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Dissipative systems

Many mathematical models in physics, chem-
istry or biology lead to systems of partial differ-
ential equations (PDE’s) or retarded functional
differential equations (RFDE’s) with dissipa-
tive properties.

Very often, they generate an infinite-dimensional
continuous semigroup S(t) on a Banach space
X and have a compact global attractor A.

Two categories of systems

• Systems with smoothing or compactness
properties in finite time, i.e. S(t) : X → X
is a compact map, for t ≥ t0 > 0.
Heat or 2D Navier-Stokes equations.

• Systems with only asymptotic smoothness
or asymptotic compactness properties.
Damped wave or damped Schrödinger equa-
tions.
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Compact global attractors

X is a Banach space, S(t) : X → X, t ≥ 0, is a
nonlinear semigroup (semiflow).
S(t) has a compact global attractor A if

(a) A is a compact subset of X,

(b) A is invariant under S(t), i.e. S(t)A = A
for t ≥ 0,

(c) A attracts every bounded set B of X, i.e.
∀ ε > 0, ∀ bounded subset B of X, there
exists τ = τ(B, ε) ≥ 0 s.t.

S(t)B ⊂ NX(A, ε), ∀t ≥ τ,
where NX(A, ε) is the ε-neighbourhood of
A in X,

i.e. distX(S(t)B,A)→t→+∞ 0, where distX(B1, B2) =
supb1∈B1

infb2∈B2
‖b1 − b2‖X.

(a) and (b) imply A = {u(t) ∈ C0
b (R, X) |u(t) is a com-

plete bounded orbit of S(t)}.
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Notation

X is a Hilbert space (for sake of simplicity),

S(t) : X → X, t ≥ 0, denotes the continuous

semigroup defined by the equation

du

dt
= Au+ f(u) ≡ F(u), t > 0,

u(0) = u0 ∈ X,

where A is the generator of a (linear) C0 semi-

group on X, f ∈ Ck(X,X), k ≥ 1, or analytic.

We assume that this equation defines a non

linear semigroup by S(t)u0 = u(t), where u(t) ∈
C0([0,+∞), X) is the mild solution

u(t) = eAtu0 +
∫ t

0
eA(t−s)f(u(s)) ds.
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Part I

Properties of compact global attractors

The ultimate goal is the precise description of
the flow on the global attractor. For the mo-
ment, this seems to be in general out of reach.

Three linked, modest questions:

• Does the semigroup S(t)|A exhibit smooth-
ness properties that are not shared by the
semigroup S(t) in general?
Regularity in time and spatial variables?

• Can the asymptotic behaviour of the so-
lutions be described by a finite number of
degrees of freedom? Galerkin methods.

• Are compact global attractors robust ob-
jects with respect to perturbations? Struc-
tural stability.
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Regularity on compact invariant sets

Importance of regularity in time or space vari-
ables:
-local study of periodic orbits, etc...
-structural stability properties,
-reduction to finite-dimensional problems.

ODE’s on Rn: every solution is as smooth in
t as the vector field.
Parabolic type equations: same property is true
for t > 0 and the solutions also enjoy regularity
properties in the spatial variables.

[Time analyticity and Gevrey class regularity in space :

2D Navier-Stokes: Foias and Temam (1979, 1989),

General systems: Promislow (1991), Ferrari and Titi

(1998)]

In our examples: we can expect smoothness in
time only for solutions defined for all t ∈ R and
contained in compact invariant sets.
To generalize regularity results of Hale and
Scheurle (1985).
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Finite-dimensional structure and

Galerkin methods

Can we reduce the study of the flow on a com-
pact invariant set A to the discussion of the
flow of some system on a finite-dimensional
space?

1.Finite number of determining modes
[Cesari (1964), Foias and Prodi for 2D Navier-Stokes (1967)]

Let Pn be the projection onto the space Vn =
PnX generated by the first n eigenfunctions of
A. There is n0 so that, if u1(t), u2(t) are any
two solutions satisfying

‖Pn0u1(t)− Pn0u2(t)‖X →t→+∞ 0,

then

‖u1(t)− u2(t)‖X →t→+∞ 0;

[Ladyzhenskaya (1972), Foias, Manley, Temam and Treve (1983),

Jones and Titi (1993) for NS and parabolic-type equations

Cockburn, Jones and Titi (1997), Oliver and Titi (1998) for the

Schrödinger eq., Chueshov (1998)]
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2. Ideal situation

To find a projection P onto a finite-dimensional
subspace PX ⊂ X s.t. P |N (A) is invertible,
where N (A) is a neighbourhood of A and to
reduce the equation

ut = F(u), t > 0, u(0) = u0,

to the finite-dimensional system for v = Pu

vt = PF((P )−1v), v(0) = Pu0.

If dimF(A) < +∞, such a projection P exists
[Mañe (1981), Foias and Olson (1996)].
Unfortunately, (P )−1 is only Hölder continu-
ous. It may not define a flow.
[Eden, Foias, Nicolaenko and Temam (1994)]

Another approach:
To construct an inertial manifold M of S(t),
i.e. a finite-dimensional, smooth (at least C1),
positively invariant (i.e. S(t)M⊂M) manifold
M⊂ X, that contains A.
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Basic way for constructing inertial manifolds:
To obtain M as a smooth graph (C1) over the
finite-dimensional space Vn = PnX and to ap-
ply the classical methods of center manifold
theory.
M = {u = vn + Φ(vn), vn ∈ Vn}, where Φ ∈
C1(Vn, QnX), Qn = Id− Pn.

⇒ Inertial form
dvn

dt
= Avn + Pnf(vn + Φ(vn)).

=⇒ One encounters the same obstructions as
in center manifold theory:
gap condition, cone condition.
These conditions are satisfied for some parabolic
equations in 1D or special 2D domains.

[Foias, Sell and Temam (1988), Mallet-Paret and Sell

(1988), etc...]

Here, we shall reduce the evolution equation to
a finite-dimensional system of equations with
delay.
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3. New idea of low-dimensional reduction
using rigorous computations and topological
invariants (e.g. Conley index, degree theory)
Cheap and accurate way to effectively com-
pute fixed points, connecting orbits, periodic
orbits etc...

[K. Mischaikow and P. Zgliczyński (2000) with applica-

tions to the Kuramoto-Sivashinsky equation]

Heuristically, one does not reduce the system

ut = Au+ f(u),

to an equivalent system, but rather replace it
by the differential inclusion

dvn

dt
∈ Avn + Pnf(vn +W ∗n),

vn ∈ V ∗n = PnK, W ∗n = QnK, K ⊂ X
Regularity condition: diam(W ∗n)→ 0 as n →
+∞.

Main argument: the topological invariants are
the same for any Galerkin system of the form
vj,t ∈ Avj + Pjf(vj +W ∗j ), where vj ∈ V ∗j .
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Structural stability

A basic problem in dynamics is to compare the
flows defined by different semigroups.
Applications:

PDE’s depending on several physical parameters,

numerical approximations of systems....

Case of a finite-dimensional compact manifold
M:
two systems S1(t) and S2(t) are topologically
equivalent on M if there exists a homeomor-
phism h :M→M, which preserves orbits and
the sense of direction in time.
S0(t) is stable (or structurally stable) if there
exists a “neighbourhood” N0 of S0(t) s.t. any
S1(t) ∈ N0 is topologically equivalent to S0(t).

Infinite-dimensional case:
the strongest expected comparison of the dy-
namics of two semigroups S1(t) and S2(t) is
the topological equivalence restricted to the
compact attractors A1 and A2 (h : A1 → A2).
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Morse-Smale property:

compactness of the global attractor A (or of

the maximal bounded invariant set)

hyperbolicity of equilibrium points and periodic

orbits

transversality of the stable and unstable man-

ifolds of them.

Morse-Smale property ⇒ Structural stability.

[Palis (1969), Palis and Smale (1970),

Oliva (1982), Hale, Magalhães and Oliva (1984), Oliva

(2000) in the infinite-dimensional case].

Transversality properties are very difficult to

show in the infinite-dimensional case. It is eas-

ier in the context of gradient systems.

The semigroup S(t) on X is a gradient system if it ad-

mits a Lyapunov functional Φ ∈ C0(X,R) s.t.

Φ(S(t)u0) ≤ Φ(S(s)u0), t ≥ s,
and Φ(S(t)u0) = Φ(u0) for any t ≥ 0 implies that u0 is

an equilibrium point.
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We consider the damped wave equation in a
bounded domain Ω ⊂ Rn, n = 1,2,3, t > 0,
where γ> 0,

Utt + γUt −∆U + U = F (x, U)

with either homogeneous Dirichlet or homoge-
neous Neumann boundary conditions.

Theorem (Brunovsky and G.R. (2001)).
Generically in γ ∈ R+ and F ∈ Ck(Ω × R),
the semigroup generated by the damped wave
equation has the Morse-Smale property and
thus is structurally stable.

Main ingredients:
Generalized Sard theorem,
Analyticity in time of S(t)|A when F is replaced
by an analytic function

Genericity in F (x, .) of the Morse-Smale property for the

semilinear heat equation was proved by Brunovsky and

Polacik in 1997.

The Morse-Smale property is always true for the semi-

linear heat equation in the one-dimensional case (n=1).

[ Henry (1985), Angenent (1986)]
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Part II

Galerkin method and regularity

[Hale and G.R.]

We go back to the equation

du

dt
= Au+ f(u), t > 0, u(0) = u0 ∈ X, (1)

where A is the generator of a (linear) C0 semi-

group on X, f ∈ Ck(X,X), k ≥ 1, or analytic.

We want to perform a Galerkin-type method

to reduce the problem to a finite-dimensional

system with delay and to prove regularity in

time.

We do the following hypotheses:
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(H1) S(t) has a compact invariant set A.

(H2) There exists an orthogonal decomposi-
tion of X into generalized eigenspaces of
A, i.e. there is an orthogonal projection Pn
s.t.

• PnA = APn on D(A),

• Pn → Id strongly as n→ +∞,

• ‖Pn‖L(X,X) ≤ K0 , ∀n ∈ N.

(H3) r(σess(eAt)) ≤ e−δ1t , t ≥ 0 ,
i.e. there exist an integer n1 and δ1 > 0,
K1 > 0 s.t., for t > 0,

‖eAtQn1u‖X ≤ K1e
−δ1t‖Qn1u‖X , ∀u ∈ X,

where Qn = Id− Pn.

(H4) The set {Df(u1)u2 |u1 ∈ A, ‖u2‖X ≤ 1}
is relatively compact in X.
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Results of Hale and Scheurle [1985]:

If (H1), (H3) hold and if

‖Df(u)‖L(X,X) ≤ η

for u in some neighbourhood of A, where η > 0

is small enough, then, for u0 ∈ A, the mapping

t ∈ R→ S(t)u0 is as smooth as f .

Generalization:

Let n ≥ n1.

If u(t) = Pnu(t) + Qnu(t) ≡ v(t) + w(t) is a

solution of (1), then (v, w) is a solution of the

system

dv

dt
= Av + Pnf(v + w) ,

dw

dt
= Aw +Qnf(v + w) .

If u(R) ⊂ A, (H3) implies that

w(t) =
∫ t

−∞
eA(t−s)Qnf(v(s) + w(s)) ds .
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Let d > 0, we introduce the neighbourhoods

Vn(d) = NPnX(PnA, d) , Wn(d) = NQnX(0, d) .

Theorem 1. Assume that (H1), (H2), (H3),
(H4) hold.
For each d, 0 < d ≤ d0, (d0 small enough),
there exist an integer N0(d) and, for n ≥ N0(d),
a unique Lipschitz-continuous function

C0
b (R,Vn(d))→ C0

b (R,Wn(d)) , v 7→ w∗(v) ,

solution of

dw∗(v)

dt
= Aw∗+Qnf(v + w∗(v)) .

The mapping w∗(v)(t) depends only upon v(s),
s ≤ t and w∗(v)(t) is as smooth in v and t as
f .

Given v ∈ C0
b (R,Vn(d)), w∗(v) is the unique

fixed point of the map Tv (strict contraction)
from C0

b (R,Wn(d)) into itself, defined by

Tv(w)(t) =
∫ t

−∞
eA(t−s)Qnf(v(s) + w(s)) ds .
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Consequences

We can choose N1 ≥ N0, s.t., for any solution
u(t) ∈ A of (1),

w(t) = Qnu(t) is in Wn(d0) , ∀n ≥ N1 ,

and thus, by uniqueness of the solutions of (1),

u(t) = v(t) + w∗(v)(t) ,

where v(t) = Pnu(t) satisfies the system of
RFDE’s (infinite delay)

vt = Av + Pnf(v + w∗(v)) . (2)

Thus, the flow on A is determined by the first
N1 modes.

Theorem 2. Suppose that (H1), (H2), (H3),
(H4) hold and that A is the compact global
attractor of (1). If u1(t) and u2(t) are two
solutions of (1), not necessarily in A, satisfying

‖PN1
u1(t)− PN1

u2(t)‖X →t→+∞ 0 ,

then,

‖u1(t)− u2(t)‖X →t→+∞ 0 .
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Theorem 3. Assume that (H1), (H2), (H3),
(H4) hold.
Suppose that APn ∈ L(X,X) and that f is in
Ckbu(X,X), k ≥ 1, (resp. analytic), then, for
any u0 ∈ A, t→ S(t)u0 is in Ckbu(R, X) (resp. is
analytic).

Regularity in the spatial variables

Under additional non restrictive hypotheses on
f , one shows that the elements u0 ∈ A have the
same regularity in the spatial variables as the
elements of PnX (generalized eigenfunctions).
Gevrey regularity, Analyticity.

Application: damped wave equation

Generalizations: The conditions APn = PnA

and Pn being a projection can be weakened.

Case of PDE’s in unbounded domains:
[P. Collet, G.R. and E. Titi (2001)]
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An extension

The compactness assumption (H4) is rather
strong. It does not hold for the Schrödinger
equation.
⇒ To try to relax (H4) by a weaker condition
involving a non-autonomous evolution system.

Remark:
If u(t) ∈ A is a (classical) solution of (1), then
w(t) = Qnu(t) satisfies the equation

dw

dt
= (A+QnDf(v))w +QnH(v, w) ,

where v = Pnu and, by Taylor’s formula,

H(v, w) = f(v + w)−Df(v)w

= f(v) +
∫ 1

0
(Df(v + σw)−Df(v))wdσ.

Assume that A+QnDf(v(t))Qn generates a
linear evolutionary operator Sn(v, t, s) on QnX,
with appropriate decay properties, then

w(t) =
∫ t

−∞
Sn(v, t, s)QnH(v(s), w(s)) ds .
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New Hypotheses:

(H5) Df : X → L(X;X) is Lipschitz-continuous

on the bounded sets of X.

(H6) APn ∈ L(X,X).

(H7) There exist positive numbers d2, δ2, K2

and an integer n2 ≥ n1 s.t., for n ≥ n2,

for v(t) ∈ C0
bu(R,Vn(d)) ∩ C1

bu(R, PnX), for

u ∈ X and t > s,

‖Sn(v, t, s)Qnu‖X ≤ K2e
−δ2(t−s)‖Qnu‖X .

Theorem 4. The statements of Theorems 1, 2

and 3 still hold if Hypothesis (H4) is replaced

by the Hypotheses (H5),(H6) and (H7).
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As in Theorem 1, for v ∈ C0
bu(R,Vn(d)), w∗(v) is

the unique fixed point of the strict contraction

Tv from C0
b (R,Wn(d)) into itself, defined by

Tv(w)(t) =
∫ t

−∞
Sn(v, t, s)QnH(v(s), w(s)) ds .

Application to the Schrödinger equation:

Ck-regularity (resp. analyticity) in time on the

attractor A if f is Ck (resp. analytic).

Finite number of determining modes [Oliver

and Titi (1998)]

Ck-regularity in the spatial variables [Goubet

(1996),(1998)]

Gevrey class regularity [Oliver and Titi (1998)]
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