Dynamics of second grade fluids

Geneviève Raugel

CNRS and Université Paris-Sud

January 2012

Dedicated to Jürgen Scheurle on the occasion of his 60th birthday (joint works with J. Hale, M. Paicu, A. Rekalo)

In petroleum industry, in polymer technology, non-Newtonian (Rivlin-Ericksen) fluids of diffferential type often arise. The constitutive law of incompressible homogeneous fluids of degree 2 is given by

$$\sigma = -\boldsymbol{\rho}\boldsymbol{I} + 2\boldsymbol{\nu}\boldsymbol{A}_1 + \alpha_1\boldsymbol{A}_2 + \alpha_2\boldsymbol{A}_1^2,$$

where σ is the Cauchy tensor, A_1 and A_2 are the first two Rivlin-Ericksen tensors:

$$A_{1}(u) = \frac{1}{2} [\nabla u + \nabla u^{T}], \quad A_{2} = \frac{DA_{1}}{Dt} + (\nabla u)^{T} A_{1} + A_{1} (\nabla u)$$

and

$$\frac{D}{Dt}=\partial_t+u.\nabla.$$

is the material derivative.

Dunn and Fosdick (1974) established that

$$\alpha_1 + \alpha_2 = \mathbf{0}, \quad \alpha_1 \ge \mathbf{0}.$$

Writing then the equation $\frac{Du}{Dt} = u_t + u \cdot \nabla u = \operatorname{div} \sigma$, one obtains the second grade fluid equations.

System of second grade fluid equations in \mathbb{T}^2

For $\alpha > 0$, we consider the following system in the two-dimensional torus \mathbb{T}^2 :

$$\partial_t (u - \alpha \Delta u) - \nu \Delta u + \operatorname{curl} (u - \alpha \Delta u) \times u + \nabla p = f,$$

div $u = 0,$ (1)
 $u(0, x) = u_0(x).$

Here f is the force, $u = (u_1, u_2) \equiv (u_1, u_2, 0)$ is the velocity field and curl $u \equiv \operatorname{rot} u \equiv (0, 0, \partial_1 u_2 - \partial_2 u_1)$. There is a "bad" nonlinear term in (1) If $\alpha = 0$, we recover the Navier-Stokes equations,

$$\partial_t u - \nu \Delta u + (\operatorname{curl} u) \times u + \nabla q = f,$$

div $u = 0,$ (2)
 $u(0, x) = u_0(x).$

Other form:

$$\partial_t u - \nu \Delta u + u \cdot \nabla u + \nabla p = f,$$

Comparaison with the 2D Navier-Stokes equations

Properties of the 2D Navier-Stokes equations

- NS Equations define a non-linear semigroup S₀(t) on L²_{div} (T²)²: global existence and uniqueness of a classical solution u.
- Smoothing in finite positive time (parabolic type)
- Existence of a compact global attractor \mathcal{A}_0 .
- Finite dimensional properties (determining modes, finite fractal dimension of A_0 , etc..)

Features of the second grade fluid system, $\alpha > \mathbf{0}$

- System (1) defines a non-linear group $S_{\alpha}(t)$ on $H^3_{\text{div}}(\mathbb{T}^2)^2$.
- No smoothing in finite time (asymptotic smoothness).
- (1) is a non-regular perturbation of 2D NS, for α small.
- $S_{\alpha}(t)$ is not Hölderian in t.
- But, good structure (cancellations).

Objectives of this talk

Question: Can we extend some properties of the Navier-Stokes equations to the second grade fluid equations ?

Part 1: Properties of the compact global attractor \mathcal{A}_{α} in \mathbb{T}^2 (Paicu, Rekalo, G.R.)

- 1. Regularity of \mathcal{A}_{α} .
- Finite-dimensional behaviour : Finite number of determining modes ? Reduction of (1) to a finite-dimensional system of ODE's with infinite delay?

Part 2: Perturbation results in \mathbb{T}^2 (Hale, G.R.) Comparison of the dynamics of $S_{\alpha}(t)$ with the ones of $S_0(t)$ (periodic orbits, etc..)

Part 3: Fast rotating second grade fluids in \mathbb{T}^3

Classical properties of System (1)

Let V^m , $m \in \mathbb{N}$, be the closure in $H^m(\mathbb{T}^2)^2$ of the space

$$\{u \in C^{\infty}(\mathbb{T}^2)^2 \mid u \text{ is periodic, } \operatorname{div} u = 0, \int_{\mathbb{T}^2} u \, dx = 0\}.$$

We set $H = V^0$. Likewise, let H^m_{per} be the closure in $H^m(\mathbb{T}^2)^2$ of the space

$$\{u \in C^{\infty}(\mathbb{T}^2)^2 \mid u ext{ is periodic}, \int_{\mathbb{T}^2} u \, dx = 0\}.$$

Proposition (Cioranescu,Ouazar (1983)) Let $\alpha > 0$, $T_1 > 0$ and $T_2 > 0$ be given. For any $f \in L^{\infty}((-T_1, T_2), H_{per}^1)$ and any $u_0 \in V^3$, (1) has a unique solution $u(t) \in C^0([-T_1, T_2], V^3) \cap W^{1,\infty}((-T_1, T_2), V^2)$.

If f does not depend on t, $S_{\alpha}(t): u_0 \in V^3 \mapsto u(t) \in V^3$ is a (continuous) group

Compact global attractor

We assume that f does not depend on t.

Theorem (Moise, Rosa and Wang (1998))

Let $f \in V^1$. For any $\alpha > 0$, $S_{\alpha}(t)$ has a compact global attractor \mathcal{A}_{α} in V^3 , that is,

- \mathcal{A}_{lpha} is a compact set in V^3
- \mathcal{A}_{lpha} is invariant (i.e. $S_{lpha}(t)\mathcal{A}_{lpha}=\mathcal{A}_{lpha}$, for any $t\geq 0$)
- A_{α} attracts every bounded set of V^3 .

Proof: method of functionals of J. Ball

Remark:

- $S_{\alpha}(t)$ is a group \rightsquigarrow there is no smoothing in finite time $(S_{\alpha}(t)$ is asymptotically smooth or asymptotically compact)

Part I: Regularity of the global attractor \mathcal{A}_{lpha} in V^s , s>3

Theorem (1: Regularity of the global attractor, P. R. R.) 1) If $f \in H^2_{per}$ and $a_0 = \nu - \alpha(\sup_{z \in \mathcal{A}_{\alpha}} ||\nabla z||_{L^{\infty}}) > 0$, then \mathcal{A}_{α} is bounded in V^4 . Moreover, for any $u \in \mathcal{A}_{\alpha}$,

$$||u||_{V^3}^2 + \inf(\alpha, 1) ||u||_{V^4}^2 \le M_1$$
.

2) For any $\alpha > 0$, there exists $0 < \theta \le 1$, depending only on α and $\|f\|_{H^1}$, s. t., if $f \in H^{1+\theta}_{per}$, then \mathcal{A}_{α} is bounded in $V^{3+\theta}$. And, for any $u \in \mathcal{A}_{\alpha}$,

$$\|u\|_{V^{2+\theta}}^2 + \inf(\alpha, 1)\|u\|_{V^{3+\theta}}^2 \leq M_{\theta}.$$

3) If $f \in H_{per}^{m+1}$ and $a_m = \nu - \alpha d_m(\sup_{z \in A_\alpha} \|\nabla z\|_{L^{\infty}}) > 0$, then A_α is bounded in V^{m+3} . Moreover, for any $u \in A_\alpha$,

$$||u||_{V^{m+2}}^2 + \inf(\alpha, 1) ||u||_{V^{m+3}}^2 \leq M_m$$
.

Part I: Regularity of the global attractor (continued)

Open Problem: If f is analytical, can we show that A_{α} is analytical?

Remarks:

The quantity sup_{z∈A_α} ||∇z||_{L∞} is bounded by a constant depending only on ||f||_{V1}.
 Other form of the second grade fluid system:

$$\partial_t \operatorname{curl} (u - \alpha \Delta u) - \nu \Delta \operatorname{curl} u + \operatorname{curl} (\operatorname{curl} (u - \alpha \Delta u) \times u) = \operatorname{curl} f.$$

Identity: If v and u^* are divergence-free and regular enough,

$$(\operatorname{curl}(\operatorname{curl} v \times u^*), \operatorname{curl} v) = 0 \tag{3}$$

Part I: Regularity of the global attractor (continued) Decomposition of the second grade fluid system: Let $u(t) = S_{\alpha}(t)u_0 \subset A_{\alpha}$. We set $u(t) = v_n(t) + w_n(t)$, where $v_n(t)$ and $w_n(t)$ are solutions of the non-autonomous equations

 $\partial_t (v_n - \alpha \Delta v_n) - \nu \Delta v_n + \operatorname{curl} (v_n - \alpha \Delta v_n) \times u + \nabla p_n = f, \ t > s_n,$ $v_n(s_n, x) = 0,$

and

 $\partial_t (w_n - \alpha \Delta w_n) - \nu \Delta w_n + \operatorname{curl} (w_n - \Delta w_n) \times u + \nabla \tilde{p}_n = 0, \ t > s_n,$ $w_n(s_n, x) = u(s_n, x),$

where $s_n \in \mathbb{R}$ will go to $-\infty$. Properties:

- 1. $w_n(t)
 ightarrow 0$ in V^3 and thus $v_n(t)
 ightarrow u(t)$ in V^3 as $n
 ightarrow +\infty$
- 2. $v_n(t)$ is uniformly bounded in V^4 with respect to n
- 3. A subsequence $v_{n_k}(t)$ converges weakly to u(t) in V^4 .
- 4. u(t) is uniformly bounded in V^4

Part I: Finite-dimensional properties of \mathcal{A}_{lpha}

As for the Navier-Stokes equations, we are not able to prove the existence of an inertial manifold containing \mathcal{A}_{α} . But we have the result below. Let P_n be the orthogonal projection in H onto the space generated by the eigenvectors corresponding to the first n eigenvalues of $A = -\mathbb{P}\Delta$.

Theorem (2: Retarded system)

If $\nu - 4\alpha(\sup_{z \in A_{\alpha}} \|\nabla z\|_{L^{\infty}}) > 0$ and if $f \in H_{per}^{1+d}$, $d \in (0, 1]$, there exists N_1 s. t., for $n \ge N_1$, any element $u(t) \in A_{\alpha}$ writes as

 $u = v_n + q_n(v_n)$, $v_n \in P_n \mathcal{A}_{\alpha}$,

where $q_n \equiv q_{n,\alpha}$ maps $C^0(\mathbb{R}; N_{P_nV^{3+d}}(P_n\mathcal{A}_{\alpha}, r_0))$ into $C^0(\mathbb{R}, B_{Q_nV^3}(0, r_1))$ and $q_n(v_n)(t)$ depends only on $v_n(s)$, $s \leq t$. Moreover on \mathcal{A}_{α} , Equation (1) reduces to the RFDE

 $\partial_t (v_n - \alpha \Delta v_n) - \nu \Delta v_n \\ + P_n \mathbb{P} (\operatorname{curl} (v_n + q_n(v_n) - \alpha \Delta (v_n + q_n(v_n))) \times (v_n + q_n(v_n))) = P_n \mathbb{P} f.$

Part I: Finite number of determining modes

The property of "finite number of determining modes" was proved, by Foias and Prodi in 1967, for the 2D Navier-Stokes equations.

Theorem (3: Finite number of determining modes, PRR) If $\nu - 4\alpha(\sup_{z \in \mathcal{A}_{\alpha}} ||\nabla z||_{L^{\infty}}) > 0$ and if $f \in H_{per}^{1+d}$, d > 0, then (1) has the property of finite number of determining modes, that is, there exists a positive integer N_0 such that, for any u_0 , u_1 in V^3 , the property

$$\|P_{N_0}S_{\alpha}(t)u_0 - P_{N_0}S_{\alpha}(t)u_1\|_{V^3} \longrightarrow_{t \to +\infty} 0$$

implies that

$$\|S_{lpha}(t)u_0-S_{lpha}(t)u_1\|_{V^3}\longrightarrow_{t\to+\infty} 0$$
 .

Like in [Hale, GR 2003], we deduce Theorem 3 from Theorem 2.

Part II: Comparison with 2D Navier-Stokes Theorem (4: Comparison with 2D Navier-Stokes, PRR) There exists $\alpha_m > 0$ such that, if $f \in H^m_{per}$ and $u_0 \in V^{m+2}$, we have, for $0 \le s \le 2$ and $0 < \alpha \le \alpha_m$,

$$\begin{aligned} \|S_{\alpha}(t)u_{0} - S_{0}(t)u_{0}\|_{V^{s+m-1}}^{2} + \alpha \|S_{\alpha}(t)u_{0} - S_{0}(t)u_{0}\|_{V^{s+m}}^{2} \\ \leq & \alpha^{2-s} \exp K(\|f\|_{H^{m}}^{2}, \|u_{0}\|_{V^{m+2}}^{2}) \end{aligned}$$

m = 1 (resp. m = 2) \Rightarrow estimate in V^{ℓ} , $\ell < 2$ (resp. $\ell < 3$). Corollary

Let $f \in H^m_{per}$, $m \ge 1$. Then, the global attractors \mathcal{A}_{α} are upper-semicontinuous in V^{ℓ} , $0 \le \ell < m + 1$, that is,

$$\lim_{\alpha \to 0} \sup_{u_{\alpha} \in \mathcal{A}_{\alpha}} \inf_{u \in \mathcal{A}_{0}} \|u_{\alpha} - u\|_{V^{\ell}} = 0$$

Theorem 4 leads to compare the dynamics of $S_{\alpha}(t)$ and $S_{0}(t)$

Part II: Persistence of periodic orbits

Assume that $f \in H^m_{per}$ is chosen so that the 2D Navier-Stokes system $S_0(t)$ admits a periodic orbit

$$\Gamma_0 = \{ p_0(t) = S_0(t) p_0(0) \, | \, 0 \le t \le \omega_0 \}$$

where $p_0(t)$ is periodic of (minimal) period $\omega_0 > 0$. Suppose that Γ_0 is non-degenerate. (Existence of periodic orbits: Yudovich; looss; Chen and Price, Com. Math. Physics, 1999)

Question : Does $S_{\alpha}(t)$ admit a periodic orbit $\Gamma_{\alpha} = \{p_{\alpha}(t) = S_{\alpha}(t)p_{\alpha}(0)|0 \le t \le \omega_{\alpha}\}$ close to Γ_{0} of minimal period ω_{α} close to ω_{0} ? Is this periodic orbit unique?

Definition: $p_0(t)$ is a non-degenerate or simple periodic solution of period ω_0 if 1 is an isolated (algebraically) simple eigenvalue of the period map $\Pi_0(T_0, 0) \equiv D_u(S_0(\omega_0)p_0(0)).$

General classical Poincaré method

The classical method for showing persistence of non-degenerate orbits is the well-known Poincaré method.

Two difficulties:

- $S_{\alpha}(t): V^3 \rightarrow V^3$ is not Hölderian in the time variable;
- $S_{\alpha}(t)$ is not a regular perturbation of $S_0(t)$.

But $S_{\alpha}(t)$ is asymptotically smoothing and the periodic orbits are smoother.

```
General method (J. Hale, G.R.), Ingredients:
```

- 1. Reinterpret the Poincaré method as a Lyapunov-Schmidt method,
- 2. Use the fact that the periodic orbits are more regular
- 3. Work with two spaces $Z_{\alpha} \subset X_{\alpha}$ with compact injection.
- 4. For the existence of the periodic solution $p_{\alpha}(t)$, apply the Leray-Schauder fixed point theorem.

Modified Poincaré method

Let $X_{\alpha} = V^3$ and $Z_{\alpha} = V^5$ equipped with the norms

$$\|u\|_{X_{\alpha}} = \|u\|_{V^{2}} + \alpha^{1/2} \|u\|_{V^{3}}, \quad \|u\|_{Z_{\alpha}} = \|u\|_{V^{4}} + \alpha^{1/2} \|u\|_{V^{5}}$$

Theorem (5: Persistence of periodic orbits, Hale, R.)

Suppose that $f \in H^3_{per}$ and the Navier-Stokes system has a simple periodic orbit $\Gamma_0 = \{p_0(t) = S_0(t)p_0(0)| 0 \le t \le \omega_0\}$ of (minimal) period $\omega_0 > 0$ Then, there exist positive constants $\alpha_0 > 0$, R_0 and η_0 , s. t., for $0 < \alpha \le \alpha_0$, $S_\alpha(t)$ has a unique periodic orbit $\Gamma_\alpha = \{p_\alpha(t) = S_\alpha(t)p_\alpha(0)| 0 \le t \le \omega_\alpha\}$ of minimal period ω_α s. t.

$$\Gamma_{lpha} \subset \mathcal{N}_{X_{lpha}}(\Gamma_0,\eta_0) \cap \mathcal{N}_{Z_{lpha}}(0,R_0) \;, \quad |\omega_{lpha}-\omega_0| \leq \eta_0 \;.$$

And $(p_{\alpha}(0), \omega_{\alpha})$ goes to $(p_0(0), \omega_0)$ as α goes to 0 (Estimates). Corollary

There exist $f \in H^3_{per}$ and $\alpha_0 > 0$, s. t., for $0 \le \alpha \le \alpha_0$, (1) has at least a periodic solution of minimal period $\omega_{\alpha} \ne 0$.

Part II: Further comparison results

- 1. Similar results (simpler) for equilibria
- 2. comparaison of the local stable and unstable manifolds of equilibria (difficulties)
- 3. comparaison of the local stable and unstable manifolds of periodic orbits (in progress)

Part III : Rotating second grade fluids in \mathbb{T}^3 The system of rotating second grade fluid is given by

 $\partial_t (u_{\varepsilon} - \alpha \Delta u_{\varepsilon}) - \nu \Delta u_{\varepsilon} + \operatorname{curl} (u_{\varepsilon} - \alpha \Delta u_{\varepsilon}) \times u_{\varepsilon} + \frac{e_3 \times u_{\varepsilon}}{\varepsilon} \\ = \nabla p_{\varepsilon} + f, \quad (4)$ div $u_{\varepsilon} = 0,$

 $u_{\varepsilon}(0,x)=u_0,$

where $\mathbb{T}^3 = \prod_{i=1}^{i=3} (0, 2\pi a_i)$ and e_3 is the unit vector in the vertical direction. We introduce the vertical average operator M.

Theorem (6: Global existence, B. Jaffal)

For a.e. (a_1, a_2, a_3) (non-resonant case), one has the following existence result. For any $f \in L^2(\mathbb{R}^+, H^1_{per}) \cap H^1(\mathbb{R}^+, L^2_{per})$, s.t. $Mf \in L^2(\mathbb{R}^+, H^2_{per})$, for any $u_0 \in V^3$, there exist α_0 and ε_0 , s. t., for $\alpha \leq \alpha_0$, $\varepsilon \leq \varepsilon_0$, (4) has a unique global solution $u_{\varepsilon} \in L^{\infty}(\mathbb{R}^+, V^3) \cap L^2(\mathbb{R}^+, V^3)$ (Estimates).

Part III : Rotating fluid (continued)

1) When α is large, one obtains a global existence result under a smallness condition on the vertical components of Mf and of Mu_0 . 2) In the proof of Theorem 6, one uses the filtered vector field $v_{\varepsilon} = L_{\alpha}(\frac{-t}{\varepsilon})u_0$, where $u = L_{\alpha}(t)u_0$ is the solution of

$$\partial_t(u - \alpha \Delta u) + \mathbb{P}(e_3 \times u) = 0$$
, $u(0) = u_0$.

As ε goes to 0, $(v_{\varepsilon})_{\varepsilon}$ strongly converges to a vector field v and Mv satisfies the system of 3 equations defined on \mathbb{T}^2 :

 $\partial_t (Mv - \alpha \Delta_h Mv) - \nu \Delta_h Mv + \mathbb{P}(\operatorname{curl} (Mv - \alpha \Delta_h Mv) \times Mv) = \mathbb{P}(Mf),$ (5)

and

$$\operatorname{div}_{h} M v = 0 , \quad M v(0) = M u_{0},$$
 (6)

where Δ_h and div_h are the horizontal Laplacian and divergence.

Part III : Rotating fluid (continued)

3) In the case of rotating Navier-Stokes equations, one shows global existence of solutions for any size of initial data and forcing terms, provided that ε is small enough (Babin, Mahalov and Nicolaenko, 1997 - Gallagher, 1998).
4) Open Problem : For α large, does the limiting system (5), (6) admit a (unique) global solution for initial data and forcing terms of any size? (This is true for the corresponding limiting system in the Navier-Stokes case)

Alles Gute zum Geburtstag!

Happy Birthday!

