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Introduction

Let X be a Banach space and S0(t) : X 7→ X be a dynamical
system.
We assume that S0(t) admits a periodic orbit p0(t) of (least)
period T0 and that this periodic orbit is non-degenerate.

For ε > 0 small, let Sε(t) : X 7→ X be a perturbed dynamical
system, such that Sε(t) ”converges” in some sense to S0(t) when
ε→ 0.

Question Does Sε(t) admit a periodic orbit pε(t) close to p0(t) of
period Tε close to T0? Is this periodic orbit unique?



An abstract setting

S0(t): ut = A0u(t) + G0(u(t)) , u(0) = u0 ∈ X , (1)

and

Sε(t): ut = Aεu(t) + Gε(u(t)) , u(0) = uε ∈ X , (2)

where, for ε ≥ 0, Aε is the generator of a C 0-semigroup and either
Gε : X → Y , where Y ↪→ X or Gε : X → Z where X ↪→ Z . We
assume that Aε → A0 and Gε → G0.

Definition: p0(t) is a non-degenerate periodic solution of (least)
period T0 if 1 is an isolated (algebraically) simple eigenvalue of the
period map U0(T0, 0) where U0(σ, s)w s = w(σ) is the solution of

wt = A0w + DG0(p0(t))w , w(s) = w s ∈ X . (3)



Classical result

Classical theorem If (1) and (2) are finite-dimensional systems of
ODE’s, if Aε and Gε are continuous in ε and if p0(t) is a
non-degenerate periodic orbit of (1) of period T0, then there exist
ε0 > 0 and r > 0 such that, for 0 < ε ≤ ε0, (2) has a unique
periodic solution pε(t) of period Tε with |Tε − T0| ≤ r and
‖p0(0)− pε(0)‖ ≤ r . And pε(t) is continuous in ε.

Proof: Poincaré method or Lyapunov-Schmidt method ....

The same theorem holds in the case of parabolic equations.

Persistence of periodic orbits in equations of retarded type and
neutral type (J. Hale and M. Weedermann, JDE, 2004)



Problems arising in infinite dimensions

- In general, given u0 ∈ X , t ∈ R 7→ Sε(t)u0 ∈ X is not a
Hölder-continuous map.
-The interesting perturbations are not regular (not continuous in ε)

Goals:
-To generalize the previous theorem to dissipative systems (2
methods).
-To describe the local unstable (stable) manifolds of
Γ = {p0(t)|t ∈ [0,T0)}



Part I: Examples
Example 1: A system of damped wave equations
Ω ⊂ Rn is a bounded smooth domain.
X = (H1(Ω)× L2(Ω))2, fi : (u, v) ∈ H1(Ω)× H1(Ω) 7→ Hs(Ω),
0 < s < 1, i = 1, 2.
The dynamical system S0(t) is defined by

utt + βut −∆u + αu = f1(u, v)

vtt + βvt −∆v + αu = f2(u, v)

∂u

∂ν
=
∂v

∂ν
= 0 on ∂Ω

(u, ut , v , vt)(0, x) = (u0, u1, v0, v1) ∈ X .

(4)

where α > 0, β > 0. It can be written as a first order system

wt = A0w(t) + G0(w) , w(0) = w0 ∈ X , where

G0 : w ∈ X 7→ G0(w) = (0, f1, 0, f2) ∈ Y = (Hs+1(Ω)× Hs(Ω))2

The embedding of Y in X is compact.



Properties of Example 1

1. S0(t) is asymptotically smooth (a.s.): ⇒ Every bounded
invariant set B is relatively compact

2. Regularity in space and time of bounded invariant sets
If w(t) is a bounded solution for t ∈ (−∞,T ), then, for
t ≤ T ,

w(t) =

∫ t

−∞
eA0(t−s)G0(w(s))ds ∈ (Hs+1 × Hs)2,

Same regularity properties for linearized equations along
smooth global bounded solutions and thus for the map
U(T0, 0) if we have a periodic orbit.
Same regularity for the eigenfunctions of U(T0, 0) associated with

eigenvalues λ, |λ| ≥ 1.



Examples of perturbations of S0(t)

1. Regular perturbations: perturbations fi (ε, u, v) or γ(ε)

2. Non regular perturbations: perturbations of the domain Ω
Thin domains: Qε = {(x , y) | x ∈ Ω, 0 < y < εh(x)}
h(x) = 1: R. Johnson, M. Kamenski, P. Nistri, JDDE 1998
General h, n = 1: B. Abdelhedi, 2005

The thin domain perturbation is singular since we can only
estimate ‖Sε(t)w0 − S0(t)w0‖X̃ for w0 ∈ Ỹ where Ỹ ( X̃ .



Example 2: Hyperbolic perturbation of the Navier-Stokes
equations

We consider the equations defined on Ω = T2:

εuεtt + uεt − ν∆uε = −∇pε − uε · ∇uε + f ,

divuε = 0,

(uε, uετ )(0, y) = (u0(y), u1(y)) .

Sε(t) is a local dynamical system on X = V s+1(Ω)× V s(Ω), for
s ≥ 0, where V s = {w ∈ Hs(Ω)2 | div w = 0, w is 2π-periodic}.
When ε goes to 0, we obtain the system S0(t) generated by the
Navier-Stokes equations

vτ − ν∆v = −∇p − v · ∇v + f ,

divv = 0,

v(0, y) = u0 .

Existence of periodic orbits: Chen and Price, Com. Math. Physics, 1999.

Paicu, R.



Other examples

Example 3: Second grade fluids Let Ω = T2. For α > 0, Sα(t) is a
global dynamical system on V 3,

∂t(u − α∆u)− ν∆u + curl(u − α∆u)× u +∇p = −∇p + f ,

divu = 0,

u(0, x) = u0(x),

where curl u = (0, 0, ∂1u2 − ∂2u1) if u = (u1, u2).

1. Sα(t) is not smoothing in finite time.

2. Sα(t) is a non regular perturbation of S0(t).

3. Sα(t) is a.s. and the bounded invariant sets are more regular.

Example 4: A system of weakly damped Schrödinger equations



Summary

In these examples, Sε(t) has no Hölder-regularity in time and the
convergence of Sε(t) to S0(t) is not good. BUT

1. Sε(t) is a.s. due to dissipation (second grad fluids or
Schrödinger equations) or to compactness of the non-linearity
(damped wave equation).

2. The bounded invariant sets of Sε(t) are more regular.

3. Sε(t) can be compared to S0(t) for smoother data,

‖Sε(t)u − S0(t)u‖X ≤ C (t, ‖u‖Y )εd



Part II. A first method : An integral or functional method

Sε(t): ut = Aεu(t) + G (u) , u(0) = uε ∈ X . (5)

We assume that
• (A.1) G ∈ C 2(X ,Y ), where Y ( X and X , Y are Hilbert

spaces.
• (A.2) Aε is the generator of a C 0-semigroup on X and Y and

‖eAεt‖L(X ,X ) + ‖eAεt‖L(Y ,Y ) ≤ Ce−αt , α > 0

• (H.1) S0(t) admits a non-degenerate periodic solution p0(t)
of period T0 and, for t ≥ 0,

‖p0(t)‖Ỹ + ‖ṗ0(t)‖Ỹ ≤ R0 ,

where Ỹ ⊂ D((A0)a), a > 0.
• (H.2) If U(T0, 0)∗ϕ∗0 = ϕ∗0 and 〈ṗ0, ϕ

∗
0〉 = 1, then

‖ϕ∗0‖Ỹ ≤ C0.



• (H.3) One has the estimate

‖eAεt − eA0t‖L(Y ,X ) ≤ Cεd ,

where d > 0.

• (H.4) t 7→ eA0tDuG (p0) is locally Hölder-continuous from R+

into L(X ,X ) and t 7→ eA0tG (p0) is locally
Lipschitz-continuous from R+ into X .

• (H.5) |〈AεeAεtG (w), ϕ∗0〉| ≤ C‖w‖X , for any w ∈ X .

Theorem
Under the hypotheses (A.1), (A.2), (H.1) to (H.5), there exist
ε0 > 0 and r > 0, such that, for 0 < ε ≤ ε0, there exists a unique
periodic solution pε(t) of Eq.(5) with period Tε such that
|Tε − T0| ≤ r and ‖p0(t)− pε(t)‖X ≤ r . Moreover, pε converges
to p0 and Tε converges to T0 when ε→ 0 (estimates).

Consequence: Existence (and uniqueness) of perturbed periodic
orbits of period close to T0 for systems of damped wave equations
on thin domains.



Proof
Ingredients:

• Use of the variation of constants formula (Krasnoselskii,
Zabreiko, Pustylnik and Sobolevskii, 1966; Gurova and
Kamenskii, 1996, R. Johnson, M. Kamenski, P. Nistri, JDDE
1998, etc..)

• Lyapunov-Schmidt method

• Strict contraction fixed point theorem

Idea: If pε(t) is a periodic orbit of (5) of period Tε, then,

pε(0) = pε(Tε) = eAεTεpε(0) +

∫ Tε

0
eAε(Tε−s)G (pε(s))ds

or

pε(0) =(I − eAεTε)−1

∫ Tε

0

eAε(Tε−s)G (pε(s))ds

pε(t) =eAεt(I − eAεTε)−1

∫ Tε

0

eAε(Tε−s)G (pε(s))ds +

∫ t

0

eAε(t−s)G (pε(s))ds



Change of time scaling t → T
T0
t leads the equation

ũt =
T

T0
Aεũ(t) +

T

T0
G (ũ) , ũ(0) = ũε ∈ X . (6)

We set:

Σε,T (t) = e
T
T0

Aεt , Cper
T0

= {w ∈ C 0(X ,X )|w is T0-periodic}.

(Jε(T )w)(t) =Σε,T (t)(I − Σε,T (T0))−1

∫ T0

0
Σε,T (T0 − s)w(s)ds

+

∫ t

0
Σε,T (t − s)w(s)ds

Fε(T ,w) =Jε(T )(
T

T0
G (w)) .

• ϕ ∈ Cper
T0

is a fixed point of Fε(T , .) iff ϕ is a periodic solution
of (6).

• DuF0(T0, p0)ṗ0 = ṗ0, 1 is a (algebraically) simple eigenvalue,
and DuF0(T0, p0)− I ∈ L(Cper

T0
(X )) is Fredholm of index 0.

• Good estimates of Fε − F0 and of DuFε − DuF0.



Let v∗0 ∈ (Cper
T0

(X ))∗ such that (DuF0(T0, p0)− I )∗v∗0 = 0 and
〈ṗ0, v

∗
0 〉 = 1, then

Cper
T0

(X ) = {ṗ0}+ Z , Z = {w ∈ Cper
T0

(X ) I 〈w , v∗0 〉 = 0}

Goal: For r > 0 small, find (T , ϕ) ∈ BR(T0, r)× BCper
T0

(X )(0, r),

such that
Fε(T , p0 + ϕ)− (p0 + ϕ) = 0 .

Use a Lyapunov-Schmidt method and solve

Lε(ϕ,T ) = Fε(T , p0 + ϕ)− (p0 + ϕ)− 〈Fε(T , p0 + ϕ)− (p0 + ϕ), v∗
0 〉 = 0

〈Fε(T , p0 + ϕ)− (p0 + ϕ), v∗
0 〉 = 0 .

Step 1: One shows that

Lε(ϕ,T ) = ϕ− ((DuF0(T0, p0)− I )/Z )−1Lε(ϕ,T )

is a strict contraction in BZ (0, r), for ε > 0 and r small.
⇒ For ε small and T close to T0, there exists a unique fixed point
ϕ(ε,T ) ∈ BZ (0, r) of Lε(ϕ,T ).



Step 2: One solves the equation

Mε(T ) = 〈Fε(T , p0 + ϕ(ε,T ))− (p0 + ϕ(ε,T )), v∗0 〉 = 0. (7)

Under the hypothesis (H.5), Mε is a strict contraction from
BR(0, r) into itself. Thus there exists a unique Tε ∈ BR(0, r) such
that (7) holds. And ϕ(ε,Tε) is the T0-periodic solution of (6).
Remarks:

1. If p0(t) is of class C 2, we show, without the hypothesis (H.5)
that (7) has a solution in BR(0, r) by the Schauder fixed point
theorem. If we assume that all periodic orbits of (5) are of
class C 1+δ, δ > 0, then one can prove the uniqueness.

2. In the case of thin product domains, R. Johnson, M.
Kamenski and P. Nistri proved the existence of the perturbed
periodic solution by using a topological degree argument.



Part III. A modified Poincaré method

Appropriate method if the non-linearity is non-compact, but dissipative.
Let Ỹ ↪→ Y ↪→compact X be Hilbert spaces. Let Sε(t), ε ≥ 0, be

a dynamical system on X , Y and Ỹ . We assume (H.1), (H.2) and

• (H.3) t 7→ p0(t) is of class C 2(R,X ).

• (H.4) r(σess(U(T0, 0))) < 1.

• (H.5) There exist R1 ≥ 2R0 and 0 < k1 < 1 s.t., for
T0/2 ≤ t ≤ 2T0, ‖u‖Y ≤ R1, for ε ≥ 0,

‖Sε(t)u‖Y ≤ k1R1.

• (H.6) There exists β > 0 s.t., for R > 0, 0 < t0 < t ≤ 2T0,
for w ∈ BY (0,R),

‖Sε(t)w − S0(t)w‖X ≤ εβK0(R)

‖(DSε(t)w)u − (DS0(t)w)u‖X ≤ εβK0(R)‖u‖Y .



• (H.7) Besides λ0 = 1, there exist m distinct eigenvalues
λi 6= 1 of U(T0, 0) with algebraic multiplicity di such that
|λi | ≥ 1. The corresponding (generalized) eigenvectors are in
Ỹ .
There exists 0 < k2 < 1 s.t., if Pi is the spectral projection
onto the eigenspace associated with λi , i = 0, 1...,m and
Q = I −

∑m
i=0 Pi , we have

‖U(T0, 0)ϕ‖X ≤ k2‖ϕ‖X , ∀ϕ ∈ QX .

• (H.8) There exists K > 0 s.t., if uε(t) is a bounded orbit of
Sε(t), for t ∈ R, then uε(t) is bounded in Ỹ and

sup
t
‖uε(t)‖Ỹ ≤ K sup

t
‖uε(t)‖X .

If u1
ε (t) and u2

ε (t) are bounded orbits of Sε(t), for t ∈ R, then

sup
t∈R
‖u1

ε (t)− u2
ε (t)‖Y ≤ K sup

t∈R
‖u1

ε (t)− u2
ε (t)‖X .

• (H.9) For any ϕ ∈ Ỹ , the map t 7→ Sε(t)ϕ is locally
Lipschitz-continuous from R into X .



Second method: Results

Theorem
Under the hypotheses (H.1) to (H.9), there are ε0 > 0 and r > 0,
such that, for 0 < ε ≤ ε0, there exists a unique periodic orbit pε(t)
of Sε(t) with period Tε such that |Tε − T0| ≤ r and
‖p0(0)− pε(0)‖X ≤ r . Moreover, pε converges to p0 and Tε
converges to T0 when ε→ 0 (estimates).

Consequence: Existence (and uniqueness) of perturbed periodic
orbits of period close to T0 in the examples 2 to 4 (hyperbolic
Navier-Stokes; second grade fluids, weakly damped Schrödinger
equations).

Ingredients of the proof:

1. Lyapunov-Schmidt method (modified Poincaré method)

2. Schauder fixed point theorem (topological degree also?)

3. Uniqueness



Proof
We write X = {ṗ0(0)} ⊕ Z1 ⊕ Z2 where Z1 = ⊕m

i=1PiX , Z2 = QX .
We recall that P0w = 〈w , ϕ∗0〉ṗ0(0) and 〈v , ϕ∗0〉 = 0 if v ∈ Z1⊕Z2.
Goal: For r > 0 small, find (Tε, pε(0)) ∈ BR(T0, r)× BX (p0(0), r),
such that

Sε(Tε)pε(0) = pε(0).

Step 1: We write: pε(0) = p0(0) + ϕ+ ψ, where
ψ =

∑d
j=1 αjψj ∈ Z1, ϕ ∈ Z2. For r2 > 0 small, we set

B = {ϕ ∈ BZ2(0, r2)|ϕ+ p0(0) ∈ BY (0,R1)},

and, for ψ ∈ BZ1(0, r1), |T − T0| < η, 0 < ε ≤ ε0, where ε0, r1, η
are small, we define the map

Lε(T , ϕ, ψ) = (I − P0 −
m∑
i=1

Pi )
(
Sε(T )(p0(0) + ϕ+ ψ)− p0(0)

)
.

Lε(T , ϕ, ψ) ∈ B. By Schauder fixed point theorem, there exists a
fixed point ϕε(T , ψ) ∈ B of the map Lε(T , ·, ψ).



Proof (continued)
Step 2: For |T − T0| < η, 0 < ε ≤ ε0, to find ψ ∈ BZ1(0, r1) s. t.

Mε(T , ψ) ≡
m∑
i=1

Pi

(
Sε(T )(p0(0) + ϕε(T , ψ) + ψ)− p0(0)

)
= ψ

If r1 > 0, η > 0 and ε0 > 0 are small, Mε(T , ψ) ∈ BZ1(0, r1).
By Schauder fixed point theorem, the map Mε(T , ·) has a fixed
point ψε(T ) ∈ BZ1(0, r1).

Step 3: For 0 < ε ≤ ε0, to find T with |T − T0| < η, s.t.

〈Sε(Tε)
(
p0(0) + ϕε(T , ψε(T )) + ψε(T ))− p0(0)

)
, ϕ∗0〉 = 0,

or to find a fixed point τ , |τ | < η of the map

Fε(τ) = τ ṗ0(0)− 〈Sε(T0 + τ)
(
p0(0) + ϕε(T0 + τ, ψε(T0 + τ))

+ψε(T0 + τ)
)
− p0(0), ϕ∗0〉.

For ε0 > 0 small enough, Fε has a fixed point τε, with |τ | < η.



Proof (end)

Set Tε = T0 + τε. Thus, Sε(·) has a periodic orbit

pε(t) = Sε(t)
(
p0(0) + ϕε(Tε, ψε(Tε)) + ψε(Tε)

)
.

of period Tε. Since pε(t) is a periodic orbit of Sε(·), pε(t) is
uniformly bounded in Ỹ .

Step 4: Since pε(t) is uniformly bounded in Ỹ , we can use the
hypotheses (H.8) and (H.9) to show the uniqueness of the periodic
solution with period Tε s.t. |Tε − T0| < r and
‖p0(0)− pε(0)‖X ≤ r (Strict contraction argument).



Part IV. Local unstable and stable manifolds

We take ε = 0 in Equation (5),

ut = A0u + G (u) , u(0) = u0 ∈ X

and suppose:

• (A.1) and (A.2) hold,

• p0(t) ∈ C 2(R,X ),

• r(σess(U(T0, 0))) < 1

• the periodic orbit Γ0 = {p0(t)|t ∈ [0,T0)} is hyperbolic, i.e.

(σ(U(T0, 0))− {1}) ∩ S1 = ∅.

• DuG (p0(t)) ∈ L(X ,X ) is a compact map, for t ∈ [0,T0).

Thus the index i(Γ0) ≡ i(U(T0, 0)), which is the number of
eigenvalues λ of U(T0, 0) with |λ| > 1, is finite.



Let V be a neighbourhood of Γ0, we define the local stable and
unstable sets by

W s
loc(Γ0) ≡W s(Γ0,V ) = {u ∈ X |S0(t)u ∈ V , ∀t ≥ 0;

lim
t→+∞

δX (S0(t)u, Γ0) = 0},

W u
loc(Γ0) ≡W u(Γ0,V ) = {u ∈ X |S0(t)u ∈ V ,∀t ≤ 0;

lim
t→−∞

δX (S0(t)u, Γ0) = 0}

Theorem (J. Hale, R)

W s
loc(Γ0) (resp. W u

loc(Γ0)) is a C 1-submanifold of codimension
i(Γ0) (respectively of dimension i(Γ0) + 1). Moreover, there exist
positive constants α and β such that, for any u0 in W s

loc(Γ0) (resp.
in W u

loc(Γ0)), there is a number τu0 (resp. θu0) s.t.

‖S0(t)u0 − p0(t + τu0)‖X ≤ Ce−αt , t ≥ 0,

( resp. ‖S0(t)u0 − p0(t + θu0)‖X ≤ Ceβt , t ≤ 0).



Corollary Under the above hypotheses and the hypotheses of Part
II, if Γ0 is the periodic orbit of period T0 of S0(t) and Γε the
periodic orbit of period Tε of Sε(t), then

distX (W u
loc(Γ0),W u

loc(Γε)) ≤ Cεd ,

where d > 0.
(Particular case of thin domains has been proved by B. Abdelhedi
(2005))

Ingredients of the proof:
• If V is a neighbourhood of Γ0, we define the local

synchronized stable and local synchronized unstable sets of
p0(θ0) ∈ Γ0 as

Ws
θ0,loc(Γ0) ≡ Ws

θ0
(Γ0,V ) = {u ∈ X |S0(t)u ∈ V ,∀t ≥ 0;

lim
t→+∞

S0(t)u − p0(t + θ0) = 0},

Wu
θ0,loc(Γ0) ≡ Wu

θ0
(Γ0,V ) = {u ∈ X |S0(t)u ∈ V ,∀t ≤ 0;

lim
t→−∞

S0(t)u − p0(t + θ0) = 0}



We define the local synchronized stable and local synchronized
unstable sets of Γ0 as

Ws
loc(Γ0) = ∪θ0∈[0,T0)Ws

θ0
(Γ0,V )

Wu
loc(Γ0) = ∪θ0∈[0,T0)Wu

θ0
(Γ0,V ).

and we show that

Ws
loc(Γ0) = W s

loc(Γ0) , Wu
loc(Γ0) = W u

loc(Γ0).

• We introduce a new coordinates system around Γ0. Every u in
a small tubular neighbourhood of Γ0 is written as

u = p0(θ) + Q(θ)w , ‖w‖X ≤ δ ,

where δ > 0 is small enough, θ ∈ R, w ∈W , W is a linear
subspace of X of codimension 1, Q(θ) is a continuous
T0-periodic map of W into X and Q(θ)W is transversal to
ṗ0(θ) for all θ.



We obtain the new system

θ̇ = 1 + g(w)

ẇ = Ãw + h(θ,w)




