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Abstract

This report (a summary of the work done in Ecole Normale Superieure under the
guidance of Professor Olivier Wittenberg) presents Enrico Bombieri’s proof of the
Riemann Hypothesis for function fields.

The first section is devoted to introducing the notions of Picard group, divisors et
al, the second section derives the analogues of the various well known properties
of the Riemann-zeta function and the third section contains the actual proof which
largely relies on the clever use of the Riemann-Roch theorem, a proof of which
is included in the appendix. The Serre bound, an improvement of the Weil bound
with the latter being equivalent to the Riemann Hypothesis, is also presented at
the end.



Chapter 1

Preliminaries

1.1 Function fields

K is said to be a function field in one variable over F if it is a finitely generated
field extension of transcendence degree 1 over F (ie) ∃x ∈ K such that [K : F (x)]
is finite.

If F is algebraically closed in K, then F is called the constant field of K. This
situation is useful because it implies that for any y ∈ K \ F , [K : F (y)] is again
finite. To see this, note that as F is the constant field of K, y is transcendental
over F and since it is a one degree transcendental extension, y is algebraic over
F (x). This gives us that g(x, y) = 0 for some g ∈ F [X, Y ] but g 6∈ F [Y ].
Thus x is algebraic over F (y) which implies [F (x, y) : F (y)] < ∞. We know
[K : F (x, y)] ≤ [K : F (x)] <∞ which proves that [K : F (y)] <∞.

This condition is not asking for much becauseE (denoting the algebraic closure of
F in K) is a finite extension of F ([E : F ] = [E(x) : F (x)] ≤ [K : F (x)] < ∞)
and so in most cases we can replace F by E to get a function field K with the
base field as its constant field.

It turns out that we can always choose a w ∈ K where K/F (w) is a separable
finite extension if F is a perfect field of characteristic p > 0.

A proof would proceed as follows : K is finitely generated over F , say K =
F (x, x1, . . . , xr). As the degree of transcendence of K/F is 1, x1 is algebraic
over F (x). Thus let g(t, u) be an irreducible polynomial in F [t, u] which satis-
fies g(x, x1) = 0. If only pth powers of t, u occur in g, then as F is perfect of
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characteristic p, g is not irreducible in F [t, u]. So, say t doesn’t occur as a pth

power somewhere. This implies that x is separable over F (x1) as it is a root of
h = g(t, x1), a separable polynomial in F (x1)[t]. And as x is separable over
F (x1), it is also separable over F (x1, x2, . . . , xn) . The number of generators of
F (x1, x2, . . . xn) is lesser and one can induct on the number of generators.

A function field field in one variable over a finite constant field is called a global
function field.

Hereforth K will refer to a global function field over F , the field of q elements
with characteristic p > 0. K as described above can also be realized as the func-
tion field of a smooth projective curve C defined over base field F and from now
on we switch back and forth between the language of function fields and curves as
and when is neccesary, though overall most of the proofs are in terms of finitely
generated function fields. The interested reader is invited to read the chapter enti-
tled Language of curves given in the appendix where we give a brief introduction
to projective curves and the correspondences between curves and function fields.

1.2 The zeta function

The Riemann-zeta function, named after the german mathematician Bernhard Rie-
mann, as is well known is defined to be

ζ(s) :=
∑
n∈N

1

ns

Here N refers to the set of strictly positive natural numbers, which can be realized
as the set of all non-negative combinations of primes under multiplication by using
the fundamental theorem of arithmetic. We would now like to analogously define
Riemann-zeta function for K which invokes the need to introduce the concept of
a prime of K.

1.2.1 Primes and Divisors

A prime of K refers to a pair (R,P ) where R is a discrete valuation ring (which
is nothing but a principal ideal domain with unique maximal ideal) with maximal
ideal P such that the quotient field of R is K. This fits in with our usual notion of
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a prime of Z as one can check that indeed the only discrete valuation rings with
fraction field Q are Rp = {a

b
|GCD(a, b) = 1, p 6 |b} (where P ∩ Z = pZ) for all

primes p.

It turns out that F ⊆ R because any for f ∈ F , we have f q = f . And hence
qv(f) = v(f) where v refers to the valuation1 given by P on K which implies
that v(f) = 0 and hence it belongs to R.

We generally drop the R when referring to the prime and denote it by P instead.

Let SK denote the set of all primes P of K.

To each prime , we assign a degree which is defined to be the degree of the field
extension R

P
/F (ie) [R

P
: F ]. The following proposition shows that this is indeed a

finite number.

Proposition 1.1. Degree of P , a prime of K is finite. In fact,

[
R

P
: F

]
≤ [K : F (y)],

for any y 6= 0 ∈ P.

Proof. As remarked in the previous section,

[K : F (y)] <∞∀y 6∈ F,

and P ∩ F = (0). Pick any m F -linearly independent elements of R
P

, say
u1 + P, u2 + P, . . . , um + P . We will show that u1, u2 . . . , um are F (y) linearly
independent, which will prove the proposition.

If they are not, let f1u1+ . . .+fmum = 0 for fi ∈ F [y]. Without loss of generality
one may assume that y doesn’t divide fi for some i (Divide through out by a power
of y if originally y|fi for all i). As y ∈ P and y doesn’t divide fi, we get a non
trivial relation for u1 + P, . . . , um + P over F which is a contradiction.

The free abelian group generated by primes ofK is called the divisor group which
we shall denote by DK . This is the exact analogue of the positive rationals Q∗

+.

1Refer to the chapter on discrete valuation rings in the appendix.
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A divisor D =
∑

P∈SK
n(P )P is termed effective (or D ≥ 0) if n(P ) ≥ 0 for all

primes P . We can hence define a partial order on DK as

D1 ≥ D2 ⇐⇒ D1 −D2 ≥ 0

The degree of a divisor D can be defined by naturally extending the defintion of
the degree of primes as

D =
∑
P

n(P )P =⇒ deg(D) =
∑
P

n(P ) deg(P ).

To each effective divisor, we assign what is called a norm as follows :

ND = qdeg(D) where |F | = q

Note that norm is multiplicative (ie) N(A + B) = N(A)N(B).And finally, we
define the zeta function for K to be

ζK(s) :=
∑
A≥0

1

(NA)s

where A runs over all effective divisors of K.

Using the fact that DK is the free abelian group generated primes of K, we can
write down a formal expression of an eulerian product for ζK as

ζK(s) =
∑
A≥0

1

(NA)s

=
∏
P∈SK

(
1 +

1

(NP )s
+

1

(NP )2s
+ . . .

)
=
∏
P∈SK

1

1− (NP )−s

which matches with the eulerian product for the usual Riemann-zeta function.
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1.2.2 The Picard Group

Any prime P of K gives a valuation on K as follows:

ordP (r) = max{n|r ∈ P n} for r ∈ R,

which can be extended to all of K naturally.

If ordP (a) > 0, then a is said to have a zero at P and if ordP (a) < 0, a is said to
have a pole at P .

Now, to every element of K∗, we associate a divisor of K using the map below.

div : K∗ → DK , a 
∑
P∈SK

ordP (a)P.

We denote div(a) by (a). The image of the div map is called PK which refers to
the group of principal divisors. It is apriori not clear that div is well-defined and
hence we state the proposition below and give an outline of a proof.

Proposition 1.2.

• Any a ∈ K∗ has only finitely many zeroes and poles.

• (a) = 0 iff a ∈ F ∗.

• Any non constant a has atleast one zero and one pole.

• Degree of (a) = 0. In fact deg ((a)0) = deg ((a)∞) = [K : F (a)] where

(a) = (a)0 − (a)∞ with

(a)0 =
∑

ordP (a)>0

ordP (a)P and

(a)∞ = −
∑

ordP (a)<0

ordP (a)P.

Proof. If a ∈ F ∗, then it is clear that (a) = 0. If not, then K/F (a) is a finite
extension of degree n, say. Let U denote the integral closure of F [a] in K. Then
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U is a dedekind domain (Knapp, Basic Algebra gives a proof). Hence factorize
the ideal Ua as

Ua = P e1
1 P

e2
2 . . . P ek

k .

eis are called the ramification indices of Pis.The localizations of R at the prime
ideals Pi , denoted by OPi

yield all the primes of K at which a has a zero. In fact
ordPi

(a) = ei. Poles of a correspond to zeroes of 1
a

and hence we are done.

(OPi
, Pi) lies above (X, Y ) where X is the localization of F [a] with respect to the

multiplicatively closed set F [a] \ (a) and Y its unique maximal ideal.

To see that [K : F (a)] = deg ((a)0) = deg ((a)∞), note that we are working
over a finite field F which is therefore perfect. Then by a well known theorem in
algebraic number theory, we have

n =
k∑
i=1

eifi,

where fi =
[
OPi

Pi
: X
Y

]
, the relative degree of Pi over the prime of F (a) it lies

above. However Y has degree 1 and so all is well.

We introduce an equivalence relation ∼ where

A ∼ B ⇐⇒ ∃a ∈ K∗ such that A−B = (a).

The Picard group denoted by ClK is DK

PK
. Note that if A ∼ B, then degrees of A

and B are the same.

1.2.3 Riemann-Roch

With each divisor D, there exists an associated F vector-space

L(D) = {k ∈ K∗|(k) +D ≥ 0} ∪ (0)
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We prove below, a little lemma, to show that it is indeed finite dimensional, whose
dimension denoted l(D) will be immensely useful later on. Before that, we would
like to remark that if A and B are two equivalent divisors, (ie) A = B + (h)
for some h ∈ K∗, then L(A) ∼= L(B) by the isomorphism k  kh and hence
l(A) = l(B) (if it is finite). Thus one can talk about l(C) for C ∈ ClK .

Lemma 1.3. L(D) is a finite dimensional F -vector space.

Proof. If l(D) > 0, there exists an f ∈ K∗ such that D + (f) ≥ 0 and we have
found an effective divisor equivalent to D. By the remark made above, L(D +
(f)) ∼= L(D).

Hence without loss of generality, we can assume that D ≥ 0. We will induct on
the number of primes (counting multiplicities) n in the prime support of D, (ie)
if D =

∑
P∈SK

n(P )P , then n =
∑

P∈SK
n(P ). For the base case n = 0, the

divisor D = 0 and therefore L(D) = F which has dimension 1.

Now let D = A+ P , where A ≥ 0 and P is a prime of K. By induction, assume
l(A) is finite. Fix an f in L(A+P )\L(A). Note that it has to be non-zero. Given
any g ∈ L(A+ P ), ordP

(
g
f

)
≥ 0 and hence is in OP .

Let us construct an F -linear map ψ : L(D)→ OP

P
which sends

g  
g

f
+ P.

Since OP

P
is a finite dimensional F -vector space (dimension is the degree of P ), it

is enough to check that kernel(ψ) is finite dimensional.

It turns out that the kernel is L(A). (It is easy to see that if g lies in the kernel,
g
f
∈ P and hence g ∈ L(A)) and hence by our induction hypothesis, we are done.

The following is an useful lemma which tells us that L(D) of any divisor D with
a negative degree is the zero vector space.

Lemma 1.4. Let A be a divisor. If deg(A) ≤ 0 and A 6= (a) for any a ∈ K∗, then
l(A) = 0. If A = (a), then l(A) = 1.

7



Proof. If A = (a), then by above remark, L(A) ∼= L(0). If k ∈ L(0), then k has
no poles. Therefore k ∈ F . And if k ∈ F , then clearly, k ∈ L(0). Thus L(0) = F
and has dimension 1.

If deg(A) < 0, and if x ∈ L(A), by definition of L(A), (x) + A ≥ 0 which gives
us a contradiction that

deg((x) + A) = deg((x)) + deg(A) = deg(A) ≥ 0.

If deg(A) = 0, and if x ∈ L(A), by definition of L(A), (x) + A ≥ 0 . Thus, let
(x) + A =

∑
a(P )P where a(P ) ≥ 0 for all P . Now

∑
a(P ) deg(P ) = deg((x) + A) = deg(A) = 0

which implies that a(P ) = 0 for all P . Thus A = ( 1
x
).

Bombieri’s proof of the Riemann Hypothesis for function fields essentially hinges
on the crucial use of the Riemann-Roch theorem, independently an important tool
in complex analysis and algebraic geometry whose statement we give below and
the proof in the appendix.

Theorem 1.5 (Riemann-Roch). Given K, there exists an integer g ≥ 0 and a
class C of the Picard group ClK such that for any divisor D and any X ∈ C, we
have

l(D) = l(X −D) + deg(D)− g + 1

g is called the genus of K and C, the canonical class of K.

Corollary 1.6. Some immediate and oft used corollaries are

• l(C) = g.

• deg(C) = 2g − 2.

• deg(D) > 2g − 2 =⇒ l(D) = deg(D)− g + 1.

• If deg(D) = 2g − 2 and D 6∈ C, then l(D) = g − 1.
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Proof.

• Take D = 0.

• Take D = X for any X ∈ C.

• For any X ∈ C, deg(X −D) < 0 and thus by lemma 1.4, l(C −D) = 0.
Now apply Riemann-Roch.

• Similar reasoning as above. Only note that X −D 6= (a) for any a 6∈ K∗

1.3 Notation

Here we fix the notations we will use in the remaining chapters.

• F denotes the finite field of q = pa elements where p is a prime.

• F is a fixed algebraic closure of F .

• Fn is the nth degree extension of F which therefore sits inside F .

• K is a function field in one variable over F with F as its constant field. (ie)
K is a finitely generated one degree transcendental extension of F where F
is algebraically closed in K.

• K denotes the compositum of fields K and F , (ie) K = KF .

• Kn denotes the compositum of K and Fn which sits inside K, (ie) Kn =
KFn.

• SK is the set of all primes of K

• DK refers to the divisor group of K

• ClK is the Picard group of K.

• Generally D refers to a divisor and P would mean a prime of K unless
otherwise specified.
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• Given a divisor D

L(D) = {k ∈ K∗|(k) +D ≥ 0} ∪ {0}

• l(D) = dimF (l(D))

• ordP refers to the valuation on K given by a prime (OP , P ).

• g would in general mean the genus of K unless otherwise mentioned.
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Chapter 2

The zeta function

The first question to ask is whether the various properties which hold good for ζ
are true for ζK as well. In this chapter, we investigate the radius of convergence
for ζK and find a rational expression which gives rise to an analytic continuation
and find a functional equation satisfied by it.

ζK(s) =
∑

A≥0∈DK

(NA)−s.

Let us introduce some notation now

• an is the number of primes of K which have degree n.

• bn is the number of effective divisors of degree n.

ζK(s) =
∑
A≥0

(NA)−s

=
∑
A≥0

q− deg(A)s

=
∞∑
n=0

bnq
−ns

Thus to get an estimate for the radius of convergence, we would like to bound bn.
Apriori, it is not even clear whether the bns so defined are finite quantities or not
and hence we prove the following proposition:
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Proposition 2.1. Number of effective divisors of K of degree n is finite and hence
number of primes of K of degree n is also finite.

Proof. If L is an extension of some field T and (R,P ) and (S,Q) are primes of
L and T respectively, then (R,P ) is said to lie above (S,Q) if R ∩ T = S and
P ∩ T = Q. And equivalently, (S,Q) is said to lie below (R,P ).

As shown in 1.1, there exists an x ∈ K such that K/F (x) is a finite separable
extension. If an effective divisor D =

∑
P n(P )P has degree n, then clearly

n(P ) ≤ n for all primes P . Also if (S,Q) is the prime of F (x) which lies below
(R,P ), then as

deg(P ) =

[
R

P
: F

]
=

[
R

P
:
S

Q

] [
S

Q
: F

]
≥ deg(Q),

deg(Q) is also bounded above by n.

The idea now is to show that there are only finitely many primes in F (x) of a
given degree, that over a given prime of F (x) there lies only finitely many primes
of K and that every prime of K does indeed lie above a prime of F (x). Showing
these concludes the proof of this proposition.

Claim: There are only finitely many primes of F (x) of degree n.

If (R,P ) is a prime of F (x), either x ∈ R or x 6∈ R.

Consider the case when x ∈ R. This implies F [x] ⊆ R as F ⊆ R. Therefore
P ∩ F [x] is a non-zero prime ideal (nonzero because P 6= (0) and hence there
exists r

s
∈ P where r 6= 0, s ∈ F [x] and hence s r

s
= r ∈ P ∩F [x]). Since F [x] is

a principal ideal domain, P ∩ F [x] = (f) where f ∈ F [x] is a monic irreducible
polynomial.

As one would expect, the localisation of F [x] at the set F [x] \ (f) (the localized
ring, we shall temporarily call X) is R.

To see that, if possible take an element r
s
∈ X where r, s ∈ F [x] and s 6∈ (f)

such that r
s
6∈ R. As R is a DVR, this implies s

r
∈ R and in fact is in P . As

r ∈ F [x] ⊆ R, r s
r

= s ∈ P ∩ F [x] = (f), a contradiction to the choice of s. This
shows that X ⊆ R.

To prove the other inclusion, if possible take an element r
s
∈ R which is not there

inX where r, s ∈ F [x] and are coprime to each other (Note that one can do this as
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fraction field ofX andR are both F (x) and F [x] is a unique factorisation domain.)
As X is a DVR, this would imply s

r
is in X and in fact in its maximal ideal. Thus

s is also in the maximal ideal of X and hence f |s. Since P ∩ F [x] = (f), s ∈ P
also and thus r

s
s = r ∈ P ∩ F [x] = (f) which gives us that f |r, a contradiction

to the coprime nature of r and s.

The degree of X is
[
F [X]
(f)

: F
]

which is just the degree of the polynomial f .

For the second case, when x 6∈ R, we have 1
x
∈ R as it is a DVR. One can now use

the automorphism x  1
x

of F (x) to reduce to the case of a DVR R containing
x. Anyway, finally we find that F 1

x
] localised at the set F [ 1

x
] \ ( 1

x
) is the DVR R.

And hence degree of (R,P ) = 1. This prime is referred to as the prime at infinity.

Since there are only finitely many polynomials of degree n in F [x] we are done
proving the claim.

Claim: If L is a finite separable extension of T , and (S,Q) is a prime of T , there
are only finitely many primes of L which lie above it.

Let U denote the integral closure of S in L. It is a well-known fact that U is a
dedekind domain with fraction field L (Knapp, Basic Algebra). Let I denote the
ideal generated by Q in U . Since U is a dedekind domain, let us factorize I into
maximal ideals.

I = Mk1
1 Mk2

2 . . .Mkr
r .

It turns out that the only maximal ideals of U are M1,M2, . . . ,Mr. To see this, if
M is any other maximal ideal of U , then M ∩ S is a non-zero prime ideal of S.
(To see that it is non-zero, note that any m 6= 0 ∈ M is integral over S and hence
mt + st−1m

t−1 + . . .+ s0 = 0 with s0 6= 0 ∈ S and hence s0 ∈M ∩S). The only
non-zero prime ideal of a discrete valuation ring is its maximal ideal and hence
M ∩ S = Q which would mean I ⊆M and hence M = Mi for some i ≤ r.

Let (R,P ) be a prime of L which lies above (S,Q). As R is a discrete valuation
ring with fraction field L, it is integrally closed in L. And R contains S which
implies that it contains U also.

P ∩ U is a non-zero prime ideal of U . (For if U ∩ P is the zero ideal, it means
that any u 6= 0 ∈ U is a unit in R. The fraction field of U is L and hence R = L
which is not possible as R is a discrete valuation ring). Hence it is equal to Mi for
some i.
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We check that UMi
(which is the ring U localised with respect to the set U \Mi)

is the DVR (R,P ).

A check: If r
s
∈ UMi

where r, s ∈ U and s 6∈ Mi such that r
s
6∈ R, then because

R is a DVR, s
r
∈ R and in fact is in P . Thus r s

r
= s ∈ P which implies that

s ∈ P ∩ U = Mi, a contradiction to the choice of s. Thus UMi
⊆ R.

To prove the other inclusion, if r ∈ R and r 6∈ UMi
, then 1

r
∈ UMi

as the latter
is a DVR and in fact it belongs to the maximal ideal of UMi

. Thus 1
r

= s
t

where
s ∈ Mi, t ∈ U \Mi. As U ∩ P = Mi, s ∈ P and hence rs = t

s
s = t ∈ P which

implies t ∈ P ∩ U = Mi, a contradiction.

And to conclude, UMi
, the localisation of U with respect to U \Mi is a discrete

valuation ring for any i as U is a dedekind domain and Mi is one of its maximal
ideals.

If (R,P ) is a prime of K, then it is a routine but weary check to see that (R ∩
F (x), P ∩ F (x)) is a prime of F (x) which lies below it and hence we leave it to
the conscientious reader to verify it.

To get a bound on bn, we first estimate how many effective divisors are there in
a given equivalence class of divisors and then count the number of equivalence
classes of a given degree

Proposition 2.2. Number of effective divisors in an equivalence class of divisors
Ã is ql(Ã)−1

q−1
.

Proof. Without loss of generality, choose a representative A of Ã such that A 6≥ 0
(Choose an arbitrary representative B of the class and pick a prime P which does
not lie in the support of B and set A = B + ( 1

f
) where f ∈ K∗ has a zero at P ).

Now l(Ã) = 0 if and only if there are no effective divisors in Ã. For if l(A) > 0,
there exists an f ∈ K∗ such that A + (f) ≥ 0 and hence you have found an
equivalent effective divisor. And if there exists an effective divisor D equivalent
to A, then D = A + (f) where f ∈ K∗ as A 6≥ 0 and thus f ∈ L(A). Hence
l(A) > 0 and the proposition holds for l(Ã) = 0.

If it is not zero, then let us define a map ψ as follows :

ψ : L(A) \ {0} → Effective divisors of Ã
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which sends f  A+(f). ψ is well-defined and surjective. If ψ(f) = ψ(h), then
A + (f) = A + (h) and hence f

h
∈ F ∗. And conversely, ψ(x) = ψ(xf) when

f ∈ F ∗.

Number of elements in the domain of ψ would be ql(A) − 1 and each element in
the range has a preimage set of cardinality q−1 which gives us the required result.

Let the number of divisor classes of degree 0 be called hK . This is called the class
number of K.

Proposition 2.3. Number of divisor classes of degree n is either 0 or hK .

Proof. Construct the deg map which assigns to each equivalence class of divisors,
its degree

deg : ClK → Z,

and let the image of deg be δZ. Note that δ 6= 0 as deg(P̃ ) for any equivalence
class containing a prime P of K has degree atleast 1.

If n 6∈ δZ, then number of divisor classes of degree n = 0. If n is a multiple of δ
and n ≥ g where g is the genus of K, then by Corollary 1.6 of the Riemann-Roch
theorem, for any divisor D of degree n

l(D) ≥ deg(D)− g + 1 ≥ 1

Thus each divisor class of degree n has an effective divisor representative (Pick
f ∈ K∗ ∩ L(D) and look at D + (f)) and hence number of divisor classes of
degree n is atmost number of effective divisors of degree n which by proposition
2.1 is finite. Thus number of divisor classes of degree n for large enough n is
finite.

Pick an N ≥ g and let A = {A1, A2, . . . , Ah} be the set of all divisor classes
of degree N where h is the number of effective divisor classes of degree N . For
any other n ∈ δZ, let B = {Bα}α∈I for some index set I be the set of all divisor
classes of degree n. Fix a B in B.

Consider the set X = {B − Bα + A1}α∈I . Clearly any element of X is a divisor
class of degree N and no two divisor classes in it are equivalent. Hence X is a

15



subset of A which tells us that I is a finite set of cardinality atmost h. Similarly
we can prove h ≤ |I|. Thus for any n ∈ δZ , number of divisor classes of degree
n is a constant and as 0 ∈ δZ, the constant is nothing but hK , the class number.

2.0.1 Convergence of the zeta function

Using the above propositions, we can, for large enough n (namely for any n ≥
2g − 1), give an exact expression for bn (!) as follows :

bn =

{
hK

qn−g+1−1
q−1

if n ∈ δZ;

0 else.
(2.1)

This is because n ≥ 2g− 1 implies that l(D) = deg(D)− g+ 1 by Corollary 1.6
of the Riemann-Roch theorem where deg(D) = n.

Since ζK(s) =
∑∞

n=0 bnq
−ns, one can see that ζK converges absolutely for all s

where Re(s) > 1.

Let us now examine the convergence of the euler product. Re(s) > 1.

ζK(s) =
∏
P∈SK

1

1− (NP )−s

=
∞∏
n=1

(1− q−ns)−an

where recall that an is the number of primes of K of degree n. We now prove a
little lemma concerning the convergence of infinite products.

Lemma 2.4. If x1, x2 . . . , xn, . . . are complex numbers then
∏∞

n=1(1 − xn) con-
verges to a non-zero value if

∑∞
n=1 |xn| converges.

Proof. As
∑
|xn| converges, for large enough n, |xn| < 1

2
and
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|log(1− xn)| = |xn +
xn

2

2
+ . . .|

≤ |xn|+
|xn|2

2
+ . . .

≤ |xn|
1− |xn|

≤ 2|xn|.

Thus
∑∞

n=1 |log(1− xn)| converges and hence the infinite product also converges
(to the exponential of

∑
log(1− xn)) to a non-zero value.

Thus for the euler product to converge for any s with Re(s) > 1, we would want
the following to converge :

∞∑
n=1

an|q−ns|

However 0 ≤ an ≤ bn for any n and
∑∞

n=0 bnq
−ns converges absolutely for

Re(s) > 1 and hence we are through. In fact, the lemma shows that ζK has no
zeroes in the region Re(s) > 1.

2.0.2 A rational expression for zeta

ζK(s) =
∞∑
n=0

bnq
−ns.

By a change of variable, namely u = q−s, we get

ζK(s) = ZK(u) =
∞∑
n=0

bnu
n.

Hereafter we shall interchangably use ζK and ZK as and when is convenient.
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It is a well known fact that there exists an analytic continuation of the Riemann-
zeta function to all points of C except at s = 1 where it has a pole. The situation
for ζK is even better as there exists a rational function which analytically extends
it to the whole of the complex plane. We prove this in a series of steps during
the course of which we shall also prove Schmidt’s theorem which says that there
exists a divisor of every degree.

Lemma 2.5. K denotes (as usual) a global function field over F , a finite field of
order q and characteristic p. Let δZ be the image of the map deg : ClK → Z
which assigns to each divisor class, its degree. Then there exists a polynomial
LK [u] ∈ Z[u] with LK(0) = 1 such that

ζK(s) =
LK(q−s)

(1− q−δs)(1− qδ(1−s))
.

This holds for all s with Re(s) > 1. The right hand side provides an analytic
continuation to the whole of the complex plane and the poles of ζK are simple.

Proof.

ZK(u) =
∞∑
n=0

bnu
n.

Pick N ∈ N such that Nδ ≥ 2g − 1 and (N − 1)δ < 2g − 1. So

ZK(u) =
N−1∑
i=0

biδu
iδ +

∞∑
i=N

biδu
iδ.

Let p(u) =
∑N−1

i=0 biδu
iδ. We have already shown that bn = (hK)(qn−g+1−1)

q−1
for any

n ≥ 2g − 1 which is divisible by δ. Thus

ZK(u) = p(u) +
hK
q − 1

∞∑
i=N

(qiδ−g+1 − 1)uiδ

= p(u) +
hK
q − 1

(
qNδ−g+1uNδ

1− (qu)δ
− uNδ

1− uδ

)
= p(u) +

hK
q − 1

(
r(u)

(1− (qu)δ)(1− uδ)

)
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for some r(u) ∈ Z[u] and one can check that q− 1 divides r(u). Thus there exists
LK(u) ∈ Z[u] such that

ZK(u) =
LK(u)

(1− uδ)(1− (qu)δ)
.

From the rational expression , it is clear that the poles of ZK are simple. We note
that u = 1 and u = 1

q
are indeed poles because LK(1), LK(1

q
) can be verified to

be non-zero.

Also LK(0) = ZK(0) = 1.

It turns out that δ = 1 and to prove it, we need to consider field extensions of F
and the compositum ofK with them. Let Fn denote the n-th degree field extension
of F and Kn = KFn. In terms of curves, if one extends the base field to Fn and
considers curve C to be defined over Fn, then the function field of C so got is Kn.

One can construct the corresponding zeta function to be

ζKn(s) =
∞∑
i=0

bi(Kn) (qn)(−is) .

where bi(Kn) refers to the number of effective divisors of Kn of degree i. Simi-
larly we can define the corresponding ZKn and LKn where

ZKn(u′) =
LKn(u′)

(1− u′δ′)(1− (qnu′)δ′)
,

where δ′Z is the image of the degree map deg : ClKn → Z. The crucial observa-
tion is that the poles of ZKn are again simple and u′ = 1, u′ = 1

qn are both simple
poles.

ZK and ZKn are related quite naturally as follows

ZKn(un) =
∏

{z∈C|zn=1}

ZK(zu). (2.2)
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For a proof, we refer the reader to look at Rosen’s book Number theory in function
fields.

Now we are in a position to prove that δ is indeed 1.

Theorem 2.6 (Schmidt). There exists a divisor of K of degree 1.

Proof.

ZKn(un) =
∏

{z|zn=1}

ZK(zu)

=
∏

{z|zn=1}

LK(zu)

(1− (zu)δ)(1− (qzu)δ)

If we take n = δ, then z runs over the δ-th roots of unity and hence

ZKδ
(uδ) =

∏
{z|zδ=1} LK(zu)

(1− uδ)δ(1− (qu)δ)δ
.

As zδ = 1, it follows from the expression of LK that LK(zu) = LK(u) and hence
LK(z) 6= 0 for any z such that zδ = 1. Therefore u = 1 is a simple pole of
ZKδ

(uδ) . However the above expression implies that it is a pole of order δ which
tells us that δ = 1.

Thus we have

ZK(u) =
LK(u)

(1− u)(1− qu)
where LK(u) ∈ Z[u]. (2.3)

2.0.3 The functional equation

Define ξ(s) = q(g−1)sζK(s) where g is the genus of K.

Lemma 2.7.
ξ(s) = ξ(1− s).

Proof. Let us convert the function equation in terms of u = q−s. Note that
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ζK(s) =
∞∑
n=0

bnq
−ns =

∞∑
n=0

bnu
n = ZK(u).

Thus

ζK(1− s) =
∞∑
n=0

bnq
−n+ns =

∞∑
n=0

bn

(
1

qu

)n
= ZK

(
1

qu

)
.

Thus the functional equation needed to be proved translates to

u1−gZK(u) =

(
1

qu

)1−g

ZK

(
1

qu
.

)

SetB(u) = (q−1)u1−gZK(u). So what we need to show is thatB(u) = B
(

1
qu

)
.

So let us actually expand out B(u). Let

Cl+K := {Ã ∈ ClK | deg(Ã) ≥ 0},

CliK := {Ã ∈ ClK |0 ≤ deg(Ã) ≤ i}.
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B(u) = (q − 1)u1−gZK(u)

= (q − 1)u1−g

 ∑
Ã∈Cl+K

ql(Ã) − 1

q − 1
udeg(Ã)


= u1−g

 ∑
Ã∈Cl+K

ql(Ã)udeg(Ã) −
∑
Ã∈Cl+K

udeg(Ã)


= u1−g

 ∑
Ã∈Cl2g−2

K

ql(Ã)udeg(Ã) +
∑

{Ã| deg(Ã)≥2g−1}

ql(Ã)udeg(Ã) −
∑
Ã∈Cl+K

udeg Ã


=

∑
Ã∈Cl2g−2

K

ql(Ã)udeg(Ã)−g+1 + hk

(
∞∑

n=2g−1

qn−g+1un+1−g −
∞∑
n=0

un+1−g

)
(Using (2.1) and 2.6)

=
∑

Ã∈Cl2g−2
K

ql(Ã)udeg(Ã)−g+1 + hK

(
qgug

1− qu
− u1−g

1− u

)
.

Let

R(u) :=
∑

Ã∈Cl2g−2
K

ql(Ã)udeg(Ã)−g+1,

S(u) := hK

(
qgug

1− qu
− u1−g

1− u

)
.

It is a trivial check to see that S(u) = S
(

1
qu

)
. Now ,

R

(
1

qu

)
=

∑
Ã∈Cl2g−2

K

ql(Ã)

(
1

qu

)deg(Ã)−g+1

=
∑

Ã∈Cl2g−2
K

ql(Ã)−deg(Ã)+g−1ug−1−deg(Ã)

We now define a map ψ on Cl2g−2
K which sends Ã → C̃ − Ã where C̃ is the

canonical divisor class of K.
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Note that by Corollary 1.6 of the Riemann-Roch theorem, deg(C̃) = 2g − 2 and
hence ψ is well-defined. In fact it is clear that ψ is a bijection.

Using the facts that deg(C̃ − Ã) = 2g − 2 − deg(Ã) and that l(C̃ − Ã) =
l(Ã) − deg(Ã) + g − 1 which are derived from the Riemann-Roch theorem, we
conclude as follows:

R(u) =
∑

Ã∈Cl2g−2
K

ql(Ã)udeg(Ã)−g+1

=
∑

Ã∈Cl2g−2
K

ql(C̃−Ã)udeg(C̃−Ã)−g+1, (ψ is a bijection)

=
∑

Ã∈Cl2g−2
K

ql(Ã)−deg(Ã)+g−1ug−1−deg(Ã).

The functional equation translates to

LK

(
1

qu

)
= q−gu−2gLK(u). (2.4)

The above equation tells us the degree of LK ! We know that LK(0) = 1. So let

LK(u) = 1 + r1u+ . . .+ rku
k where r1, r2 . . . , rk ∈ Z.

The functional equation implies that

1 +
r1
qu

+ . . .+
rk
qkuk

= u−2gq−g
(
1 + r1u+ . . .+ rku

k
)

=
1

u2gqg
+

r1
u2g−1qg

+ . . .+
rk

u2g−kqg

Hence k = 2g and rk = qg.

We summarize everything in the following theorem.
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Theorem 2.8. There exists a polynomial LK [u] ∈ Z[u] of degree 2g where g is
the genus of K with LK(0) = 1 and the coefficient of u2g in Lk equal to qg such
that

ζK(s) =
LK(q−s)

(1− q−s)(1− q(1−s))
.

This holds for all s with Re(s) > 1. The right hand side provides an analytic
continuation to the whole of the complex plane and the only poles of ζK are at
s = 0, 1 which are simple.

ζK satisfies a functional equation as described above.

2.0.4 A corollary of the functional equation

Since LK is a polynomial of degree 2g with LK(0) = 1, let

LK(u) =

2g∏
i=1

(1− αiu)

be the factorization of LK in C[u]. Thus the zeroes of LK form the set { 1
αi
|1 ≤

i ≤ 2g}.

The functional equation (2.4) implies that LK
(
αi

q

)
= 0 and hence q

αi
= αj for

some j.

Thus αi  q
αi

is a permutation of the αis. This fact shall be used crucially in the
proof of the Riemann Hypothesis.
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Chapter 3

Riemann Hypothesis for function
fields

Theorem 3.1 (Riemann Hypothesis for function fields). The zeroes of ζK(s) lie
on the line Re(s) = 1

2
.

First conjectured in 1924 by E.Artin for hyper-elliptic function fields, a proof for
the case g = 1 was given by Hasse in 1934. Later, in the early 1940s, A.Weil came
up with two different proofs which required some heavy machinery of algebraic
geometry.

However S.A.Stepanov found a proof in the 1960s, albeit in special cases, which
largely used just the Riemann-Roch. In this section, we present Bombieri’s proof
which used Stepanov’s ideas to prove the result for the general case.

u = q−s gives ZK(u) = ζK(s). Recall the rational expression for ZK ,

ZK(u) =
LK(u)

(1− u)(1− qu)
.

Using the fact that

LK(u) =

2g∏
i=1

(1− αiu) ,

and that the only simple poles are at u = 1, 1
q
, the zeroes ofZK are just {α1, α2, . . . , α2g}.
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Thus the Riemann hypothesis reduces to proving

|αi| =
√
q∀i ≤ 2g.

Equation (2.2) gives

ZKm(um) =
∏

{z|zm=1}

ZK(zu)

=⇒ LKm(um)

(1− um)(1− qmum)
=

∏
{z|zm=1}

LK(zu)

(1− zu)(1− qzu)

Using the fact that
∏
{z|zm=1}(1− zt) = 1− tn for any t, we have

LKm(um) =

2g∏
i=1

(1− αmi um) (3.1)

The zeroes of ZKm for the function field Km over Fm correspond to 1
αm

i
for all i ≤

2g. Thus if the Riemann Hypothesis holds for Km, this would mean |αmi | = q
m
2

which implies |αi| =
√
q and thus Riemann hypothesis holds for K. We record

these observations below in the form of a lemma.

Lemma 3.2. If for some m ∈ N, the Riemann Hypothesis holds for Km, then the
Riemann Hypothesis holds for our given function field K over F .

3.1 The Weil bound

The euler product form for ZK ,

ZK(u) =
∞∏
d=1

(1− ud)−ad ,

gives us another expression for ZK as follows:
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logZK(u) =
∞∑
d=1

−ad log(1− ud)

=
∞∑
d=1

ad

(
ud +

u2d

2
+ . . .

)
=

∞∑
d=1

Nd(K)

d
ud,

where Nm(K) =
∑

d|m dad. Thus

ZK(u) = exp

(
∞∑
m=1

Nm(K)

m
um

)
.

The quantity Nm(K) so defined turns out to be equal to N1(Km) (the number of
rational points in the corresponding curve when the base field is extended to Fm)!
(For m = 1 it is clear)

This remarkable fact we prove below by actually giving an expression in terms
of αis for the two quantities which has an important bearing in the proof of the
Riemann Hypothesis for function fields.

Lemma 3.3.

Nm(K) = qm + 1−

(
2g∑
i=1

αmi

)

Proof.

ZK(u) =

∏2g
i=1 (1− αiu)

(1− u)(1− qu)
= exp

(
∞∑
m=1

Nm(K)

m
um

)

Taking the logarithmic derivative for both the expressions, we end up with

−

(
2g∑
i=1

αi
1− αiu

)
+

1

1− u
+

q

1− qu
=

∞∑
m=1

Nm(K)um−1.

Multiplying by u on both sides and expanding, we get
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−

(
2g∑
i=1

∞∑
m=1

(αiu)
m

)
+

∞∑
m=1

um +
∞∑
m=1

(qu)m =
∞∑
m=1

Nm(K)um.

Equating the coefficients of um gives us the neccesary equation.

Lemma 3.4.

N1(Km) = qm + 1−

(
2g∑
i=1

αmi

)
.

Proof. This time, we consider the two expressions for the zeta function of the
function fieldKm = KFm over the base field Fm, which is the degreem extension
of the field F .

ZKm(u′) =
LKm(u′)

(1− u′)(1− qmu′)

=

∏2g
i=1 (1− αmi u′)

(1− u′)(1− qmu′)
(By equation (3.1))

and

ZK(u′) =
∞∑
k=0

bk(Km)u′k.

Taking logarithmic derivative for both the expressions and evaluating at 0, we get

−

(
2g∑
i=1

αmi

)
+ 1 + qm =

Z ′Km
(0)

ZKm(0)
=
b1(Km)

b0(Km)
.

b0(Km) is the number of effective divisors of Km of degree 0 and hence is equal
to 1. b1(Km) = a1(Km) = N1(Km) and we are done.
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Note the implications of the above lemma when combined with the Riemann Hy-
pothesis. The latter tells us that |αi| =

√
q which therefore gives us what is known

as the Weil bound on the number of rational points of the smooth projective curve
whose function field is K, which we state below

Theorem 3.5 (Weil bound).

|N1(K)− q − 1| ≤
2g∑
i=1

|αi| = 2g
√
q.

3.2 Bombieri’s proof

Recall the expression for Nm(K) (refer to lemma 3.3)

Nm(K) = qm + 1−

(
2g∑
i=1

αmi

)
,

and construct the following series

∞∑
m=1

(Nm(K)− qm − 1)um = −
2g∑
i=1

∞∑
m=1

(αiu)
m

The radius of convergence of the series on the right side is the minimum of the
set { 1

|αi|}
2g
i=1. If we can show that there exist constants A,B such that Nm(K) =

Aq
m
2 + B + qm, then the radius of convergence of the series on the left is atleast

1√
q
.

This would mean that for all i ≤ 2g, 1
|αi| ≥

1√
q
. Using the fact that αi  q

αi
is a

permutation of the αis, we get

|αi|
q
≥ 1
√
q

and hence
√
q ≤ |αi| ≤

√
q for all i which induces equality and concludes the

proof of the Riemann Hypothesis !.

So all we are left to do is to show that Nm(K) = qm +O(qm/2) for all m.
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Note that by X(u) = O(f(u)), we mean that there exist constants A,B such that
|X(u)| < A + Bf(u). Since we have proved that N1(Km) = Nm(K) in the
section on Weil bound, we need to prove that the number of rational points in Km

for any m is O(q
m
2 ) + qm.

In the next few sections, we find an upper bound and lower bound for N1(K)
by imposing certain conditions on K/F (we will see that if they hold for K/F ,
they will hold for Km/Fm for any m) and finally find a constant field extension
Kn/Fn which satisfies these conditions. Having proved the Riemann Hypothesis
for Kn/Fn, we conclude using Lemma 3.2(which tells us that if the Riemann
Hypothesis holds for any constant field extension Kn/Fn, then the result will also
hold for K/F ).

3.2.1 Curves

In the following sections, we will switch to using the language of curves and we
again invite the reader to go through the chapter Language of curves given in the
appendix before going ahead. However below, we briefly summarize a few ideas
that we need for proving Bombieri’s lemma.

F is the finite field of order q and characteristic p. F denotes the algebraic closure
of F and π, its frobenius automorphism which sends x xq.

Let PN = PN(F ) be the projective space of F . The set of F -rational points of
PN(F ) defined to be

PN(F ) := {[a0, a1, . . . , aN ] ∈ PN(F )|ai ∈ F∀i ≤ N}

is exactly the set of points fixed by the automorphism φ of PN(F ) which sends

[β0, β1, . . . , βN ] [βq0 , β
q
1 , . . . , β

q
N ].

Let C = C(F ) be a smooth projective curve defined over F . Note that φ maps
C(F ) to itself and the rational points of C denoted C(F ) (which is the set C ∩
PN(F )) are the fixed points of φ in C(F ).

Define I(C) to be the ideal generated in F [x0, x1, . . . xN ] by the homogeneous
polynomials with coefficients in F which vanish on C.

30



K consists of all rational functions f
g

such that

• f and g are homogeneous polynomials of the same degree inF [x0, x1, . . . , xN ].

• g 6∈ I(C)

• Two functions f
g

and f ′

g′
are identified if fg′ − f ′g ∈ I(C).

Likewise any element ofK looks like f̄
ḡ

where f̄ , ḡ are homogeneous polynomials
of the same degree, this time in F [x0, x1, . . . , xN ] such that ḡ does not vanish
entirely on C with a similar identification process.

Given a point α of C, we can associate a prime of K with it as follows:

Oα =

(
f

g
∈ K|g(α) 6= 0

)
,

where its maximal ideal denoted by Pα is

Pα =

{
f

g
:
f

g
∈ Oα, f(α) = 0

}
.

There is a natural action of the Galois group of F over F on C. It turns out
that (Oα, Pα) = (Oβ, Pβ) if and only if there exists σ ∈ Gal

(
F/F

)
such that

σ(α) = β. Thus Galois orbits of C are in one to one correspondence with primes
of K. It is also a fact that deg (Pα) = |{σ (α) |σ ∈ Gal

(
F/F

)
}|, the cardinality

of the Galois orbit of α. Hence as F rational points of C are fixed points of the
Galois group action, they correspond exactly to primes of degree 1 of K.

3.2.2 An upper bound for N1(K)

Theorem 3.6 (Bombieri). Let g be the genus of C where the following assump-
tions hold

• q = |F | is an even power of p, say q = p2b for some b ∈ N.

• (g + 1)4 < q
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Then N1(K) ≤ q + 1 + (2g + 1)
√
q.

Idea of the proof : We find a function f with a zero at almost all rational points
but very few poles (that too, of small order). So for some small s,

(a1 +O(1)) ≤ deg((f)0) = deg((f)∞) ≤ s.

If we can construct a map ψ which sends h ◦ φ h for h ◦ φ in the domain of ψ
and if h ◦ φ is in the kernel of ψ, then h ◦ φ(β) = h(β) = 0 for any rational point
β where h is defined.

A good place to look for functions with very few poles (that too of low order) is

L(mPα) = {k ∈ K∗|(k) +mPα ≥ 0},

for some rational point α. The detailed proof is given below.

Proof. If the number of rational points of C = 0, then there is nothing to prove
as N1(K) is exactly the number of rational points in C. If not, let α be a rational
point of C and (Oα, Pα), the corresponding prime of K.

For every positive integer m, define an F vector space,

Rm := L(mPα) = {f ∈ K∗|(f) +mPα ≥ 0} ∪ {0}.

As shown in Lemma 1.3, it is finite dimensional. Also note thatRm ⊆ Rn∀m ≤ n.

Since the base field has characteristic p,

Rpe

m := {fpe|f ∈ Rm},

for any positive integer e, is also an F vector space and is a subspace of Rmpe . To
see this,
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f ∈ Rm =⇒ (f) +mPα ≥ 0

=⇒ pe(f) +mpePα ≥ 0

=⇒ (fp
e

) +mpePα ≥ 0

=⇒ fp
e ∈ Rmpe .

Note that the dimension of Rpe

m is equal to the dimension of Rm as an F vector
space ( for the map from Rm to Rpe

m given by f  fp
e is bijective).

We define yet another F vector space

Rm ◦ φ := {f ◦ φ|f ∈ Rm}.

This sits inside Rmq as a subspace. To see this, pick any element f = H
G
∈ Rm

where H,G are homogeneous polynomials in F [x0, . . . , xN ] and using the fact
that a = aq for any a ∈ F , observe that f ◦ φ = f q.

The above observation also shows that Rm
∼=F Rm ◦ φ by the isomorphism f  

f ◦ φ = f q, which one can easily check is bijective.

Finally if A, B are subspaces of a vector space Rs for any s, by AB we mean the
subspace generated by the set {ab|a ∈ A, b ∈ B}. Observe that RmRn ⊆ Rm+n.

We would like to define a map ψ : Rpe

l (Rm ◦ φ) → Rpe

l Rm, where the integers
l, e,m will be determined later. Note that the domain sits inside Rlpe+mq and so
for any f in it, deg(f)∞ ≤ lpe + mq. A naive but natural definiton for ψ would
be to send gpe

(fi ◦ φ) gp
e
fi but this may apriori not be well-defined. So we set

up an isomorphism between Rpe

l ⊗F (Rm ◦ φ) and Rpe

l (Rm ◦ φ) as explained in
the following lemma to prove that it is indeed well-defined.

Lemma 3.7. Rpe

l ⊗F (Rm ◦ φ) ∼=F R
pe

l (Rm ◦ φ) if lpe < q.

Proof. First we would like to find a suitable basis for Rm. Note that dimR0 = 1
as R0 = F .

Claim : dimRt+1 ≤ dimRt + 1 for any t

If f and g are elements of Rt+1 with poles of order t+ 1 at α, then ordPα(f
g
) = 0

(ie) f
g
∈ OPα . As Pα is a rational prime,

[
OPα

Pα
: F
]

= 1 and thus
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ordPα

(
f

g
− γ
)
≥ 1 for some γ ∈ F.

And hence,

ordPα

(
g

(
f

g
− γ
))
≥ −t,

which implies f − γg ∈ Rt, as at all other primes, f − γg has no pole because
f, g ∈ Rt+1. Thus we can find a basis {f1, f2, . . . , ft} for Rm where ordPα(fi) <
ordPα(fi+1) for all i < t and dimension of Rm = t ≤ m+ 1.

So any element of Rpe

l ⊗ (Rm ◦ φ) can be written in the form

t∑
i=1

gp
e

i ⊗ (fi ◦ φ),

where gi are elements of Rl.

The natural map is

t∑
i=1

gp
e

i ⊗ (fi ◦ φ) 
t∑
i=1

gp
e

i (fi ◦ φ)

which is clearly surjective. If the kernel is non-zero, then we have a relation∑t
i=1 g

pe

i (fi ◦ φ) = 0 for some gis ∈ Rl, not all zero. Choose r to be the smallest
integer such that gr 6= 0. Then we have

gp
e

r (fr ◦ φ) = −
t∑

i=r+1

gp
e

i (fi ◦ φ) (3.2)

Since fi ◦ φ = f qi , we have

ordPα(fi ◦ φ) = q ordPα(fi).

Thus taking order with respect to Pα on both sides of 3.2 and noting that gi ∈ Rl,
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pe ordPα(gr) + q ordPα(fr)

≥ min
r+1≤i≤t

ordPα(gp
e

i (fi ◦ φ))

≥ −lpe + q ordPα(fr+1)

Thus,

pe ordPα(gr) ≥ q(ordPα(fr+1)− ordPα(fr))− lpe

≥ q − lpe (as ord ft+1 > ord ft)

> 0 (by assumption).

Thus gr has a zero at Pα but as it belongs to Rr, it has no poles at any other prime,
so gr ∈ F and is equal to 0, which is a contradiction to the assumption that r is
the least integer for which is gr is nonzero.

Thus the natural homomorphism is also injective, which makes it an isomorphism.

Thus, our naive definition of the map ψ : Rpe

l (Rm ◦ φ) → Rpe

l Rm works by
sending

∑
gp

e

i (fi ◦ φ) 
∑

gp
e

i fi.

Supposing that the kernel of ψ is non-zero, then choose a nonzero element of the
kernel, say

f =
t∑
i=1

gp
e

i (fi ◦ φ).

Note that fi s are functions well defined on all rational points except maybe α as
fi ∈ Rm for all i ≤ t.So for any rational point β 6= α,
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f(β) =
t∑
i=1

gp
e

i (β)(fi ◦ φ(β))

=
t∑
i=1

gp
e

i (β)fi(β) (as β is a rational point)

= ψ(f)(β)

= 0.

So f has a zero at all the rational points except maybe at α.

Note that fi ◦φ = f qi . So if q > pe, then f is a pe power and hence f has a zero of
order at least pe at all rational points except maybe α and therefore we have

deg(f)0 ≥ (N1(K)− 1)pe

As already observed,

f ∈ Rpe

l (Rm ◦ φ) ⊆ Rlpe+mq,

and thus deg(f)∞ ≤ lpe +mq. Equating deg(f)0 and deg(f)∞, we get

N1(K) ≤ 1 + l +
mq

pe
(3.3)

The Riemann-Roch theorem helps us ensure that the kernel is indeed non-zero by
giving us a handle on the dimensions of the domain and image of ψ.

ψ : Rpe

l (Rm ◦ φ)→ Rpe

l Rm.

Using the Riemann inequality, we have

dimF Rl ≥ l − g + 1

dimF Rm ≥ m− g + 1.
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Thus, we can lower bound the dimension of the domain as follows:

dimF

(
Rpe

l (Rm ◦ φ)
)

= dimF

(
Rpe

l ⊗ (Rm ◦ φ)
)

= dimF

(
Rpe

l

)
× dimF (Rm ◦ φ)

= dimF (Rl)× dimF (Rm)

≥ (l − g + 1)(m− g + 1).

If l,m ≥ g, then lpe +m ≥ 2g − 1, and thus using Corollary 1.6, we have

dimF Rlpe+m = lpe +m− g + 1,

and therefore, the dimension of the image can be bounded as

dimF (image(ψ)) ≤ dimF (Rpe

l Rm)

≤ dimF (Rlpe+m)

= lpe +m− g + 1.

Hence our kernel is lower bounded as follows:

dimF kernel(ψ) ≥ (l − g + 1)(m− g + 1)− (lpe +m− g + 1),

and to make sure our kernel is nonzero, we just have to choose e, l,m suitably
so that the expression on the right hand side is positive. We have also made var-
ious assumptions about integers e, l,m on the way which have to be satisfied to
complete the proof of the theorem. These are enumerated below.

1. lpe < q

2. l,m ≥ g

3. (l − g + 1)(m− g + 1) > lpe +m− g + 1 which on simplification yields
(l − g)(m+ 1− g) > lpe

4. q > pe.
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Recall that q = p2b. Put e = b, and m = pb +2g. Now substituting these values in
the third condition, we find that we need (l−g)(pb+1+g) > lpb which translates
to

l >
g(pb + g + 1)

g + 1
=

gpb

g + 1
+ g.

Thus, put l =
[
gpb

g+1

]
+ g + 1. Note that we also need to satisfy the first condition,

so l should not be too big. These values of e,m, l satisfy the last three conditions.

(
gpb

g + 1
+ g + 1

)
(g + 1) = gpb + (g + 1)2

< gpb + pb ( because (g + 1)4 < q = p2b)

= (g + 1)pb.

Hence

gpb

g + 1
+ g + 1 < pb

=⇒ l < pb

=⇒ lpe = lpb < p2b = q.

and the first condition is also fulfilled.

Substituting these values into Equation 3.3 and using l < pb, we get

N1(K) ≤ 1 + pb +
(pb + 2g)p2b

pb

= 1 +
√
q + q + 2g

√
q

= q + 1 + (2g + 1)(
√
q)
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3.2.3 A lower bound for N1(K)

This method will involve consideration of Galois extensions of K and we give
below, a few important definitions whose usage will prove crucial later on.

• LetK/F be a function field with constant field F and L, a finite field exten-
sion of K. If F is algebraically closed in L, then L is said to be a geometric
extension of K/F .

• If S is a field extension of T and L is the smallest algebraic extension of S
which is Galois over T , then L is called the Galois closure of S/T .

From now on until theorem 3.10, let L be a finite Galois extension of K with
G = Gal (L/K) such that it is geometric over K/F . We introduce the following
notations:

• K = KF as denoted earlier.

• L = LF .

Since L is geometric over K/F , the Galois group of L/K, Gal
(
L/K

)
, can be

identified with G = Gal (L/K).

We now concern ourselves with certain sets of primes of the various fields which
are described below.

1. S is the set of rational primes (ie) primes of degree 1 of K.

2. T is the set of all primes of K which lie above a rational prime of K.

3. T̃ refers to the set of all primes of L which lies above any one of the primes
in T .

Recall that the points of the smooth projective curve C are in one to one corre-
spondence with the primes of K and every prime of K lies above a prime of K.
Also recall that the Galois orbits of C correspond to primes ofK and in particular,
rational primes of K are in one to one correspondence with the F rational points
of C. Using all this, we conclude that |T | = N1(K).
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Another way to characterise rational primes of K is by examining the action of
the Frobenius map π (which sends x ∈ F to xq) on them. Any element of K
is of the form f

g
where f, g ∈ F [x0, x1, . . . , xN ] are homogeneous polynomials

of the same degree such that g does not vanish completely on C. Note that the
Galois group of F over F acts naturally on K, for instance we give below how
σ ∈ Gal

(
F/F

)
acts on f =

∑
bax

a0
0 x

a1
1 . . . xaN

N .∑
bax

a0
0 x

a1
1 . . . xaN

N  σ(ba)x
a0
0 x

a1
1 . . . xaN

N .

It is easy to see that πPα = Pφ(α). And as F -rational points of C are nothing but
fixed points of φ, πP = P characterises the elements of T .

In the following discussion, we use some very useful propositions from algebraic
number theory. First, fix a P in T and denote the set of all primes in T̃ which lie
above P as T̃P . More specifically, let

T̃P = {(Oi,Pi)}ri=1

be the primes of L which lie above P . It turns out that the Galois group G =
Gal

(
L/K

)
acts transitively1 on T̃P . We have already seen that πP = P if and

only if P ∈ T . Hence πPi = Pj for some j ≤ r. And due to the transitive action
of the Galois group, there exists a σ ∈ G such that πPi = σPi.

Now look at the ideal generated by P inOi. Since the latter is a discrete valuation
ring with maximal ideal Pi, we have

POi = Pei
i .

ei is said to be the ramification index of Pi. Due to the transitive action of the
Galois group on T̃P , ∃σ′ ∈ G such that σ′ (Pi) = Pj for any i, j ≤ r and hence
the integers ei = ej for all i, j. Let us denote the common value by e.

We can assign another integer fi to each prime Pi as follows:

fi =

[
Oi
Pi

:
OP
P

]
.

1Given any two elements x, y of the set on which the group is acting, there exists a σ ∈ G such
that σx = y.
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However Oi

Pi
is an algebraic extension of F , an already algebraically closed field

and hence fi = 1 for any i ≤ r.

By using the well known fact from number theory that
∑r

i=1 eifi = n where n is
the degree of the extension L/K and the cardinality of the Galois group, since it
is a Galois extension, we get

re = n = |G|.

If e = 1, the primes Pi are called unramified2 and we find that |T̃P | = |G|. Hence
given any unramified Pi, there exists a unique σ ∈ G such that πPi = σPi.

The map η

Let T̃ ∗ denote the set of unramified primes in T̃ . We are now in a position to
define a map η as follows:

η : T̃ ∗ → G such that η (Pi) = σ,

where σPi = πPi.

And now we introduce the notation N1

(
σ, L/K

)
for any σ ∈ G as

N1

(
σ, L/K

)
:= |η−1 (σ)|.

It is clear that T̃ ∗ =
⋃
σ∈G η

−1 (σ) and hence

|T̃ ∗| =
∑
σ∈G

N1

(
σ, L/K

)
.

However, we have also proved that number of primes which lie above an unrami-
fied prime in T is n = |G| and thus |T̃ ∗| = |G| (N1(K) +O(1)) where the O(1)
term is for the ramified3 primes of K. Equating the two expressions for |T̃ ∗|, we
get the following very useful equality which we mark for later use.

2We sometimes also call P to be unramified
3primes which are not unramified
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∑
σ∈G

N1

(
σ, L/K

)
= |G| (N1(K) +O(1)) . (3.4)

The proof of the upper-bound for N1(K) with very little modification yields us
the following upper-bound for N1

(
σ, L/K

)
.

Proposition 3.8. Suppose that q = |F | is an even power of the characteristic p
and that (g̃+1)4 < q where g̃ is the genus of L, then for any σ ∈ G = Gal

(
L/K

)
,

N1

(
σ, L/K

)
≤ q + 1 + (2g̃ + 1)

√
q.

The above proposition subjected to very simple manipulations gives us a lower
bound for N1

(
σ, L/K

)
as we see below.

Proposition 3.9. For all σ ∈ G = Gal
(
L/K

)
,

q + 1 + (N1 (K)− q − 1) |G|+O (
√
q) ≤ N1

(
σ, L/K

)
.

Proof. By proposition 3.8,

X(σ) = q + 1 + (2g̃ + 1)
√
q −N1

(
σ, L/K

)
≥ 0.

Summing over all elements of G and using equation 3.4, we have

0 ≤ X(σ) ≤
∑
σ∈G

X(σ) = |G| (q + 1 + (2g̃ + 1)
√
q −N1(K) +O(1)) .

Expanding this inequality out by substituting for X(σ), we get

q+1+(2g̃ + 1)
√
q−N1

(
σ, L/K

)
≤ |G| (q + 1 + (2g̃ + 1)

√
q −N1(K)−O(1)) ,

which on rearranging gives us the required equation.

42



And finally we are ready to give a lower bound for N1(K).

Theorem 3.10. Let K/F be a function field of genus g over a finite field F with q
elements with characteristic p. Suppose q is an even power of p. Suppose further
that ∃x ∈ K such that K/F (x) is separable and that the Galois closure , L, of
K/F (x) is a geometric extension of F (x). Finally assume that (g + 1)4 < q.
Then,

N1(K) ≥ q +O(
√
q).

Proof. Let G = Gal
(
L/F (x)

)
and H = Gal

(
L/K

)
. Thus H ⊆ G.

Applying our previous proposition 3.9 to the extension L/F (x), we get

q + 1 + |G| (N1(F (x))− q − 1) +O(
√
q) ≤ N1

(
σ, L/F (x)

)
∀σ ∈ G.

However we have already proved in proposition 2.1 that all primes of degree 1
of F (x) except one are in one to one correspondence with the monic irreducible
polynomials of degree 1 in F (x), which are q in number. (The remaining prime is
the prime at infinity). Thus N1(F (x)) = q + 1 and hence,

q +O(
√
q) ≤ N1

(
σ, L/F (x)

)
.

Summing the above equation over all τ ∈ H , we get

|H| (q +O(
√
q)) ≤

∑
τ∈H

N1

(
τ, L/F (x)

)
.

Claim: N1

(
τ, L/F (x)

)
= N1

(
τ, L/K

)
for any τ ∈ H .

Assuming this claim, we are but a step away from concluding as follows:

|H| (q +O(
√
q)) ≤

∑
τ∈H

N1

(
τ, L/F (x)

)
=
∑
τ∈H

N1

(
τ, L/K

)
= |H| (N1(K) +O(1)) (Using 3.4)

43



Cancelling |H| from both sides, we get our lower bound.

The proof of the claim follows easily from the definition of N1

(
τ, L/K

)
. Let P

be a prime of L which lies above a rational prime P of F (x) such that πP = τP
for some τ ∈ H . Let Q be the prime of K lying under P. Then πQ = τQ.
However as τ ∈ H , it fixes elements of K and thus τQ = Q, which implies that
πQ = Q which shows thatQ is a rational prime ofK. The other direction is clear.

We remark that ifK/F satisfies the conditions explained previously so thatN1(K) =
q+O(

√
q), then the constant field extensionsKm/Fm for anym satisfies the same

conditions thus bounding N1(Km) as,

N1(Km) = qm +O(q
m
2 ).

3.2.4 The right constant field extension

We need to find an n ∈ N such that the function field Kn/Fn (where Fn is the nth

degree extension of F and Kn = KFn) satisfies the following properties:

1. |Fn| = qn is an even power of p, so we will look for an even n.

2. (g + 1)4 < qn where g is the genus of Kn/Fn.

3. There exists an x ∈ Kn such that Kn/Fn(x) is a separable extension and if
L is the Galois closure of Kn/Fn(x), then L is geometric over Fn(x).

Note that the genus ofK/F is the same as genus of Kn/Fn for any n. (In terms of
curves, the genus of curve C remains the same even if we enlarge the base field.)
Thus choose an r such that q2r > (g + 1)4 where g is the genus of K/F .

Consider the function field K2r/F2r. As shown in section 1, we can find an x ∈
K2r such that K2r/F2r(x) is a finite separable field extension. Let L be the Galois
closure of K2r/F2r(x) with E denoting the algebraic closure of F2r in L.

E ⊂ - L

F2r
⊂ - F2r(x)
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[E : F2r] ≤ [E(x) : F2r(x)] ≤ [L : F2r(x)] <∞.

Hence E is a finite extension of F2r and is therefore equal to Fn for some n where
2r|n. Note that n is forced to be even and (g + 1)4 < q2r ≤ qn. Thus Kn/Fn
satisfies the first two conditions. Since K2r/F2r(x) is a separable extension, so is
Kn/Fn(x). Also as L is the Galois closure of K2r/F2r(x) and E = Fn ⊆ L, it is
also the Galois closure of Kn/Fn(x) and by construction Fn = E is algebraically
closed in L.

And we have proved the Riemann Hypothesis for Kn/Fn ! Use lemma 3.2 to
conclude the proof for K/F .
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Chapter 4

Serre bound

Recall the Weil bound (Theorem 3.5)

|N1(K)− q − 1| ≤
2g∑
i=1

|αi| = 2g
√
q.

A slight improvement can be obtained by noticing thatN1(K)−q−1 is an integer
and therefore

|N1(K)− q − 1| ≤ [2g
√
q]

where [x] refers to the greatest integer less than or equal to x. The following
theorem due to Serre gives an improvement of the Weil bound.

Theorem 4.1 (Serre bound).

|N1(K)− q − 1| ≤ g[2
√
q]

Proof. Recall that

LK(u) =

2g∏
i=1

(1− αiu)

Hence
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u2gLK

(
1

u

)
= u2g

2g∏
i=1

(
1− αi

u

)
=

2g∏
i=1

(u− αi)

However LK(u) ∈ Z[u] with LK(0) = 1, so let it be 1 + r1u + . . . + r2gu
2g.

Therefore

u2gLK

(
1

u

)
= u2g

(
1 +

r1
u

+ . . .+
r2g
u2g

)
= u2g + r1u

2g−1 + . . .+ r2g ∈ Z[u].

Hence αis are all algebraic integers.

The Riemann Hypothesis tells us that |αi| =
√
q for all i. Hence αiαi = q. We

have already shown that the function equation for LK gives us a permutation of
α1, α2, . . . , α2g by

αi  
q

αi
.

Therefore αi = q
αi

is actually αj for some j. Thus we can pair up the αis and
relabel them as follows :

{(α1, α1), (α2, α2), . . . , (αg, αg)}

Now for all i ≤ 2g, set

γi = αi + αi + [2
√
q] + 1

δi = −αi − αi + [2
√
q] + 1.

|αi| =
√
q implies that γi, δi are all strictly positive real numbers. Note that they

being combinations of algebraic integers are themselves algebraic integers. Set
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γ =

g∏
i=1

γi and δ =

g∏
i=1

δi

which are also algebraic integers. Now any embedding σ of Q (α1, α1, α2, . . . , αg, αg)
in C has to send αi to some αj or αj because they are roots of the polynomial
u2gLK

(
1
u

)
which has integer coefficients. Now

σ(αi) = σ

(
q

αi

)
=

σ(q)

σ(αi)

=
q

σ(αi)

= σ(αi)

Thus σ permutes {γi}i≤g and also {δi}i≤g. And therefore for any embedding σ,

σ(γ) = γ and σ(δ) = δ.

This shows that γ, δ ∈ Q. However they are also algebraic integers and therefore
they must actually lie in Z as Z is integrally closed in Q. Note that they are also
strictly positive and hence ≥ 1.

Let us now apply the arithmetic-geometric mean to γis.

∑g
i=1 γi
g

≥ g
√
γ ≥ 1

=⇒
g∑
i=1

αi + αi + g[2
√
q] + g ≥ g

=⇒ −N1(K) + q + 1 + g[2
√
q] ≥ 0

Applying it to δis gives us N1(K)−q−1+g[2
√
q] ≥ 0 and combining both these

gives us the improved Serre bound.
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Appendix A

Discrete valuation rings

Discrete valuation rings keep popping up innumerably often during the study of
curves and for the convenience of the amateur algebraist (like the author), we
devote this appendix for defining a DVR (as it shall be called henceforth) and
proving its basic properties.

Theorem A.1. Let R be a domain but not a field. The following are equivalent:

1. R is noetherian, local with principal maximal ideal M .

2. ∃t ∈ R, an irreducible element of R, such that any r 6= 0 ∈ R can be
uniquely expressed as urtnr where ur is a unit of R and nr ∈ N ∪ {0}.

And any ring R which satisfies the above properties is called a DVR.

Proof. To show that the first condition implies the second, pick t to be a principal
generator of the maximal ideal M . If pq = t, then as M is maximal and hence
prime, either p ∈ M or q ∈ M , say p. Thus p = rt as M = (t). Therefore
t = pq = rtq which gives us that t(1 − rq) = 0 and because R is a domain and
M = (t) 6= 0, q is a unit and hence t is irreducible.

If r = utn = vtm for u, v units of R with n ≥ m say, then v
u

= tn−m and as the
expression on the left hand side of the equation is a unit, it means that n = m and
hence expression in such a form is unique.

To show the existence of such an expression in this form, pick 0 6= r ∈ R. If r is
a unit, r = rt0. If not, then r ∈ M = (t), therefore r = r1t. If r1 is a unit, then
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done, else r1 = r2t and r = r2t
2 and so on with rm = rm+1t and r = rmt

m if rm
is not a unit and rm 6= 0. If none of the ris are units, we get an ascending chain

(r1) ⊆ (r2) . . . ⊆ (rm) ⊆ . . .

which should terminate because of noetherianess of the ring R. If (rn) = (rn+1),
then rn+1 = rnx = rn+1tx, which implies that t is a unit, a contradiction.

For showing the other direction of equivalence, given any nonzero ideal I , pick N
to be the minimum of the set S = {nα|uαtnα ∈ I for any unit uα ∈ R}.Then tN

generates the ideal I and thus I = (t)N . Thus R is a principal ideal domain and
clearly the unique maximal ideal is (t).

Quite often, we will denote a DVR by a pair (R,M), in which case R should be
taken to be the ring and M , its unique maximal ideal. Any principal generator of
M is referred to as a uniformizer.

Note that any nonzero element x of the fraction field K of R can be expressed
uniquely as utn (If x = r

s
where r, s ∈ R such that r = utn and s = vtm, then

x = u
v
tn−m. That this expression is well defined is easily checked), with u an unit

of R and n ∈ Z. This defines a valuation on the elements of K as follows :

v : K → Z ∪ {∞} where v(0) =∞ and v(utn) = n with u a unit in R

v satisfies the following properties

• v(xy) = v(x) + v(y)∀x, y ∈ K

• v(x+ y) ≥ min(v(x), v(y))∀x, y ∈ K

Sometimes v(k) is also denoted by ordM(k) if the maximal ideal in the DVR is to
be emphasised.

Corollary A.2. Thus a DVR is a local principal ideal domain which is not a field
and any non trivial ideal is a power of the maximal ideal. Therefore the only
nonzero prime ideal of the DVR is the maximal ideal.

Proposition A.3. If R is a DVR and K, its fraction field, then for any x ∈ K,
either x ∈ R or 1

x
∈ R.
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Proof. If x 6∈ R, then x = ut−n where n ∈ N and u a unit of R. Thus 1
x

= 1
u
tn ∈

R.

Proposition A.4. (R,M), a DVR, is integrally closed in its field of fractions K,
(ie) any element of K satisfying a monic polynomial equation with coefficients in
R belongs to R.

Proof. Let xn+an−1x
n−1+. . .+a0 = 0 for some x ∈ K and a0, a1, . . . , an−1 ∈ R.

If x 6∈ R, then 1
x
∈ R by the above proposition. Dividing the equation by xn−1,

we get x = −
(
an−1 + . . .+ a0

xn−1

)
. The expression on the righthand side is in R

and hence x ∈ R.

A ring R is said to be a Dedekind domain if it is a noetherian domain, integrally
closed in its field of fractions with every nonzero prime ideal being maximal. An
interesting property (which can even be used as an alternative definition) that it
enjoys is that every nonzero ideal ofR can be uniquely factorised into prime ideals
(See Serre, Local fields for a reference). Not surprisingly, discrete valuation rings
and dedekind domains are interrelated as the next proposition shows.

Proposition A.5. If R is a dedekind domain and M , a nonzero maximal ideal,
thenRM , (which is the localization ofR with respect to the multiplicatively closed
set R \M ) is a DVR.

Proof. Since R is a noetherian domain, so is RM . The latter is also clearly local.
By unique factorisation of ideals into prime ideals, M 6= M2. Hence choose a
y ∈M \M2. As M2 ( Ry +M2 ⊆M , we find that M = Ry +M2.

The maximal ideal m of RM is generated by M . Thus m = m2 +RMy and so

m

RMy
=
RMy + mm

RMy
= m

(
m

RMy

)
.

Applying the nakayamma lemma, we get m
RMy

= 0 which implies that the maximal
ideal m = RMy is principal and hence RM is a DVR.
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Appendix B

Adele rings and Weil differentials

To define the notion of an adele ring, we need the concepts of completion of fields
and DVRs.

Completion of local rings

A purely algebraic way of completing local rings involves the construction of what
is known as an inverse limit which we describe below.

The inverse limit

A collection of rings {Ai}i∈I where I is a poset along with ring homomorphisms
{fij : Aj → Ai|i ≤ j} is said to be an inverse system of rings if the following
properties are satisfied:

• fii is the identity map on Ai.

• fij ◦ fjk = fik for any i ≤ j ≤ k.

The inverse limit of an inverse system of rings Ai is then defined as follows:

A = lim←−Ai := {(ai)i∈I ∈
∏
i∈I

Ai|fij(aj) = ai∀j ≥ i}
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Note that A acquires a ring structure (operations carry over component wise) and
comes with natural projection maps πi : A→ Ai which satisfy πi = fij ◦ πj .

For the categorically minded, inverse limits satisfy the following universal prop-
erty:

If X is any ring with ring homomorphisms π′i.X → Ai for all i ∈ I such that
π′i = fij ◦π′j for all i ≤ j, then there exists a unique ring homorphism θ : X → A
such that π′i = πi ◦ θ for every i.

In other words, the following diagram commutes:

X

A

!θ

?

Ai �−
fij

π′i

�

πi
�

Aj

π′j

-πj -

To verify that our definition of inverse limit does indeed satisfy the above property,
let us construct the ring homomorphism θ. Note that if θ(x) = (ai)i∈I , then we
want πi(θ(x)) = π′i(x). So we are forced to define θ(x) = (π′i(x))i∈I ( and hence
the uniqueness of θ follows ). Now it is easy to check that θ(x) ∈ A because
fij(π

′
j(x)) = π′i(x) which is the ith co-ordinate of θ(x). And clearly πi ◦ θ = π′i.

The property is universal because if there exists any other ring B with ring homo-
morphisms χi : B → Ai∀i ∈ I such that χi = χj ◦ fij∀i ≤ j which satisfies the
property, then B is isomorphic as a ring to A, our inverse limit. This follows from
the commutative diagram below :
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A

B

ψ

?

A

θ

?

Ai �−
fij

πi

�

χi

�
πi

�
Aj

πj

-

χj

-πj -

(Since A, B both satisfy the property, we find ring homomorphisms θ : B → A
and ψ : A → B which makes the above diagram commute. Now πi ◦ θ = χi
and χi ◦ ψ = πi ∀i ∈ I . This implies that πi ◦ (θ ◦ ψ) = πi for all i ∈ I . So
θ ◦ ψ : A → A is the unique homomorphism that satisfies πi ◦ (θ ◦ ψ) = πi
for all i ∈ I . However the identity map IA of A also does the job. Thus by the
uniqueness of the homormorphism, we get θ ◦ψ = IA. Arguing similarly, we find
ψ ◦ θ = IB and thus A ∼= B as rings and the ring isomorphism is compatible with
the homomorphisms χis and πis.)

And finally, the completion of a local ring (R,M) is defined to be the inverse
limit of the system

(
R
Mn

)
n∈N where the fij : R

Mj → R
M i for j ≥ i sends r+M j  

r +M i.

R̂ := lim←−
R

Mn

Our original ring R (if it is noetherian) sits inside its completion R̂ as r ↪→ r̂ =
(r + M i)i∈N. Note that R̂ so defined is a local ring itself. One can show this by
checking that the set of nonunits of R̂ = {(āi)i∈N|ai ∈M} (where āi = ai +M i)
which is an ideal1. In fact, completion of a DVR turns out to be a DVR and we
record it as a proposition below:

Proposition B.1. If (R,M) is a DVR, then so is R̂.

Proof. If z = (ai + M i)i∈N is a nonzero nonunit, then find the least integer N
such that aN+1 +MN+1 6= 0. Let ai = uit

xi where uis are units of R. So clearly
for all i ≤ N , xi ≥ i, and xN+1 < N + 1. Note that

1(āi)i∈N is a unit iff a1 6∈ M because if ai 6∈ M , then a1 is a unit of R and so is every ai and
hence (āi)

(
1̄
ai

)
= 1 ∈ R̂. If (āi) is a unit, clearly ā1 6= 0 as R

M is a field and so a1 6∈M
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uit
xi +MN+1 = uN+1t

xN+1 +MN+1∀i ≥ N + 1

Hence xi ≤ N for all i > N . Also xi ≥ xj if i ≥ j. This forces xn = N∀n ≥ N .

Also because uN+it
N − uN+jt

N ∈ MN+j , we have uN+i − uN+j ∈ M j . Thus
u = (uN+i + M i)i∈N ∈ R̂ and ut̂N = z where t̂ = (t + M i)i∈mathbbN (for
z = (ai +M i)i∈N ∈ R̂ =⇒ a = (aJ+i +M i)i∈N for any J ∈ N).

Observe that u is a unit of R̂ as uN+1 6∈ M and t̂ is a uniformizer of R̂. The fact
that R̂ is a domain should be clear from the above discussion.

We would also like to observe that ordM(r) = ordM̂(r̂) for r ∈ R where M̂ is the
maximal ideal of R̂.

Completion of fields

An absolute value on a field K is a function | | : K → R+ ∪ {0} such that it
satsifies the following properties :

• |x| = 0 iff x = 0.

• |xy| = |x||y| for all x, y ∈ K.

• |x+ y| ≤ |x|+ |y| for all x, y ∈ K.

The absolute value | | defines a metric on K given by

d(x, y) = |x− y|.

K is said to be complete under | | if all Cauchy sequences of K converge when K
is given the metric induced by | |.

A completion of K is defined to be a field K̂ with an absolute value || || such that
K ↪→ K̂, || |||K = | |, and K is dense is K̂ under the metric induced by || ||.

Theorem B.2. Given any field K and an absolute value | | on it, there exists a
completion of it which is unique upto isomorphism.
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Proof. From now on, K will be given the metric induced by | |. Let S denote the
commutative ring2 of all Cauchy sequences of K. Let

M = {(xn)n∈N| lim
n→∞

xn = 0

Claim: M is a maximal ideal of S

It is clear that M is an ideal of S. To see that it is maximal, pick a Cauchy
sequence which doesn’t tend to 0, say x = (xn)n∈N. As the limit of this Cauchy
sequence is non zero, there exists an N such that for all n ≥ N , xn 6= 0, in fact
∃r > 0 such that |xn| > r for large enough n. The sequence

y = (0, 0, . . . , 0︸ ︷︷ ︸
N−1

,
1

xN
,

1

xN+1

, . . .)

is hence itself a Cauchy sequence. And the following equation shows that M is
maximal.

xy + (1, 1, . . . , 1︸ ︷︷ ︸
N−1

, 0, 0, . . . , 0, . . .) = (1, 1, . . . , 1, . . .)

Define K̂ := S
M

.

Note that K sits inside K̂ as k ↪→ (k, k, k, . . . , k, . . .).

The absolute value || || is given by ||(xn)n∈N|| = limn→∞ |xn|. Note that this exists
because (xn)n∈N is a Cauchy sequence in K and hence (|xn|)n∈N is a Cauchy
sequence in R, which is complete. That || || is well defined and indeed an absolute
value can be checked easily. And ||(k, k, k . . .)|| = |k| and hence is compatible
with | |.

Claim: K̂ is complete with respect to || ||

This is proved by the usual diagonalisation trick.

Let X1 +M,X2 +M, . . . be a Cauchy sequence in K̂ where each Xi is a Cauchy
sequence of K which represents the coset Xi +M .

2|xnyn−xmym| ≤ |yn||xn−xm|+ |xm||yn− ym| and {xn} , {yn} being Cauchy sequences
are bounded.
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X1 : x1
1 x1

2 . . . x1
n . . .

X2 : x2
1 x2

2 . . . x2
n . . .

X3 : x3
1 x3

2 . . . x3
n . . .

. . . . . .

. . . . . .
Xk : xk1 xk2 . . . xkn . . .
. . . . . .
. . . . . .

Assume that any two terms ofXi lie within 1
i

distance of each other, (ie) |xir − xis| <
1
i
. This can be done by chopping off the first few terms of each of the Xis. Note

that the chopped sequence also lies in the same coset as the previous one.

Construct a sequence ξ = (x1
1, x

2
2, . . . , x

n
n, . . .) by the famed diagonalisation pro-

cedure.

ξ is a Cauchy sequence because given ε > 0, for large enough n,m, you can
choose a large enough i so that

d(xnn, x
m
m) ≤ d(xnn, x

n
i ) + d(xni , x

m
i ) + d(xmi , x

m
m)

<
1

n
+
ε

3
+

1

m

We leave it to the reader to verify that ξ + M is indeed the limit of the sequence
X1 +M,X2 +M, . . . , Xn +M . . .

And finally, given any Cauchy sequence x = (xn)n∈N ∈ K̂, given ε > 0, there
exists an N such that for all n ≥ N , v(xn − xN) < ε. Hence the sequence
(xN , xN , . . . , xN . . .) ∈ K ↪→ K̂ lies in the ε ball around x. This shows that K is
dense in K̂.

For the uniqueness part, if (T, | |t) and (S, | |s) are two completions of (K, | |)
such that k ∈ K sits as ks ∈ S and kt ∈ T , let us define a map ψ : S → T which
sends ks ∈ K  kt.

If x ∈ S \ T , then as K is dense in S, there exists a Cauchy sequence (xn)n∈N
with xi ∈ K ↪→ S for all i such that x is the limit of the sequence. Now as
| |s|K = | |t|K = | |, (ψ(xn))n∈N is a Cauchy sequence in T whose limit is say y
(because T is complete). Define ψ(x) = y.

This is well-defined because if (xn)n∈N, (yn)n∈N with xi, yi ∈ K∀i tend to x, then
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(xn − yn)n∈N tends to 0 in S and hence (ψ(xn − yn))n∈N tends to 0 in T also.

ψ is a field homomorphism by the way it has been constructed and can be shown
to be bijective by using the fact that K is dense in T, S again.

Now let (R,P ) be a discrete valuation ring with fraction field K. It defines an
absolute value | |P on K as given below :

|k|P = 2− ordP (k)∀k 6= 0 and |0|P = 0

R̂, the completion of (R,P ) as we have defined earlier, turns out to be the closure
of R ↪→ K̂ , which we shall call R̄, under the topology induced by the abso-
lute value | |P .We will prove this by giving a bijective map ψ between R̂ and the
closure of R in K̂, which we shall denote by R̄.

Let S denote the ring of Cauchy sequences inK, M , the maximal ideal consisting
of all sequences which tend to 0. Firstly note that

R̄ = {r̄ = (ri)i∈N +M |r̄ is a Cauchy sequence in K, ri ∈ R∀i}3

Let x̂ = (xi + P i)i∈N be an element of R̂ with xi ∈ R for all i. Define

ψ(x̂) = (xi)i∈N +M

Observe that x̂ ∈ R̂ implies that (xi)i∈N is a Cauchy sequence in K (as for large
enough m ≥ n, xm − xn ∈ P n implies d(xm, xn) = 2− ordP (xm−xn) ≤ 2−n).

To check that ψ is well-defined, it is enough to note that

(xi + P i)i∈N = (yi + P i)i∈N ∈ R̂
=⇒ xi − yi ∈ P i∀i
=⇒ lim

i→∞
|xi − yi|P ≤ lim

i→∞
2−i = 0.

3Given any sequence x̄ = (xi)i∈N + M which is the limit of the sequence f = r̄1, r̄2, . . .,
where r̄i denotes the coset containing the constant sequence (ri, ri, . . . , ri, . . .), then afortiori f is
a Cauchy sequence and hence so is r = (r1, r2, . . . , rn, . . .). It is also clear that r +M is the limit
of f and hence r + M = x̄
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And as xi ∈ R for all i, (xi)i∈N ∈ R̄.

Claim: ψ is bijective

If x̂ = (xi + P i)i∈N and ŷ = (yi + P i)i∈N map to the same element under ψ in R̄,
this would mean that the sequence (xi − yi)i∈N tends to 0. Thus given any integer
N , xi − yi ∈ PN for suitably large i. However xi − xN ∈ PN∀i ≥ N as x ∈ R̂
and so also for yi. Thus xN − yN ∈ PN∀N , which means that x = y and hence ψ
is injective.

To show that it is surjective as well, take r̄ = (ri)i∈N + M , ri ∈ R∀i, to be an
element of R̄. Pick a subsequence of r̄, say q̄ = (qi)i∈N such that d(qn, qm) < 2−i

for all n,m ≥ i. This you can do because r̄ is a Cauchy sequence. Note that q̄ is a
Cauchy sequence itself as it is a subsequence of a Cauchy sequence and is in fact
equivalent to r̄, (ie) r̄ − s̄ ∈M .

The element q̂ = (qi + P i)i∈N is in R̂ and ψ(q̂) = q̄.

As a final remark, we observe that K̂ is indeed the fraction field of the DVR R̂, as
one would expect.

The adele ring

Let us begin by fixing some notations :

• K is a finitely generated function field in one variable over F such that F is
algebraically closed in K.

• SK denotes the set of all prime divisors of K

• | |P is the absolute value on K as described in the previous section

• K̂P refers to the completion of K with respect to the above absolute value

• ÔP denotes the completion of the local ring OP under the same absolute
value and P̂ - the maximal ideal of ÔP .

Now we are ready to define the adele ring AK of K as :

AK = {(aP )P∈SK
∈
∏
P∈SK

K̂P |aP ∈ ÔP for all but finitely many Ps}
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Note that K sits inside AK as k ↪→ (k, k, . . . , k . . .). Apart from a ring structure,
AK also has aK vector space structure because k(xP )P∈SK

= (kxP )P∈SK
. Hence

it is also an F vector space.

For each divisor D =
∑

P∈SK
n(P )P of K, we associate an F subspace4 of AK

as follows:

AK(D) = {(xP )P∈SK
|ordP̂ (xP ) ≥ −n(P )}

The Weil differential

ω : AK → F , an F -linear map is said to be a Weil differential if the following
conditions hold

• ω(K) = 0

• ω(AK(D)) = 0 for some divisor D of K.

The set of all Weil differentials will play an important role in the proof of the
Riemann-Roch theorem and hence we give it a name -

ΩK := {ω|ω is a Weil differential}

It can be made into aK vector space by defining kω : AK → F to be a map which
sends ξ  ω(kξ). Note that kω is also a Weil-differential because

• kω(fξ) = ω(fkξ) = fω(kξ) = f(kw)(ξ) and hence it is an F -linear map.

• kω(k′) = ω(kk′) = 0 as kk′ ∈ K and ω ∈ ΩK .

• We prove a little lemma first

Lemma B.3. ξ ∈ AK((k) +D) iff kξ ∈ AK(D)

4To see that this is indeed an F vector space, it is enough to observe that if (xP )P∈SK
∈

AK(D), then ordP̂ (fxP ) = ordP̂ (f) + ordP̂ (xP ) ≥ −n(P ) because ordP̂ (f) ≥ 0 since F ⊆
OP ⊆ ÔP .
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Proof. Let D =
∑

P∈SK
n(P )P . Then

ξ = (xP )P∈SK
∈ AK((k) +D)

⇐⇒ ordP̂ (xP ) + n(P ) + ordP (k) ≥ 0∀P
⇐⇒ ordP̂ (kxP ) + n(P ) ≥ 0∀P (ordP (k) = ordP̂ (k))

⇐⇒ (kxP )P∈SK
∈ AK(D)

Since ω is a Weil-differential, ω(AK(D)) = 0 for some divisor D, and
therefore kω(AK((k) +D)) = 0 (kω(ξ) = ω(kξ) = 0 if ξ ∈ AK((k) +D)
because then kξ ∈ AK(D)).

Another object which will be of use to us is

ΩK(D) = {ω|ω ∈ ΩK , ω(AK(D)) = 0}.
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Appendix C

Riemann-Roch

Let us define a quantity r(D) for each divisor D as follows:

r(D) := deg(D)− l(D)

Note that if D ∼ C, then r(D) = r(C).

Lemma C.1. If D,C are two divisors of K such that D ≤ C, then r(D) ≤ r(C).

Proof.

r(C)− r(D) = (deg(C)− l(C))− (deg(D)− l(D))

= (deg(C)− deg(D))− (l(C)− l(D))

Clearly dimF
L(C)
L(D)

= l(C)− l(D).

Claim: dimF
AK(C)
AK(D)

= deg(C)− deg(D)

To see this first note that C ≥ D implies AK(C) ⊇ AK(D). As C is the sum of
D and finitely many primes, it is enough to show that for any prime P ,

dimF
AK(D + P )

AK(D)
= deg(P )

One way to show this is the following. Let D =
∑

Q∈SK
n(Q)Q. Choose t to be

a uniformizer of ÔP and define a map
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T : AK(D + P )→ ÔP

P̂
by (aQ)Q∈SK

 aP t
n(P )+1 + P̂

Note that

(aQ)Q∈SK
∈ AK(D + P )

=⇒ ordP̂ (aP ) ≥ −n(P )− 1

=⇒ ordP̂ (aP t
n(P )+1) ≥ 0

=⇒ aP t
n(P )+1 ∈ ÔP

and hence T is well-defined. Any element a = (aQ)Q∈SK
which belongs to the

kernel of T must have ordP̂ aP ≥ −n(P ) which implies that a ∈ AK(D). The
other inclusion , namely AK(D) ⊆ kernel(T ) is clear.

Now let us do some algebraic manipulation of vector spaces to get a vector space
of dimension r(C) − r(D). It should be clear that L(C) = AK(C) ∩ K and
similarly forD. HoweverL(D) ⊆ L(C) ⊆ K and henceL(D) = AK(D)∩L(C).
Thus we have

L(C)

L(D)
=

L(C)

AK(D) ∩ L(C)
=
AK(D) + L(C)

AK(D)
.

Therefore we have,

AK(C)
AK(D)

AK(D)+L(C)
AK(D)

=
AK(C)

AK(D) + L(C)

with the dimension of this vector space being r(C)− r(D) which hence has to be
non-negative.

Theorem C.2 (Riemann inequality). Let K be an algebraic function field over
F with the latter as its constant field (ie) F is algebraically closed in K. Then
∃!g ∈ Z+ ∪ {0} such that deg(D)− g + 1 ≤ l(D)∀D, divisors of K.

This integer g is called the genus of K.
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Also there exists a constant c such that for any divisor D with deg(D) ≥ c, then
l(D) = deg(D)− g + 1.

Idea of the proof : We construct an increasing sequence of divisors Dm and show
that {r(Dm)} is uniformly bounded above. Thus r(Dm) will become a constant
for large enough m and the constant we call g − 1. Then we show that for any
divisor D, there exists an equivalent divisor C such that r(C) ≤ r(Dm) for some
m.

Proof. Choose an x ∈ K \ F . Thus K/F (x) is a finite extension of say, degree
n. Let B = (x)∞. As proved in Proposition 1.2 in the first section deg(B) = [K :
F (x)]. Thus

r(mB) = deg(mB)− l(mB) = mn− l(mB)∀m ∈ N.

We want to give an uniform upper bound for r(mB) and thus need a lower bound
for l(mB). We can do so by finding some F linearly independent elements yi ∈
L(mB) which we recall is {0} ∪ {k ∈ K∗, (k) +mB ≥ 0}. If y ∈ L(mB), then
(y) +mB ≥ 0 which means that y should have all its poles (if at all) only at the
primes that are in the prime support of B.

A good place to look for such elements is in the integral closure of F [x] (denoted
by R) in K because ordP (x) ≥ 0 implies that x ∈ OP which in turn implies
F [x] ⊆ OP . Hence R ⊆ OP as OP is integrally closed in K, which means that
ordP (y) ≥ 0 if y ∈ R.

Let ρ1, ρ2, . . . , ρn be an F (x) basis of K with ρi ∈ R∀i (as the fraction field of R
is K). Choose m0 big enough so that (ρi) +m0B ≥ 0∀i ≤ n. Thus

ρi ∈ L(mB)∀m ≥ m0.

In fact, we can find many more F linearly independent elements in L(mB),
namely

{xjρi|0 ≤ j ≤ m−m0, 1 ≤ i ≤ n}.

This is so because
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(xjρi) +mB = j(x) + (m−m0)B +m0B + (ρi)

≥ j(x) + (m−m0)B( as ρi ∈ L(m0B))

≥ 0( as 0 ≤ j ≤ m−m0 and (x) = (x)0 −B)

These are clearly F -linearly independent because {ρi} forms an F (x) basis of K.

Thus we have found (m−m0 +1)(n) F linearly independent elements in L(mB)
which gives us that l(mB) ≥ mn − m0n + n which implies that r(mB) ≤
m0n− n∀m.

Thus we have an increasing sequence of divisors

m0B ≤ (m0 + 1)B . . . ≤ mB ≤ . . .

and using lemma C.1 and the fact that r(mB) is uniformly upper bounded, choose
g − 1 to be the supremum of the set {r(mB)}m≥m0 . As 0 ≤ mB for any non
negative integer m, r(0) = −1 ≤ r(mB) ≤ g − 1 and hence g ≥ 0.

Now given any divisor D, we would like to find an equivalent divisor C such that
C ≤ mB for some m. This would imply that r(D) = r(C) ≤ r(mB) ≤ g − 1.
Thus we want an element f ∈ F [x] such that D ≤ mB + (f) for some non-
negative integer m. This translates to finding an f such that 0 ≤ mB + (f)−D.

Let −D = D1 + D2 where x has no pole at any prime in the prime support of
D1, whereas x has a pole at every prime in the prime support of D2. Now if P is
a prime in the prime support of D1, then as ordP (x) ≥ 0, x ∈ OP and therefore
F [x] ⊆ OP . Let F [x] ∩ P = F [x]gP where gP ∈ F [x]. Thus ordP (gP ) ≥ 1 and
thus ∃ some positive integer, say bP such that the coefficient of P in (gbPP )+D1 is
non-negative. Also ordQ(gP ) ≥ 0 for any primeQwhich lies in the prime support
of D1 as again, F [x] ∈ OQ. Let

f =
∏

P∈ support of D1

gbPP .

Then if the coefficient of P , a prime, in (f) +D1 is negative, then it has to lie in
the prime support of B. Since D2’s prime support has only primes at which x has
a pole, we have that any prime for which (f)+D1 +D2 = (f)−D has a negative
coefficient lies in the prime support of B. And thus ∃m ∈ N such that
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(f)−D +mB ≥ 0

To find the constant c, find an m1 large enough so that r(m1B) = g− 1. We want
to say that deg(D) ≥ c =⇒ r(D) ≥ r(m1B). So we would like to find a y ∈ K
such thatD+(y)−m1B ≥ 0 becauseD+(y) ∼ D and hence r(D) = r(D+(y)).
Thus we have to pick a 0 6= y from L(D −m1B) and we are done.

So, finally, we want l(D −m1B) to be greater than or equal to 1. By Riemann’s
inequality, l(D −m1B) ≥ deg(D −m1B) − g + 1 ≥ c −m1n − g + 1. Thus
choosing c ≥ m1n+ g does the job.

The uniqueness of g can be easily shown by taking a divisor D of degree greater
than c (for example, one can take D = (c+ 1)P for some prime P ) and using the
fact that l(D) = deg(D)− g + 1.

The next step in proving the Riemann-Roch theorem is to convert the Riemann
inequality into an equation as seen in the proposition below :

Proposition C.3. Given any divisorD ofK, ΩK(D) is a finite dimension F vector
space and

l(D) = deg(D)− g + 1 + dimF ΩK(D).

Proof. For any divisor C ≥ D, we have

r(C)− r(D) = dimF
AK(C)

AK(D) + L(C)
(Refer to proof of lemma C.1)

= dimF
AK(C)

AK(D) + (K ∩ AK(C))
(As L(C) = AK(C) ∩K)

= dimF
AK(C)

AK(C) ∩ (AK(D) +K)
(As P + (Q ∩R) = Q ∩ (P +R) if P ⊆ Q)

= dimF
AK(C) + AK(D) +K

AK(D) +K

= dimF
AK(C) +K

AK(D) +K

Find a divisorC0 such that deg(C0) ≥ c andC0 ≥ D. LetC0 =
∑

P∈SK
nP (C0)P .
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Therefore r(C0) = g − 1 by Riemann’s inequality. This implies that

r(C0)− r(D) = g − 1 + l(D)− deg(D) = dimF
AK(C0) +K

AK(D) +K
.

Claim : AK = AK(C0) +K.

This is because for any ξ = (xP )P∈SK
∈ AK , xP ∈ ÔP for all but finitely many

P s. Let mP = |ordP (xP )|.

Choose nP (C) = max(mP , nP (C0)) and construct a divisor C =
∑
nP (c)P .

Clearly C ≥ C0 and ξ ∈ AK(C). Therefore r(C) = g − 1 and hence r(C) −
r(C0) = dimF

AK(C)+K
AK(C0)+K

= 0. This implies AK(C) +K = AK(C0) +K. Thus

l(D) = deg(D)− g + 1 + dimF
AK

AK(D) +K

The dual of AK

AK(D)+K
is nothing but the vector space ΩK(D).

For any F - linear map ω′ : AK

AK(D)+K
→ F defines an F -linear map

ω : AK → F which sends ξ  ω′(ξ + AK(D) +K).

And given any ω ∈ ΩK(D), ω(K) = ω(AK(D)) = 0 and hence defines a well-
defined map

ω′ :
AK

AK(D) +K
such that ξ + AK(D) +K  ω(ξ).

Our task now is to associate a divisor to each non-zero Weil differential.

Lemma C.4. Given any ω 6= 0 ∈ ΩK , there exists a unqiue divisor D such that
ω(AK(D)) = 0 and if for any other divisor D′ ω(AK(D′)) = 0, then D′ ≤ D.

Such a D is denoted by (ω).
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Proof. Consider the set S = {D′|ω(AK(D′)) = 0}.

It is non-empty because ω is a Weil differential. Also if deg(D′) ≥ c, then AK =
AK(D′) + K and hence D′ ∈ S would mean ω(AK(D′)) = 0. ω(K) is anyway
zero as it is a Weil differential and hence ω(AK) = 0 which means ω = 0.

Pick a D =
∑

P∈SK
nP (D)P ∈ S with maximum degree. This we claim is the

required divisor.

For any other D′ =
∑

P∈SK
nP (D′)P ∈ S, construct the divisor

X =
∑
P∈SK

nP ([D,D′])P where nP ([D,D′]) = max(nP (D), nP (D′)).

AK(X) = AK(C) + AK(D).

(A verification : If ξ = (xP )P∈SK
∈ AK(X), then define ξ′ = (yP )P∈SK

such that
yP = xP if ordP (xP ) ≥ −nP (D) and 0 otherwise. Thus ξ′ ∈ AK(D). ξ − ξ′ is
then in AK(C). The other direction is clear).

Therefore X ∈ S. However deg(X) ≥ deg(D) and D has maximum degree in S.
Hence

deg(X) = deg(D)

=⇒ nP ([D,D′]) = nP (D) ≥ nP (D′)

=⇒ D′ ≤ D∀D′ ∈ S.

The uniqueness of D follows immediately.

Lemma C.5. If k ∈ K∗ and ω ∈ ΩK , then (kω) = (k) + (w).

Proof. Let (ω) = D which implies ω(AK(D)) = 0. By lemma B.3, ξ ∈ AK((k)+
D) iff kξ ∈ AK(D). Thus

kω(ξ) = ω(kξ) = 0

=⇒ (k) +D = (k) + (ω) ≤ (kω).
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Now ω = k−1kω. Therefore applying the above inequality, we get

(k−1) + (kω) ≤ (ω)

=⇒ (ω) = (k−1) + (k) + (ω) ≤ (k−1) + (kω) ≤ (ω).

Hence the inequalities in the above line are all equalities and (k) + (ω) = (kω).

We will show the following:

ΩK(D) ∼=F L((ω)−D) for any ω 6= 0 ∈ ΩK .

And in addition we will also prove that there exists a divisor class C which we
shall call the canonical class where C = {(ω)|ω 6= 0 ∈ ΩK}.. These two together
with proposition C.3 will conclude the proof of the Riemann-Roch theorem.

Theorem C.6. ΩK is a one dimensional K vector space.

Proof. Given any non-zero ω ∈ ΩK and any divisor D, L((ω) −D)ω ⊆ ΩK(D)
for if k ∈ L((ω) − D) , then (k) + (ω) ≥ D which gives us that (kω) ≥ D and
hence kω vanishes on AK(D) (D ≤ (kω) =⇒ AK(D) ⊆ AK((kω)), and kω
vanishes on the latter).

Now if ω and ω′ are two non-zero Weil differentials, we will find a suitable divisor
D such that L((ω)−D)ω∩L((ω′)−D)ω′ 6= (0) which will mean that ∃k, k′ ∈ K∗

such that kω = k′ω′. Hence the two Weil differentials will be K dependent.

The dimension arguement is used to say that the two vector spaces have non-zero
intersection.

dimF (ΩK(D)) = l(D) + g − 1− deg(D) ( By proposition C.3)

Using Riemann’s inequality, we get

dimF L((ω)−D)ω = dimF L((ω)−D) ≥ deg((ω))− deg(D)− g + 1

dimF L((ω′)−D)ω′ = dimF L((ω′)−D) ≥ deg((ω′))− deg(D)− g + 1
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Hence dimF L((ω′)−D)+dimF L((ω′)−D) ≥ deg((ω))+deg((ω′))−2 deg(D)−2g+2.

From the theory of vector spaces, we know that if U,W are two subspaces of an
F vector space V , then

dimF (V ) ≥ dimF (U +W ) = dimF (U) + dimF (W )− dimF (U ∩W )

=⇒ dimF (U ∩W ) ≥ dimF (U) + dimF (W )− dimF (V )

Thus if we can find a divisor D such that

deg((ω))+deg((ω′))−2 deg(D)−2g+2 > dimF ΩK(D) = l(D)+g−1−deg(D),

then we are assured of a non-zero intersection. So we need a divisor D such that
− deg(D) > l(D) + 3g − 3− deg((ω))− deg((ω′)).

An ideal choice for D is −nP where n is a suitable large positive integer. Note
that l(D) = 0 because if y ∈ L(−nP ), then (y) − nP ≥ 0, which means that y
has no pole and a zero at P and hence is 0.

The above theorem shows that if ω, ω′ are two nonzero Weil differentials, then
∃k ∈ K∗ such that kω = ω′. Hence (k) + (ω) = (ω′). and hence (ω) ∼ (ω′).
Also if D ∼ (ω), then D = (k) + (ω) and hence is equal to (kω) which is the
divisor of a Weil differential again.

Now in the course of the proof of the above theorem, we have shown that L((ω)−
D)ω ⊆ ΩK(D). To show the other inclusion, pick any ω′ ∈ ΩK(D). Thus
D ≤ (ω′) = (k) + (ω) for some k ∈ K∗. Therefore (k) ≥ D − (ω) and hence
k ∈ L((ω)−D). And thus we have shown that

L((ω)−D) ∼=F L((ω)−D)ω = ΩK(D)

And finally,
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Theorem C.7 (Riemann-Roch). Given K as above, there exists a unique integer
g ≥ 0 and a class C of the Picard group ClK such that for any divisor A and any
X ∈ C, we have

l(A) = l(X − A) + deg(A)− g + 1.

g is called the genus of K and C, the canonical class of K.
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Appendix D

Language of curves

We assume that the reader has some familiarity with projective curves ((ie) knows
the definitions of a projective space and a smooth projective curve). In this ap-
pendix we give a very brief summary about the correspondence between primes
of a function field and points of a smooth projective curve.

Let F denote the algebraic closure of finite field F . Let C ⊆ PN(F ) be a smooth
projective curve defined1 over F with vanishing ideal I(C) ⊆ F [x0, x1, . . . , xN ].

I(C) is the ideal generated in F [x0, x1, . . . xN ] by the homogeneous polynomials
with coefficients in F which vanish on C.

K consists of all rational functions f
g

such that

• f and g are homogeneous polynomials of the same degree inF [x0, x1, . . . , xN ].

• g 6∈ I(C)

• Two functions f
g

and f ′

g′
are identified if fg′ − f ′g ∈ I(C).

Likewise any element ofK looks like f̄
ḡ

where f̄ , ḡ are homogeneous polynomials
of the same degree, this time in F [x0, x1, . . . , xN ] such that ḡ does not vanish
entirely on C with a similar identification process.

Given a point α of C, one can define a discrete valuation ring

1That just means that the set of polynomials in F [x0, x1, . . . , xN ] which vanish on C is gener-
ated by homogeneous polynomials in F [x0, x1, . . . , xN ]
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Oα =

{
f

g
∈ K|g(α) 6= 0

}
,

with maximal ideal Pα given by

Pα =

{
f

g
∈ K|g(α) 6= 0, f(α) = 0

}
.

The fact that (Oα,Pα) is a discrete valuation ring follows because C is a smooth
curve. The fraction field of Oα is K and thus we have found a prime of K for
every point α of C! Let us give this association a name.

T : C → Primes of K which sends α Pα.

It turns out that T is actually a bijective map and thus primes of K correspond
exactly to points of C.

A natural step is to try to associate points of C with primes of K by sending α to
the prime of K which lies below T (α). Let (Oα, Pα) denote the prime of K lying
under (Oα,Pα). Then we have

T : C → Primes of K,

αr

•

•

α2

α1

Pα

T is a surjective map but not injective. In fact, T−1 (Pα) is the Galois orbit of
α, where the group action is that of the Galois group Gal

(
F/F

)
naturally acting

on C and hence rational primes of K are in one one correspondence with Galois
orbits of C.
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It turns out that the degree of the prime Pα is the cardinality of the Galois orbit
of α. To see this , observe that Oα

Pα
is isomorphic to F (1, α1, α2, . . . , αN) where

α = [1, α1, α2, . . . , αN ] say.

We reiterate,

deg(Pα) = |T−1(Pα)| = | Galois orbit of α|.

We will be primarily interested in rational primes of K, (ie) primes of K with
degree 1. Not surprisingly, they correspond exactly to what are called F rational
points of C.

The set of F -rational points of the projective space PN(F ) is defined as

PN(F ) := {[a0, a1, . . . , aN ] ∈ PN(F )|ai ∈ F∀i ≤ N}.

It turns out that another characterisation for F -rational points is to think of them
as the fixed points of the map φ : PN(F )→ PN(F ) which is the natural extension
of the Frobenius automorphism π of F .

Recall that π sends x  xq. The fixed points of π form the field F because
xq − x = 0 has exactly q roots and elements of F satisfy the afore mentioned
equation. π naturally defines an automorphism φ of the projective space PN(F )
by sending

[β0, β1, . . . , βN ] [βq0 , β
q
1 , . . . , β

q
N ].

Now pick a point a = [a0, . . . , aN ] ∈ PN(F ) which is fixed by φ. One of the ais
is nonzero, say a0. So a = [1, a1

a0
, . . . , aN

a0
]. Since φ(a) = a, the following tuples

are proportional

(
1,

(
a1

a0

)q
, . . . ,

(
aN
a0

)q)
and

(
1,
a1

a0

, . . . ,
aN
a0

)
.

That is ∃λ ∈ F ∗
such that

(
ai
a0

)q
= λ

(
ai
a0

)
∀i ≤ N.
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Taking i = 0 gives λ = 1 and thus
(
ai

a0

)q
=
(
ai

a0

)
∀i which implies ai

a0
∈ F which

gives us that a ∈ PN(F ). That each point of PN(F ) is fixed by φ is trivial to
check.

The set of rational points in C, denoted by C(F ) is the set C ∩ PN(F ) for any
curve defined over F . As C is a curve defined over F , φ maps C(F ) to itself 2.
Thus the rational points of C are nothing but the fixed points of φ in C(F ).

Since the Frobenius map π generates Gal
(
F/F

)
, the fixed points of φ have Galois

orbits of size 1 and hence correspond to primes of degree 1 of K.

2C is the zero set of some homogeneous polynomials in F [x0, x1, . . . , xN ] and
f([βq

0 , . . . , βq
N ]) = (f([β0, . . . , βN ]))q if f is a homogeneous polynomial with coefficients in

F .
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