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The Klein-Gordon equation

Klein and Gordon (1926) independently derived a relativistic
equation for a charged particle in an electromagnetic field, using
ideas of quantum theory ~~ Klein-Gordon (or Klein-Gordon-Fock)
equation:

1
21/)tt—A1;+( ) ) =0,

for the special case of a free particle in R3,
Mathematical generalisation:

1 ‘
glﬁ/’tt — A+ + V'(¥) =0,

where the potential V is s.t. V' is a nonlinear function. Invariance
under the Lorentz transformations.

Examples: V'() = €||P~1y where 2 < p < 5, ¢ = +1,

V/(1)) = —1b + siny) : sine-Gordon equation

The non-relativistic version leads to the Schrodinger equation

e + Ay + V() =0



The focusing Klein-Gordon equation: the subcritical case
Let H = HY(R3) x L?(R3).
We consider the NLKG equation with or without damping o > 0:
Utt+2aut—Au+u—u3:O,XER3,t20 (1)
(u(x,0), us(x,0)) = (uo(x), u1(x)) € H,

which writes as the first order system

_d [ u\ 0 Id u 0 B
Ut_dt<Ut>_<A/d —2a/d)<ut>+< u3>’U(O)_UO

or also
U = B,U+ F(U) , U(0) = Up.

The equation U; = B, U generates a linear Co—group eBot in H.

The function U(t) = (u(t), us(t)) € CO((—T, T),H) is a mild (or
integral) solution of (1) if, for any t € (—T, T),

t
U(t) = Sa(t)Uo = eBatUo+/ eBa(t=) F(U(s))ds, Duhamel formula
0



Basic well-posedness |: o« > 0

Theorem (Local existence)

1) For any Uy € 'H, there exists a unique mild solution
Sa(t)Uo € CO([~T, T),’H) for some T > To(||Uol|%) > 0.

2) Continuity w. r. to Uy, persistence of regularity.

3) The energy functional E(u(t), us(t)) € CL([0, T)) satisfies

9 (E(u(e). () = ~20]()] <0,

where

1 1
E(o, ) = | GU¥1 + Vel + 1¢*) = Zlel*)ax.
R3 2 4

Energy conservation if &« = 0. Strict Lyapunov functional if « > 0



Basic well-posedness Il: o > 0

If Up € H and a > 0 small, one writes ({|.||;3.¢ is a Strichartz norm):
t
15a(8) Uoll7¢ < Co([| Uoll +/O 1wl 2ds) < C(|[Uollre + [lullF3y5)-

Theorem (Global existence or blow-up)

1) If | Uoll3 < 1, then global existence and ||ul| ;3(r+ 1s(r3)) < +00
2) Let T* > 0 be the maximal forward time of existence:

T" < 400 = HUHL3((O,T*),L6(R3)) = 00.

3) Assume that T* = oo and |[ul|(3((0,+o0),L6(R3)) < OO, then,

- if a =0, u scatters , i.e., there exists (Tg, 1) € H s.t.,

Sa(t)Uo = U(t) = eBot(tip, i) + on(1), t — oo,

-ifa>0, S54(t)Up — 0, t— oo.

Small data: global existence and scattering (or convergence to 0)
Large data: can have finite time blowup.
Simpler case of radial solutions: Restrict to the space H,q



Forward scattering set and purpose of this talk
Forward scattering set:

St = {(uo, u1) € Hrad | So(t)(uo, u1) exists globally and scatters}

S+ D B(0,r) in Hyag, St # Hrad, S+ open in H,aqg.

Questions of Nakanishi and Schlag when a = 0: is S
bounded in H, .97 Is OS+ a smooth manifold separating regions of
finite time blowup and global existence? Same questions for av > 0.

First goal: Describe transition between blowup/global existence
and scattering or convergence. Results when the energy is at most
slightly larger than the energy of the “ground state solution”.

Case o = 0: nice book “Invariant manifolds and dispersive Hamiltonian
Evolution Equations” of K. Nakanishi, W. Schlag. See also J. Krieger, ...
Case v > 0: work in progress of N. Burq, W. Schlag, G.R.

Second goal: lllustrate with this study how the simultaneous use
of PDE technics and classical tools in the dynamical systems
theory gives new results in PDE's



Stationary solutions, ground state £@Q
Stationary solution u(t, x) = ¢(x) of NLKG is a weak solution of

—Ap+ ¢ =g’ (2)

Minimization problem: inf {||¢||3, | € H*, [lo]|;s =1}

has a radial solution ¢, > 0, decaying exponentially, @ = Ao
satisfies (2) for some A > 0 (Z. Nehari, 1963).

Coffman (1972): unique radial positive solution Q

Stationary energy: J(y fR3 < |Vl|? + 1 ©? 4<p4) dx
Dilation functional:

Ko(e) = (L (9)le) = [rs(IVe* + * — o*)(x) dx
Variational characterization

J(Q) = inf{J(p) | v € H'\ {0}, Ko() = O} (3)

The infima are achieved uniquely by @, up to translations.
Existence of infinite number of smooth nodal solutions of (2).



Splitting of J(u) < J(Q) by the sign of K = Ky

Same picture for E(u, u;) < J(Q). The solutions are trapped by Ky > 0
or Ky < 0 in that case.



Payne-Sattinger criterion: o > 0
Invariant decomposition of E < J(Q): (Payne-Sattinger 1975)

PS+ = {(uo, 1) € H| E(up, u1) < J(Q), Ko(upg) > 0}
PS_ = {(uo,u1) € H| E(uo, u1) < J(Q), Ko(up) < 0}

In PS, global existence for t € RT: Ky(u(t)) > 0 implies:
lu(®)lFa+lue ()13 = 4E(U(2))~(Ko(u(t))+lue(t)I[3) < 4E(U(t)).

In PS_, finite time blowup for t € R (—Ko(u(t)) > 6 > 0)
Convexity argument for o« > 0 with the auxiliary function

y*(£) = 3llu(®)l|72 + a fy llu(s)[7ds:
Vee = lluellz — Ko(u) = 3l|uell3 + [[ullfy — 4E(U) > 6.

Thus, y2(t) and y°(t) go to +oo as t — +o0o. One proves that, for
t > to, 0:(y1/?)(t) < 0:(y~1/?)(to) < 0 and that there exists t; > 0 s.t.

(y~*)(t) = 0.



Linearized equation around (@, 0)
If we plug u = Q + w into the NLKG equation (1), we get

wee + 20w + Low — 3Qw? — w? =0, (4)

with L, = —A + Id — 3Q? the linearized elliptic operator. One has
. (L+QIQ) = —2]|Qll4 <0

e L, p=—k?p unique (simple) negative eigenvalue, no kernel
over radial functions

e Gap property: Ly has no eigenvalues in (0, 1], no
(Demanet-Schlag, Costin-Huang-Schlag)

° Ucont(LJr) = [17 +OO)

Rewriting (4) as a system with W = (w, w;)*, we have

0 Id w 0
Wt( —L+ —2()éld)< Wy )“F( 3QW2+W3>AO{W+N(W)



Non hyperbolic/Hyperbolic dynamics

Spectrum of Ay: 0(As) = {pg, i} U ocont(Aa),

pt = —a+£+va? + k2 : simple eigenvalues; p; < 0 and uf >0
(the eigenprojectors are denoted P).

Case a = 0: 0(Ag) = {—k,+k} U i(—o0,1] U i[l,+00)

Hy = Py H, H§ = P{H, H§ = (Id — Py — P{)H

EXIstence of a center space H§ or center stable space H§ = H§ © H§.
Non hyperbolic dynamics

Case a > 0: No central part. Hyperbolic dynamics
Teont(Aa) = {=0+ i(—00, VT = a2} U {—a +i[VI— o, +o0)}

Ucont(Aa) = [—0& —Va?-1,-a+va? - 1] U {_CY + i(_OO, +OO)}
Unstable and stable spaces HY = Pt H, H:, = (Id — PY)H.



Classical invariant manifolds theory in finite dimensions
yt = Ay + f(y), f(0) =0,Df(0) =0, R" = X* @ X @ XY, where
X, X, X" are A-invariant,
0(As) = {ReX <0}, 0(Ay) = {Re X >0}, 0(Ac) = {X € iR}.
Hyperbolic case X¢ = {0}: Non hyperbolic case X¢ # {0}:
Existence of locally invariant center, center stable manifolds W€,
W< at 0, tangent to X< and X (non unique in general !)

In both cases: 3! local stable and unstable manifolds W*, W*,
tangent at 0 to X*°, X". Invariance properties.

W* = {|yo| < r|y(t) — 0 exponential fast as t — oo}
WY = {|yo| < r|y(t) — 0 exponential fast as t — —oo}

Yt = y+0(‘)/’2)7 U(A) = {17 *17 73*’.3 *a+i}

O O = O
O O O =
= O O

-1 -—a






The invariant manifolds in the cases &« =0 and o > 0

« = 0: Stable, unstable and center-stable manifolds W*, WY and
WCS
a >0 WS~ WS, WY~ WY and W?® ~» WSP



Theorem of Nakanishi and Schlag when @ =0

Theorem (Nakanishi, Schlag)
There exists g > 0 s.t. if

E(up, 1) < E(Q,0) 4¢3, Energy assumption

then, for (u(t), ut(t)) = So(t)(uo, u1), one has, either
1. finite time blowup
2. global existence and scattering to 0

3. global existence and scattering to (£@Q,0):
(u(t), ue(t)) = (£@Q,0) + (v(t), vi(t)) + on(1) as t — oo,
where (v(t), v¢(t)) = Xo(t)(vo,v1) € H
All'9 combinations of this trichotomy allowed as t — +oc.
08 is the unique center stable (smooth) manifold of (£Q,0)
(codimension 1), giving (3) and separating the open regions (1) and (2).
Existence of 1-dimensional strongly stable, unstable manifolds of (@, 0).
Stable manifold: Duyckaerts-Merle, Duyckaerts-Holmer-Roudenko



Numerical 2-dim section through 0S5, (Donninger, Schlag)

(Q+ Ae", Be™")

e soliton at (A, B) = (0,0), (A, B) vary in [-9,2] x [-9,9]
e RED: global existence, WHITE: finite time blowup, GREEN:
PS4, BLUE: PS_

e Results in a neighbourhood of (Q,0).



The case a > 0
Theorem (I: Burq, Schlag, G.R.)

(i) There exists a continuous function ¢ : « € [0,400) — (a) > 0
s.t., info<actooe(a) > €9 > 0 and s.t., if

E(up, u1) < E(Q,0) 4 £%(at), Energy assumption

then, So(t)(uo, u1) satisfies, either
1. finite time blowup
2. global existence and convergence to 0
3. global existence and convergence to (£Q, 0)
(ii) The (smooth) stable manifold of (£Q,0) is of codimension

1, gives (3) and separates the open regions (1) and (2).
Existence of a 1-dimensional unstable manifold of (£Q,0).

At most, one sign change of Ky(u(t)) near (Q,0)
Earlier convergence result to 0 of Keller (1983)



The case a > 0

Theorem (II: Burq, Schlag, G.R.)
Let (ug, u1) € Hyad, then So(t)(uo, u1) satisfies, either
1. finite time blowup

2. or global existence and convergence to an equilibrium point

(@,0) of (1).

Proof: functional and dynamical systems arguments

The particular case o > 0 large: we set u(t,x) = u-(7, x), where
T =¢e?t e = (20)7%

Eleirr + ey — At + e — u2 = 0, (u:(0), Ue,7(0) = (uo, e ?un).

Compare (ug, ue ¢) with (vo(7), vo,-(7)) where vy(7) is the solution
of the equation

vo,r — Avg + vp — v =0, v(0) = up.



Dynamics near (Q,0), when 0 < ap < @ < a1 < 40
Proposition (A - Local manifolds, asymptotic phase)
There exist Ry > 0 and 3, > 0 s. t., in B((Q,0), Ry),

1. 3! local stable manifold W3(Q,0) of codim. 1, tangent to HS,
at (Q,0).

2. 3l local unstable manifold W!(Q,0) of dimension 1, tangent
to HY at (Q,0).

3. Let Up € B((Q,0), Ry) \ WE(Q,0). As long as
Sa(t)Uo € B((Q,0), Ry),

diSt"H(Sa(t) UO: VV(iJ(Q O)) < Ce—ﬂltdib‘tH(Uov V\/(;J(Qﬂ O))

4. There exist 0 < rn < Ry, m1 > 0 and for
Uo € B((Q,0), )\ W5(Q,0), a time t; >0, s. t. Su(t1)Uo
is in the Payne-Sattinger region PS, or PS -
(E(Sa(t1)Uo) < J(Q) —m and Sa(t1)Uo € B((Q,0), Ry))

Property 4 follows from 3 and the strict decay of E(U(t)). Foliations



Dynamics near (Q,0) when ae =0 (or « > 0 small)

Proposition (B - Unique local manifolds - Nakanishi, Schlag)

There exist R, > 0 s.t.
1. J!'local center stable manifold W;*(Q,0) of codimension 1 in
B((Q,0), Ro), tangent to H§® at (Q,0).
2. If Up € W5*(Q,0), then So(t)Uo = (Q + w, wy) satisfies

1w, we)ll o2 (0,4-00),7) T+ Wl 13((0,400),8) S Ra-

U(t) scatters to (Q,0) , i.e.,
U(t) = (Q,0) + Xo(t)(vo, v1) + ox(1) as t — oo.

3. IFU(t) € B((Q,0), Ry), ¥t >0, then U(t) € WSS, ¥t > 0.

4. 3! smooth local manifolds W5 (Q,0) and Wg'(Q,0) of
dimension 1 in B((Q,0), R2), tangent to Hg and H{ at (Q,0).

The same proposition is true for a > 0 small.
Use of Strichartz estimates for 0y + L.



Unstable dynamics off W5*(Q,0) when o > 0 small

Ejection of trajectories, which are off WS®: proof of
Nakanishi-Schlag or proof with foliations over W{'(Q, 0).
Stabilization of sign(Ko(u(t))) and sign(Ka(u(t))), where
Ko(u) = [gs(|Vul? = 3/4u*)dx: virial

K=0

Sign of K = Kj upon exit



Important variational estimates above J(Q)

Proposition (C - Variational property)
For any r > 0, there exist positive numbers o(r), ko, k1(r) s.t., for
any U € 'H satisfying

E(U) < J(Q) +eo(r)?, do(V) > r,
one has either
Ko(u) < —ra(r) and Ko(u) < —ra(r), or
Ko(u) = min(r1(r), kol ullfn) and Ka(u) = min(ka(r), rol|Vul7),

Propositions A and C allow to prove the main theorem in the case
ag < a<ag.



One-pass theorem when oo = 0 or o > 0 small
Crucial non-return property: the trajectories do not return into
small balls around (£@,0). Generalisation of the argument of
Nakanishi and Schlag by contradiction. In the Ky(u(t)) < 0 region,
one integrates the quantity (u(t), u¢(t)) + of|u(t)||?. between Ty and T,
which are exit and first re-entry times into a small R-ball. If
Ko(u(t)) > 0, the proof is more involved (use of the virial Ky(u(t))).

One possible returning trajectory
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