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In petroleum industry, in polymer technology, non-Newtonian
(Rivlin-Ericksen) fluids of diffferential type often arise.
The constitutive law of incompressible homogeneous fluids of
degree 2 is given by

σ = −pI + 2νA1 + α1A2 + α2A2
1,

where σ is the Cauchy tensor, A1 and A2 are the first two
Rivlin-Ericksen tensors:

A1(u) =
1

2
[∇u +∇uT ], A2 =

DA1

Dt
+ (∇u)T A1 + A1(∇u)

and
D

Dt
= ∂t + u.∇.

is the material derivative.
Dunn and Fosdick (1974) established that

α1 + α2 = 0, α1 ≥ 0.

Writing then the equation Du
Dt = ut + u.∇u = div σ, one obtains

the second grade fluid equations.



System of second grade fluid equations in T2

For α > 0, we consider the following system in the two-dimensional
torus T2:

∂t(u − α∆u)− ν∆u + curl (u − α∆u)× u +∇p = f ,

div u = 0,

u(0, x) = u0(x).

(1)

Here f is the force, u = (u1, u2) ≡ (u1, u2, 0) is the velocity field
and curl u ≡ rot u ≡ (0, 0, ∂1u2 − ∂2u1).
There is a “bad” nonlinear term in (1)
If α = 0, we recover the Navier-Stokes equations,

∂tu − ν∆u + (curl u)× u +∇q = f ,

div u = 0,

u(0, x) = u0(x).

(2)

Other form:
∂tu − ν∆u + u · ∇u +∇p = f ,



Comparaison with the 2D Navier-Stokes equations

Properties of the 2D Navier-Stokes equations

• NS Equations define a non-linear semigroup S0(t) on
L2

div (T2)2: global existence and uniqueness of a classical
solution u.

• Smoothing in finite positive time (parabolic type)

• Existence of a compact global attractor A0.

• Finite dimensional properties (determining modes, finite
fractal dimension of A0, etc..)

Features of the second grade fluid system, α > 0

• System (1) defines a non-linear group Sα(t) on H3
div (T2)2.

• No smoothing in finite time (asymptotic smoothness).

• (1) is a non-regular perturbation of 2D NS, for α small.

• Sα(t) is not Hölderian in t.

• But, good structure (cancellations).



Objectives of this talk

Question: Can we extend some properties of the Navier-Stokes
equations to the second grade fluid equations ?

Part 1: Properties of the compact global attractor Aα in T2

(Paicu, Rekalo, G.R.)

1. Regularity of Aα.

2. Finite-dimensional behaviour :
Finite number of determining modes ?
Reduction of (1) to a finite-dimensional system of ODE’s with
infinite delay?

Part 2: Perturbation results in T2 (Hale, G.R.)
Comparison of the dynamics of Sα(t) with the ones of S0(t)
(periodic orbits, etc..)

Part 3: Fast rotating second grade fluids in T3



Classical properties of System (1)
Let V m, m ∈ N, be the closure in Hm(T2)2 of the space

{u ∈ C∞(T2)2 | u is periodic, div u = 0,

∫
T2

u dx = 0}.

We set H = V 0.
Likewise, let Hm

per be the closure in Hm(T2)2 of the space

{u ∈ C∞(T2)2 | u is periodic,

∫
T2

u dx = 0}.

Proposition (Cioranescu,Ouazar (1983))

Let α > 0, T1 > 0 and T2 > 0 be given. For any
f ∈ L∞((−T1,T2),H1

per ) and any u0 ∈ V 3, (1) has a unique
solution u(t) ∈ C 0([−T1,T2],V 3) ∩W 1,∞((−T1,T2),V 2).

If f does not depend on t, Sα(t) : u0 ∈ V 3 7→ u(t) ∈ V 3 is a
(continuous) group



Compact global attractor

We assume that f does not depend on t.

Theorem (Moise, Rosa and Wang (1998))

Let f ∈ V 1. For any α > 0, Sα(t) has a compact global attractor
Aα in V 3, that is,
- Aα is a compact set in V 3

- Aα is invariant (i.e. Sα(t)Aα = Aα, for any t ≥ 0)
- Aα attracts every bounded set of V 3.

Proof: method of functionals of J. Ball
Remark:
- Sα(t) is a group  there is no smoothing in finite time
(Sα(t) is asymptotically smooth or asymptotically compact)



Part I: Regularity of the global attractor Aα in V s , s > 3

Theorem (1: Regularity of the global attractor, P. R. R.)

1) If f ∈ H2
per and a0 = ν − α(supz∈Aα ‖∇z‖L∞) > 0, then Aα is

bounded in V 4. Moreover, for any u ∈ Aα,

‖u‖2
V 3 + inf(α, 1)‖u‖2

V 4 ≤ M1 .

2) For any α > 0, there exists 0 < θ ≤ 1, depending only on α and
‖f ‖H1 , s. t., if f ∈ H1+θ

per , then Aα is bounded in V 3+θ. And, for
any u ∈ Aα,

‖u‖2
V 2+θ + inf(α, 1)‖u‖2

V 3+θ ≤ Mθ.

3) If f ∈ Hm+1
per and am = ν − αdm(supz∈Aα ‖∇z‖L∞) > 0, then

Aα is bounded in V m+3. Moreover, for any u ∈ Aα,

‖u‖2
V m+2 + inf(α, 1)‖u‖2

V m+3 ≤ Mm .



Part I: Regularity of the global attractor (continued)

Open Problem: If f is analytical, can we show that Aα is
analytical?

Remarks:
1) The quantity supz∈Aα ‖∇z‖L∞ is bounded by a constant
depending only on ‖f ‖V 1 .
2) Other form of the second grade fluid system:

∂tcurl (u−α∆u)− ν∆curl u + curl
(
curl (u−α∆u)× u

)
= curl f .

Identity: If v and u∗ are divergence-free and regular enough,

(curl (curl v × u∗), curl v) = 0 (3)



Part I: Regularity of the global attractor (continued)
Decomposition of the second grade fluid system:
Let u(t) = Sα(t)u0 ⊂ Aα. We set u(t) = vn(t) + wn(t), where
vn(t) and wn(t) are solutions of the non-autonomous equations

∂t(vn − α∆vn)− ν∆vn + curl (vn − α∆vn)× u +∇pn = f , t > sn,

vn(sn, x) = 0,

and

∂t(wn − α∆wn)− ν∆wn + curl (wn −∆wn)× u +∇p̃n = 0, t > sn,

wn(sn, x) = u(sn, x),

where sn ∈ R will go to −∞.
Properties:

1. wn(t)→ 0 in V 3 and thus vn(t)→ u(t) in V 3 as n→ +∞
2. vn(t) is uniformly bounded in V 4 with respect to n

3. A subsequence vnk
(t) converges weakly to u(t) in V 4.

4. u(t) is uniformly bounded in V 4



Part I: Finite-dimensional properties of Aα
As for the Navier-Stokes equations, we are not able to prove the existence

of an inertial manifold containing Aα. But we have the result below.

Let Pn be the orthogonal projection in H onto the space generated by the

eigenvectors corresponding to the first n eigenvalues of A = −P∆.

Theorem (2: Retarded system)

If ν − 4α(supz∈Aα ‖∇z‖L∞) > 0 and if f ∈ H1+d
per , d ∈ (0, 1], there

exists N1 s. t., for n ≥ N1, any element u(t) ∈ Aα writes as

u = vn + qn(vn) , vn ∈ PnAα,

where qn ≡ qn,α maps C 0(R; NPnV 3+d (PnAα, r0)) into
C 0(R,BQnV 3(0, r1)) and qn(vn)(t) depends only on vn(s), s ≤ t.
Moreover on Aα, Equation (1) reduces to the RFDE

∂t(vn − α∆vn)− ν∆vn

+ PnP
(
curl (vn + qn(vn)− α∆(vn + qn(vn)))× (vn + qn(vn))

)
= PnPf .



Part I: Finite number of determining modes

The property of “finite number of determining modes” was proved, by

Foias and Prodi in 1967, for the 2D Navier-Stokes equations.

Theorem (3: Finite number of determining modes, PRR)

If ν − 4α(supz∈Aα ‖∇z‖L∞) > 0 and if f ∈ H1+d
per , d > 0, then (1)

has the property of finite number of determining modes, that is,
there exists a positive integer N0 such that, for any u0, u1 in V 3,
the property

‖PN0Sα(t)u0 − PN0Sα(t)u1‖V 3 −→t→+∞ 0

implies that

‖Sα(t)u0 − Sα(t)u1‖V 3 −→t→+∞ 0 .

Like in [Hale, GR 2003], we deduce Theorem 3 from Theorem 2.



Part II: Comparison with 2D Navier-Stokes

Theorem (4: Comparison with 2D Navier-Stokes, PRR)

There exists αm > 0 such that, if f ∈ Hm
per and u0 ∈ V m+2, we

have, for 0 ≤ s ≤ 2 and 0 < α ≤ αm,

‖Sα(t)u0 − S0(t)u0‖2
V s+m−1 + α‖Sα(t)u0 − S0(t)u0‖2

V s+m

≤α2−s exp K (‖f ‖2
Hm , ‖u0‖2

V m+2)

m = 1 (resp. m = 2) ⇒ estimate in V `, ` < 2 (resp. ` < 3).

Corollary

Let f ∈ Hm
per , m ≥ 1. Then, the global attractors Aα are

upper-semicontinuous in V `, 0 ≤ ` < m + 1, that is,

lim
α→0

sup
uα∈Aα

inf
u∈A0

‖uα − u‖V ` = 0

Theorem 4 leads to compare the dynamics of Sα(t) and S0(t)



Part II: Persistence of periodic orbits

Assume that f ∈ Hm
per is chosen so that the 2D Navier-Stokes

system S0(t) admits a periodic orbit

Γ0 = {p0(t) = S0(t)p0(0) | 0 ≤ t ≤ ω0}

where p0(t) is periodic of (minimal) period ω0 > 0. Suppose that
Γ0 is non-degenerate. (Existence of periodic orbits: Yudovich; Iooss;

Chen and Price, Com. Math. Physics, 1999)

Question : Does Sα(t) admit a periodic orbit
Γα = {pα(t) = Sα(t)pα(0)|0 ≤ t ≤ ωα} close to Γ0 of minimal
period ωα close to ω0? Is this periodic orbit unique?

Definition: p0(t) is a non-degenerate or simple periodic solution of period

ω0 if 1 is an isolated (algebraically) simple eigenvalue of the period map

Π0(T0, 0) ≡ Du(S0(ω0)p0(0)).



General classical Poincaré method
The classical method for showing persistence of non-degenerate
orbits is the well-known Poincaré method.

Two difficulties:

• Sα(t) : V 3 → V 3 is not Hölderian in the time variable;

• Sα(t) is not a regular perturbation of S0(t).

But Sα(t) is asymptotically smoothing and the periodic orbits are
smoother.

General method (J. Hale, G.R.),
Ingredients:

1. Reinterpret the Poincaré method as a Lyapunov-Schmidt
method,

2. Use the fact that the periodic orbits are more regular

3. Work with two spaces Zα ⊂ Xα with compact injection.

4. For the existence of the periodic solution pα(t), apply the
Leray-Schauder fixed point theorem.



Modified Poincaré method
Let Xα = V 3 and Zα = V 5 equipped with the norms

‖u‖Xα = ‖u‖V 2 + α1/2‖u‖V 3 , ‖u‖Zα = ‖u‖V 4 + α1/2‖u‖V 5

Theorem (5: Persistence of periodic orbits, Hale, R.)

Suppose that f ∈ H3
per and the Navier-Stokes system has a simple

periodic orbit Γ0 = {p0(t) = S0(t)p0(0)|0 ≤ t ≤ ω0} of (minimal)
period ω0 > 0 Then, there exist positive constants α0 > 0, R0 and
η0, s. t., for 0 < α ≤ α0, Sα(t) has a unique periodic orbit
Γα = {pα(t) = Sα(t)pα(0)|0 ≤ t ≤ ωα} of minimal period ωα s. t.

Γα ⊂ NXα(Γ0, η0) ∩NZα(0,R0) , |ωα − ω0| ≤ η0 .

And (pα(0), ωα) goes to (p0(0), ω0) as α goes to 0 (Estimates).

Corollary

There exist f ∈ H3
per and α0 > 0, s. t., for 0 ≤ α ≤ α0, (1) has at

least a periodic solution of minimal period ωα 6= 0.



Part II: Further comparison results

1. Similar results (simpler) for equilibria

2. comparaison of the local stable and unstable manifolds of
equilibria (difficulties)

3. comparaison of the local stable and unstable manifolds of
periodic orbits (in progress)



Part III : Rotating second grade fluids in T3

The system of rotating second grade fluid is given by

∂t(uε − α∆uε)− ν∆uε + curl (uε − α∆uε)× uε +
e3 × uε
ε

= ∇pε + f ,

div uε = 0,

uε(0, x) = u0,

(4)

where T3 =
∏i=3

i=1(0, 2πai ) and e3 is the unit vector in the vertical
direction. We introduce the vertical average operator M.

Theorem (6: Global existence, B. Jaffal)

For a.e. (a1, a2, a3) (non-resonant case), one has the following
existence result. For any f ∈ L2(R+,H1

per ) ∩ H1(R+, L2
per ), s.t.

Mf ∈ L2(R+,H2
per ), for any u0 ∈ V 3, there exist α0 and ε0, s. t.,

for α ≤ α0, ε ≤ ε0, (4) has a unique global solution
uε ∈ L∞(R+,V 3) ∩ L2(R+,V 3) (Estimates).



Part III : Rotating fluid (continued)

1) When α is large, one obtains a global existence result under a
smallness condition on the vertical components of Mf and of Mu0.
2) In the proof of Theorem 6, one uses the filtered vector field
vε = Lα(−t

ε )u0, where u = Lα(t)u0 is the solution of

∂t(u − α∆u) + P(e3 × u) = 0 , u(0) = u0.

As ε goes to 0, (vε)ε strongly converges to a vector field v and Mv
satisfies the system of 3 equations defined on T2:

∂t(Mv−α∆hMv)−ν∆hMv+P(curl (Mv−α∆hMv)×Mv) = P(Mf ),
(5)

and
divh Mv = 0 , Mv(0) = Mu0, (6)

where ∆h and divh are the horizontal Laplacian and divergence.



Part III : Rotating fluid (continued)

3) In the case of rotating Navier-Stokes equations, one shows
global existence of solutions for any size of initial data and forcing
terms, provided that ε is small enough (Babin, Mahalov and
Nicolaenko, 1997 - Gallagher, 1998).
4) Open Problem : For α large, does the limiting system (5), (6)
admit a (unique) global solution for initial data and forcing terms
of any size? (This is true for the corresponding limiting system in
the Navier-Stokes case)



Alles Gute
zum Geburtstag!

Happy Birthday!




