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Many mathematical models in physics, chem-
istry or biology lead to systems of partial differ-
ential equations (PDE’s) or retarded functional
differential equations (RFDE’'s) with dissipa-
tive properties.

Very often, they generate an infinite-dimensional
continuous semigroup S(t) on a Banach space
X and have a compact global attractor A.

e Systems with smoothing or compactness
properties in finite time, i.e. S(t) : X — X
is @ compact map, for t > tg > 0.

Heat or 2D Navier-Stokes equations.

e Systems with only asymptotic smoothness
or asymptotic compactness properties.
Damped wave or damped Schrodinger equa-
tions.



X is a Banach space, S(t) : X —- X, t>0, is a
nonlinear semigroup (semiflow).
S(t) has a compact global attractor A if

(a) A is a compact subset of X,

(b) A is invariant under S(¢t), i.e. S()A = A
for t > 0,

(c) A attracts every bounded set B of X, i.e.
Ve > 0, V bounded subset B of X, there
exists T = 7(B,e) > 0 s.t.

S(t)B C Nx(A,e), Vt > T,

where Nx(A,¢) is the e-neighbourhood of
A in X,

i.e. distx(S(t)B, A) =400 0, Wwhere distx(B1, By) =
SqulEBl inbeEBz ||b1 - b2||X

(a) and (b) imply A = {u(t) € C2(R, X) |u(t) is a com-
plete bounded orbit of S(t)}.
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X is a Hilbert space (for sake of simplicity),
S(t) : X — X, t > 0, denotes the continuous
semigroup defined by the equation

du
dt
uw(0) = wug € X,

= Au—+ f(u) = F(u), t >0,

where A is the generator of a (linear) Cp semi-
group on X, f € CF(X,X), k> 1, or analytic.

We assume that this equation defines a non
linear semigroup by S(t)ug = u(t), where u(t) €
CO([0, +0), X) is the mild solution

t
u(t) = etug + /O eA(t_S)f(u(s)) ds.



Part I

The ultimate goal is the precise description of
the flow on the global attractor. For the mo-
ment, this seems to be in general out of reach.

T hree linked, questions:

e Does the semigroup S(t)| 4 exhibit smooth-
ness properties that are not shared by the
semigroup S(t) in general?

Reqgularity in time and spatial variables?

e Can the asymptotic behaviour of the so-
lutions be described by a finite number of
degrees of freedom? Galerkin methods.

e Are compact global attractors robust ob-
jects with respect to perturbations? Struc-
tural stability.



Importance of regularity in time or space vari-
ables:

-local study of periodic orbits, etc...
-structural stability properties,

-reduction to finite-dimensional problems.

ODE'’'s on R™: every solution is as smooth in
t as the vector field.

Parabolic type equations: same property is true
for t > 0 and the solutions also enjoy regularity
properties in the spatial variables.

[Time analyticity and Gevrey class regularity in space :
2D Navier-Stokes: Foias and Temam (1979, 1989),
General systems: Promislow (1991), Ferrari and Titi
(1998)]

In our examples: we can expect smoothness in
time only for solutions defined for all t € R and
contained in compact invariant sets.

To generalize regularity results of Hale and
Scheurle (1985).



Can we reduce the study of the flow on a com-
pact invariant set A to the discussion of the
flow of some system on a finite-dimensional
space?

1.Finite number of determining modes
[Cesari (1964), Foias and Prodi for 2D Navier-Stokes (1967)]

Let P, be the projection onto the space V,, =
P X generated by the first n eigenfunctions of
A. There is ng so that, if u1(t), ux(t) are any
two solutions satisfying

||Pnoul(t) — Pno“Q(t)HX 7 t—4o00 0,
then
|u1(t) —u2()|lx =400 O

[Ladyzhenskaya (1972), Foias, Manley, Temam and Treve (1983),
Jones and Titi (1993) for NS and parabolic-type equations
Cockburn, Jones and Titi (1997), Oliver and Titi (1998) for the
Schrodinger eq., Chueshov (1998)]



2. Ideal situation

To find a projection P onto a finite-dimensional
subspace PX C X s.t. P|N(A) is invertible,
where N (A) is a neighbourhood of A and to
reduce the equation

Ut — F(u)a t> 07 U(O) — U,

to the finite-dimensional system for v = Pu

ve = PF((P) ), v(0) = Puyg.

If dimg(A) < 400, such a projection P exists
[Mafie (1981), Foias and Olson (1996)].
Unfortunately, (P)~1 is only H&lder continu-
ous. It may not define a flow.

[Eden, Foias, Nicolaenko and Temam (1994)]

Another approach:

To construct an M of S(t),
i.e. a finite-dimensional, smooth (at least Cl),
positively invariant (i.e. S(t)M C M) manifold
M C X, that contains A.



Basic way for constructing inertial manifolds:

To obtain M as a smooth graph (C1) over the
finite-dimensional space V,, = P,X and to ap-
ply the classical methods of center manifold
theory.

M = {u = vy + P(vn),vn € Vi}, where & €
Cl(Vy,QnX), Qn = Id— Pp.

—
d'Un

— = Avn + Pnf(vn + ®(vn)).

—— One encounters the same obstructions as
in center manifold theory:

gap condition, cone condition.

These conditions are satisfied for some parabolic
equations in 1D or special 2D domains.

[Foias, Sell and Temam (1988), Mallet-Paret and Sell
(1988), etc...]

Here, we shall reduce the evolution equation to
a system of equations with



3. New idea of low-dimensional reduction
using rigorous computations and topological
invariants (e.g. Conley index, degree theory)

and way to effectively com-
pute fixed points, connecting orbits, periodic
orbits etc...

[K. Mischaikow and P. Zgliczynski (2000) with applica-
tions to the Kuramoto-Sivashinsky equation]

Heuristically, one does not reduce the system

ur = Au 4+ f(u),

to an equivalent system, but rather replace it
by the differential inclusion

d'U'n,

EGAUR_I_PRJC(UTL—FW;)’
diam(W}) -0 as n —

—+00.

Main argument: the topological invariants are
the same for any Galerkin system of the form
Vit € A’Uj + ij(v] + W;), where v; € Vj?*
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A basic problem in dynamics is to compare the
flows defined by different semigroups.
Applications:

PDE's depending on several physical parameters,
numerical approximations of systems....

Case of a finite-dimensional compact manifold
M.
two systems Sq(¢t) and S»>(t) are

on M if there exists a homeomor-
phism h : M — M, which preserves orbits and
the sense of direction in time.
So(t) is (or ) if there
exists a “neighbourhood” Ny of Sp(t) s.t. any
S1(t) € Ny is topologically equivalent to Sp(t).

Infinite-dimensional case:

the strongest expected comparison of the dy-
namics of two semigroups Sq1(t) and S»(t) is
the topological equivalence restricted to the
compact attractors Ay and Ay (h: A1 — Ap).
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compactness of the global attractor A (or of
the maximal bounded invariant set)
hyperbolicity of equilibrium points and periodic
orbits

transversality of the stable and unstable man-
ifolds of them.

Morse-Smale property = Structural stability.
[Palis (1969), Palis and Smale (1970),

Oliva (1982), Hale, Magalhaes and Oliva (1984), Oliva
(2000) in the infinite-dimensional case].

Transversality properties are very difficult to
show in the infinite-dimensional case. It is eas-
ier in the context of gradient systems.

The semigroup S(t) on X is a if it ad-
mits a ® € CO(X,R) s.t.
P(S(t)uo) < P(S(s)uo), t > s,
and ®(S(t)ug) = P(up) for any t > 0 implies that ug is
an equilibrium point.

12



We consider the damped wave equation in a
bounded domain 2 C R", n = 1,2,3, t > 0O,
where v> 0O,

Uy + U — AU + U = F(z,U)

with either homogeneous Dirichlet or homoge-
neous Neumann boundary conditions.

Theorem (Brunovsky and G.R. (2001)).
Generically in v € RT and F € C*(2 x R),
the semigroup generated by the damped wave
equation has the property and
thus is

Generalized Sard theorem,
Analyticity in time of S(t)| 4 when F'is replaced
by an analytic function

Genericity in F(x,.) of the Morse-Smale property for the
semilinear heat equation was proved by Brunovsky and
Polacik in 1997.

The Morse-Smale property is always true for the semi-
linear heat equation in the one-dimensional case (n=1).
[ Henry (1985), Angenent (1986)]
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Part II

[Hale and G.R.]

We go back to the equation

d
d—?: — Au+ f(u), t>0,uw(0) =ug € X, (1)
where A is the generator of a (linear) Cy semi-

group on X, f € CF(X,X), k> 1, or analytic.

We want to perform a Galerkin-type method
to reduce the problem to a finite-dimensional
system with delay and to prove regularity in
time.

We do the following hypotheses:
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S(t) has a compact invariant set A.

There exists an orthogonal decomposi-
tion of X into generalized eigenspaces of
A, i.e. there is an orthogonal projection B,

S.t.
e P,A= AP, on D(A),
o P, — Id strongly as n — o0,

r(oess(edt)) < et >0,
i.e. there exist an integer ny and 41 > O,
K41 >0s.t.,, fort >0,

e Qnyullx < K1e 21| Qnqullx, Yu € X,
where Qn = Id — Py,.

The set {Df(uq)un|us € A, |Juzl|x <1}
IS relatively compact in X.
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[1985]:
If (H1), (H3) hold and if

IDf(wllpx,x)y <

for u in some neighbourhood of A, wheren > 0
is small enough, then, for ug € A, the mapping
t e R — S(t)ug is as smooth as f.

Generalization:

Let n > n;.

If u(t) = Phu(t) + Qnu(t) = v(t) + w(t) is a
solution of (1), then (v,w) is a solution of the
system

% = Av+ P,f(v+w),
d
— = Aw+Quf(v+w).

If u(R) C A, (H3) implies that
w®) = [ AIQuf(s) +us)) ds.
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Let d > 0, we introduce the neighbourhoods

Theorem 1. Assume that , , ,
hold.

For each d, 0 < d < dp, (dp small enough),

there exist an integer Ng(d) and, for n > Ng(d),

a unique Lipschitz-continuous function

solution of
dw™* (v
0 = Awt + Quf o+t (v)).
The mapping w*(v)(t) depends only upon v(s),
s <t and w*(v)(t) is as smooth in v and t as

f.

Given v € CP(R,Vn(d)), w*(v) is the unique
fixed point of the map T, (strict contraction)
from CY(R, Wy (d)) into itself, defined by

1,)®) = [ eAIQuf(u(s) + w(s)) ds.

— 0
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We can choose N; > Ng, s.t., for any solution
u(t) € A of (1),

w(t) = Qnu(t) is in Wy (dg), Vn > N1,
and thus, by unigueness of the solutions of (1),

u(t) = v(t) +w*(v)(@),

where v(t) = Ppu(t) satisfies the system of
RFDE's (infinite delay)
vt = Av + Ppf(v +w*(v)) . (2)

Thus, the flow on A is determined by the first
N1 modes.

Theorem 2. Suppose that ,

hold and that A is the compact global
attractor of (1). If w1(¢) and ux(¢t) are two
solutions of (1), not necessarily in A, satisfying

| Pnyut(t) — Pnyuo(B)||x —¢—400 O,
then,

Jut(8) = us(®)lx =500 0
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Theorem 3. Assume that , :
hold.

Suppose that AP, € L(X,X) and that f is in

Cr (X,X), k > 1, (resp. analytic), then, for

any ug € A, t — S(t)ug is in C (R, X) (resp. is

analytic).

Under additional non restrictive hypotheses on
f, one shows that the elements ug € A have the
same regularity in the spatial variables as the
elements of P, X (generalized eigenfunctions).
Gevrey regularity, Analyticity.

. damped wave equation

The conditions AP, = P,A
and P, being a projection can be weakened.

Case of PDE's in unbounded domains:
[P. Collet, G.R. and E. Titi (2001)]
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The compactnhess assumption IS rather
strong. It does not hold for the Schrodinger
equation.

= To try to relax by a weaker condition
involving a non-autonomous evolution system.

If u(t) € A is a (classical) solution of (1), then
w(t) = Qnu(t) satisfies the equation
dw

— = A+ QuDf())w + QuH (v,w),

where v = P,u and, by Tayvlor's formula,
H,w) = f(v+w) — Df(v)w
1
= f() + [ (DF(v+ ow)=Df(v))wdo

Assume that A4+ QnDf(v(t))Qn generates a
linear evolutionary operator Sy(v,t,s) on QnX,
with appropriate decay properties, then

w(t) =/_too Sn(v,t,8)QnH(v(s), w(s))ds.
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New Hypotheses:

Df: X — L(X; X) is Lipschitz-continuous
on the bounded sets of X.

AP, € L(X,X).

There exist positive numbers d», 0o, Ko
and an integer no, > nq s.t., for n > no,
for v(t) € Cp (R, Vn(d)) NnCL (R, P,X), for
u€ X and t > s,

15n(v, t, $)Qnullx < Koe 2079 Qpul|x .

Theorem 4. The statements of Theorems 1, 2
and 3 still hold if Hypothesis IS replaced
by the Hypotheses , and
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As in Theorem 1, for v € CP (R, Vy(d)), w*(v) is
the unique fixed point of the strict contraction
To from CO(R, Wy(d)) into itself, defined by

To(w)(t) = /t Sn(v,t,8)QnH(v(s), w(s))ds.

— 00

Application to the Schrodinger equation:
Ck-regularity (resp. analyticity) in time on the
attractor A if f is C* (resp. analytic).

Finite number of determining modes [Oliver
and Titi (1998)]

C’“-regularity in the spatial variables [Goubet
(1996),(1998)]

Gevrey class regularity [Oliver and Titi (1998)]
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