z}-e^{-z}}{2} \\
\cosh z=\cos (i z)=\sum \frac{z^{2 n}}{(2 n)!}=\frac{e^{z}+e^{-z}}{2}
\end{array}\right.
$$

generalizing the definition known for $x \in \mathbb{R}$.
Example 5.9. There's a classical way to calculate the sum of power series of the form $\sum P(n) z^{n} / n$! for a given polynomial $P \in \mathbb{C}[X]$. First the RCV is $+\infty$ by De D'Alembert rule. Then the idea is to decompose P on the base $\{1, X, X(X-$ 1), $\ldots, X(X-1) \ldots(X-d+1)\}$ if $\operatorname{deg} P=d$. Practically, with $\prod_{i=0}^{-1}(X-i)=1$,

$$
\begin{aligned}
\operatorname{deg} P=d & \Rightarrow \exists!\left(a_{0}, \ldots, a_{d}\right) \in \mathbb{C}^{d+1} \mid P=\sum_{k=0}^{d} a_{k} \prod_{i=0}^{k-1}(X-i) \\
& \Rightarrow \sum_{n \geq 0} \frac{P(n)}{n!} z^{n}=\sum_{k=0}^{d} a_{k} \sum_{n \geq 0} \frac{n \ldots(n-k+1)}{n!} z^{n} \\
& \Rightarrow \sum_{n \geq 0} \frac{P(n)}{n!} z^{n}=\sum_{k=0}^{d} a_{k} \sum_{n \geq k} \frac{n \ldots(n-k+1)}{n!} z^{n} \\
& \Rightarrow \sum_{n \geq 0} \frac{P(n)}{n!} z^{n}=\sum_{k=0}^{d} a_{k} \sum_{n \geq k} \frac{z^{n}}{(n-k)!}=\sum_{k=0}^{d} a_{k} z^{k} e^{z}
\end{aligned}
$$

Theorem 5.10. The function $x \in \mathbb{R} \mapsto-\ln (1-x)$ is representable by the power series $\sum_{n \geq 1} x^{n} / n$ on $]-1,1[$.
Proof. More precisely, we have : the primitive series of $\sum z^{n}$ (which has RCV=1) is $\sum_{n \geq 1} z^{n} / n$. Hence we have the result since \ln is defined on \mathbb{R}_{+}^{*} as the primitive F of $x \mapsto 1 / x$ such that $F(1)=0$.

Definition 5.11. We define the complex logarithm as the sum of the power series $-\sum_{n \geq 1}(1-z)^{n} / n$, defined on $\Delta(1,1)$, and we note it $\ln z$.

Proposition 5.12. We have

- for all $z \in \Delta(1,1), \exp (\ln z)=z$;
- for all $z \in \Delta(0, \ln 2), \ln (\exp z)=z$.

Proof. Following 4.13, we write, for $z \in \Delta_{1}$,

$$
\ln ^{n}(1-z)=(-1)^{n}\left(\sum_{k \geq 1} z^{k} / k\right)^{n}=(-1)^{n} \sum_{k \geq 0} a_{k, n} z^{k}
$$

and we set $b_{k, n}=(-1)^{n} a_{k, n} z^{k} / n$!. We have $\left|b_{k, n}\right|=a_{k, n}|z|^{k} / n$! because $a_{k, n} \geq 0$ (cf. $\alpha_{n} \geq 0, \beta_{n} \geq 0 \Rightarrow \sum_{k=0}^{n} \alpha_{k} \beta_{n-k} \geq 0$), hence the series $\sum_{k \geq 0}\left|b_{k, n}\right|$ converges to $(-1)^{n} \ln ^{n}(1-|z|) / n$!. Since the series $\sum(-\ln (1-|z|))^{n} / n$! converges, we can apply the Fubini's theorem, which gives (cf. 4.13) :

$$
\exp (\ln (1-z))=\sum_{k \geq 0}\left(\sum_{n \geq 0} \frac{a_{k, n}}{n!}\right) z^{k}=\sum_{k \geq 0} c_{k} z^{k}
$$

The point is that we know that this quantity is $1-x$ if $z=x \in]-1,1[$. Thus, by 3.12 , we have $c_{0}=1, c_{1}=-1$ and $c_{k}=0$ if $k>1$. Finally we get the result

$$
\exp (\ln (1-z))=1-z
$$

For the other assumption, we first remark that the left member is well defined :

$$
z \in \Delta(0, \ln 2) \Rightarrow\left|e^{z}-1\right|=\left|\sum_{n \geq 1} z^{n} / n!\right| \leq \sum_{n \geq 1}|z|^{n} / n!=e^{|z|}-1 \in[0,1[
$$

Then we write

$$
\ln (\exp z)=\ln \left(1-\left(1-e^{z}\right)\right)=\sum_{n \geq 1} \sum_{k \geq 0} b_{k, n}
$$

with this time $b_{k, n}=(-1)^{n} a_{k, n} z^{k} / n$, where

$$
(-1)^{n} \sum_{k \geq 0} a_{k, n} z^{k}=\left(1-e^{z}\right)^{n}=(-1)^{n}\left(\sum_{p \geq 1} z^{p} / p!\right)^{n}
$$

Again, by induction (and using the definition of the coefficients of the Cauchy product), one can show that $a_{k, n} \geq 0$. This implies $\left|b_{k, n}\right|=a_{k, n}|z|^{k} / n$ and thus

$$
\sum_{k \geq 0}\left|b_{k, n}\right|=\sum_{k \geq 0} a_{k, n}|z|^{k} / n=(-1)^{n}\left(1-e^{|z|}\right)^{n} / n=\left(e^{|z|}-1\right)^{n} / n
$$

with $e^{|z|}-1 \in\left[0,1[\subset]-1,1\left[\right.\right.$. Hence $\sum_{n \geq 1}\left(e^{|z|}-1\right)^{n} / n$ converges and we can, here again, apply the Fubini's theorem. The end of the proof is the same as in the first case, using the known results when $z=x \in]-\infty, \ln 2[$.

Proposition 5.13. For all $x \in]-1,1[$:

1. $\arctan (x)=\sum_{n \geq 0} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}$
2. $\operatorname{arctanh}(x)=\sum_{n \geq 0} \frac{x^{2 n+1}}{2 n+1}=\frac{1}{2} \ln \frac{1+x}{1-x}$
3. $\forall \alpha \notin \mathbb{N},(1+x)^{\alpha}=\sum_{n \geq 0}\binom{\alpha}{n} x^{n}$ with $\binom{\alpha}{n}=\frac{\alpha(\alpha-1) \ldots(\alpha-n+1)}{n!}$ and

$$
\binom{\alpha}{0}=1 .
$$

4. $\frac{1}{\sqrt{1-x^{2}}}=\sum_{n \geq 0} \frac{(2 n)!}{2^{2 n}(n!)^{2}} x^{2 n}$
5. $\arcsin (x)=\sum_{n \geq 0} \frac{(2 n)!}{2^{2 n}(n!)^{2}} \frac{x^{2 n+1}}{2 n+1}$
6. $\frac{1}{\sqrt{1+x^{2}}}=\sum_{n \geq 0}(-1)^{n} \frac{(2 n)!}{2^{2 n}(n!)^{2}} x^{2 n}$
7. $\operatorname{arcsinh}(x)=\sum_{n \geq 0}(-1)^{n} \frac{(2 n)!}{2^{2 n}(n!)^{2}} \frac{x^{2 n+1}}{2 n+1}$

Proof. 1 and 2 follow from 3.8; 5 and 7 follow from 3.8 and 4 and 6 , which follow from 3. So, let's prove 3 : the only power series which can represent $x \mapsto(1+x)^{\alpha}$ is the one given, which is the Taylor series of ϕ. The power series $\sum\binom{\alpha}{n} x^{n}$ has RCV $=1$ by the ratio test and if we note S its sum function we have

$$
S^{\prime}(x)=\sum_{n \geq 0}\binom{\alpha}{n+1}(n+1) x^{n}=\sum_{n \geq 0}\binom{\alpha}{n}(\alpha-n) x^{n}=\alpha S(x)-x S^{\prime}(x)
$$

Hence, since $S(0)=1, S(x)=(1+x)^{\alpha}$ for all $\left.x \in\right]-1,1[$.

