Correction du contrôle 4

Exercice 1.

- 1. La matrice étant déjà triangulaire (ou le système échelonné), on remarque qu'elle admet trois pivots si et seulement si $c \neq 0$, et deux sinon. L'image de f est donc de dimension 2 si c = 0 et de dimension 3 sinon.
- 2. D'après le théorème du rang dans le cas de notre fonction $f:\mathbb{R}^4 \to \mathbb{R}^3$ donne

$$\dim(\operatorname{im}(f)) + \dim(\ker(f)) = \dim(\mathbb{R}^4),$$

ou encore $\dim(\ker(f)) = 4 - \dim(\operatorname{im}(f))$. On en déduit que le noyau de f est de dimension 2 si c = 0 et 1 sinon.

- 3. Comme le noyau de f est de dimension au moins 1, f n'est jamais injective. (On rappelle que pour qu'une application linéaire $f: \mathbb{R}^n \to \mathbb{R}^p$ soit injective, il faut que $n \leq p$.) De plus, f est surjective si et seulement si rang $(f) = \dim(\operatorname{im}(f)) = \dim(\mathbb{R}^3) = 3$, f est donc surjective si et seulement si $c \neq 0$.
- 4. Pour que le vecteur $\overrightarrow{v} = (3, 2, 1, 0)$ engendre le noyau de f, il faut qu'il y appartienne, i.e. que $f(\overrightarrow{v}) = \overrightarrow{0}$. Or

$$AV = \begin{pmatrix} 1 & a & 2 & 3 \\ 0 & 1 & b & 2 \\ 0 & 0 & 0 & c \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 5+2a \\ 2+b \\ 0 \end{pmatrix}$$

qui est nul si et seulement si $a = -\frac{5}{2}$ et b = -2.

Finalement, pour que le noyau de f soit de dimension 1, il faut (et il suffit) que $c \neq 0$, on peut par exemple choisir c = 1.

Exercice 2.

1. Appliquons l'algorithme de Gauss–Jordan pour échelonner la matrice $A = (U_1 \mid U_2 \mid U_3)$ où U_i est le vecteur $\overrightarrow{u_i}$, placé en colonne.

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 0 & 1 \\ -3 & 3 & 0 \\ 4 & 0 & 2 \end{pmatrix} \leftrightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 4 & 2 \end{pmatrix} \leftrightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

La matrice obtenue a deux pivots situés sur les deux premières colonnes, donc dim(E) = 2 et (\vec{u}_1, \vec{u}_2) en est une base.

2. On peut écrire le système définissant F_a comme : $\begin{cases} x + 0 + z + y = 0 \\ 0 + t + 0 - ay = 0 \end{cases}$

On peut donc choisir x et t comme variables principales, z et y comme variables secondaires. Ainsi $\dim(F) = 2$ (le nombre de variables secondaires). De plus une base de F est obtenue en cherchant les solutions du système correspondant à y = 1, z = 0 et y = 0, z = 1, soit les vecteurs $\overrightarrow{v_1} = (-1, 1, 0, a)$ et $\overrightarrow{v_2} = (-1, 0, 1, 0)$.

- 3. Pour vérifier que E et F_3 sont supplémentaires il suffit de vérifier deux choses
 - (a) $\dim(E) + \dim(F_3) = \dim(\mathbb{R}^4)$; (b) $E \cap F_3 = \{0\}$.

Le point (a) est vérifié d'après les questions 1 et 2, puisque 2+2=4.

Pour (b), on peut chercher quels vecteurs de \mathbb{R}^4 sont dans l'intersection. Tout vecteur de E s'écrit $\alpha \overrightarrow{u_1} + \beta \overrightarrow{u_2}$ avec α et β réels, il sera donc dans F_3 si ses coordonnées

$$\begin{cases} x = \alpha - \beta \\ y = \alpha \\ z = 3\alpha + 3\beta \end{cases}$$
 satisfont
$$\begin{cases} x + y + z = 0 \\ t - 3y = 0 \end{cases}$$
 i.e.
$$\begin{cases} (\alpha - \beta) + 2\alpha + (-3\alpha + 3\beta) = 2\beta = 0 \\ 4\alpha - 6\alpha = -2\alpha = 0 \end{cases}$$

ce qui implique $\alpha = \beta = 0$ et prouve (b).

Remarque. Au lieu de (a) et (b), on peut aussi vérifier que concaténer une base de E avec une base de F_3 donne une base de \mathbb{R}^4 . On forme donc la famille constituée des bases déterminées aux questions 1 et 2 : elle est constituée de $4 = \dim(\mathbb{R}^4)$ vecteurs, il suffit donc de prouver qu'elle est libre. C'est le cas puisqu'échelonner la matrice correspondante conduit à 4 pivots :

$$\begin{pmatrix} 1 & -1 & -1 & -1 \\ 2 & 0 & 1 & 0 \\ -3 & 3 & 0 & 1 \\ 4 & 0 & 3 & 0 \end{pmatrix} \leftrightarrow \begin{pmatrix} 1 & -1 & -1 & -1 \\ 0 & 2 & 3 & 2 \\ 0 & 0 & -3 & -2 \\ 0 & 4 & 7 & 4 \end{pmatrix} \leftrightarrow \begin{pmatrix} 1 & -1 & -1 & -1 \\ 0 & 2 & 3 & 2 \\ 0 & 0 & -3 & -2 \\ 0 & 0 & 1 & 0 \end{pmatrix} \leftrightarrow \begin{pmatrix} 1 & -1 & -1 & -1 \\ 0 & 2 & 3 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix}.$$

4. Pour déterminer $E \cap F_2$, on procède comme à la question 3 ci-dessus. Dans le cas où a=2, le système à résoudre devient $\begin{cases} (\alpha-\beta)+2\alpha+(-3\alpha+3\beta)=2\beta=0\\ 4\alpha-4\alpha=0 \end{cases}$

Donc β doit être nul et α quelconque, ce qui montre que $E \cap F_2 = \text{Vect}(\overrightarrow{u_1})$.

Remarque. On pouvait aussi remarquer directement que $\overrightarrow{u_1} \in F_2$ mais que $\overrightarrow{u_2} \notin F_2$. L'intersection est donc de dimension au moins 1 mais inférieure à 2. C'est donc la droite endengrée par $\overrightarrow{u_1}$.

Exercice 3.

1. On forme la matrice $A = (U_1 | U_2 | U_3)$ où U_i est le vecteur $\overrightarrow{u_i}$, placé en colonne :

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \leftrightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ 0 & 1 & 2 \end{pmatrix} \leftrightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & -1 \end{pmatrix}$$

La matrice obtenue admet 3 pivots, donc \mathcal{B} est une famille libre. Comme elle est constituée de 3 vecteurs, c'est une base de \mathbb{R}^3 .

2. La matrice de passage de \mathcal{B}_3 à \mathcal{B} est la matrice dont les colonnes sont données par les vecteurs de \mathcal{B} exprimés dans la base \mathcal{B}_3 , c'est-à-dire la matrice $A = P_{\mathcal{B}_3}^{\mathcal{B}}$ ci-dessus.

De plus $P_{\mathcal{B}}^{\mathcal{B}_3} = (P_{\mathcal{B}_3}^{\mathcal{B}})^{-1}$, donc il suffit d'inverser $P_{\mathcal{B}_3}^{\mathcal{B}}$. Pour cela, appliquons l'algorithme de Gauss–Jordan à la matrice augmentée :

$$\begin{pmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \leftrightarrow \begin{pmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & 3 & -2 & 1 & 0 \\ 0 & 1 & 2 & -1 & 0 & 1 \end{pmatrix} \leftrightarrow \begin{pmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & 3 & -2 & 1 & 0 \\ 0 & 0 & -1 & 1 & -1 & 1 \end{pmatrix}$$

$$\leftrightarrow \begin{pmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & 3 & -2 & 1 & 0 \\ 0 & 1 & 3 & -2 & 1 & 0 \\ 0 & 0 & 1 & -1 & 1 & -1 \end{pmatrix} \leftrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 & -2 & 3 \\ 0 & 0 & 1 & -1 & 1 & -1 \end{pmatrix}$$
 Ainsi $P_{\mathcal{B}}^{\mathcal{B}_3} = \begin{pmatrix} 0 & 1 & -1 \\ 1 & -2 & 3 \\ -1 & 1 & -1 \end{pmatrix}$.

3. Les coordonnées dans \mathcal{B} sont données, à partir des coordonnées dans \mathcal{B}_3 par la formule :

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = P_{\mathcal{B}}^{\mathcal{B}_3} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} y - z \\ x - 2y + 3z \\ -x + y - z \end{pmatrix}$$

4. Le plan P est constitué des vecteurs dont la composante sur $\overrightarrow{u_2}$ est nulle. Il est donc défini par l'équation cartésienne y'=0 dans cette base. De par la question précédente, on en déduit que x-2y+3z=0 est une équation cartésienne de P dans \mathcal{B}_3 .

2

Exercice 4.

1. On calcule le produit
$$M \cdot M = \begin{pmatrix} 3 & 9 & -9 \\ 2 & 0 & 0 \\ 3 & 3 & -3 \end{pmatrix} \times \begin{pmatrix} 3 & 9 & -9 \\ 2 & 0 & 0 \\ 3 & 3 & -3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 6 & 18 & -18 \\ 6 & 18 & -18 \end{pmatrix}.$$

2. De même,
$$M \cdot (M \cdot M) = \begin{pmatrix} 3 & 9 & -9 \\ 2 & 0 & 0 \\ 3 & 3 & -3 \end{pmatrix} \times \begin{pmatrix} 0 & 0 & 0 \\ 6 & 18 & -18 \\ 6 & 18 & -18 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

3. L'équation $M^2X = 0$ où $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ est équivalente au système $\begin{cases} 6x + 18y - 18z = 0 \\ 6x + 18y - 18z = 0 \end{cases}$ et donc à la simple équation x + 3y - 3z = 0. On peut choisir y et z comme variables secondaires, ainsi $\ker(f^2)$ est de dimension z et une base est donnée par ((-3, 1, 0), (3, 0, 1)).

Remarque. On pouvait aussi immédiatement remarquer que ces deux vecteurs non-colinéaires étaient dans le noyau de M^2 . On pouvait alors conclure en notant que le rang de M^2 est 1 et donc, par le théorème du rang, la dimension de son noyau est 2.

- 4. On remarque que la première colonne de M^2 est non nulle, d'où $(f \circ f)(\vec{e_1}) \neq \vec{0}$ en notant $\vec{e_1}$ le premier vecteur de la base canonique.
- 5. On échelonne la matrice formée des colonnes $(\vec{e}_1 \mid f(\vec{e}_1) \mid (f \circ f)(\vec{e}_1))$, et on vérifie que la matrice équivalente obtenue admet bien trois pivots :

$$\begin{pmatrix} 1 & 3 & 0 \\ 0 & 2 & 6 \\ 0 & 3 & 6 \end{pmatrix} \leftrightarrow \begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 3 \\ 0 & 1 & 2 \end{pmatrix} \leftrightarrow \begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}.$$

Remarque. C'est en fait une propriété générale des matrices nilpotentes. En effet, dans notre cas on veut montrer qu'une famille de 3 vecteurs est une base de \mathbb{R}^3 , il suffit donc de montrer qu'elle est libre. On considère donc une combinaison linéaire quelconque nulle $\alpha \overrightarrow{e_1} + \beta f(\overrightarrow{e_1}) + \gamma f \circ f(\overrightarrow{e_1}) = 0$ et on montre que nécessairement $\alpha = \beta = \gamma = 0$.

Pour cela, on applique $f \circ f$: par linéarité, et sachant que $f \circ f \circ f = 0$,

$$f \circ f(\alpha \overrightarrow{e_1} + \beta f(\overrightarrow{e_1}) + \gamma f \circ f(\overrightarrow{e_1})) = \alpha f \circ f(\overrightarrow{e_1}) + \beta f \circ f \circ f(\overrightarrow{e_1}) + \gamma f \circ f \circ f(\overrightarrow{e_1}) = \alpha f \circ f(\overrightarrow{e_1})$$
 doit être égal à $f \circ f(\overrightarrow{0}) = \overrightarrow{0}$ et donc $\alpha = 0$ puisque $f \circ f(\overrightarrow{e_1}) \neq \overrightarrow{0}$. Ensuite on applique f qui donne (pour les mêmes raisons) que $\beta = 0$, ce qui implique finalement $\alpha = 0$.

6. En notant \mathcal{B} la famille $(\overrightarrow{e_1}, f(\overrightarrow{e_1}), (f \circ f)(\overrightarrow{e_1}))$, on a

$$\begin{cases} f(\vec{e}_1) &= 0 \cdot \vec{e}_1 + 1 \cdot f(\vec{e}_1) + 0 \cdot (f \circ f)(\vec{e}_1) &= (0, 1, 0)_{\mathcal{B}} \\ f(f(\vec{e}_1)) &= 0 \cdot \vec{e}_1 + 0 \cdot f(\vec{e}_1) + 1 \cdot (f \circ f)(\vec{e}_1) &= (0, 0, 1)_{\mathcal{B}} \\ f((f \circ f)(\vec{e}_1)) &= \vec{0} = 0 \cdot \vec{e}_1 + 0 \cdot f(\vec{e}_1) + 0 \cdot (f \circ f)(\vec{e}_1) &= (0, 0, 0)_{\mathcal{B}} \end{cases}$$

Ainsi la matrice de f dans cette base est $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.