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In petroleum industry, in polymer technology, non-Newtonian
(Rivlin-Ericksen) fluids of diffferential type often arise.

The constitutive law of incompressible homogeneous fluids of
degree 2 is given by

o=—pl+2vA; + 1A + (}sz%,

where o is the Cauchy tensor, A; and A, are the first two
Rivlin-Ericksen tensors:
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is the material derivative.

Dunn and Fosdick (1974) established that
ai+ax =0, a3 >0.

Writing then the equation % = uy + u.Vu = div o, one obtains
the second grade fluid equations.



System of second grade fluid equations in T?
For a > 0, we consider the following system in the two-dimensional
torus T?:
Ot(u— aAu) —vAu+ curl (u — aAu) X u+Vp =1,
divu =0, (1)
u(0, x) = up(x).

Here f is the force, u = (u1, u2) = (u1, u2,0) is the velocity field
and curl u = rot u = (0,0, d1up — Dauy).
There is a "bad” nonlinear term in (1)
If & = 0, we recover the Navier-Stokes equations,
Oru — vAu + (curlu) x u+ Vg = f,
divu =0, ()
u(0, x) = up(x).

Other form:
Oy —vAu+u-Vu+Vp=Tf,



Comparaison with the 2D Navier-Stokes equations

Properties of the 2D Navier-Stokes equations

e NS Equations define a non-linear semigroup So(t) on
L3, (T?)?: global existence and uniqueness of a classical
solution w.

e Smoothing in finite positive time (parabolic type)
e Existence of a compact global attractor Ay.

e Finite dimensional properties (determining modes, finite
fractal dimension of Ay, etc..)
Features of the second grade fluid system, a > 0
o System (1) defines a non-linear group S,(t) on H3,, (T?)2.
e No smoothing in finite time (asymptotic smoothness).
e (1) is a non-regular perturbation of 2D NS, for a small.
o S.(t) is not Holderian in t.

e But, good structure (cancellations).



Objectives of this talk

Question: Can we extend some properties of the Navier-Stokes
equations to the second grade fluid equations 7

Part 1: Properties of the compact global attractor A, in T?
(Paicu, Rekalo, G.R.)

1. Regularity of A,,.
2. Finite-dimensional behaviour :
Finite number of determining modes ?

Reduction of (1) to a finite-dimensional system of ODE's with
infinite delay?

Part 2: Perturbation results in T? (Hale, G.R.)
Comparison of the dynamics of S, (t) with the ones of Sy(t)
(periodic orbits, etc..)

Part 3: Fast rotating second grade fluids in T3



Classical properties of System (1)
Let V™, m € N, be the closure in H™(T?)? of the space

{u e C®(T?)?| u is periodic, divu = 0, / udx = 0}.

T2
We set H = V0.
Likewise, let H, be the closure in H™(T?)? of the space

{u e C®(T?)? | u is periodic, / udx = 0}.
T2

Proposition (Cioranescu,Ouazar (1983))

Let >0, Ty > 0 and T, > 0 be given. For any
fel>®(—T,T2), H;er) and any ug € V3, (1) has a unique

solution u(t) € CO([— T1, T2], V3) N Wl’oo((—Tl, Tz), V2).

If f does not depend on t, S, (t) : up € V3 — u(t) € V3isa
(continuous) group



Compact global attractor

We assume that f does not depend on t.

Theorem (Moise, Rosa and Wang (1998))

Let f € V1. Forany a > 0, S,(t) has a compact global attractor
A, in V3, that is,

- A, is a compact set in V3

- Ay is invariant (i.e. Sy(t)Aq = Aq, forany t >0)

- Aq attracts every bounded set of V3.

Proof: method of functionals of J. Ball

Remark:

- Su(t) is a group ~> there is no smoothing in finite time

(Sa(t) is asymptotically smooth or asymptotically compact)



Part I: Regularity of the global attractor A, in V*, s >3

Theorem (1: Regularity of the global attractor, P. R. R.)

1)Iff € ng, and ag = v — a(sup,c 4. [|Vz||~) > 0, then A, is
bounded in VV*. Moreover, for any u € Ag,

lull Ve +inf(a, 1)[luflFs < My .

2) For any o > 0, there exists 0 < 6 < 1, depending only on o and
[fllgn, s. t., if f € HLZ?, then A, is bounded in V3t9. And, for
any u € A,,

lulZeco + inf(or Dl 250 < My.

3)Iff e Hg;rl and a;, = v — adp(sup,e ., [|Vz|[1) > 0, then

A, is bounded in V™3 Moreover, for any u € A,

||u||%/’"+2 + inf(aa 1)”u”%/m+3 < Mm .



Part |: Regularity of the global attractor (continued)

Open Problem: If f is analytical, can we show that A, is
analytical?

Remarks:

1) The quantity sup,¢ 4, [[Vz|/ 1 is bounded by a constant
depending only on [|f]| 1.

2) Other form of the second grade fluid system:

Orcurl (u — alAu) — vAcurl u+ curl (curl (v — aAu) x u) = curl f.
Identity: If v and u* are divergence-free and regular enough,

(curl (curl v x u*),curlv) =0 (3)



Part |: Regularity of the global attractor (continued)
Decomposition of the second grade fluid system:
Let u(t) = Sa(t)ug C An. We set u(t) = vp(t) + wi(t), where
va(t) and w;,(t) are solutions of the non-autonomous equations
Ot(vp — alvy) — vAv, + curl (v, — aAv,) X u+ Vp, = f, t > sp,
Vn(Sn, x) =0,

and
Ot(wp — alAwy) — vAw, + curl (w, — Aw,) X u+ VP, =0, t > s,
Wn(Sn, X) = u(sp, x),
where s, € R will go to —o0.
Properties:

1. wy(t) — 0in V3 and thus v,(t) — wu(t) in V3 as n — +oo

2. vu(t) is uniformly bounded in V# with respect to n

3. A subsequence v, (t) converges weakly to u(t) in V4.
4. u(t) is uniformly bounded in V4



Part |: Finite-dimensional properties of A,
As for the Navier-Stokes equations, we are not able to prove the existence
of an inertial manifold containing A,. But we have the result below.
Let P, be the orthogonal projection in H onto the space generated by the
eigenvectors corresponding to the first n eigenvalues of A = —PA.

Theorem (2: Retarded system)
If v —4a(sup,ea. [|Vz||i) > 0 and if f € H L9, d € (0,1], there

per
exists Ny s. t., for n > Ny, any element u(t) € A, writes as

u=vy+ qn(Vn) , Vp €& PnAa>

where qn = qn o maps CO(R; Np \/3+d(PnAq, r0)) into
CO(R, Bg,3(0,r1)) and qn(vn)(t) depends only on vp(s), s < t.
Moreover on A, Equation (1) reduces to the RFDE
Ot(vp — alvy) — vAv,
+ PaP(curl (v + gn(va) — @A(Vi 4 @n(vn))) X (Vo + Gn(va))) = P,Pf.



Part I: Finite number of determining modes
The property of “finite number of determining modes” was proved, by
Foias and Prodi in 1967, for the 2D Navier-Stokes equations.
Theorem (3: Finite number of determining modes, PRR)
If v —4a(sup,e 4., || Vz|[) > 0 and if f € H?, d >0, then (1)

per 1
has the property of finite number of determining modes, that is,

there exists a positive integer Ng such that, for any ug, uy in V3,
the property

1PNy Sa(t)uo — Py Sa(t)urllvs —t—to0 0
implies that

1Sa(t)uo — Sa(t)urllvs — 100 0.

Like in [Hale, GR 2003], we deduce Theorem 3 from Theorem 2.



Part Il: Comparison with 2D Navier-Stokes

Theorem (4: Comparison with 2D Navier-Stokes, PRR)
There exists o, > 0 such that, if f € HT?

per

have, for0 < s <2 and 0 < o < o,

and ug € V™2, we

HSa(t)uo — So(t)UOH%/s+m—1 + QHSO((t)U(] — So(t)UOH%/erm
<a® % exp K(|| f[[Fim, | uollym2)

m =1 (resp. m =2) = estimate in V¢, / <2 (resp. / < 3).
Corollary

Let f € H,’,’;,, m > 1. Then, the global attractors A, are
upper-semicontinuous in V¢, 0 < ¢ < m+ 1, that is,

lim s inf — =0
28wty It = el

Theorem 4 leads to compare the dynamics of S, (t) and Sp(t)



Part Il: Persistence of periodic orbits

Assume that f € Hpg, is chosen so that the 2D Navier-Stokes
system So(t) admits a periodic orbit

Mo = {po(t) = So(t)po(0)|0 < t < wp}

where po(t) is periodic of (minimal) period wp > 0. Suppose that
o is non-degenerate. (Existence of periodic orbits: Yudovich; looss;
Chen and Price, Com. Math. Physics, 1999)

Question : Does S,(t) admit a periodic orbit
Mo = {Pa(t) = Sa(t)pa(0)|0 < t < w,} close to g of minimal
period w, close to wp? Is this periodic orbit unique?

Definition: po(t) is a non-degenerate or simple periodic solution of period
wp if 1 is an isolated (algebraically) simple eigenvalue of the period map
Mo(To,0) = Du(So(wo)po(0)).



General classical Poincaré method

The classical method for showing persistence of non-degenerate
orbits is the well-known Poincaré method.

Two difficulties:

e Su(t): V3 — V3 is not Holderian in the time variable;

e S,(t) is not a regular perturbation of Sp(t).
But S, (t) is asymptotically smoothing and the periodic orbits are
smoother.

General method (J. Hale, G.R.),
Ingredients:

1. Reinterpret the Poincaré method as a Lyapunov-Schmidt
method,

2. Use the fact that the periodic orbits are more regular
3. Work with two spaces Z, C X, with compact injection.

4. For the existence of the periodic solution p,(t), apply the
Leray-Schauder fixed point theorem.



Modified Poincaré method
Let X, = V3 and Z, = V° equipped with the norms

lullx, = llullv +a*2llullys,  lullz, = llullve +a?|lulys

Theorem (5: Persistence of periodic orbits, Hale, R.)

Suppose that f € ngr and the Navier-Stokes system has a simple
periodic orbit Tg = {po(t) = So(t)po(0)|0 < t < wp} of (minimal)
period wg > 0 Then, there exist positive constants ag > 0, Ry and
Mo, s. t., for 0 < o < g, So(t) has a unique periodic orbit

Mo = {Pa(t) = Sa(t)pa(0)|0 < t < wy} of minimal period wy s. t.

Mo CNx,(Fo,m0) NNz, (0,Ro) , |wa —wol <o -

And (pa(0),wy) goes to (po(0),wo) as « goes to 0 (Estimates).

Corollary
There exist f € ng, and ag >0, s. t., for 0 < a < ap, (1) has at

least a periodic solution of minimal period w, # 0.



Part Il: Further comparison results

1. Similar results (simpler) for equilibria

. comparaison of the local stable and unstable manifolds of
equilibria (difficulties)

. comparaison of the local stable and unstable manifolds of
periodic orbits (in progress)



Part Il : Rotating second grade fluids in T3
The system of rotating second grade fluid is given by

X
Ot(u: — aAue) — vAu + curl (v — alAu.) X ue + SR

=Vp:-+ £, ()
div u. = 0,

u:(0, x) = wp,

where T3 = Hjj(o, 27ma;) and ez is the unit vector in the vertical
direction. We introduce the vertical average operator M.

Theorem (6: Global existence, B. Jaffal)

For a.e. (a1, a2, a3) (non-resonant case), one has the following
existence result. For any f € L*(R*, HL..) N HY(R™, L2,,), s.t.
Mf € L2(RT, ng,), for any ug € V3, there exist g and €, s. t.,
for o < ap, € < €9, (4) has a unique global solution

us € L°(RT, V3) N L2(RT, V3) (Estimates).



Part Il : Rotating fluid (continued)

1) When « is large, one obtains a global existence result under a
smallness condition on the vertical components of Mf and of Mug.
2) In the proof of Theorem 6, one uses the filtered vector field

Ve = Lo(ZH)uo, where u = L, (t)ug is the solution of

Ot(u — alAu) +P(e3 xu) =0, u(0) = wp.

As € goes to 0, (v¢). strongly converges to a vector field v and Mv
satisfies the system of 3 equations defined on T?:

Ot(Mv—alApMv)—vApMv+P(curl (Mv—alApMv)x Mv) = P(Mf),
(5)

divy, Mv =0, Mv(0) = Muyp, (6)

and

where Ay, and divy, are the horizontal Laplacian and divergence.



Part Il : Rotating fluid (continued)

3) In the case of rotating Navier-Stokes equations, one shows
global existence of solutions for any size of initial data and forcing
terms, provided that ¢ is small enough (Babin, Mahalov and
Nicolaenko, 1997 - Gallagher, 1998).

4) Open Problem : For « large, does the limiting system (5), (6)
admit a (unique) global solution for initial data and forcing terms
of any size? (This is true for the corresponding limiting system in
the Navier-Stokes case)



Alles Gute
zum Geburtstag]!

Happy Birthday!






