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Abstract This article is devoted to the mathematical analysis of the second grade
fluid equations in the two-dimensional case. We first begin with a short review of
the existence and uniqueness results, which have been previously proved by several
authors. Afterwards, we show that, for any size of the material coefficient α > 0, the
second grade fluid equations are globally well posed in the space V 3,p of divergence-
free vectors fields, which belong to the Sobolev space W 3,p(T2)2, 1 < p < +∞,
where T2 is the two-dimensional torus. Like previous authors, we introduce an aux-
iliary transport equation in the course of the proof of this existence result. Since the
second grade fluid equations are globally well posed, their solutions define a dy-
namical system Sα(t). We prove that Sα(t) admits a compact global attractor Aα in
V 3,p. We show that, for any α > 0, there exists β (α) > 0, such that Aα belongs to
V 3+β (α),p if the forcing term is in W 1+β (α)(T2)2. We also show that this attractor
is contained in any Sobolev space V 3+m,p provided that α is small enough and the
forcing term is regular enough. The method of proof of the existence and regularity
of the compact global attractor is new and rests on a Lagrangian method. The use of
Lagrangian coordinates makes the proofs much simpler and clearer.
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1 Introduction

In petroleum industry, in polymer technology, in problems of liquid crystals suspen-
sions, non-Newtonian (also called Rivlin-Ericksen) fluids of diffferential type often
arise. The constitutive law of incompressible homogeneous fluids of grade 2 is given
by

σ =−pI +2νA1 +α1A2 +α2A2
1,

where σ is the Cauchy tensor, A1 and A2 are the first two Rivlin-Ericksen tensors:

A1(u) =
1
2
[∇u+∇uT ], A2(u) =

DA1

Dt
+(∇u)T A1 +A1(∇u)

and
D
Dt

= ∂t +u.∇.

is the material derivative.
In 1974, Dunn and Fosdick ([16]) established that a fluid modelled by the above re-
lations is compatible with thermodynamics (that is, the Clausius-Duhem inequality
and the assumption that the Helmholtz free energy is a minimum, when the fluid is
at rest) if the following conditions

α1 +α2 = 0, α1 ≥ 0 ,

are imposed.
Writing then the equation Du

Dt = ut + u.∇u = divσ , one obtains the second grade
fluid equations (2) below.

If α1 ≥ 0, the fluid has asymptotic stability properties. In [18], it was showed
that if α1 +α2 is arbitrary and α1 < 0, then the second grade fluid has an anomalous
behaviour (unstable behaviour). There has been an extensive discussion on the mod-
elling of the second grade fluids and on the restrictions, which have to be imposed
on the coefficients α1 and α2 (see [16], [18], [17], for example).

If one does not impose the condition α1 + α2 = 0, the system of second grade
can be written as

∂t(u−α1∆u)−ν∆u+ rot(u− (2α1 +α2)∆u)×u

+(α1 +α2)(−∆(u ·∇u)+2u ·∇(∆u))+∇p = f , t > 0, x ∈Ω ,

divu = 0, t > 0, x ∈Ω ,

u(0,x) = u0(x), x ∈Ω ,

(1)

where α1 ≥ 0. When α1 + α2 = 0, setting α = α1, we obtain the system of second
grade fluids in the simplified form,
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∂t(u−α∆u)−ν∆u+ rot(u−α∆u)×u+∇p = f , t > 0, x ∈Ω ,

divu = 0, t > 0, x ∈Ω ,

u(0,x) = u0(x), x ∈Ω ,

(2)

where Ω is either a bounded simply connected regular enough domain in Rd , or
the d-dimensional torus Td , d = 2,3. In the two-dimensional case, we use the con-
vention that rotu ≡ curl u = (0,0,∂1u2− ∂2u1) and we identify each 2-component
vector-field u = (u1,u2) with the 3-component vector field u = (u1,u2,0) and each
scalar m with the 3-component vector field w = (0,0,m). If Ω is a bounded domain
in Rd , the equations (2) are completed with boundary conditions. In most of the
papers, one assumes that the fluid adheres to the boundary ∂Ω , that is, one requires
homogeneous Dirichlet boundary conditions

u(x, t) = 0 , t > 0, x ∈ ∂Ω . (3)

The condition (3) is sufficient to determine a unique (local) solution of the system
(2) despite the fact that the non-linearity in (2) contains derivatives of higher or-
der than 2. One can also consider the system (2) with non-homogeneous Dirichlet
boundary conditions

u(x, t) = g(x, t) , t > 0, x ∈ ∂Ω , (4)

where g must satisfy the compatibility condition
∫

∂Ω
g · nds = 0, n being the out-

ward normal to the boundary ∂Ω . For such boundary conditions, in the case of
three-dimensional bounded domains Ω , Galdi et al. [26] proved the existence of lo-
cal solutions of the system (2). They showed the uniqueness of the solutions, when
the boundary is impermeable, that is, when g ·n≡ 0. In the case where the boundary
is impermeable, Girault and Scott [27] proved the existence of stationary solutions,
when Ω is a two-dimensional domain. Under additional smallness conditions on
the data, Girault and Scott obtained the uniqueness of the stationary solutions. The
second grade fluid model with fully non-homogeneous Dirichlet boundary condi-
tions is actually not well posed. For example, Gupta and Rajagopal [29] have given
examples in which the stationary problem has multiple solutions. For this reason, it
is important to require that g ·n≡ 0.
C. Le Roux [45] has studied the system (2) subject to non-linear partial slip bound-
ary conditions in a bounded simply-connected domain in R3. Under appropriate
growth restrictions on the data, he has proved the existence and uniqueness of a
classical solution.

Before describing the contents of this paper, we briefly recall the main known ex-
istence and uniqueness results of the solutions of (2) in the case of the homogeneous
Dirichlet boundary conditions (3). Since there are many papers devoted to this case,
we cannot quote all of them. In particular, we will not recall the results concerning
the stationary solutions (see for example, [7], [4], [21], [24], [27]).
The first general existence and uniqueness results of solutions of (2) are due to
Cioranescu and Ouazar in 1984 (see [13] and [14]). Assuming that the initial
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data u0 belong to the space W = {v ∈ H3(Ω)d |divv = 0,v|∂Ω = 0} and that the
force f belongs to L2((0,T ),H1(Ω)d) and using a Galerkin method with a spe-
cial basis, Cioranescu and Ouazar proved that (2) has a unique (weak) solution u ∈
L∞((0,T ∗),W )∩W 1,∞((0,T ∗),W ′), where T ∗ = T in the case d = 2 and 0 < T ∗ ≤ T
in the case d = 3. Later, in 1997, Ciorasnecu and Girault [12] completed these re-
sults by showing the global existence of weak solutions in the three-dimensional
case under the assumption that the data are small enough, and showed that these
solutions are more regular if the data are smoother. In 1993, Galdi, Grobbelaarvan-
dalsen and Sauer ([25]) have shown the local existence and uniqueness of classical
solutions of (1) and also the global existence of solutions of (1) under a smallness
condition of the data, when α1 is large enough. These local and global existence of
classical solutions results have been improved in 1994 by Galdi and Sequeira ([23])
and, in particular, the requirement that α be large enough has been removed. In [25]
(resp. [23]), the local (or global) existence of classical solutions has been proved by
writing an equation for the auxiliary variable v = u−α∆u (resp. v = curl(u−α∆u))
and by applying the Leray-Schauder fixed point theorem. For instance, in [23], as-
suming that the forcing term f vanishes and that v0 = curl(u0−α∆u0) belongs to
Xm = {v ∈ Hm(Ω)3 |divv = 0}, m ≥ 1, the authors have proved the local existence
and uniqueness of the solution u of (2) in C0((0,T ),Xm+2)∩L∞((0,T ),Hm+3(Ω)3)
with du

dt ∈ L∞((0,T ),Hm+2(Ω)3), where T > 0. Under a smallness condition on u0,
they proved that the solution is global.
Later in 1998, Bernard ([3]) has generalized the existence result of (weak) so-
lutions of (2) to the system (1) by using a Galerkin method with the special
basis as in [12] or [14]. Roughly speaking, assuming that f and u0 belong to
L1((0,+∞),H1(Ω)3)∩ L∞((0,+∞),L2(Ω)3) and to W respectively and are both
small enough, Bernard has proved the global existence and uniqueness of a solution
u ∈ L∞((0,+∞),W ) and that du

dt ∈ L∞((0,+∞),H1(Ω)3).
Also in 1998, in the three-dimensional case, Bresch and Lemoine ([8]) have ob-
tained the existence and uniqueness of solutions of (2), when f ∈ Lr((0,T ),Lr(Ω)3)
and u0 is a divergence-free vector field in X1 ∩W 2,r(Ω)3, where r > 3. More
precisely, under these hypotheses, they showed that there exists a (unique) so-
lution u(t) ∈ C0([0,T ∗],W 2,r(Ω)3 ∩ X1), with du

dt ∈ Lr((0,T ∗),W 1,r(Ω)3) where
0 < T ∗ ≤ T . If f ∈ L∞((0,+∞),W 1,r(Ω)3)) and u0 ∈ X1 ∩W 2,r(Ω)3 are small
enough and if α is larger than a constant depending only on r and Ω , then
the solution u(t) is global and belongs to C0

b([0,+∞),W 2,r(Ω)3 ∩X1), with du
dt ∈

L∞((0,+∞),W 1,r(Ω)3). In their proof, given u, the authors introduce the unique
solution w of the linear equation wt + (ν/α)w + u ·∇w + ∇u ·w = (ν/α)u + f ,
with w(0) = u(0)−α∆u(0). Then, they consider the unique solution (z,π) of the
“Stokes” problem z−α∆z+∇π = w, where z is divergence-free and the mean value
of π vanishes. Finally, applying the Leray-Schauder fixed point theorem, they show
that the map u 7→ z has a fixed point. Of course, arguing in the same way, one can
prove similar existence and uniqueness results when Ω is a bounded domain in R2

and r > 2. One notices that Bresch and Lemoine have used a similar strategy in [9]
to prove the existence and uniqueness of a solution for third grade fluids. For other
existence results in W 2,r(Ω)3, r > 3, see also [6].



Dynamics of second grade fluids: the Lagrangian approach 5

In 2007, Girault and Saadouni ([28]) considered the equations (2) on a two-
dimensional Lipschizian domain Ω . They proved the existence of a weak solution
of (2) and obtained the uniqueness of the solution if Ω is a convex polygon. Intro-
ducing the auxiliary variable z = rot(u−α∆u), they have replaced the system (2)
by the equivalent system

∂t(u−α∆u)−ν∆u+ z×u+∇p = f , t > 0, x ∈Ω ,

α∂tz+νz+αu ·∇z = αrot f +νrotu, t > 0, x ∈Ω ,

divu = 0, t > 0, x ∈Ω ,

u(0,x) = u0(x), x ∈Ω .

(5)

They proved the existence of a (weak) solution by using a semi-discretization in
time of the system (5).
For the asymptotic behaviour in time of the solutions of (2), when Ω is replaced by
R2 (respectively R3), we refer the reader to [40], [41] and [15] (respectively to [15]
and [51]). Additional interesting related results about non-Newtonian second grade
or third grade fluids are contained in [5, 22, 39, 48, 57, 59].

We would like to notice that the equations (2) differ from the so-called α-Navier-
Stokes system (see e.g. [20] and the references therein). Indeed, the α-Navier-Stokes
model contains the strong regularizing term −ν∆(u−α∆u) instead of −ν∆u, and
thus is a semilinear problem, which is much easier to solve than the second grade
fluid equations where the dissipation is weaker.

In the inviscid case ν = 0, the local existence and uniqueness of regular solutions
still hold and, in the two-dimensional case, these solutions are global (see [10] for
example). For the convergence of the solutions uν of (2) towards the solution u∗ of
the equation (2) for ν = 0, when ν goes to zero, we refer the reader to [60]. For
additional results in the inviscid case, we also refer to [47].

Until now, only few papers have been devoted to the dynamics of second grade
fluids. In 1998, Moise, Rosa and Wang ([50]) have considered the second grade
fluid equations (2) with time-independent forcing term f ∈ H1(Ω)2, where Ω is a
bounded simply-connected domain in R2. In this case, we can introduce the dynam-
ical system Sα(t) on W , defined by Sα(t)u0 = u(t), where u(t) is the solution of
(2). Moise, Rosa and Wang have shown that the map u0 ∈W 7→ Sα(t)u0 ≡ u(t) ∈W
is continuous and that every solution u of (2) belongs to C0([0,+∞),W ). Applying
the method of functionals of J. Ball, they have proved that Sα(t) is asymptotically
compact in W , which implies, since Sα has an absorbing set in W , that Sα(t) admits
a compact global attractor Aα in W (for the notions of asymptotic compactness and
absorbing set, see Section 3 below).
In [55], Paicu, Raugel and Rekalo have proved that there exists a positive con-
stant δ = δ (α,‖ f‖H1) such that the compact global attractor Aα in W is actually
bounded in H3+δ (Ω)2, when f belongs to H1+δ (Ω)2. Moreover, Aα is bounded in
H3+m(Ω)2, m ≥ 0, provided α is small enough and f belongs to H1+m(Ω)2. They
have also shown that, on the attractor, the second grade fluid equations (2) reduce
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to a finite number of ordinary differential equations with an infinite delay term ([55,
Section 5]). From these properties, they deduced that, as for the Navier-Stokes equa-
tions, the property of finite number of determining modes holds. Let us recall that
the global attractor contains all the interesting asymptotic dynamics, in particular
the equilibrium points and the periodic orbits. We would like to emphasize that the
regularity property of the global attractor has important consequences. For example,
they allow to prove persistence of non-degenerate equilibrium points or periodic or-
bits, when various parameters in the system (2) vary, such as the coefficient α or the
domain Ω (see [35], [36], [40], [49]). In particular, if the Navier-Stokes equations
admit a non-degenerate periodic orbit of minimal period ω > 0, using these regular-
ity properties, one obtains that, for α > 0 small enough, (2) has a unique periodic
orbit, which is close to the corresponding one of the Navier-Stokes equations ([35])
and has minimal period ωα close to ω . If Ω is a three-dimensional bounded domain,
there exists a compact attractor if f is small enough. But this attractor is a local one,
since we do not know if the solutions exist globally for any size of the initial data.
Thus, the study of this (local) attractor is less interesting. The above-mentioned reg-
ularity properties are certainly still true for the local attractor.

In this paper, we consider the equations of second grade, when the forcing term
belongs to L∞((0,+∞),W 1,p(Ω)2) and the initial data are divergence-free and be-
long to W 3,p(Ω)2, where p > 1. First, we prove the existence and uniqueness of the
weak solution of (2), give some a priori estimates and show that the equations (2)
generate a dynamical system Sα(t) on the subspace of divergence free vector fields
of W 3,p(Ω)2. In Section 3, we show that the dynamical system Sα(t) admits a com-
pact global attractor Aα , which is bounded in a more regular space. We prove the
existence and regularity of Aα by using the Lagrangian coordinates. By adopting
the Lagrangian approach, we simplify the previous proofs of the existence and the
regularity of the compact global attractor.
For the sake of simplicity, we will only prove the results in the case where Ω = T2.

Before we briefly describe these results, we introduce the needed notation. We
denote V m,p, m ∈ N, p≥ 1, the closure of the space

{u ∈ [C∞(T2)]2 |u is periodic ,divu = 0,
∫

T2
udx = 0},

in W m,p(T2)2 . If p = 2, we set V m ≡V m,2 and we simply write H = V 0. We equip
the space V m,p with the classical W m,p(T2)2-norm, denoted ‖ ·‖V m,p ≡ ‖·‖W m,p . We
will also use the usual L2(T2)2-scalar product (·, ·).
Finally, we denote W m,p

per ≡W m,p
per (T2)2 the space of vector fields u ∈W m,p(T2)2,

which are periodic and whose mean value vanishes.
If m∈N, we define the spaces W−m,p

per as the dual space of W m,p∗
per , where 1

p + 1
p∗ = 1.

As several authors have already done it (see e.g. [12], [23],[27], [45], etc ..), we
consider the auxiliary variable ω = curl(u−α∆u) ≡ rot(u−α∆u). Applying the
curl (also called rotational) operator to the first equation in (2), we formally obtain
the equation
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∂tω +
ν

α
ω +u ·∇ω = rot f +

ν

α
rotu, t > 0, x ∈Ω . (6)

We thus replace the system (2) by the following system

∂tω +
ν

α
ω +u ·∇ω = rot f +

ν

α
rotu, t > 0, x ∈Ω ,

ω(0,x) = rot(u0(x)−α∆u0(x)), x ∈Ω ,

ω = rot(u−α∆u), t > 0, x ∈Ω ,

divu = 0, t > 0, x ∈Ω ,

(7)

where rot f ∈ L∞((0,+∞),Lp
per) and u0 ∈V 3,p.

In Section 2, we will prove that (2) (or (7)) has a solution u by showing that the map
J : u ∈ L∞((0,+∞),V 3,p) 7→ ω 7→ z ∈ L∞((0,+∞),V 3,p) has a fixed point, where,
given u, ω is the solution of the affine equation (6) and z is the solution of the equa-
tion ω = rot(z−α∆z). The fixed point is obtained by applying the Leray-Schauder
fixed point theorem and “adopting a Lagrangian point of view”. As it was recalled
in the above lines, the idea of applying the Leray-Schauder fixed point theorem is
not new (however, the existence result below is new to our knowledge). Elementary
a priori estimates will show that the solution u is unique in L∞((0,+∞),V 2,2). This
will lead us to the following theorem.

Theorem 1. (i) Assume that p > 1 and that the forcing term f is in L∞((0,+∞),W 1,p
per ).

Then, for every u0 ∈ V 3,p, there exists a unique solution u(t) of the equations (2)
such that u(t) ∈ C0([0,+∞),V 3,p) and d

dt u(t) ∈ L∞((0,+∞),V 2,p). Moreover, for
any t ≥ 0, the map u0 ∈V 3,p 7→ u(t) ∈V 3,p is continuous.
(ii) Likewise, if f belongs to L∞(R,W 1,p

per ), then, for every u0 ∈ V 3,p, there ex-
ists a unique solution u(t) of the equations (2) such that u(t) ∈ C0(R,V 3,p) and
d
dt u(t) ∈ L∞((0,+∞),V 2,p)∩L∞

loc(R,V 2,p). Moreover, for any t ∈ R, the map u0 ∈
V 3,p 7→ u(t) ∈V 3,p is continuous.

More precise upper bounds of the solutions are given in Section 2.4.
Likewise, by adopting the Lagrangian point of view, one could also prove the

existence of a unique solution u(t) and the boundedness of it, when the viscosity ν

vanishes. We will give the details in this case in a subsequent paper.
Assume now that f ∈W 1,p

per is time-independent, then (2) is an autonomous sys-
tem and the map Sα(t) : u0 ∈V 3,p 7→ Sα(t)u0 ≡ u(t) ∈V 3,p (where u(t) is the solu-
tion of (2)) is a dynamical system and even a non-linear continuous group, that is,
Sα(t) has the following properties

1. Sα(t)Sα(s) = Sα(t + s), for any t,s ∈ R,
2. u0 ∈ V 3,p 7→ Sα(t)u0 ≡ u(t) ∈ V 3,p is continuous from V 3,p into V 3,p, for any

t ∈ R,
3. t 7→ Sα(t)u0 ∈V 3,p belongs to C0(R,V 3,p), for any u0 ∈V 3,p.

The proof of Theorem 1 implies that Sα(t) admits a bounded absorbing set, that is,
there exists a bounded set Bα in V 3,p, such that, for any bounded set B∈V 3,p, there
exists a time τ(B) such that, for t ≥ τ(B),
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Sα(t)B⊂Bα .

From the proof of Theorem 1, one deduces that, in the case where f is time-
independent, d

dt u belongs to C0(R,V 2,p), which allows to state the following corol-
lary.

Corollary 1. Assume that p > 1 and that the forcing term f ∈ W 1,p
per is time-

independent, then for every u0 ∈V 3,p, there exists a unique solution u(t) of the equa-
tions (2) such that u(t)∈C0(R,V 3,p) and d

dt u(t)∈C0(R,V 2,p)∩L∞((0,+∞),V 2,p)∩
L∞

loc(R,V 2,p). Moreover, the dynamical system Sα(t) admits a bounded absorbing
set in V 3,p.

A dynamical system which has a bounded absorbing set, is called bounded dissi-
pative (for further details, see [31], [32] or [58] for example). If a dynamical system
is bounded dissipative, one may wonder if it has also asymptotic compactness prop-
erties, which will imply that it admits a compact global attractor (see [32, Theorem
3.4.6] or [58, Theorem 2.26] for example). Before stating the existence theorem of
a compact global attractor, we recall its definition.

Definition 1. Let X be a Banach space and S(t) be a dynamical system on X . A
compact set A ∈ X is a compact global attractor if

• A is invariant, that is, S(t)A = A , for any t ≥ 0,
• A attracts all bounded sets of X , that is, for any ε > 0, for any bounded set B in

X , there exists a time T = T (ε,B) such that

S(t)B⊂NX (A ;ε) , for any t ≥ T ,

where NX (A ;ε) denotes the ε-neighbourhood of A in X .

The compact global attractor plays an important role, since all the asymptotic (and
interesting) dynamics are contained in it. In Section 3, we are going to show that
Sα(t) is asymptotically smooth or asymptotically compact.
We recall that a dynamical system S(t) on a Banach space X is asymptotically com-
pact (or asymptotically smooth; for an equivalent definition of asymptotic smooth-
ness, see [32, Chapter 3.2] or [58, Definition 2.12 and Proposition 2.15] or [33]) if,
for any bounded subset B of X such that ∪t≥0S(t +τ)(B) is bounded for some τ ≥ 0,
every set of the form {S(tn)zn}, with zn ∈ B and tn ≥ τ , tn→n→+∞ +∞ is relatively
compact in X .

Since the equation (2) is fully non-linear (and not only semi-linear), the asymp-
totic compactness of Sα(t) is not straighrforward. In [50], for the case p = 2, Moise,
Rosa and Wang had proved it by using the method of functionals of J. Ball. Here,
using the Lagrangian point of view, we will be able to write Sα(t) as the sum
Sα(t)u0 = Σα(t)u0 + Kα(t)u0, where Σα(t)u0 is a map, which is “asymptotically
contracting” on V 3,p and Kα(t) is a compact map from V 3,p into itself (see Section
3 for more details). This property implies by [32, Lemma 3.2.6] or [58, Theorem
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2.31]) that Sα(t) is asymptotically compact. Since Sα(t) is also bounded dissipa-
tive, [32, Theorem 3.4.6] or [58, Theorem 2.26] then imply that Sα(t) has a compact
global attractor in V 3,p, which is also connected.

Theorem 2. For p > 1, if the forcing term f is time-independent and belongs to
W 1,p

per , then Sα(t) admits a compact global attractor Aα in V 3,p and Aα is connected.

The fact that Sα(t) is a non-linear group prevents smoothing properties in finite
time. Thus, in view of the applications (persistence of equilibrium points, of periodic
orbits, of local stable and unstable manifolds under perturbations of the equations
(2), it is interesting to know if the elements or trajectories on the global attractor Aα

are more regular.
Numerous authors have shown regularity properties of the compact global attractor
in the case of dynamical systems which are not smoothing in finite time. Such results
were obtained already more than thirty years ago for retarded functional differen-
tial equations in Rn with finite delay or neutral functional differential equations by
Hale [30] and Nussbaum [53]. For dissipative evolutionary equations, which admit
a compact global attractor, regularity results have later been proved by several au-
thors, using different methods (see [34] and [55] for references). We recall that one
of the first regularity results applicable to partial differential evolutionary equations,
has been shown by Hale and Scheurle [37] in 1985, who considered the equation

u̇ = Au+ f (u) , u(0) = u0 ∈ X , (8)

on a Banach space X , where A is the generator of a (linear) C0 semi-group and f (·)
is a smooth map on X . It is known that, for any u0 ∈ X , there exists a unique local
mild solution u(t) ∈ C0([0,T );X) of (8). Let us assume that all the solutions exist
on [0,+∞). Then, (8) defines a dynamical system S(t) on X , given by S(t)u0 = u(t)
where u(t) is the solution of (8). Hale and Scheurle have proved that, if S(t) has a
compact invariant set J in X , then there exists a positive number η such that, if
‖D f (v)‖L(X ,X) ≤ η for any v in a small neighborhood of J , the mapping t ∈ R→
S(t)u ∈ X , for any u ∈J , is as smooth as f . The smoothness in the time variable
implies smoothness in the spatial variable if (8) is the abstract version of a PDE. In
particular, if the restriction of S(t) to J is of class C1, then J is bounded in the
domain D(A), which usually is a smoother space than X .

The system of second grade (2) is more complex than the abstract equation (8)
and one cannot deduce spatial regularity properties from the time regularity results.
In [60], using Lagrangian coordinates, Shkoller has proved time regularity prop-
erties of all the solutions of (2). However, from these time regularity results, one
cannot deduce spatial regularity properties.

In [55, Section 2], in the special case where p = 2, we have proved the regularity
of the attractor Aα by establishing a series of appropriate a priori estimates for the
solutions of the linear equation (which is the analogous of the transport equation
(6))
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∂t(w∗−α∆w∗)−ν∆w∗+ rot(w∗−α∆w∗)×u∗+∇p∗ = f , t > 0, x ∈ T2,

divw∗ = 0, t > 0, x ∈ T2,

w∗(0,x) = u0(x), x ∈ T2 ,

(9)

where f ∈ Hm+1
per and u∗ ∈ L∞((0,+∞),V m+2)∩C0([0,+∞),V 2) and by using the

decomposition of Sα(t)u0 into Sα(t)u0 = vn(t)+ (Sα(t)u0− vn(t)), where vn(t) is
the solution at time t of the equations (2) satisfying v(sn) = 0 and where sn is a
sequence converging to −∞. In the course of this proof, we have obtained “good”
estimates of the size of the elements of Aα in various norms. However, the proofs
were long.
Here, using the system (7) for p > 1 and the Lagrangian coordinates, we are proving
the regularity of Aα in a more elegant way (see Section 3). Notice that, in the case
m = 1 below, we recover the same condition as in [55, Theorem 1.1]. In the case
m > 1, we obtain a better condition for the regularity than in [55, Theorem 1.1].

Theorem 3. Let p > 1.
1) Let f ∈W 2,p

per . Assume that supv∈Aα
‖∇v‖L∞ < ν

α
and let a1≡ ν

α
−supv∈Aα

‖∇v‖L∞ >
0. Then, the following upper bound holds for any u belonging to the global attractor

‖∇(rotu−α∆ rotu)‖Lp ≤ a−1
1 (‖rot f‖W 1,p +

ν

α
Mα(p)) ,

where Mα(p) is given in (84) below.
2) There always exists 0 < θ ≤ 1 such that a1,θ ≡ ν

α
− θ supv∈Aα

‖∇v‖L∞ > 0. If
f ∈W 1+θ ,p

per , then the following estimate is true for any u belonging to the global
attractor

‖rotu−α∆ rotu‖W θ ,p ≤ a−1
1,θ (‖rot f‖W θ ,p +

ν

α
Mα(p)) .

3) More generally, if f ∈W 1+m,p
per and am ≡ ν

α
− (2m−1)supv∈Aα

‖∇v‖L∞ > 0, then
the following upper bound holds for any u belonging to the global attractor

‖rotu−α∆ rotu‖W m,p ≤ a−1
m Mm,α(p) ,

where Mm,α(p) is a positive constant.

The paper is organized as follows. Section 2 is devoted to the proof of Theorem
1 and to several remarks about the solutions of (2) In Section 3, we first prove that
Sα(t) is asymptotically smooth in V 3,p and thus admits a compact global attractor
Aα in V 3,p. Afterwards, we prove Theorem 3, that is, the regularity properties of
Aα if the forcing term is smoother.
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2 Existence results for the second grade fluid equations

Theorem 1 can be proved in different ways. For example, we could remark that
the local existence result [8, Theorem 1] can be extended to the two-dimensional
case and the periodic boundary conditions, when the initial data belong to V 2,q,
q > 2 and the forcing term f is in L∞((0,+∞),Lq

per). Since W 1,p(T2), p > 1, is
continuously embedded into the space Lq0(T2), where q0 > 2, we could deduce
from Theorem 1 of [8] that, for every u0 ∈V 3,p, there exists a unique local solution
u(t) ∈ C0([0,T ),V 2,q0) of (2), where T > 0. Afterwards, we could show that this
solution is unique and is actually more regular.
However, since we want to emphasize the important role of the transport equation
(6), we will give a complete direct proof of Theorem 1.

2.1 The transport equation

Since the existence of the solution of (2) will be proved by a fixed point argument
involving the solution ω of the transport equation (6), we first study the following
general transport equation (where ν > 0 and α > 0),

∂tw+
ν

α
w+u ·∇w = g , t > 0, x ∈ T2 ,

w(0,x) = w0(x) , x ∈ T2 ,
(10)

where, for the sake of simplicity (and in view of the applications), u∈C0([0,+∞),V 2,p)∩
L∞((0,+∞),V 3,p), p > 1.

Before stating an existence and uniqueness result of solutions of (10), we in-
troduce the “Lagrangian coordinates”, that is, the following ordinary differential
equation, for t,τ ∈ [0,+∞), x ∈ T2,

∂tϕ(t;τ,x) = u(t,ϕ(t;τ,x)) , ϕ(τ;τ,x) = x ∈ T2 . (11)

Since u∈C0([0,+∞)×T2,T2)∩L∞((0,+∞),V 1,∞), the classical Cauchy-Lipschitz
theorem implies that, for every x ∈ T2, there exists a unique solution ϕ(t;τ,x) ∈
C1([0,+∞),T2) and the function ϕ(t;τ,x) : x ∈ T2 7→ ϕ(t;τ,x) ∈ T2 is Lipschitz-
continuous with respect to x, where the Lipschitz constant may depend on t. More-
over, the function ϕ(t;τ,x) : (t,τ,x) 7→ ϕ(t;τ,x) belongs to C1([0,+∞)2×T2,T2).
The integral form of the equation (11) is as follows

ϕ(t;τ,x) = x+
∫ t

τ

u(s,ϕ(s;τ,x))ds . (12)
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Of course, the solution ϕ(t;τ,x) also depends on u. If we want to emphasize that
ϕ(t;τ,x) also depends on u or when we let u vary, we will use the notation ϕu(t;τ,x)
instead of ϕ(t;τ,x).

In what follows, we will often use the following estimates without further notice.
Below Jacϕ denotes the Jacobian matrix of ϕ .

Lemma 1.
Let u ∈C0([0,+∞),V 2,p)∩L∞((0,+∞),V 3,p), p > 1.
1) Then,

(det Jac ϕ)(t;τ,x)) = 1 ,∀τ ,∀t ,∀x , (13)

2) The following estimate holds, for any 1≤ q≤+∞ , any t ≥ τ (resp. τ ≥ t)

‖∇ϕ(t;τ, ·)‖Lq ≤ exp(
∫ t

τ

‖∇u(s)‖L∞ds ) (14)

(resp. ‖∇ϕ(t;τ, ·)‖Lq ≤ exp(
∫

τ

t ‖∇u(s)‖L∞ds)).
3) Let ui, i = 1,2 be two elements in C0([0,+∞),V 2,p)∩L∞((0,+∞),V 3,p), p > 1
and denote ϕui(t;τ,x) the corresponding solutions of (10). Then, for any q≥ 1 , any
t ≥ τ (resp. τ ≥ t)

‖ϕu1(t;τ, ·)−ϕu2(t;τ, ·)‖Lq ≤ ‖u1−u2‖L∞((τ,t),Lq) exp(
∫ t

τ

‖∇u1(s)‖L∞ds ) (15)

(resp. ‖ϕu1(t;τ, ·)−ϕu2(t;τ, ·)‖Lq ≤ ‖u1−u2‖L∞((t,τ),Lq) exp(
∫

τ

t ‖∇u1(s)‖L∞ds)).

Proof.
1) The property (13) is well known. It is a consequence of the fact that divu = 0
(see, for example, [11]).
2) Let t ≥ τ . We set

ψk(t;τ,x) =
∂

∂xk
ϕ(t;τ,x) .

and notice that

∂tψk(t;τ,x) =
2

∑
i=1

∂u
∂xi

(t,ϕ(t;τ,x))
∂ϕi

∂xk
(t;τ,x) ,

which implies that, for t ≥ τ ,

‖ψk(t;τ, ·)‖Lq ≤ ‖ψk(τ;τ, ·)‖Lq +
∫ t

τ

‖∇u(s)‖L∞‖ψk(s;τ, ·)‖Lqds .

Noticing that Dxϕ(τ;τ,x) = I for any x and using the Gronwall inequality, we de-
duce the estimate (14) from the above inequality.
The statement of 3) is proved in the same way.
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Theorem 4.
1) Let p > 1. Let k = 0,1, for any w0 ∈W k,p

per and any g ∈ L∞((0,T ),W k,p
per ), there

exists a unique (mild) solution w(t) ∈ C0([0,T ],W k,p
per ) of (10) and ∂tw belongs to

L∞((0,T ),W k−1,p
per ), where T > 0.

2) For k ≥ 2, assume that u belongs to C0([0,+∞),V k+1,p)∩L∞((0,+∞),V k+2,p) ,
then, for any w0 ∈W k,p

per and any g∈ L∞((0,T ),W k,p
per ), there exists a unique (mild) so-

lution w(t) ∈C0([0,T ],W k,p
per ) of (10) and ∂tw belongs to L∞((0,T ),W k−1,p

per ), where
T > 0.
3) Moreover, we have the following estimate, for any 0≤ t ≤ T ,

‖w(t)‖Lp ≤e−
ν
α

t‖w0‖Lp +
α

ν
(1− e−

ν
α

t)‖g‖L∞(I,LP)

‖∂tw(t)‖W−1,p ≤
( ν

α
+‖u‖L∞(I,L∞)

)(
e−

ν
α

t‖w0‖Lp +
α

ν
(1− e−

ν
α

t)‖g‖L∞(I,LP)
)

+‖g‖L∞(I,LP) ,

(16)

where I = (0,T ). These inequalities hold for any t ≥ 0, if w0 ∈ W 0,p
per and g ∈

L∞((0,+∞),W 0,p
per ).

Proof. To prove this theorem, we proceed as Beirão da Veiga ([2]), but replace the
Dirichlet boundary conditions by the periodic ones. Let us consider the equation

∂tw+aw+u ·∇w = g , t > 0, x ∈ T2 ,

w(0,x) = w0(x) , x ∈ T2 ,
(17)

where for simplicity a is a given constant. To solve this equation, Beirão da Veiga
considered the differential operator

Ãa(t)w≡ aw+u ·∇w , t ∈ [0,T ] ,

acting in the distributional sense on the functions w on Ω ≡ T2. For k≥ 1, he intro-
duced the space

Dk(t)≡ {w ∈W k,p
per |u ·∇w ∈W k,p

per } ,

and defined the operator

Ak
a(t)w≡ Ãa(t)w , ∀w ∈ Dk(t) . (18)

In the case k = 0, one defines the operator A0
a as the closure in Lp of the operator

A1
a : Dk(t)→W 1,p

per .
In [2], Beirão da Veiga proved that, under the above regularity hypotheses made on
u(t), the family {Ak

a(t)}t∈I , where I = [0,T ], is (1,θk)-stable in the sense of Kato
([42], [43] and also [56]), with θk ≥ 0. Thus, the evolution operator Ua(t,s) associ-
ated with the family {Ak

a(t)}t∈I is strongly continuous in W k,p
per , for k≥ 0 (see [2, The-

orem 2.2 and Sections 3 and 4]) and, for any w0 ∈W k,p
per and any g∈ L∞((0,T ),W k,p

per ),
there exists a unique (mild) solution w(t) ∈C0([0,T ],W k,p

per ) of (17) given by
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w(t) = Ua(t,0)w0 +
∫ t

0
Ua(t,s)g(s)ds . (19)

Moreover, w(t) is a strong solution in W k−1,p
per , that is, the equality (17) holds in

W k−1,p
per a.e. in t.

One remarks that
Ua(t,s) = e−a(t−s)U(t,s) , (20)

where U(t,s)≡U0(t,s) and thus

w(t) = e−atU(t,0)w0 +
∫ t

0
e−a(t−s)U(t,s)g(s)ds . (21)

Theorem 2.2 of [2] implies that, for any k ≥ 0, one has, for 0≤ t ≤ T ,

‖w(t)‖W k,p ≤ exp(θkT )(‖w0‖W k,p +
∫ T

0
‖g(s)‖W k,pds) . (22)

In [2], Beirão da Veiga also proved that the evolution operator Ua(t,s) is strongly
continuous from W−k,p

per into itself, for k ≥ 0, which implies that the estimate (22)
still holds if k is replaced by −k, that is, one has, for 0≤ t ≤ T ,

‖w(t)‖W−k,p ≤ exp(θkT )(‖w0‖W−k,p +
∫ T

0
‖g(s)‖W−k,pds) . (23)

We apply the above results with a = ν

α
. In our case, we obtain a better estimate

for k = 0. Indeed, assume first that w0 ∈W 1,p
per and g ∈ L∞((0,T ),W 1,p

per ). We first
take the inner product of the equality (10) with (δ + |w|2)(p−2)/2w, where δ > 0
is small, then integrate by parts by taking into account that divu = 0 and that u ∈
L∞((0,T ),W 1,∞(T2)2), and finally let δ go to zero. Then, we obtain that, for 0≤ t ≤
T ,

∂t‖w(t)‖Lp +
ν

α
‖w(t)‖Lp ≤ ‖g‖Lp . (24)

Integrating (24) with respect to the time variable and applying the Gronwall lemma,
we deduce from (24) that, for 0≤ t ≤ T ,

‖w(t)‖Lp ≤ e−
νt
α ‖w0‖Lp +

∫ t

0
e

ν
α

(s−t)‖g(s)‖Lp ds≤ e−
νt
α ‖w0‖Lp +

α

ν
‖g‖L∞(I,Lp) .

(25)
This inequality is also valid in the case where the interval I ≡ (0,T ) is replaced by
(0,+∞) in the statement of the theorem.
Arguing by density, one readily shows that the inequality (25) still holds if w0 and
g only belong to Lp

per and L∞((0,T ),Lp
per).

By the general theory developped in [43] or [56, Chapter 5], we also know that
∂tw belongs to L∞((0,T ),W k−1,p). If moreover g is in C0([0,T ],W k,p), then ∂tw
belongs to C0([0,T ],W k−1,p). Using the equality (10) and the inequality (25), we
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also show by density as above that, for t ≥ 0,

‖∂tw(t)‖W−1,p ≤
( ν

α
+‖u‖L∞(I,L∞)

)(
e−

ν
α

t‖w0‖Lp +
α

ν
(1− e−

ν
α

t)‖g‖L∞(I,Lp)
)

+‖g‖L∞(I,Lp) .
(26)

Finally, let w̃ be the solution of the equation (10), where u, g and w0 are replaced
by ũ, g̃ and w̃0 respectively. Then, W = w̃−w is a solution of the equation

∂tW +
ν

α
W + ũ ·∇W = g̃−g+(u− ũ) ·∇w , t > 0,x ∈ T2 ,

W (0,x) = w̃0(x)−w0(x) , x ∈ T2 ,
(27)

Assume that w0, w̃0 and g, g̃ belong to W 1,p
per and L∞((0,T ),W 1,p

per ), respectively.
Applying the estimate (24) to the equation (27), we obtain, that, for 0≤ t ≤ T ,

∂t‖W (t)‖Lp +
ν

α
‖W (t)‖Lp ≤

(
‖(ũ−u)∇w‖Lp +‖g̃−g‖Lp

)
≤‖(ũ−u)(t)‖L∞‖w(t)‖W 1,p +‖(g̃−g)(t)‖Lp .

(28)

Integrating with respect to t and taking into account the inequality (22), we finally
get the following estimate, for 0≤ t ≤ T ,

‖W (t)‖Lp ≤e−
νt
α ‖w0− w̃0‖Lp +

α

ν
‖g− g̃‖L∞(I,Lp)

+
α

ν
‖(ũ−u)(t)‖L∞(I,L∞)

[
exp(θ1T )(‖w0‖W 1,p +

∫ T

0
‖g(s)‖W 1,pds)

]
.

(29)

Using the estimates (23) and (25) we also show that, for 0≤ t ≤ T ,

‖W (t)‖W−1,p ≤eθ1T
[
‖w0− w̃0‖W−1,p +‖g− g̃‖L1(I,W−1,p)

+‖(ũ−u)(t)‖L1(I,L∞)(e
− νt

α ‖w0‖Lp +
α

ν
‖g‖L∞(I,Lp))

]
.

(30)

By density, the above inequality also holds if w0, w̃0 and g, g̃ only belong to Lp
per

and L∞((0,T ),Lp
per), respectively.

Remark 1. In [44], Ladyzenskaya and Solonnikov proved that, if the data w0 and f
are regular enough, the solution w of (17) with a = 0 is given by

w(t,x) = w0(ϕ(0; t,x))+
∫ t

0
g(s,ϕ(s; t,x))ds . (31)

This implies by uniqueness of the solution that, if w0 ∈W k,p
per and g∈L∞((0,T ),W k,p

per ),
for k ≥ 0, the solution w of the equation (10) is given by
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w(t,x) = e−
ν
α

tw0(ϕ(0; t,x))+
∫ t

0
e−

ν
α

(t−s)g(s,ϕ(s; t,x))ds . (32)

The integral formula allows to prove the above estimates in another (elegant)
way, without using the inequalities of [2]. Let W be the solution of (27). It satisfies
the integral equation:

W (t,x) =e−
ν
α

t(w̃0(ϕ̃(0; t,x))−w0(ϕ̃(0; t,x))
)

+
∫ t

0
e−

ν
α

(t−s)(g̃(s, ϕ̃(s; t,x))−g(s, ϕ̃(s; t,x)))ds

+
∫ t

0
e−

ν
α

(t−s)(u− ũ)(s, ϕ̃(s; t,x)) ·∇w(ϕ̃(s; t,x))ds ,

(33)

where ϕ and ϕ̃ are the solutions of the equation (11) associated with u and ũ respec-
tively. From the equality (33), we at once deduce, by applying Lemma 1 and (25),
that, for 0≤ t ≤ T ,

‖W (t)‖W−1,p ≤C∗(T, ũ)
(

e−
ν
α

t‖w0− w̃0‖W−1,p +
α

ν
‖g− g̃‖L∞(I,W−1,p)

+
α

ν
‖(ũ−u)(t)‖L∞(I,L∞)‖w‖L∞(Lp)

)
≤C∗(T, ũ)

[
e−

ν
α

t‖w0− w̃0‖W−1,p +
α

ν
‖g− g̃‖L∞(I,W−1,p)

+
α

ν
‖(ũ−u)(t)‖L∞(I,L∞)

(
‖w0‖Lp +

α

ν
‖g‖L∞(I,Lp)

)]
,

(34)

where C∗(T, ũ) = exp
∫ T

0 ‖∇ũ(s)‖L∞ds.
We point out that the above inequality also holds if w0, w̃0 and g, g̃ only belong to
Lp

per and L∞((0,T ),Lp
per), respectively.

We are actually interested in the solution of the following transport equation

∂tω +
ν

α
ω +u ·∇ω = rot f +

ν

α
rotu, t > 0, x ∈ T2

ω(0,x) = ω0(x) , x ∈ T2 ,
(35)

where u ∈C0([0,+∞),V 2,p)∩L∞((0,+∞),V 3,p), p > 1.
As an immediate consequence of Theorem 4, we obtain the following corollary.

Corollary 2. Let p > 1. For any ω0 ∈ Lp
per and rot f ∈ L∞((0,T ),Lp

per), there exists
a unique (mild) solution ω ∈C0([0,T ],Lp

per) (with ∂tω ∈ L∞((0,T ),W−1,p
per )) of the

equation (35). Moreover, the following estimate holds, for t ≥ 0,

‖ω(t)‖Lp ≤ e−
ν
α

t‖ω0‖Lp +
α

ν
‖rot f‖L∞(I,LP) +(1− e−

ν
α

t)‖rotu‖L∞(I,LP) . (36)

This inequality holds for any t ≥ 0, if I ≡ (0,T ) is replaced above by I ≡ (0,+∞).

The upper bound for ‖∂tω‖W−1,p follows from (26).
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2.2 An auxiliary problem

In Corollary 2, we have obtained the solution ω of the equation (35). We next want to
show that there exists a unique divergence free vector field z such that ω = z−α∆z.
This will be an easy consequence of the following two lemmas.

Lemma 2. 1) For any w ∈W k,p
per , k≥ 0, there exists a unique vector field ψ ∈V k+1,p

such that
rotψ(x) = w(x) , ∀x ∈ T2 . (37)

Moreover, there exists a positive constant C0(k) such that,

‖ψ‖W k+1,p ≤C0(k)‖u‖W k,p . (38)

2) Likewise, for any w∈W m,∞((0,T ),W k,p
per ) (resp. in Cm([0,T ],W k,p

per )), k≥ 0, m≥ 0,
there exists a unique vector field ψ ∈W m,∞((0,T ),V k+1,p) (resp. in Cm([0,T ],V k+1,p))
such that the equality (37) holds.

Proof.
1) For any w∈W k,p

per , following [1, Lemma,2.3] for example, we construct the vector
field

ψ = ∇
⊥G(w) , (39)

where G(w) is the solution of the problem: to find G(w) ∈W 1,p
per such that,

∆G(w) = w . (40)

The solution G(w) is unique in W 1,p
per . The regularity of ψ is a consequence of the

regularity properties of the solutions of the Laplace equation.
We remark that the vector field ψ is unique in V 0,p

per . Indeed, if ψ1 and ψ2 are two so-
lutions of (37), then ∆(ψ1−ψ2) = 0, which has a unique solution in V 0,p

per . Statement
2) is proved in the same way.

We next show that w ∈W k,p
per can be written in the form w = z−α∆z, where z ∈

V k+3,p.

Lemma 3. 1) For any w ∈W k,p
per , k ≥ 0, there exists a unique vector field z ∈V k+3,p

such that
rot(z−α∆z)(x) = w(x) , ∀x ∈ T2 . (41)

Moreover, there exists a positive constant C1(k,α) such that,

‖z‖W k+3,p ≤C1(k,α)‖u‖W k,p . (42)

2) Likewise, for any w∈W m,∞((0,T ),W k,p
per ) (resp. in Cm([0,T ],W k,p

per )), k≥ 0, m≥ 0,
there exists a unique vector field z∈W m,∞((0,T ),V k+3,p) (resp. in Cm([0,T ],V k+3,p))
such that the equality (41) holds.



18 M. Paicu and G. Raugel

Proof.
1) By Lemma 2, we know that there exists a unique vector field ψ ∈ V k+1,p such
that rotψ = w (and ψ is unique in V 1,p). But, it is well known that the problem: to
find z ∈V 1,p such that

z−α∆z = ψ (43)

has a unique solution. Moreover, the regularity properties of the Laplacian operator
imply that z ∈ V k+3,p and that the inequality (42) holds. Statement 2) is proved in
the same way.

From the Corollary 2 and the Lemmata 2 and 3, we at once deduce the following
Corollary.

Corollary 3. Let p > 1. For any ω0 ∈ Lp
per and rot f ∈ L∞((0,T ),Lp

per), there exists
a unique z ∈C0([0,T ],V 3,p) (with ∂tz ∈ L∞((0,T ),V 2,p)) such that

ω = rot(z−α∆z) (44)

is the unique (mild) solution of the equation (35). Moreover, the following estimates
hold, for 0≤ t ≤ T ,

‖z(t)‖W 3,p ≤C1(0,α)
[
e−

ν
α

t‖ω0‖Lp +(1− e−
ν
α

t)(
α

ν
‖rot f‖L∞(I,Lp) +‖rotu‖L∞(I,Lp))

]
‖∂tz(t)‖W 2,p ≤C2(α)

[( ν

α
+‖u‖L∞(I,Lp)

)
×
(
e−

ν
α

t‖ω0‖Lp +(1− e−
ν
α

t)(
α

ν
‖rot f‖L∞(I,Lp) +‖rotu‖L∞(I,Lp))

)
+‖rot f‖L∞(I,Lp) +

ν

α
‖rotu‖L∞(I,Lp)

]
,

(45)

where C2(α) is a positive constant depending only on α .
These inequalities hold for any t ≥ 0, if I ≡ (0,T ) is replaced above by I ≡ (0,+∞).

Proof.
The existence and uniqueness of z(t)∈C0([0,T ],W 3,p

per ), such that ω = rot(z−α∆z)
is the mild solution of (35), is a direct consequence of Corollary 2 and of Lemma 3.
Taking the derivative of (44) with respect to t, we obtain the equality

rot∂tz−α∆ rot∂tz = ∂tω .

Since ∂tω belongs to W−1,p
per , the regularity properties of the above equation imply

that rot∂tz is in W 2,p
per and thus ∂tz belongs to W 3,p

per . The inequalities (45) are a direct
consequence of the inequalities of Corollary 2 and of Lemma 3 and of (26).
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2.3 Local existence and uniqueness of solutions in V 3,p, p > 1

Let u0 ∈ V 3,p be given. We first remark that, if ω is a solution of the transport
equation (35) with ω0 = rot(u0−α∆u0) and z is the solution of (44), then there
exists a unique pressure p ∈W 1,p

per such that,

∂t(z−α∆z)−ν∆z+ rot(z−α∆z)×u+∇p = f , t > 0, x ∈Ω ,

divu = 0, t > 0, x ∈Ω ,

z(0,x) = u0(x), x ∈Ω .

(46)

Local existence of the solution of (2)

Now we are ready to show the local existence of solutions of (2). Let T > 0
be fixed (the choice of T will be made more precise below). Let u0 ∈ V 3,p and
f ∈ L∞((0,T ),W 1,p

per ) be given.
As we have explained in the introduction, we define the following map JT :

L∞((0,T ),V 3,p)∩C0([0,T ],V 2,p) into itself as follows

u∈ L∞((0,T ),V 3,p)∩C0([0,T ],V 2,p) 7→ω ∈C0([0,T ],Lp
per) 7→ z∈C0([0,T ],V 2,p) ,

(47)
where ω is the solution of the equation (35) with ω0 = rot(u0−α∆u0) and z is
the solution of the equation (44). We will show that JT is a continous compact map
from a closed convex subset ET of L∞((0,T ),V 3,p)∩C0([0,T ],V 2,p) into ET . Then
applying the Leray-Schauder fixed point theorem, we deduce that JT has a fixed
point u∗. We notice that the idea of introducing such a type of map and of using the
Leray-Schauder theorem goes back to [25], where the local existence of solutions
has been proved (see also [23], [8], [45] for example). The map, constructed in
these papers differs from the one here. Indeed, these authors considered the map
F : w 7→ u 7→F (w) = ω , where u satisfies divu = 0 and w = rot(u−α∆u) and
where ω is the solution of (35). In [25], and [23], the authors work in more regular
spaces. Even if there are some differences, our proof follows the same main lines.
First we introduce the positive constant K given by

K ≡C1(0,α)
(
‖ω0‖Lp +

α

ν
‖rot f‖L∞(I,Lp)

)
, (48)

where C1(0,α) is given in Corollary 3 and then choose T > 0 such that

2KC1(0,α)(1− e−
ν
α

T ) < K . (49)

Finally, we define the (non empty) set

ET ≡{v∈ L∞((0,T ),V 3,p)∩C0([0,T ],V 2,p) |v(0) = u0 , ‖v‖L∞(W 3,p) ≤ 2K} . (50)

We equip ET with the classical topology of the space XT = C0([0,T ],V 2,p).
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First, one checks that ET is a closed subset of XT . As in [23] or in [9], one
considers a sequence vn, n ∈ N, in XT converging to v. Since the sequence vn is
bounded in L∞((0,T ),V 3,p), it converges in L∞((0,T ),V 3,p) weak ∗ to an element
U in L∞((0,T ),V 3,p) and

‖U‖L∞((0,T ),V 3,p) ≤ 2K .

Due to the uniqueness of the limit in the space of distributions in (0,T )×T2, U = v
and thus v belongs to ET .
With the above choice of K, Corollary 3 at once implies that J(ET )⊂ ET .
Actually, J(ET ) is relatively compact in ET . Indeed, by Corollary 3, J(ET ) is
bounded in W 1,∞((0,T ),W 2,p

per )∩L∞((0,T ),V 3,p). Since the injection of W 3,p into
W 2,p is compact, we deduce from [46, Assertion(12.10), page 142] that every
bounded set in W 1,∞((0,T ),W 2,p(T2))∩L∞((0,T ),W 3,p(T2)) is relatively compact
in C0([0,T ],W 2,p(T2)). Thus, J(ET ) is relatively compact in ET .
It remains to verify that the map J : u ∈ ET 7→ ω 7→ z ∈ ET is continuous for the
topology of XT . Let u1 and u2 be two elements of ET , let ω1 and ω2 be the two
corresponding solutions of the equation (35) and finally let z1, z2 be the two corre-
sponding solutions of (44). From the estimate (34) in Remark 1, we deduce that, for
0≤ t ≤ T ,

‖(ω1−ω2)(t)‖W−1,p

≤C∗(T,u2)
[α

ν
‖u1−u2‖L∞(I,L∞)

(
‖ω1(0)‖Lp +‖rot f‖L∞(I,Lp) +

ν

α
‖rotu1‖L∞(I,Lp)

)
+‖u1−u2‖L∞(I,Lp)

]
≤C(K)‖u1−u2‖L∞(I,W 2,p) ,

(51)

where C(K) is a positive constant depending on K. Using the regularity properties
of the Laplacian and arguing as in Corollary 3, one deduces from the inequality (51)
that, for 0≤ t ≤ T ,

‖(z1− z2)(t)‖W 2,p ≤C‖(ω1−ω2)(t)‖W−1,p ≤CC(K)‖u1−u2‖L∞(I,W 2,p) . (52)

From the inequality (52), one at once deduces that the map J is continuous for the
topology of XT .
Now we may apply the Leray-Schauder fixed point theorem to the map J. Thus,
there exists a fixed point u of J, that is, a function u ∈ ET satisfying the system
(7). Moreover, by Theorem 4 and by Corollary 3, u belongs to C0([0,T ],V 3,p)∩
W 1,∞((0,+∞),W 2,p

per ) and u≡ z satisfies the estimates (45). Morever, applying The-
orem 2.2 of [2] in the “negative order Sobolev space” W−1,p

per , we deduce that ∂tu ac-
tually belongs to C0([0,T ],W 2,p

per ). Finally, introducing the pressure term as in (46),
we have proved that the system (2) admits a solution (u, p) if T > 0 is small enough
(T depending only on u0 and f ).
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The propagation of the regularity of u is a direct consequence of Theorem 4.
Assume that u0 ∈V 4,p and f ∈ L∞((0,T ),W 2,p

per ), then, in the equation (35), ω0 and
rot f + ν

α
rotu belong to V 1,p and L∞((0,T ),W 1,p

per ) respectively. Thus, by Theorem
4, the solution ω of (35) belongs to C0((0,T ),W 1,p

per ). Since ω = rot(u−α∆u), it
follows that u belongs to C0((0,T ),V 4,p

per ). When k ≥ 2, we proceed by recursion on
k. Indeed, if u0 ∈V k+3,p, f ∈ L∞((0,T ),W k+1,p

per ), then, by Theorem 4, u belongs to
C0([0,T ],V k+3,p), provided that u is in C0([0,T ],V k+1,p)∩L∞((0,T ),W k+2,p

per ). But
this regularity property is known by application of Theorem 4 at the order k−1.

Uniqueness of the solution of (2)

The proof of the uniqueness of the solutions of (2) is well known and goes back
to [14]. For the sake of completeness, we give a quick proof of it. Actually, we will
prove a more general continuity result. Let ui(t) ∈ C0([0,T ],V 3,p) (with ∂tui(t) ∈
L∞((0,T ),V 2,p)), i = 0,1, be two solutions of (2). Then, U = u1− u2 satisfies the
equation

∂t(U−α∆U)−ν∆U + rot(U−α∆U)×u1 + rot(u2−α∆u2)×U

=−∇(p1− p2) , t > 0, x ∈Ω ,

U(0,x) = u1(0)−u2(0) , x ∈Ω .

(53)

In [55, Theorem A.1], we have shown the following equality

(rot∆U×u1,U)≡
∫

T2
rotU

(
∆u1

1U2−∆u2
1U1)dx

+2
∫

T2
rotU

(
∇u1

1 ·∇U2−∇u2
1 ·∇U1)dx.

(54)

Taking the inner product of the first equation in (53) with U in L2 and using the
equality (54) together with classical Sobolev inequalities, we obtain, for 0≤ t ≤ T ,

∂t(‖U(t)‖2
L2 +α‖∇U(t)‖2

L2)+ν‖∇U(t)‖2
L2

≤2|
∫

T2
(rot(U−α∆U)×u1)Udx|

≤C1

(
‖u1(t)‖L∞‖U‖L2‖∇U‖L2 +α‖∇u1(t)‖L∞‖∇U‖2

L2 +α‖∇U‖L2‖∆u1‖W 1,p‖U‖
L

p
p−1

)
≤C2

(
‖u1(t)‖L∞‖U‖L2‖∇U‖L2 +α‖∇u1(t)‖L∞‖∇U‖2

L2 +α‖∇U‖2
L2‖∆u1‖W 1,p

)
≤C3‖u1(t)‖W 3,p(

1+α

α
)
(
‖U‖2

L2 +α‖∇U‖2
L2) .

(55)

Integrating with respect to t and aplying the Gronwall lemma, we obtain that, for
0≤ t ≤ T ,
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‖U(t)‖2
L2 +α‖∇U(t)‖2

L2 ≤
[
‖u1(0)−u2(0)‖2

L2 +α‖∇(u1−u2)(0)‖2
L2 ]

×exp
∫ T

0
C3(

1+α

α
)‖u1(s)‖W 3,pds .

(56)

If u1(0) = u2(0), then (56) implies that U(t)≡ 0, that is, that the solution u(t) of (2)
is unique.

Continuity of the map u0 ∈V 3,p 7→ u(t) ∈V 3,p

Let f ∈ L∞((0,T ),W 1,p
per ) (resp. f ∈ L∞((0,+∞),W 1,p

per )) be given. In the next section,
we will show that the solution u(t,x) ≡ u(t,x;u0), with u(0,x;u0) = u0(x) of (2)
exists on (0,T ) (resp. (0,+∞)) and is uniformly bounded in time for u0 belonging
to bounded sets of V 3,p. So we do not need to worry about blow-up in finite time.
To simplify the notation, we will sometimes only write u(t;u0) instead of u(t,x;u0).

Assume that f belongs to L∞((0,T ),W 1,p
per ). The estimate (56) implies that the

map u0 ∈V 3,p 7→ u(t;u0)∈V 1,2 is continuous and even Lipschitzian on the bounded
sets of V 3,p. Since, for any bounded set B0 in V 3,p, there exists a bounded set
γ+(B0) ∈ V 3,p such that u(t;u0) ∈ γ+(B0) for any 0 ≤ t ≤ T and any u0 ∈ B0, we
deduce, by interpolation, that, for every 0≤ θ < 3, the map u0 7→ u(t;u0) ∈V θ ,p is
Hölder continuous on the bounded sets of V 3,p and, in particular, u0→ u(t) belongs
to C0(V 3,p,V θ ,p)∩L∞(V 3,p,V 3,p). We next prove that actually u0→ u(t) belongs to
C0(V 3,p,V 3,p).
Below, we set ω(t,x;u0) = rot(u(t,x;u0)−α∆u(t,x;u0)), ω(x;u0) = rot(u0(x)−
α∆u0(x)) and we denote ϕu0(t;τ,x) the solution of the equation (11), where u(t) is
replaced by u(t,x;u0). We recall that ω(t,x;u0) writes, for 0≤ t ≤ T ,

ω(t,x;u0) =e−
ν
α

t
ω(ϕu0(0; t,x);u0)

+
∫ t

0
e−

ν
α

(t−s)(rot f (s,ϕu0(s; t,x))+
ν

α
rotu(s,ϕu0(s; t,x);u0)

)
ds .

(57)

Let u0n be a sequence converging to u0 in V 3,p; we want to show that ω(t, ·;u0n)
converges to ω(t, ·;u0) in L∞((0,T ),Lp) when n goes to +∞. We at once remark
that, for 0≤ t ≤ T ,

‖ω(ϕu0(0; t,x);u0)−ω(ϕu0n(0; t,x);u0n)‖Lp

≤ ‖ω(ϕu0(0; t,x);u0)−ω(ϕu0n(0; t,x);u0)‖Lp +(1+α)‖u0−u0n‖V 3,p

≤ ‖ωm(ϕu0(0; t,x))−ωm(ϕu0n(0; t,x))‖Lp +(1+α)‖u0−u0n‖V 3,p

+2‖ω(·;u0)−ωm(·)‖Lp ,

(58)

where ωm is a sequence in W 3,p
per converging to ω in Lp. Next we use the Taylor

formula and apply Lemma 1 to obtain, for 0≤ t ≤ T ,
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‖ωm(ϕu0(0; t,x))−ωm(ϕu0n(0; t,x))‖Lp ≤C(T )‖∇ωm‖L∞‖ϕu0(0; t, ·)−ϕu0n(0; t, ·)‖Lp

≤C(T,‖u0‖V 3,p)C(T )‖∇ωm‖L∞‖u0n−u0‖W 2,p

(59)

The inequalities (58) and (59) show that the map u0 ∈ V 3,p 7→ ω(t, ·;u0) ∈ Lp is
continuous. In the same way, we prove that the map u0 ∈V 2,p 7→ rot f (s,ϕu0(s; t,x))
is continuous (uniformly with respect to s). To show the continuity (uniformly with
respect to s) of rotu(s,ϕu0(s; t,x);u0), we argue in the same way and in addition we
use the fact that there exists 0 < θ < 3 such that ‖rotu(s,y;u0)− rotu(s,y;u0n)‖Lp ≤
C(θ ,u0)‖u0−u0n‖V θ ,p .

Remark 2. We notice that the local existence of solutions as well as the continuity
properties also hold for negative time, if the force f belongs to L∞((−T,0),W k+1,p),
k ≥ 0, 1 < p < +∞.

Remark 3. Mutadis mutandis, one can also use the above method of proof to show
the corresponding local existence and continuity of the solutions of (2), when the pe-
riodic boundary conditions are replaced by homogeneous Dirichlet ones, provided
the domain Ω is smooth enough (of class C2) and simply connected. We empha-
size that the proof of Bresch and Lemoine ([8]) of local existence of solutions u in
the spaces V 2,q, q > 2, requires less regularity of the domain Ω since they do not
consider the transport equation satisfied by ω .

2.4 Global existence of solutions in V 3,p, p > 1

Let u0 be given in V 3,p. We assume here that f belongs to L∞(R+,W 1,p
per ). We set

T ∗(u0) = sup{T > 0 | (7) has a solution ω = (u−α∆u) ∈C0([0,T ],Lp
per)} .

The proof of the local existence implies that T ∗(u0) > 0. If T ∗(u0) < +∞, then
‖ω(t)‖Lp goes to infinity, when t goes to T ∗(u0). Indeed, if this is not true, then
there exist r > 0 and a sequence tn converging to T ∗(u0), with tn < T ∗(u0) such
that ‖ω(tn)‖Lp ≤ r, for any n. Due to the proof of the local existence (in particular,
see the choices of K and T in (48) and in (49)), there exists T̃ (r) > 0 such that, for
any n, ω(t), which exists on [0, tn] extends to [0, tn + T̃ (r)]. But, for n large enough,
tn + T̃ (r) > T ∗(u0), which is a contradiction. Thus ‖ω(t)‖Lp goes to infinity, when
t goes to T ∗(u0).

By the inequality (16) in Theorem 4, ω = rot(u−α∆u) satisfies the following
estimate for 0≤ t < T ∗(u0),

‖rot(u−α∆u)(t)‖Lp ≤ e−
ν
α

t‖rot(u0−α∆u0)‖Lp +
α

ν
‖rot f‖L∞(R+,Lp)

+‖rotu‖L∞((0,t),Lp) .
(60)
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It remains to bound the term ‖rotu‖L∞(R+,Lp). We will first estimate this term for
1 < p≤ 2. We proceed as in the proof of the uniqueness (see also [55]). Taking the
inner product of the first equation in (2) with u and using the Young inequality, we
obtain, for 0≤ t < T ∗(u0),

∂t(‖u(t)‖2
L2 +α‖∇u(t)‖2

L2)+ν‖∇u(t)‖2
L2 ≤

1
νλ1
‖ f (t)‖2

L2 ,

where λ1 > 0 is the first eigenvalue of the Stokes operator in Lp. From the above
inequality, we deduce that, for 0≤ t < T ∗(u0),

∂t(‖u(t)‖2
L2 +α‖∇u(t)‖2

L2)+
ν

2(λ−1
1 +α)

(‖u(t)‖2
L2 +α‖∇u(t)‖2

L2)+
ν

2
‖∇u(t)‖2

L2

≤ 1
νλ1
‖ f (t)‖2

L2 .

(61)

Integrating the inequality (61) and applying the Gronwall lemma, we obtain, for
0≤ t < T ∗(u0),

‖u(t)‖2
L2 +α‖∇u(t)‖2

L2 +
ν

2

∫ t

0
exp(

ν

2(λ−1
1 +α)

(s− t))‖∇u(s)‖2
L2ds

≤exp(− ν

2(λ−1
1 +α)

t)
[
‖u0‖2

L2 +α‖∇u0‖2
L2 ]

+
2(1+λ1α)

λ 2
1 ν2 ‖ f‖2

L∞(R+,L2) .

(62)

From the estimates (60) and (62), we at once deduce that, for 0 ≤ t < T ∗(u0), for
1 < p≤ 2,

‖rot(u−α∆u)(t)‖Lp ≤exp(− ν

α
t)‖rot(u0−α∆u0)‖Lp

+α
−1/2 exp(− νλ1

4(1+λ1α)
t)
[
‖u0‖L2 +

√
α‖∇u0‖L2

]
+

α

ν
‖rot f‖L∞(R+,Lp) +

√
2(1+λ1α)1/2

λ1ν
√

α
‖ f‖L∞(R+,L2) ,

(63)

This inequality implies the global existence of u in the case 1 < p≤ 2.
In the case where p = 2, we obtain a better estimate than (63). Indeed, replacing

ω by rot(u−α∆u) in the equality (35) and taking the inner product of this equation
with rot(u−α∆u), we readily obtain, for t ≥ 0,
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‖rot(u−α∆u)(t)‖2
L2 ≤ exp(− νλ1

2(1+2αλ1)
t)‖rot(u0−α∆u0)‖2

L2

+
2(1+2αλ1)2

λ 2
1 ν2 ‖rot f‖2

L∞(R+,L2) .

(64)

For more details, we refer the reader to [55, Section 2.2]. In the case where 2 < p <
+∞, we remark that the continuous Sobolev embedding H1(T2)⊂ Lp(T2) holds for
any 1 < p < +∞. Thus, we directly deduce from the inequalities (60) and (64) that,
for 2 < p < +∞, for 0≤ t < T ∗(u0),

‖rot(u−α∆u)(t)‖Lp

≤exp(− ν

α
t)‖rot(u0−α∆u0)‖Lp +

α

ν
‖rot f‖L∞(R+,Lp)

+CS(p)min(α−1,α−
1
2 )
[

exp(− νλ1

4(1+2αλ1)
t)‖rot(u0−α∆u0)‖L2

+
√

2(1+2αλ1)
λ1ν

‖ f‖L∞(R+,L2)

]
,

(65)

where CS(p) is a positive constant depending on the above-mentioned Sobolev
embedding. This inequality implies the global existence of u in the case where
2 < p < +∞.
Notice that the existence of solutions on the time interval (−∞,0] also holds if the
forcing term belongs to L∞((−∞,0),W k+1,p), k ≥ 0, 1 < p < +∞. But the solution
u(t) may blow-up at −∞.

Assume now that the forcing term f ∈W 1,p
per does not depend on the time. Then,

we introduce the map Sα(t) : u0 ∈V 3,p 7→ u(t) ∈V 3,p, where u(t) is the solution of
the system (2). The properties that we obtained in Sections 2.3 and 2.4 imply that
Sα(t) is a dynamical system (and also a non-linear continuous group). Moreover,
due to the estimates (63) to (65), Sα(t) admits a bounded absorbing set Bα . We can
choose for Bα the ball BV 3,p(0,Cα−1Rα(p)) of center 0 and radius Cα−1Rα(p) in
V 3,p, where C is a positive constant and where

Rα(p) =
α

ν
‖rot f‖Lp +

√
2(1+λ1α)1/2

λ1ν
√

α
‖ f‖L2 if 1 < p < 2

Rα(p) =
√

2(1+2αλ1)
λ1ν

‖rot f‖L2 if p = 2

Rα(p) =
α

ν
‖rot f‖Lp +CS(p)min(α−1,α−

1
2 )
√

2(1+2αλ1)
λ1ν

‖ f‖L2 if 2 < p < +∞ .

(66)
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Remark 4. The norm ‖rot(u−α∆u)‖Lp is appropriate for estimating the V 3,p-norm
of the solution u of the second grade fluid equations (2). The estimates (63), (64)
and (65) are good if α > 0 is fixed or bounded away from zero. However, when α

goes to 0, these estimates can be improved as we did it in [55, Section 2, Estimates
(2.27) and (2.28)]. In order to obtain better estimates in the case where α is small,
one proceeds in the following way. Instead of introducing the variable ω = rot(u−
α∆u), one introduces the variable ω∗=−rot∆u and one performs a priori estimates
for ω∗ by considering the transport equation:

∂tω
∗+u ·∇ω

∗+
ν

α
ω
∗+

1
α

∂t rotu =
1
α

u ·∇rotu+
1
α

rot f , (67)

and using the above estimates.
In [55, Section 4], using these better upper bounds, we have proved the convergence
of the solutions of (2) to those of the Navier-Stokes equations on finite time intervals
when α goes to 0. We have also obtained convergence results for the global attrrac-
tors. For the comparaison of periodic orbits or other invariant sets of (2) with those
of the Navier-Stokes equations, when α is small, we refer to [35] and [49]. For an-
other convergence result of solutions of (2) to those of the Navier-Stokes equations,
we refer to [39].

Remark 5. The above global existence of solutions of (2) is still true, when the pe-
riodic boundary conditions are replaced by homogeneous Dirichlet ones, provided
the domain Ω is smooth enough (of class C2) and simply connected.

3 Dynamics of the second grade fluids in the 2D torus

In the whole section, we assume that the forcing term f ∈W 1,p
per does not depend on

the time variable t. By (32), the solution u(t) of (2) writes, for any t ∈ R,

(u−α∆u)(t,x) = ω(t,x) =e−
ν
α

t
ω0(ϕ(0; t,x))

+
∫ t

0
e−

ν
α

(t−s)
(

rot f (ϕ(s; t,x))+
ν

α
rotu(s,ϕ(s; t,x))

)
ds .

(68)

3.1 Existence of a compact global attractor

In the previous section, we have seen that Sα(t) admits a bounded absorbing set
Bα and that the trajectories of bounded sets are bounded. Thus, by [32, Theorem
3.4.6] or [58, Theorem 2.26], in order to establish the existence of a compact global
attractor in V 3,p, it suffices to show that Sα(t) is asymptotically compact (or asymp-
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totically smooth). Due to [32, Lemma 3.2.6] or [58, Theorem 2.31]), it is enough to
prove that Sα(t) can be written as a sum

Sα(t) = Σα(t)+Kα(t) , (69)

where Σα(t) is an asymptotically uniformly contracting map on the bounded sets of
V 3,p and Kα(t) is a compact map from V 3,p into itself. Actually, due to the equality
(68), it suffices to show that, for any u0 ∈V 3,p,

Sα(t)u0−α∆Sα(t)u0 ≡ ω(t;u0) = Σ
∗
α(t)u0 +K∗α(t)u0 , (70)

where Σ ∗α(t) is an asymptotically uniformly contracting map on the bounded sets of
V 3,p into V 0,p and K∗α(t) is a compact map form V 3,p into V 0,p.

The proof of the property (70) is simple. According to the equality (68), we set,
for any u0 ∈V 3,p,

Σ
∗
α(t)u0 ≡e−

ν
α

t
ω0(ϕu0(0; t,x);u0)

K∗α(t)u0 ≡Kα,1(t)u0 +Kα,2(t)u0

≡
∫ t

0
e−

ν
α

(t−s)rot f (ϕu0(s; t,x))ds+
∫ t

0
e−

ν
α

(t−s) ν

α
rotu(s,ϕu0(s; t,x);u0)ds .

(71)

Since ‖ω0(ϕu0(0; t,x);u0)‖Lp = ‖ω0(x;u0)‖Lp , it follows that, for any bounded set
B0 ∈V 3,p, for any u0 ∈ B0, for any t ≥ 0,

‖Σ ∗α(t)u0‖Lp ≤C1(‖B0‖V 3,p)e−
ν
α

t , (72)

where C1(‖B0‖V 3,p) depends only on the norm of B0 in V 3,p.
We next show that Kα,1(t) is a compact map from V 3,p into Lp

per. Let B0 be
a bounded subset of V 3,p. The set [0,1]× B0 is a compact subset of R+ ×V 2,p.
Since the map (s,u0) ∈ [0, t]×B0 7→ rot f (ϕu0(s; t, ·)) ∈ Lp is a continuous map-
ping, the image is a compact subset of Lp

per. By Mazur’s theorem, it follows that∫ t
0 e−

ν
α

(t−s)rot f (ϕu0(s; t,x))ds belongs to a compact set of Lp
per. Thus Kα,1(t) is a

compact map.
Finally, we prove that Kα,2(t) is a compact mapping from V 3,p into Lp

per by show-
ing that Kα,2(t) maps every bounded set B0 ⊂ V 3,p into a compact set of W 1,p

per and
thus into a relatively compact set of Lp

per. Since, by Lemma 1, the following estimate
holds

‖rotu(s,ϕu0(s; t, ·);u0)‖W 1,p ≤ ‖rotu(s, ·;u0,‖W 1,p exp(
∫ t

0
‖∇u(σ , ·;u0)‖L∞dσ ,

(73)
and that

‖rotu(·, ·;u0)‖L∞((0,t),W 1,p) exp(
∫ t

0
‖∇u(σ , ·;u0)‖L∞dσ ≤C2(t,‖B0‖V 3,p) , (74)



28 M. Paicu and G. Raugel

(where C2(t,‖B0‖V 3,p) depends only on t and on the norm of B0 in V 3,p), it follows
that

∫ t
0 e−

ν
α

(t−s) ν

α
rotu(s,ϕu0(s; t,x);u0)ds belongs to a bounded set of W 1,p

per and thus
to a compact set of Lp

per. And then Kα,2(t) is a compact mapping from V 3,p into
Lp

per.
We have thus proved that Sα(t) is asymptotically compact in V 3,p.

Remark 6. We can prove in the same way that Sα(t) admits a compact global attrac-
tor when the periodic boundary conditions are replaced by homogeneous Dirichlet
ones, provided the domain Ω is smooth enough (of class C2) and simply connected.

3.2 Regularity of the compact global attractor

We now consider a complete bounded orbit u(t) (with u(0) = u0) contained in the
global attractor Aα . In particular, we know that ω(t)≡ rot(u−α∆u)(t) satisfies the
following inequality, for any 1 < p < +∞,

‖rot(u−α∆u)(t)‖V 1,p ≤ Rα(p) , ∀t ∈ R . (75)

Let τ < 0. Since ω(t)∈V 1,p exists for any t ∈R and, by (75), is uniformly bounded
on R, using the formula (68), we can write, for t ≥ τ ,

ω(t,x) =e−
ν
α

(t−τ)
ω(τ,ϕ(τ; t,x))

+
∫ t

τ

e−
ν
α

(t−s)
(

rot f (ϕ(s; t,x))+
ν

α
rotu(s,ϕ(s; t,x))

)
ds ,

(76)

where ϕ(s; t,x) ≡ ϕu0(s; t,x). Letting τ go to −∞, one deduces from (75) and (76)
that, for any t ∈ R,

ω(t,x) =
∫ t

−∞

e−
ν
α

(t−s)
(

rot f (ϕ(s; t,x))+
ν

α
rotu(s,ϕ(s; t,x))

)
ds . (77)

If f ∈W 2,p
per , the right-hand side member of (77) belongs to a smoother space than

Lp
per. We now want to prove that indeed ω(t) is bounded in a smoother space W θ ,p,

where 0 < θ ≤ 1. To this end, we introduce the integral

I(t,s,x)≡
∫ t

s
e−

ν
α

(t−σ)g(σ ,ϕ(σ ; t,x))dσ , g(σ ,x) = rot f (x)+
ν

α
rotu(σ ,x) .

Since

∂

∂xk
I(t,s,x) =

∫ t

s
e−

ν
α

(t−σ)
( 2

∑
i=1

∂xig(σ ,ϕ(σ ; t,x))∂xk ϕi(σ ; t,x)
)

dσ , (78)

thus, by Lemma 1, we have,
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‖ ∂

∂xk
I(t,s,x)‖Lp ≤

∫ t

s
e−

ν
α

(t−σ)‖∇g‖Lp‖∇ϕ(σ ; t, ·)‖L∞dσ

≤‖∇g‖L∞(Lp)

∫ t

s
e−

ν
α

(t−σ) exp
(∫ t

σ

‖∇u(τ)‖L∞dτ
)
dσ .

(79)

Assume now that
sup
t∈R
‖∇u(t)‖L∞ <

ν

α
, (80)

and set a0 ≡ ν

α
−supτ∈R ‖∇u(τ)‖L∞ > 0. From the estimate (79) and the hypothesis

(80), we deduce that, for any s≤ t,

‖ ∂

∂xk
I(t,s,x)‖Lp ≤ a−1

0

(
‖rot f‖W 1,p +

ν

α
sup
τ∈R
‖rotu(τ)‖W 1,p

)
. (81)

Since this inequality holds for any t, s, we conclude that, for any t ∈ R,

‖∇(rotu−α∆ rotu)(t)‖Lp ≤ a−1
0

(
‖rot f‖W 1,p +

ν

α
sup
τ∈R
‖rotu(τ)‖W 1,p

)
. (82)

Assume now that supv∈Aα
‖∇v‖L∞ < ν

α
and set a1≡ ν

α
−supv∈Aα

‖∇v‖L∞ > 0. From
the estimates (82) and (64), we deduce the following upper bound for any element
u0 in the global attractor Aα ,

‖∇(rotu0−α∆ rotu0)‖Lp ≤ a−1
1 (‖rot f‖W 1,p +

ν

α
Mα(p)) , (83)

where

Mα(p) = CS

√
2(1+2αλ1)

max(
√

α,α)λ1ν
‖rot f‖L2 if 2 < p < +∞

Mα(p) = CS

√
2(1+2αλ1)

αλ1ν
‖rot f‖L2 if p≥ 2 ,

(84)

and where CS > 0 is a Sobolev embedding constant.
Assume now that, for the complete bounded orbit u(t), the condition (80) is not

true. Then we are not able to conclude that ‖∇(rotu−α∆ rotu)(t)‖Lp is uniformly
bounded for t ∈ R. However, we can still show that there exists a positive number
0 < θ < 1, such that ‖(rotu−α∆ rotu)(t)‖W θ ,p is bounded by using an interpolation
argument. Indeed, let 0 < θ < 1 such that

aθ ≡
ν

α
−θ sup

τ∈R
‖∇u(τ)‖L∞ > 0 . (85)

We next define the continuous linear map T : h ∈ L∞(R,Lp
per) 7→ w ∈ L∞(R,Lp

per),
which is the solution of the integral equation

T (h)(t,x)≡ w(t,x) =
∫ t

−∞

e−
ν
α

(t−σ)h(σ ,ϕ(σ ; t,x))dσ .



30 M. Paicu and G. Raugel

We remark that the vorticity ω , satisfying the equality (77), is given by ω = T (g).
The above computations show that T is also a continous map from L∞(R,W 1,p

per )
into itself, and thus, by interpolation, a continuous linear map from L∞(R,W θ ,p

per )
into itself, for 0≤ θ ≤ 1. Moreover, for any t ∈ R, we have,

‖T (h)(t, ·)‖W θ ,p ≤
∫ t

−∞

e−
ν
α

(t−σ)‖h(σ ,ϕ(σ ; t, ·))‖W θ ,pdσ .

As we will see, due to the condition (85), g(σ ,ϕ(σ ; t, ·)) belongs to L∞(R,W θ ,p
per )

and thus ω satisfies the above inequality.
Remarking that

‖g(σ ,ϕ(σ ; t, ·))‖Lp ≤‖g(σ , ·)‖Lp

‖g(σ ,ϕ(σ ; t, ·))‖W 1,p ≤‖g(σ , ·)‖W 1,p exp
(∫ t

σ

‖∇u(τ)‖L∞dτ
) (86)

we obtain by interpolation that,

‖ω(t, )̇‖W θ ,p ≤
∫ t

−∞

e−
ν
α

(t−σ) expθ
(∫ t

σ

‖∇u(τ)‖L∞ dτ
)
‖g(σ , ·)‖W θ ,pdσ

≤a−1
θ

(
‖rot f‖W θ ,p +

ν

α
sup
τ∈R
‖rotu(τ)‖W θ ,p

)
.

(87)

And, we conclude that, for any t ∈ R,

‖(rotu−α∆ rotu)(t)‖W θ ,p ≤ a−1
θ

(
‖rot f‖W θ ,p +

ν

α
sup
τ∈R
‖rotu(τ)‖W θ ,p

)
. (88)

If supv∈Aα
‖∇v‖L∞ ≥ ν

α
, we take 0 < θ < 1 so that

a1,θ ≡
ν

α
−θ sup

v∈Aα

‖∇v‖L∞ > 0 .

Thus, we obtain the following upper bound for any u0 in the global attractor

‖rotu0−α∆ rotu0‖W θ ,p ≤ a−1
1,θ (‖rot f‖W θ ,p +

ν

α
Mα(p)) , (89)

Remark 7. One may wonder if the compact global attractors depend on p. Let
1 < p1 < p2 < +∞ and assume that the forcing term f belongs to W 1+θ ,p2 ,
0 < θ < 1. We denote Aα(p1) and Aα(p2) the corresponding global attractors.
It is clear that Aα(p2) ⊂ Aα(p1). Taking into account the above regularity argu-
ment, we may show by using Sobolev embeddings and a bootstrap argument that
Aα(p1)⊂Aα(p2) and thus Aα(p1) = Aα(p2).

Next we consider higher order derivatives of ω(t). Differentiating ∂

∂xk
I(t,s,x)

with respect to xl , we obtain
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∂ 2

∂xk∂xl
I(t,s,x) =

∫ t

s
e−

ν
α

(t−σ)
[ 2

∑
i, j=1

∂
2
xix j

g(σ ,ϕ(σ ; t,x))∂xk ϕi(σ ; t,x)∂xl ϕ j(σ ; t,x)

+
2

∑
i=1

∂xig(σ ,ϕ(σ ; t,x))∂ 2
xkxl

ϕi(σ ; t,x)
]
dσ ,

(90)

from which we deduce that, for any s≤ t,

‖D2
xI(t,s, ·)‖Lp ≤

∫ t

s
e−

ν
α

(t−σ)[‖∇g‖Lp‖D2
xϕ(σ ; t, ·)‖L∞

+‖D2
xg‖Lp‖∇ϕ(σ ; t, ·)‖2

L∞

]
dσ .

(91)

Arguing as in Lemma 1 and using the inequality (14) of Lemma 1, we get the fol-
lowing estimate, for any σ ≤ t,

‖D2
xϕ(σ ; t, ·)‖L∞ ≤ ‖D2

xu(σ)‖L∞ exp
(

3
∫ t

σ

‖∇u(τ)‖L∞dτ

)
. (92)

The estimates (91) and (92) imply, for any s≤ t,

‖D2
xI(t,s, ·)‖Lp ≤‖∇g‖L∞(Lp)‖u‖L∞(W 2,∞)

∫ t

s
e−

ν
α

(t−σ) exp
(

3
∫ t

σ

‖∇u(τ)‖L∞dτ

)
dσ

+‖D2
xg‖L∞(Lp)

∫ t

s
e−

ν
α

(t−σ) exp
(

2
∫ t

σ

‖∇u(τ)‖L∞dτ

)
dσ .

(93)

Assume now that
sup
t∈R

3‖∇u(t)‖L∞ <
ν

α
, (94)

and set a2 ≡ ν

α
−3supτ∈R ‖∇u(τ)‖L∞ > 0. Then, it follows from (93) and (94) that,

for any t ∈ R,

‖(rotu−α∆ rotu)(t)‖W 2,p ≤a−1
2

[
(‖rot f‖W 1,p +

ν

α
‖rotu(·)‖L∞(W 1,p))‖u(·)‖L∞(W 2,∞)

+(‖rot f‖W 2,p +
ν

α
‖rotu(·)‖L∞(W 2,p))

]
≡a−1

2 M2,α(p) .

(95)

If a2 ≡ ν

α
− 3supv∈Aα

‖∇v‖L∞ > 0, then the estimate (95) holds for any element u
of Aα . By a recursion argument, we finally obtain the third assertion of Theorem 3.

Remark 8. The above regularity results of Aα still hold, when the periodic boundary
conditions are replaced by homogeneous Dirichlet ones, provided the domain Ω is
smooth enough (of class C2) and simply connected.
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Remark 9. In the above regularity proofs, in order to get the V 3+m regularity, we
need to assume that ν

α
−msupv∈Aα

‖∇v‖L∞ > 0. This method does not allow to
show that the attractor is bounded in C∞ or in the set of analytic functions, even if
f is analytic. So these regularity properties remain an open question. Note that if f
is integrable in time and in a Gevrey class in the spatial variable and if the initial
data are in a Gevrey class in the spatial variable, then the solutions of (2) also have
Gevrey regularity (see [52] and [54]).

3.3 Finite-dimensional properties

We can also wonder if the dynamics of (2) has finite-dimensional properties. Using
the methods of [61], we can certainly prove that the Hausdorff dimension of Aα is
finite. We leave it to the reader to check it.
We next want to recall a “finite-dimensional” property, which is well adapted to the
Hilbert space setting, that is, to the case p = 2. Let P denote the classical orthogonal
projection of (L2

per(T2))2 onto the subspace H ≡ V 0,2 of L2-divergence-free vector
fields. We also introduce the orthogonal projection Pn in H onto the space spanned
by the eigenfunctions corresponding to the first n eigenvalues of the Stokes operator
A =−P∆ . Finally, we introduce the projection Qn = I−Pn.

In [55], we have shown that there exists an integer N, such that, on the compact
global attractor, the dynamics of (2) reduces to the dynamics of a system of N ordi-
nary differential equations defined on PNV 3,2 (see [55, Theorem 1.2]).
In [55], like in [34, Theorem 2.7], we deduced, from [55, Theorem 1.2], the so-
called “finite number of determining modes property” for the system (2), when α

is small enough. The property of “finite number of determining modes” was intro-
duced and proved for the two-dimensional Navier-Stokes equations by Foias and
Prodi in 1967 ([19]). This property means that the asymptotic behaviour in time of
the second grade fluid system depends only on a finite number of parameters (called
the determining modes).

Theorem 5. Let f be given in W 1+d,2
per , d > 0.

We assume that ν−2α(supz∈Aα
‖∇z‖L∞) > 0. Then System (2) has the property of

finite number of determining modes, that is, there exists a positive integer N0 such
that, for any u0, u1 in V 3,2, the property

‖PN0Sα(t)u0−PN0Sα(t)u1‖V 3 −→t→+∞ 0

implies that
‖Sα(t)u0−Sα(t)u1‖V 3 −→t→+∞ 0 .

One also could directly prove Theorem 5, by performing appropriate a priori esti-
mates. But, showing Theorem 5 as a consequence of [55, Theorem 1.2] and of the
proof of [34, Theorem 2.7] is more elegant.
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