Die gedämpfte Klein-Gordon Gleichung und Invariante Mannigfaltigkeiten

Geneviève Raugel

CNRS und Université Paris-Sud

Kolloquium Hamburg Mai 2014

Arbeit mit Nicolas Burq und Wilhelm Schlag

The Klein-Gordon equation

Klein and Gordon (1926) independently derived a relativistic equation for a charged particle in an electromagnetic field, using ideas of quantum theory \rightsquigarrow Klein-Gordon (or Klein-Gordon-Fock) equation:

$$\frac{1}{c^2}\psi_{tt} - \Delta\psi + (\frac{mc}{h})^2\psi = 0,$$

for the special case of a free particle in \mathbb{R}^3 . Mathematical generalisation:

$$\frac{1}{c^2}\psi_{tt} - \Delta\psi + \psi + V'(\psi) = 0,$$

where the potential V is s.t. V' is a nonlinear function. Invariance under the Lorentz transformations.

Examples:
$$V'(\psi) = \varepsilon |\psi|^{p-1} \psi$$
 where $2 , $\varepsilon = \pm 1$, $V'(\psi) = -\psi + \sin \psi$: sine-Gordon equation$

The non-relativistic version leads to the Schrödinger equation

$$i\psi_t + \Delta\psi + V'(\psi) = 0$$

The focusing Klein-Gordon equation: the subcritical case

Let
$$\mathcal{H}=H^1(\mathbb{R}^3)\times L^2(\mathbb{R}^3)$$
.

We consider the NLKG equation with or without damping $\alpha \geq 0$:

$$u_{tt} + 2\alpha u_t - \Delta u + u - u^3 = 0, \ x \in \mathbb{R}^3, t \ge 0$$

$$(u(x,0), u_t(x,0)) = (u_0(x), u_1(x)) \in \mathcal{H},$$
 (1)

which writes as the first order system

$$U_t \equiv \frac{d}{dt} \begin{pmatrix} u \\ u_t \end{pmatrix} = \begin{pmatrix} 0 & Id \\ \Delta - Id & -2\alpha Id \end{pmatrix} \begin{pmatrix} u \\ u_t \end{pmatrix} + \begin{pmatrix} 0 \\ u^3 \end{pmatrix}, U(0) = U_0$$
 or also

$$U_t = B_{\alpha}U + F(U), U(0) = U_0.$$

The equation $U_t = B_{\alpha}U$ generates a linear C^0 -group $e^{B_{\alpha}t}$ in \mathcal{H} .

The function $U(t) = (u(t), u_t(t)) \in C^0((-T, T), \mathcal{H})$ is a mild (or integral) solution of (1) if, for any $t \in (-T, T)$,

$$U(t) \equiv S_{\alpha}(t)U_0 = e^{B_{\alpha}t}U_0 + \int_0^t e^{B_{\alpha}(t-s)}F(U(s))ds$$
, Duhamel formula

Basic well-posedness I: $\alpha \geq 0$

Theorem (Local existence)

- 1) For any $U_0 \in \mathcal{H}$, there exists a unique mild solution $S_{\alpha}(t)U_0 \in C^0([-T,T],\mathcal{H})$ for some $T \geq T_0(\|U_0\|_{\mathcal{H}}) > 0$.
- 2) Continuity w. r. to U_0 ; persistence of regularity.
- 3) The energy functional $E(u(t), u_t(t)) \in C^1([0, T))$ satisfies

$$\frac{d}{dt}(E(u(t), u_t(t))) = -2\alpha ||u_t(t)||_{L^2}^2 \le 0,$$

where

$$E(\varphi,\psi) \equiv \int_{\mathbb{R}^3} \left(\frac{1}{2}(|\psi|^2 + |\nabla \varphi|^2 + |\varphi|^2) - \frac{1}{4}|\varphi|^4\right) dx.$$

Energy conservation if $\alpha = 0$. Strict Lyapunov functional if $\alpha > 0$

Basic well-posedness II: $\alpha \geq 0$

If $U_0 \in \mathcal{H}$ and $\alpha \geq 0$ small, one writes ($\|.\|_{L^3_*L^6_*}$ is a Strichartz norm):

$$\|S_{\alpha}(t)U_{0}\|_{\mathcal{H}} \leq C_{0}(\|U_{0}\|_{\mathcal{H}} + \int_{0}^{t} \|u^{3}\|_{L^{2}}ds) \leq C(\|U_{0}\|_{\mathcal{H}} + \|u\|_{L^{3}_{t}L^{6}_{x}}^{3}).$$

Theorem (Global existence or blow-up)

- 1) If $||U_0||_{\mathcal{H}} \ll 1$, then global existence and $||u||_{L^3(\mathbb{R}^+,L^6(\mathbb{R}^3))} < +\infty$
- 2) Let $T^* > 0$ be the maximal forward time of existence:

$$T^* < +\infty \Longrightarrow ||u||_{L^3((0,T^*),L^6(\mathbb{R}^3))} = \infty.$$

- 3) Assume that $T^* = \infty$ and $\|u\|_{L^3((0,+\infty),L^6(\mathbb{R}^3))} < \infty$, then,
- if $\alpha = 0$, u scatters , i.e., there exists $(\tilde{u}_0, \tilde{u}_1) \in \mathcal{H}$ s.t.,

$$S_{\alpha}(t)U_0 \equiv U(t) = e^{B_{\alpha}t}(\tilde{u}_0, \tilde{u}_1) + o_{\mathcal{H}}(1), \quad t \to \infty,$$

- if
$$\alpha > 0$$
, $S_{\alpha}(t)U_0 \to 0$, $t \to \infty$.

Small data: global existence and scattering (or convergence to 0) **Large data:** can have finite time blowup.

Simpler case of radial solutions: Restrict to the space \mathcal{H}_{rad}

Forward scattering set and purpose of this talk

Forward scattering set:

$$\mathcal{S}_{+} = \left\{ (u_0, u_1) \in \mathcal{H}_{rad} \, | \, S_0(t)(u_0, u_1) \text{ exists globally and scatters} \right\}$$
 $\mathcal{S}_{+} \supset B(0, r)$ in \mathcal{H}_{rad} , $\mathcal{S}_{+} \neq \mathcal{H}_{rad}$, \mathcal{S}_{+} open in \mathcal{H}_{rad} . Questions of Nakanishi and Schlag when $\alpha = 0$: is \mathcal{S}_{+} bounded in \mathcal{H}_{rad} ? Is $\partial \mathcal{S}_{+}$ a smooth manifold separating regions of finite time blowup and global existence? Same questions for $\alpha > 0$.

First goal: Describe transition between blowup/global existence and scattering or convergence. Results when the energy is at most slightly larger than the energy of the "ground state solution".

Case $\alpha=0$: nice book "Invariant manifolds and dispersive Hamiltonian Evolution Equations" of K. Nakanishi, W. Schlag. See also J. Krieger, ... Case $\alpha>0$: work in progress of N. Burq, W. Schlag, G.R.

Second goal: Illustrate with this study how the simultaneous use of PDE technics and classical tools in the dynamical systems theory gives new results in PDE's

Stationary solutions, ground state $\pm Q$

Stationary solution $u(t,x) = \varphi(x)$ of NLKG is a weak solution of

$$-\Delta\varphi + \varphi = \varphi^3 \tag{2}$$

Minimization problem: inf $\{\|\varphi\|_{H^1}^2 \mid \varphi \in H^1, \ \|\varphi\|_{L^4} = 1\}$ has a radial solution $\varphi_{\infty} > 0$, decaying exponentially, $Q = \lambda \varphi_{\infty}$ satisfies (2) for some $\lambda > 0$ (Z. Nehari, 1963).

Coffman (1972): unique radial positive solution Q

Stationary energy:
$$J(\varphi) := \int_{\mathbb{R}^3} \left(\frac{1}{2} |\nabla \varphi|^2 + \frac{1}{2} \varphi^2 - \frac{1}{4} \varphi^4 \right) dx$$

Dilation functional:

$$K_0(\varphi) = \langle J'(\varphi)|\varphi\rangle = \int_{\mathbb{R}^3} (|\nabla \varphi|^2 + \varphi^2 - \varphi^4)(x) dx$$

Variational characterization

$$J(Q) = \inf\{J(\varphi) \mid \varphi \in H^1 \setminus \{0\}, \ K_0(\varphi) = 0\}$$
 (3)

The infima are achieved uniquely by $\pm Q$, up to translations. Existence of infinite number of smooth nodal solutions of (2).

Splitting of J(u) < J(Q) by the sign of $K = K_0$

Same picture for $E(u, u_t) < J(Q)$. The solutions are trapped by $K_0 \ge 0$ or $K_0 < 0$ in that case.

Payne-Sattinger criterion: $\alpha \geq 0$

Invariant decomposition of E < J(Q): (Payne-Sattinger 1975)

$$\mathcal{PS}_+ := \{(u_0, u_1) \in \mathcal{H} \mid E(u_0, u_1) < J(Q), \ K_0(u_0) \ge 0\}$$

 $\mathcal{PS}_- := \{(u_0, u_1) \in \mathcal{H} \mid E(u_0, u_1) < J(Q), \ K_0(u_0) < 0\}$

In \mathcal{PS}_+ , global existence for $t \in \mathbb{R}^+$: $K_0(u(t)) \geq 0$ implies:

$$||u(t)||_{H^1}^2 + ||u_t(t)||_2^2 = 4E(U(t)) - (K_0(u(t)) + ||u_t(t)||_2^2) \le 4E(U(t)).$$

In \mathcal{PS}_- , finite time blowup for $t \in \mathbb{R}$ $(-K_0(u(t)) \ge \delta > 0)$ Convexity argument for $\alpha \ge 0$ with the auxiliary function $y^{\alpha}(t) \equiv \frac{1}{2} \|u(t)\|_{L^2}^2 + \alpha \int_0^t \|u(s)\|_{L^2}^2 ds$:

$$y_{tt}^0 = \|u_t\|_2^2 - K_0(u) = 3\|u_t\|_2^2 + \|u\|_{H^1}^2 - 4E(U) > \delta.$$

Thus, $y_t^0(t)$ and $y^0(t)$ go to $+\infty$ as $t \to +\infty$. One proves that, for $t \ge t_0$, $\partial_t(y^{-1/2})(t) \le \partial_t(y^{-1/2})(t_0) < 0$ and that there exists $t_1 > 0$ s.t. $(y^{-1/2})(t_1) = 0$.

Linearized equation around (Q, 0)

If we plug u = Q + w into the NLKG equation (1), we get

$$w_{tt} + 2\alpha w_t + L_+ w - 3Qw^2 - w^3 = 0, (4)$$

with $L_{+}=-\Delta+Id-3Q^{2}$ the linearized elliptic operator. One has

- $\langle L_+ Q | Q \rangle = -2 ||Q||_4^4 < 0$
- $L_{+}\rho = -k^{2}\rho$ unique (simple) negative eigenvalue, no kernel over radial functions
- Gap property: L₊ has no eigenvalues in (0,1], no threshold resonance (Demanet-Schlag, Costin-Huang-Schlag)
- $\sigma_{cont}(L_+) = [1, +\infty)$

Rewriting (4) as a system with $W = (w, w_t)^t$, we have

$$W_t = \begin{pmatrix} 0 & Id \\ -L_+ & -2\alpha Id \end{pmatrix} \begin{pmatrix} w \\ w_t \end{pmatrix} + \begin{pmatrix} 0 \\ 3Qw^2 + w^3 \end{pmatrix} = A_\alpha W + N(W)$$

Non hyperbolic/Hyperbolic dynamics

Spectrum of
$$A_{\alpha}$$
: $\sigma(A_{\alpha}) = \{\mu_{\alpha}^{-}, \mu_{\alpha}^{+}\} \cup \sigma_{cont}(A_{\alpha}),$
 $\mu_{\alpha}^{\pm} = -\alpha \pm \sqrt{\alpha^{2} + k^{2}}$: simple eigenvalues; $\mu_{\alpha}^{-} < 0$ and $\mu_{\alpha}^{+} > 0$ (the eigenprojectors are denoted P_{α}^{\pm}).

Case
$$\alpha=0$$
: $\sigma(A_0)=\{-k,+k\}\cup i(-\infty,1]\cup i[1,+\infty)$ $\mathcal{H}_0^s=P_0^-\mathcal{H},\ \mathcal{H}_0^u=P_0^+\mathcal{H},\ \mathcal{H}_0^c=(Id-P_0^--P_0^+)\mathcal{H}$ Existence of a center space \mathcal{H}_0^c or center stable space $\mathcal{H}_0^{sc}=\mathcal{H}_0^s\oplus\mathcal{H}_0^c$. Non hyperbolic dynamics

Case $\alpha > 0$: No central part. Hyperbolic dynamics

Case
$$0 < \alpha \le 1$$
:
$$\sigma_{cont}(A_{\alpha}) = \{-\alpha + i(-\infty, \sqrt{1 - \alpha^2}]\} \cup \{-\alpha + i[\sqrt{1 - \alpha^2}, +\infty)\}$$
 Case $\alpha > 1$:
$$\sigma_{cont}(A_{\alpha}) = [-\alpha - \sqrt{\alpha^2 - 1}, -\alpha + \sqrt{\alpha^2 - 1}] \cup \{-\alpha + i(-\infty, +\infty)\}$$
 Unstable and stable spaces $\mathcal{H}^u_{\alpha} = P^+_{\alpha}\mathcal{H}$, $\mathcal{H}^s_{\alpha} = (Id - P^+_{\alpha})\mathcal{H}$.

Classical invariant manifolds theory in finite dimensions

 $y_t=Ay+f(y),\ f(0)=0, Df(0)=0,\ \mathbb{R}^n=X^s\oplus X^c\oplus X^u,$ where X^s,X^c,X^u are A-invariant,

$$\sigma(A_s) = \{\operatorname{Re} \lambda < 0\}, \ \sigma(A_u) = \{\operatorname{Re} \lambda > 0\}, \ \sigma(A_c) = \{\lambda \in i\mathbb{R}\}.$$

Hyperbolic case $X^c = \{0\}$: Non hyperbolic case $X^c \neq \{0\}$:

Existence of **locally invariant** center, center stable manifolds W^c , W^{cs} at 0, tangent to X^c and X^{cs} (non unique in general!) In both cases: $\exists !$ local stable and unstable manifolds W^s , W^u , tangent at 0 to X^s , X^u . Invariance properties.

$$W^s = \{|y_0| < r \,|\, y(t) \to 0 \text{ exponential fast as } t \to \infty\}$$

 $W^u = \{|y_0| < r \,|\, y(t) \to 0 \text{ exponential fast as } t \to -\infty\}$

$$y_t = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -a & 1 \\ 0 & 0 & -1 & -a \end{pmatrix} y + O(|y|^2), \ \sigma(A) = \{1, -1, -a-i, -a+i\}$$

Stable and unstable manifolds: Hyperbolic case

The invariant manifolds in the cases $\alpha = 0$ and $\alpha > 0$

 $\alpha=$ 0: Stable, unstable and center-stable manifolds $W^{s},~W^{u}$ and W^{cs}

 $\alpha > 0$: $W^{cs} \rightsquigarrow W^{s}_{\alpha}$, $W^{u} \rightsquigarrow W^{u}_{\alpha}$ and $W^{s} \rightsquigarrow W^{ss}_{\alpha}$

Theorem of Nakanishi and Schlag when $\alpha = 0$

Theorem (Nakanishi, Schlag)

There exists $\varepsilon_0 > 0$ s.t. if

$$E(u_0, u_1) < E(Q, 0) + \varepsilon_0^2$$
, Energy assumption

then, for $(u(t), u_t(t)) \equiv S_0(t)(u_0, u_1)$, one has, either

- 1. finite time blowup
- 2. global existence and scattering to 0
- 3. global existence and scattering to $(\pm Q, 0)$: $(u(t), u_t(t)) = (\pm Q, 0) + (v(t), v_t(t)) + o_{\mathcal{H}}(1)$ as $t \to \infty$, where $(v(t), v_t(t)) = \Sigma_0(t)(v_0, v_1) \in \mathcal{H}$

All 9 combinations of this trichotomy allowed as $t \to \pm \infty$. $\partial \mathcal{S}_+$ is the **unique center stable (smooth) manifold** of $(\pm Q,0)$ (codimension 1), giving (3) and separating the open regions (1) and (2). Existence of 1-dimensional strongly stable, unstable manifolds of $(\pm Q,0)$. Stable manifold: Duyckaerts-Merle, Duyckaerts-Holmer-Roudenko

Numerical 2-dim section through ∂S_+ (Donninger, Schlag)

- soliton at (A, B) = (0, 0), (A, B) vary in $[-9, 2] \times [-9, 9]$
- RED: global existence, WHITE: finite time blowup, GREEN: \mathcal{PS}_+ , BLUE: \mathcal{PS}_-
- Results in a neighbourhood of (Q, 0).

The case $\alpha > 0$

Theorem (I: Burq, Schlag, G.R.)

(i) There exists a continuous function $\varepsilon : \alpha \in [0, +\infty) \mapsto \varepsilon(\alpha) > 0$ s.t., $\inf_{0 \le \alpha < +\infty} \varepsilon(\alpha) \ge \varepsilon_0 > 0$ and s.t., if

$$E(u_0, u_1) < E(Q, 0) + \varepsilon^2(\alpha)$$
, Energy assumption

then, $S_{\alpha}(t)(u_0, u_1)$ satisfies, either

- 1. finite time blowup
- 2. global existence and convergence to 0
- 3. global existence and convergence to $(\pm Q, 0)$
- (ii) The (smooth) stable manifold of $(\pm Q, 0)$ is of codimension 1, gives (3) and separates the open regions (1) and (2). Existence of a 1-dimensional unstable manifold of $(\pm Q, 0)$.

At most, one sign change of $K_0(u(t))$ near (Q,0)Earlier convergence result to 0 of Keller (1983)

The case $\alpha > 0$

Theorem (II: Burq, Schlag, G.R.)

Let $(u_0, u_1) \in \mathcal{H}_{rad}$, then $S_{\alpha}(t)(u_0, u_1)$ satisfies, either

- 1. finite time blowup
- 2. or global existence and convergence to an equilibrium point $(\tilde{Q},0)$ of (1).

Proof: functional and dynamical systems arguments

The particular case $\alpha > 0$ large: we set $u(t, x) = u_{\varepsilon}(\tau, x)$, where $\tau = \varepsilon^{1/2}t$, $\varepsilon = (2\alpha)^{-2}$:

$$\varepsilon u_{\varepsilon,\tau\tau} + u_{\varepsilon,\tau} - \Delta u_{\varepsilon} + u_{\varepsilon} - u_{\varepsilon}^{3} = 0, \ (u_{\varepsilon}(0), u_{\varepsilon,\tau}(0)) = (u_{0}, \varepsilon^{-1/2} u_{1}).$$

Compare $(u_{\varepsilon}, u_{\varepsilon,t})$ with $(v_0(\tau), v_{0,\tau}(\tau))$ where $v_0(\tau)$ is the solution of the parabolic equation

$$v_{0,\tau} - \Delta v_0 + v_0 - v_0^3 = 0, \ v_0(0) = u_0.$$

Dynamics near (Q, 0), when $0 < \alpha_0 \le \alpha \le \alpha_1 < +\infty$

Proposition (A - Local manifolds, asymptotic phase)

There exist $R_1 > 0$ and $\beta_1 > 0$ s. t., in $\tilde{B}((Q,0), R_1)$,

- 1. $\exists !$ local stable manifold $W_{\alpha}^{s}(Q,0)$ of codim. 1, tangent to \mathcal{H}_{α}^{s} at (Q,0).
- 2. $\exists !$ local unstable manifold $W^u_{\alpha}(Q,0)$ of dimension 1, tangent to \mathcal{H}^u_{α} at (Q,0).
- 3. Let $U_0 \in \tilde{B}((Q,0),R_1) \setminus W^s_{\alpha}(Q,0)$. As long as $S_{\alpha}(t)U_0 \in \tilde{B}((Q,0),R_1)$,

$$\operatorname{dist}_{\mathcal{H}}(S_{\alpha}(t)U_0, W_{\alpha}^{u}(Q, 0)) \leq Ce^{-\beta_1 t} \operatorname{dist}_{\mathcal{H}}(U_0, W_{\alpha}^{u}(Q, 0))$$

4. There exist $0 < r_1 < R_1$, $\eta_1 > 0$ and for $U_0 \in \tilde{B}((Q,0),r_1) \setminus W^s_{\alpha}(Q,0)$, a time $t_1 > 0$, s. t. $S_{\alpha}(t_1)U_0$ is in the Payne-Sattinger region \mathcal{PS}_+ or $\mathcal{PS}_ (E(S_{\alpha}(t_1)U_0) \leq J(Q) - \eta_1$ and $S_{\alpha}(t_1)U_0 \in \tilde{B}((Q,0),R_1))$

Property 4 follows from 3 and the strict decay of E(U(t)). Foliations

Dynamics near (Q,0) when $\alpha = 0$ (or $\alpha \geq 0$ small)

Proposition (B - Unique local manifolds - Nakanishi, Schlag) There exist $R_2 > 0$ s.t.

- 1. $\exists !$ local center stable manifold $W_0^{cs}(Q,0)$ of codimension 1 in $\tilde{B}((Q,0),R_2)$, tangent to \mathcal{H}_0^{cs} at (Q,0).
- 2. If $U_0 \in W_0^{cs}(Q,0)$, then $S_0(t)U_0 \equiv (Q+w,w_t)$ satisfies

$$\|(w, w_t)\|_{L_t^{\infty}(0,+\infty),\mathcal{H})} + \|w\|_{L^3((0,+\infty),L^6)} \lesssim R_1.$$

$$U(t)$$
 scatters to $(Q,0)$, i.e., $U(t)=(Q,0)+\Sigma_0(t)(v_0,v_1)+o_{\mathcal{H}}(1)$ as $t\to\infty$.

- 3. If $U(t) \in \tilde{B}((Q,0),R_2)$, $\forall t \geq 0$, then $U(t) \in W_0^{cs}$, $\forall t \geq 0$.
- 4. $\exists !$ smooth local manifolds $W_0^s(Q,0)$ and $W_0^u(Q,0)$ of dimension 1 in $\tilde{B}((Q,0),R_2)$, tangent to \mathcal{H}_0^s and \mathcal{H}_0^u at (Q,0).

The same proposition is true for $\alpha > 0$ small. Use of Strichartz estimates for $\partial_{tt} + L_+$.

Unstable dynamics off $W_0^{cs}(Q,0)$ when $\alpha \geq 0$ small

Ejection of trajectories, which are off W_{α}^{cs} : proof of Nakanishi-Schlag or proof with foliations over $W_0^u(Q,0)$. Stabilization of $\operatorname{sign}(K_0(u(t)))$ and $\operatorname{sign}(K_2(u(t)))$, where $K_2(u) = \int_{\mathbb{R}^3} (|\nabla u|^2 - 3/4u^4) dx$: virial

Sign of $K = K_0$ upon exit

Important variational estimates above J(Q)

Proposition (C - Variational property)

For any r > 0, there exist positive numbers $\varepsilon_0(r)$, κ_0 , $\kappa_1(r)$ s.t., for any $U \in \mathcal{H}$ satisfying

$$E(U) < J(Q) + \varepsilon_0(r)^2, \ d_Q(U) \ge r,$$

one has either

$$K_0(u) \leq -\kappa_1(r)$$
 and $K_2(u) \leq -\kappa_1(r)$, or

$$K_0(u) \geq \min(\kappa_1(r), \kappa_0 \|u\|_{H^1}^2)$$
 and $K_2(u) \geq \min(\kappa_1(r), \kappa_0 \|\nabla u\|_{L^2}^2)$,

Propositions A and C allow to prove the main theorem in the case $\alpha_0 \leq \alpha \leq \alpha_1$.

One-pass theorem when $\alpha = 0$ or $\alpha \ge 0$ small

Crucial non-return property: the trajectories do not return into small balls around $(\pm Q,0)$. Generalisation of the argument of Nakanishi and Schlag by contradiction. In the $K_0(u(t)) < 0$ region, one integrates the quantity $\langle u(t), u_t(t) \rangle + \alpha \|u(t)\|_{L^2}^2$ between T_1 and T_2 , which are exit and first re-entry times into a small R-ball. If $K_0(u(t)) > 0$, the proof is more involved (use of the virial $K_2(u(t))$).

One possible returning trajectory

Some (incomplete) bibliography

- Payne et Sattinger, Israël J. Math, 1975
- Berestycki et P.- L. Lions, ARMA, 1983
- Bates, Jones, Invariant manifolds, Dynamics reported, 1989
- Chen, Hale, Tan, Invariant foliations, J. D. Equations, 1997
- Kenig, Merle, Global well-posedness, ... blow up, Acta Math. 2008
- Duyckaerts, Merle, Dynamics of threshold solutions for energy-critical wave equation, Int. Math. Res., 2008
- M. Stanislavova, A. Stefanov, Physica D, 2009
- Ibrahim, Masmoudi, Nakanishi, Scattering threshold... for NLKG, Analysis and PDE, 2011
- R. Donninger, Schlag, Nonlinearity, numerical study of NLKG, 2011
- Nakanishi, Schlag, J. Diff. Equations, Global dynamics for NLKG, 2011
- Nakanishi, Schlag, ARMA, NLKG non-radial case, 2011
- Duyckaerts, Kenig, Merle, focusing energy critical wave equ., 2012

