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HOMOLOGICAL LAGRANGIAN MONODROMY

SHENGDA HU, FRANÇOIS LALONDE, AND RÉMI LECLERCQ

Abstract. We show that the Hamiltonian Lagrangian monodromy group, in its homological
version, is trivial for any weakly exact Lagrangian submanifold of a symplectic manifold. The
proof relies on a sheaf approach to Floer homology given by a relative Seidel morphism.
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1. Introduction

Given a Lagrangian submanifod L ⊂M embedded in a symplectic manifoldM , it is natural to
consider the subgroup G ⊂ Diff(L) consisting of all diffeomorphisms of L that can be obtained as
the time-one map of a Hamiltonian (i.e. exact) Lagrangian isotopy φt∈[0,1] : L→M that starts
at t = 0 at the identity map on L and ends at t = 1 at a diffeomorphism that preserves L. In
other words, if one denotes by HamL(M) ⊂ Ham(M) the subgroup of the group of Hamiltonian
diffeomorphisms of M consisting of the diffeomorphisms g sastisfying g(L) = L, the group G is
then the image of the homomorphism

HamL(M) → Diff(L)

that assigns to each diffeomorphism g ∈ HamL(M) its restriction to L. Denoting by R any
given ring, the homological Hamiltonian Lagrangian monodromy problem is the study of the
subgroup G∗,R of Aut(H∗(L;R)) defined as the image of G under the map that assigns to each
diffeomorphism its action on homology (we will often assume that R is given and will omit it in
our notations; we will also omit the word “exact” since we will work with Hamiltonian isotopies
only in this paper).

The homological Lagrangian monodromy group G∗,R is an invariant attached to each exact
Lagrange isotopy class of a given Lagrangian submanifold. It is therefore of prime importance
in the Lagrangian knot problem.

To our knowledge, this group has been studied only very recently by Mei-Lin Yau [12], in the
two cases of the standard monotone 2-torus and of the Chekanov torus, both living in R4, using
soft methods in a clever way. Let Θt∈[0,1] be the standard one-parameter family of elements of
SO(2) starting at the identity anti-clockwise and ending at the rotation by angle π/2. By the
standard inclusion SO(2) ⊂ U(2), the same path can be considered as a path of elements of U(2)
and it clearly restricts to an exact isotopy of the standard torus Ta,a = S1(a) × S1(a) ⊂ C× C

(here the number in parentheses denotes the area of the circle) whose endpoint at t = 1 permutes
the two standard generators of H1(Ta,a;Z). The main result of [12] is that this induces the only
non-trivial element of G∗,Z, and thus G∗,Z = Z2 for the standard torus. M.-L.Yau also shows
that the same result holds for the Chekanov 2-torus of R4. Moreover she shows that the intrinsic
spectral (and symplectic) invariants attached to the non-trivial element of G∗,Z in each of these
two cases are different, so that this provides another proof of the fact that the standard 2-torus
is not exact Lagrange isotopic to the Chekanov 2-torus.
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The other extreme case is the one of a closed exact Lagrangian submanifold L in a cotangent
bundle T ∗V . A famous conjecture states that L should then be Hamiltonian isotopic to the
zero section. If this conjecture is true, then obviously the group G∗ is trivial for all coefficients,
that is to say it consists of the identity only. A homological version of this conjecture has been
proved by Fukaya, Seidel and Smith in [6]: they have indeed shown that if V is simply connected,
then an exact Lagrangian embedding with vanishing Maslov class of a spin manifold L in T ∗V
must project to a map L→ V inducing an isomorphism in homology over Q. Thus, under these
hypotheses, the group G∗,Q is clearly trivial.

The main goal of this paper is to prove the fundamental result that, when L is a weakly exact
Lagrangian submanifold of a symplectic manifold M , and under certain natural conditions on L
only related to the choice of the coefficients ring, this still holds, that is to say the group G∗ is
trivial. Thus, at least as far as the group G∗ is concerned, a weakly exact Lagrangian submanifold
behaves like the zero section of a cotangent bundle. The additional natural conditions to which
we referred are the usual conditions under which the Floer homology over R is well-defined. We
recall that, by definition, L is weakly exact if

Iω : π2(M,L) → R : β 7→
∫
β
ω

vanishes. Obviously, this implies that M is symplectically aspherical, i.e that Iω vanishes on
π2(M).

Our main result is the following:

Theorem 1.1. Let (M,ω) be a symplectic manifold and L ⊂M a closed weakly exact Lagrangian
submanifold. Let gt∈[0,1] be a Hamiltonian diffeotopy of M starting at the identity and ending at
a diffeomorphism preserving L. Then the map on homology g1∗ : H∗(L;R) → H∗(L;R) induced
from g1|L is the identity. In this statement, we can use Z, Q or Z2 as coefficient ring R, but in
the case of Z or Q-coefficients, we require L to be orientable, relatively Spin and g1|L to preserve
the orientation of L.

A priori, one could try to prove this statement by using the invariance of the Floer homology
along the flow induced by gt∈[0,1] to extract the informations on G∗, a bit like what one would
do using the sheaf of Floer homologies of a given Lagrangian submanifold induced by some
Lagrangian fibration. This paper shows how to make sense of this idea. Indeed, our approach
relies on our Relative Seidel morphism, introduced in Hu-Lalonde [7], associated to a Hamiltonian
path gt∈[0,1] with g1 ∈ HamL(M), and on the equivalence between two versions of this morphism,
one given in analytical terms and the other in geometric terms. The geometric version of this
morphism can be considered as the right set up for an implementation of the above “sheaf
approach” to the proof of our theorem.

The idea of the proof of the theorem is to first consider the fibration L →֒ N → S1 over S1

induced by the restriction to L of the path gt∈[0,1] of Hamiltonian diffeomorphisms. We then get
the Wang long exact sequence

. . .→ Hq+1(L)
i∗−→ Hq+1(N) → Hq(L)

g1∗−id
−−−−→ Hq(L)

i∗−→ Hq(N) → . . .

We must therefore show that

i∗ : H∗(L) → H∗(N)

is injective. The point is that this fibration constitutes the boundary condition of a Dirichlet
problem for the ∂-operator. Indeed, the path gt∈[0,1] naturally gives rise to a relative fibration

(P,N) over (D2, S1) with fiber (M,L) and the linearity of the relative Gromov-Witten invariants
will lead us to a proof of the injectivity of i∗ : H∗(L) → H∗(N). This scheme of proof can be
considered as the relative Lagrangian version of the main theorem in Lalonde-McDuff-Polterovich
[8]. This will be shown in §3 using our geometric Seidel map defined in the next section. In the
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last section of the paper, we give another proof of our main theorem which is more algebraic
and simpler, but less geometric. It is possible that this second proof could also be derived using
the main results in § 22 of Fukaya-Oh-Ohta-Ono [5].

Note that this theorem, in its contrapositive version, provides an obstruction to the extension
of a given diffeomorphism f : L→ L to a Hamiltonian diffeomorphism of the ambient symplectic
manifold: more precisely, if L is weakly exact and f : L → L induces a map not equal to the
identity on say H∗(L;Z2), then it cannot be extended to a Hamiltonian diffeomorphism of M .
Obviously, because a Hamiltonian diffeomorphism is isotopic to the identity, the statement of
the theorem is interesting only when H∗(L) does not inject in H∗(M). There are plenty of closed
weakly exact manifolds whose homologies do not inject in the homology of the ambient manifold.
The simplest example is the one of a simple closed curve of a closed Riemann surface that bounds
homologically but not homotopically, and product of these examples. A less trivial example is
the following: consider the quotient Q of T 2 × R by the linear map (x, y, z) 7→ (x + y, y, z + 1)
where x, y are the coordinates on T 2 and z on R. Then (dx − zdy) ∧ dz descends to a form
on Q. Let t be the coordinate on S1. The form ω = (dx − zdy) ∧ dz + dy ∧ dt is then well
defined and is symplectic on Q × S1. Moreover, T 2 is Lagrangian. The Wang sequence for the
mapping torus shows that the kernel of H1(T

2) → H1(Q) is the class [y]. The homotopy exact
sequence of the fibration Q → S1 shows that π1(T

2) → π1(Q) is injective. It then follows that
the relative π2(M,T 2) vanishes, which implies that (M,T 2) is weakly exact, and the homology
does not inject.

Here is the plan of the paper: in the next section, we describe the general set up, including the
definition of our geometric relative Seidel morphism. In § 3, we give the proof of the main theorem
up to the statement according to which the geometric Seidel morphism is an isomorphism which
is proved in § 4 of this paper. The last section gives the algebraic proof to which we referred
above.

Acknowledgments. We are grateful to Leonid Polterovich for pointing out to us the reference
[12] by Mei-Lin Yau. We would like to thank Doug Park for suggesting the Thurston manifold.

2. The Geometric Relative Seidel map

We present the geometric Seidel morphism for Lagrangian submanifolds. In particular, we
show that it is well defined and that it satisfies the properties that we need.

2.1. Quantum homology of L. We recall the definition of the linear cluster complex (or pearl
complex) as described in [10, 3, 4]. Let (M,ω) be a symplectic manifold and L ⊂ M a weakly
exact Lagrangian submanifold. Let J be a ω-compatible almost complex structure on M . Then
the fact that L is weakly exact implies that there are no non-trivial J-holomorphic spheres in
M as well as non-trivial J-holomorphic discs with boundary on L. It follows that the quantum
homology of L (cf. Biran-Cornea [3]) is well defined and is isomorphic to H∗(L)⊗ ΛL.

In this section, we will work in a more general setting and will only assume that L ismonotone,
i.e that there is a non-negative constant λ such that

Iω = λIµ where Iµ : π2(M,L) → R : β 7→ µ(β) is the Maslov index of β.

Suppose that (M,L) is monotone with minimal Maslov index at least 2. Let f ∈ C∞(L) be a
Morse function and ρ a Riemannian metric on L so that the pair (f, ρ) be Morse-Smale. Consider
the configurations of J-holomorphic discs connected by the negative flow lines of f . More
precisely, let p0 = x, qk = y ∈ Crit(f), and ui : (D

2, S1;−1, 1) → (M,L; qi−1, pi), i = 1, . . . , k
be J-holomorphic discs with boundary on L, such that for each pair (pi, qi), there is an open
interval Ii = (ai, bi) ⊂ R and li : Ii → L such that

d

dt
li(t) = −(∇ρf)(li(t)) and lim

t→ai
li(t) = pi, lim

t→bi
li(t) = qi.
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The value di := bi − ai is said to be the distance between pi and qi, which are ∞ for i = 0, k.
Let βi = [ui] ∈ π2(M,L) denote the class represented by the disc ui, and set

β := (β1, . . . , βk) and |β| :=

k∑

i=1

βi.

Let M̃(M,L;β; f, ρ, J ;x, y) denote the space of such configurations. We note that for each li
and ui there is a one-parameter family of reparametrization symmetries. The unparametrized
moduli space is defined to be the quotient by all such symmetries:

M(M,L;β; f, ρ, J ;x, y) := M̃(M,L;β; f, ρ, J ;x, y)/R2k+1.

In order for the theory to be well defined, we need regularity and transversality assumptions,
as well as assumptions so that no branching of the linear cluster is possible at dimensions 6 1
(cf. [3]). It is well known that all of these assumptions are satisfied in the monotone case
with minimal Maslov index at least 2, and therefore in the weakly exact case. With all such
assumptions in place, we write down the dimension of the moduli space that we have just defined.
Let µL denote the Maslov class for L and |x| the Morse index of x ∈ Crit(f), then

(2.1) dimR M(M,L;β; f, ρ, J ;x, y) = |x| − |y|+ µL(|β|)− 1.

The moduli spaces above are not necessarily compact as they admit real codimension 1 bound-
aries of three types:

(1) breaking of a Morse flow line, i.e. di → ∞
(2) bubbling off of a holomorphic disc, i.e. βi → β′

i + β′′
i

(3) shortening of a Morse flow line, i.e. di → 0

Since our assumptions exclude branching of the cluster in dimension 6 1, the bubbling off of a
holomorphic disc in a linear cluster with k holomorphic discs gives rise to a linear cluster with
k+1 holomorphic discs with some di = 0. Now consider the following union of equi-dimensional
moduli spaces (in low dimensions)

M(M,L;B; f, ρ, J ;x, y) := ∪|β|=BM(M,L;β; f, ρ, J ;x, y).

Then the type (2) and (3) boundaries cancel each other and only the type (1) boundary remains.
This provides the essential idea of the following proposition (Oh [10], Cornea-Lalonde [4] and
Biran-Cornea [3]).

Proposition 2.1. The linear cluster complex (or pearl complex) of (M,L) is given by the
following differential ∂Pearl on Crit(f)⊗ ΛL,

∂Pearlx =
∑

y,B

#M(M,L;B; f, ρ, J ;x, y)eBy

where ΛL is the Novikov ring for L, and where the counting is performed for 0-dimensional
moduli spaces only. The differential satifies ∂2Pearl = 0. The quantum homology of L (in M) is
defined as

QH∗(M,L; f, g, J) := H∗(Crit(f) ⊗ ΛL, ∂Pearl).

The coefficients #M(M,L;B; f, ρ, J ;x, y) is the counting in Z2 or Q. One can always work
over Z2, while when L is relatively spin and a relative spin structure is chosen, Q-coefficients
can be used.

We note that the differential can be written as the sum

∂Pearl = ∂Morse + ∂′Pearl,

where ∂Morse is the classical Morse differential and we may consider the cluster complex as a
deformation of the classical Morse complex. It is shown in [4] and [3] that the linear cluster
complex is well defined and independent of the choices made. It is therefore an invariant of
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(M,L). We write QH∗(M,L) for its homology. By a PSS type argument, it is shown in [3] that
QH∗(M,L) is isomorphic to FH∗(M,L), the Floer homology of connecting Hamiltonian paths,
whose definition in our setting is recalled in section § 4 for the convenience of the reader.

Under the weakly exact assumption, we note that ∂′Pearl = 0 since there is no pseudo-
holomorphic discs representing non-trivial class. Thus, the pearl complex of (M,L) is the Morse
complex of L with coefficients in ΛL.

2.2. Bundle over a disc. Let HamL(M,ω) be the subgroup of Hamiltonian diffeomorphisms
that preserve L. Let PLHam(M,ω) consist of paths gt∈[0,1] in Ham(M,ω) such that

g0 = id and g1 ∈ HamL(M,ω).

Such g = gt∈[0,1]’s define a Hamiltonian fibration over D2 as follows (a similar fibration was
actually carried over in a different context in Akveld-Salamon [1]) .

We consider the (closed) unit disc D2 and let D2
± = {z ∈ D2| ±ℜz > 0} be the right and left

half discs. Then the fibration defined by g is

Pg =M ×D2
+ ⊔M ×D2

−/ ∼: (x, (1 − 2t)i) ∼ (gt(x), (1 − 2t)i) for t ∈ [0, 1].

Let π : Pg → D2 denote the projection. On this Hamiltonian bundle, let τ be the coupling form
constructed from a Hamiltonian function K generating g, then

ωg := τ + κπ∗ω0

is a symplectic form on Pg. We note that along the S1-boundary, we have the restricted bundle

N := ⊔t∈S1Lt

that is obtained as the union of the copies of L in each fiber; it is a Lagrangian submanifold
of P . Because L is weakly exact, the comparison theorem in [3] implies that QH∗(M,L) is
isomorphic to FH∗(M,L). Because the fibration is Hamiltonian, it is easy to see that (Pg , N)
admits sections over (D2, S1).

A class B ∈ π2(Pg, N) is a section class if π∗(B) ∈ π2(D
2, S1) is the positive generator, with

respect to the natural orientation on D2. We say that B is a fiber class if B is in the image of
the map π2(M,L) → π2(Pg, N) induced from inclusion of the fiber. We claim that

Lemma 2.2. The following sequence of homotopy groups is exact at the middle term:

π2(M,L)
i
−→ π2(Pg, N)

j
−→ π2(D

2, S1).

Proof: It follows from the diagram chasing:

π2(M)

k

��

∼= // π2(Pg)

��
π2(M,L)

∂

��

i // π2(Pg, N)

∂

��

j // π2(D2, S1) = Z

∂ ∼=

��
π1(L)

��

�

� // π1(N)

��

// π1(S1) = Z

π1(M)
∼= // π1(Pg)

where the columns are homotopy exact sequences of pairs and all rows except the second are
homotopy exact sequences of fibrations.

We only show that ker j ⊂ imgi. We will use i and j to denote the first and second map in
each row. Let β ∈ π2(Pg, N) and j(β) = 0. Then j(∂β) = 0 and by exactness of the third row,
we see that there exists α′ ∈ π1(L) such that i(α′) = ∂β. By the exactness of the columns, there
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is α ∈ π2(M,L) such that α′ = ∂α and ∂(β− i(α)) = 0. Thus there is γ ∈ π2(M) ∼= π2(Pg) such
that i ◦ k(γ) = β − i(α). It follows that β ∈ imgi. �

It means in particular that the difference of section classes is a fiber class.

Definition 2.3. Let the smooth map u : D2 → Pg represent B ∈ π2(Pg, N). The vertical
Maslov index of B, denoted µv(B) is the Maslov index of the bundle pair (u∗T vPg, u

∗T vN),
where T v = ker dπ denotes the respective vertical tangent bundles.

One can show that the above is well defined and not dependent on the choice of u (e.g. [7]).
Furthermore, let B and B′ denote two section classes, we have

µv(B −B′) = µL(B −B′) and

µv(B) = µN (B)− 2.

We can introduce the following equivalence relation among the section classes

B ∼ B′ ⇐⇒

∫

B−B′

τ = 0 and µv(B −B′) = µL(B −B′) = 0.

An alternative construction of the fibration Pg is the following. Let Q := M ×D2 and note

that N coincides with the mapping cylinder of g−1
1 |L, i.e.

N ∼= L× [0, 1]/(p, 0) ≃ (g−1
1 (p), 1).

We then have the inclusion ρg : N →֒ Q given by

(p, t) 7→ (g−1
t (p), e2πit),

in the parametrization of S1 by t ∈ [0, 1] 7→ e2πit. The following lemma is obvious.

Lemma 2.4. (Q,N) ∼= (Pg, N) with the respective inclusion of N .

Proof: We note that (Pg, N) depends only on the homotopy class of g with fixed end points.
First we show that (Q,N) depends only on such homotopy class as well. Let g′ ∼ g be homotopic
to g in PLHam(M,ω) with fixed end points. Thus

ht = g′t ◦ g
−1
t ∈ ΩHam(M,ω) is a contractible loop in Ham(M,ω).

Let Ψh : D2 → Ham(M,ω) be a homotopy of {ht} to id ∈ Ham(M,ω), where Ψh(e2πit) = ht
and Ψh(0) = id. Then we have

Ψ : Q
∼=
−→ Q : (x, z) 7→ (Ψhz (x), z), and thus ρg′ = Ψh ◦ ρg : N →֒ Q.

We describe an alternative construction of Pg, together with the embedding of N . Consider
the parametrization of D2 as the unit disc and the map ψ :M ×D2

+ →M ×D2
+ given by

ψ(x, z) = (g−1
t (x), z), where z = 1− 2t+ is ∈ D2

+.

We define Q from the quotient

M ×D2
+ ⊔M ×D2

−/ ∼
′: (x, 1− 2t) ∼′ (x, 1 − 2t) for t ∈ [0, 1].

Then the map

M ×D2
+ ⊔M ×D2

−
ψ⊔id
−−−→M ×D2

+ ⊔M ×D2
−

induces an isomorphism of Q
∼=
−→ Pg. The inclusions of N obviously correspond. �
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2.3. Definition of the Seidel map. We first recall the definition of the map i∗ : H∗(L) →
H∗(N) via Morse homology. Denoting the basis of the fibration N as the set of points in the
unit circle of the complex plane and by L±1 the two fibers over +1 and −1, let F ∈ C∞(N)
satisfy the following:

F is a Morse function

f± := F |L±1
are Morse functions on L

Crit(F ) = Crit(f+) ∪ Crit(f−) and

max f− + 1 < min f+.

We choose a metric G on N such that the pairs (F,G) and (f±, g±) are Morse-Smale pairs
on N and L respectively, where g± are the restrictions of G to L±1. Then the Morse complexes
are well defined and compute the homologies of the respective manifolds. To define i∗ via Morse
theory, we require that the pair (F,G) satisfies the following:

In a neighbourhood of the fibers over ±1, the fibration N → S1 is locally
identified as a product, L× U±, where ±1 ∈ U± ⊂ S1.

The restriction of F to this neighbourhood is of the form f± + ϕ±, where
ϕ± : U± → R is smooth with unique critical point at ±1.

The restriction of G to this neighbourhood is a product metric.

It follows that the map induced by the inclusion of the set of critical points is an inclusion of
Morse complexes:

i :MC∗(L; f−, g−) →֒ MC∗(N ;F,G).

It induces the map i∗ : H∗(L) → H∗(N) in homology.
We now define the Seidel map in this setting. Suppose that J is a tamed almost complex

structure on Pg, where we may choose the symplectic structure on Pg to be the pull-back of the
product symplectic structure on Q via the isomorphism given by Lemma 2.4. We also suppose
that J is compatible with the fibration, namely:

the projection π : Pg → D2 is pseudo-holomorphic, and

J restricts to compatible almost complex structures on the fibers.

We consider the linear clusters in (Pg, N) for which exactly one of the pseudo-holomorphic
discs represents a section class in π2(Pg, N) and all other discs represent fiber classes. Given x− ∈
Crit(f−) and y+ ∈ Crit(f+), this amounts to consider the moduli spacesM(Pg, N ;σ;F,G, J ;x−, y+)
where |σ| is a section class. Let | · |L be the Morse index in L and | · |N that in N , then we have

|x−|
N = |x−|

L and |y+|
N = |y+|

L + 1.

Then by (2.1)

dimR M(Pg, N ;σ;F,G, J ;x−, y+) = |x−|
N − |y+|

N + µN (|σ|)− 1 = |x−|
L − |y+|

L + µv(|σ|).

Definition 2.5. Let σ denote a section class in π2(P,N) and σ0 a particular choice of reference
section class. Then B := σ − σ0 is a fiber class and the chain level geometric Seidel map is

ΨL(g, σ0) : Crit(f−)⊗ ΛL− → Crit(f+)⊗ ΛL+

ΨL(g, σ0)(x−) :=
∑

B,y+

#M(Pg, N ;σ0 +B;F,G, JP ;x−, y+)e
By+,

where the coefficients counts (in Z or Z2, see remark 2.6) the zero dimensional moduli spaces.
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Remark 2.6. We note that for the purpose of the main theorem, with the assumption of
weak exactness on L, standard transversality provides that the moduli spaces above are smooth
manifolds. In general, when we allow (M,L) to be monotone with minimal Maslov index 2, the
transversality arguments in [3] can be adapted so that the moduli spaces are again smooth with
the expected dimension in dimension 6 1. The main point in the adaptation is that the disc
that represents a section class is necessarily simple.

For the counting, one can always work over Z2. On the other hand, if L is relatively spin and
the map g1 preserves the chosen relative spin structure, we may use Z or Q as coefficients.

Lemma 2.7. ΨL(g, σ0) is a chain map of degree µv(σ0) and the induced map on QH∗(M,L),
does not depend on the choice of generic data.

Proof : Because (M,L) is weakly exact, the moduli spaces of holomorphic discs in Pg with
boundary inN , representing a section class, are compact. Let B denote a fiber class in π2(Pg , N).
Thus, M(Pg, N ;σ0+B;F,G, JP ;x−, y+) is compactified by broken Morse flow lines. From this, it
follows that ΨL(g, σ0) is a chain map. Because degeB = −µL(B), by the dimension computation
of the moduli spaces, we see that the degree of the map is µv(σ0).

Now we show that it does not depend on the choices of generic data (F,G, JP ). Suppose
that we have two triples of Morse functions, metrics and compatible almost complex structures:

(Fi, Gi, JP,i) for i = 0, 1. Consider the fibration (P̃g, Ñ) = (Pg , N) × [0, 1] and endow it with

a triple (F̃ , G̃, J̃) where F̃ is a smooth Morse function on Ñ , G̃ is a metric on Ñ that restricts

to Gi on Pg × {i} and where J̃ is a smooth family of ω-compatible and fibration-compatible

complex structures on Pg × {t}, which connects JP,i on P × {i}. Assume that F̃ coincides with

F̃i := AiFi + Ci on (Pg, N)× {i} for some constants Ai and Ci, i = 0, 1 chosen so that

min f0,+ > max f1,+ + 1 > min f1,+ > max f0,− + 1 > min f0,− > max f1,− + 1.

Here fi,± is the restriction of F̃ to the fiber Li,± of N × [0, 1] → S1 × [0, 1] above the point

(±1, i). Assume moreover as usual that Crit(F̃ ) = Crit(F̃0) ∪ Crit(F̃1).

In general, we consider the configuration of a linear cluster in P̃ connecting x− ∈ L0,− to
y+ ∈ L1,+ via negative gradient lines and holomorphic discs ui : (D

2, S1) → (Pg , N)× {ti} for

some ti ∈ [0, 1], the total class of the [ui]’s being a section class σ ∈ π2(P̃ , Ñ) ∼= π2(P,N). Exacly
like in the definition of ΨL, we can adapt the transversality argument in [3] and see that the
moduli spaces of such configurations are smooth of the expected dimension when the dimension

is 6 1. Let M(P̃ , Ñ ;σ; F̃ , G̃, J̃ ;x−, y+) denote the moduli space of such linear clusters and
write σ = σ0 +B, where σ0 is a chosen reference section class and B is a fiber class. We define

Σ : Crit(F̃0,−)⊗ ΛL → Crit(F̃1,+)⊗ ΛL by

Σ(x−;σ0) :=
∑

B,y+

#M(P̃ , Ñ ;σ0 +B; F̃ , G̃, J̃ ;x−, y+)e
By+,

where the counting #M is for the moduli spaces of expected dimension 0, i.e.

|x−|
L − |y+|

L + µv(σ0) + µL(B) + 1 = 0.

It follows that Σ(·;σ0) is of degree µ
v(σ0) + 1.

Now considering the boundary components of the moduli spaces with dimension 1, we see
that it consists of the following four types of configurations, corresponding precisely to the case
when the breaking of Morse flowlines happens on one of the Li,±’s.

It is then obvious that:

(1) the breaking on L0,− corresponds to Σ(·;σ0) ◦ ∂Pearl
(2) the breaking on L1,+ corresponds to ∂Pearl ◦ Σ(·;σ0)
(3) the breaking on L0,+ corresponds to Φ+ ◦ΨL0

(g, σ0) and
(4) the breaking on L1,− corresponds to ΨL1

(g, σ0) ◦ Φ−
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where
Φ± : Crit(f0,±)⊗ ΛL → Crit(f1,±)⊗ ΛL

are the comparison maps between quantum homologies of L with different choices of (f, ρ, J),
which are quasi-isomorphisms. We can then write down

Σ(·;σ0) ◦ ∂Pearl − ∂Pearl ◦ Σ(·;σ0) = Φ+ ◦ΨL0
(g, σ0)−ΨL1

(g, σ0) ◦ Φ−

and it follows that Φ+ ◦ ΨL0
(g, σ0) and ΨL1

(g, σ0) ◦ Φ− induce the same maps on quantum
homologies. �

We note that the above lemma implies that the Seidel map Ψ(g, σ0) does not depend on the
homotopy class of g, because the construction for g′ ∼ g gives the same bundles (P,N) with a
different set of data (F,G, JP ).

3. Proof of the theorem

We postpone to the Section 4 of this paper the proof of Proposition 4.1 stating that our
geometric Seidel morphism coincides with our analytical Seidel morphism defined in [7] via a
PSS-isomorphism. Since the analytical morphism is evidently an isomorphism by contruction,
we get the following corollary that we will use in the present section:

Corollary 3.1. The map ΨL(g, σ0) is an isomorphism of quantum homology of (M,L). �

As shown in the introduction, the main theorem (Theorem 1.1) follows from

Lemma 3.2. Let (M,L) be symplectically aspherical. Then i∗ : H∗(L) → H∗(N) is injective.

Proof: Note that the Morse theoretical definition of i∗ is defined by the inclusion of chain com-
plexesMC∗(L) →֒MC∗(N). Since (M,L) is symplectically aspherical, QH∗(M,L) = H∗(L; ΛL)
is the homology of (MC∗(L) ⊗ ΛL, ∂Morse). The Seidel map ΨL(g, σ0) then defines an isomor-
phism of QH∗(M,L).

By the universal coefficient theorem, the group H∗(L)⊗ΛL is a subgroup of QH∗(M,L). We
prove by contradiction. Suppose that ker i∗ 6= {0}, then there exists α 6= 0 ∈ ker i∗ such that it
is represented by

∑
i aixi,− ∈MC∗(L−) and
∑

i

aixi,− = ∂NMorse

∑

j

bjyj,+ for some yj,+ ∈ Crit(f+),

where ∂NMorse denote the boundary operator in Morse homology of N . Since ΨL is an isomor-
phism on QH∗(M,L), we have ΨL(

∑
i aixi,−) 6= 0.

We work on chain level. Let y ∈ Crit(F ) and z+ ∈ Crit(f+) ⊂ Crit(F ) and consider the
moduli space for fiber classes B:

M(Pg, N ;σ0 +B;F,G, JP ; y, z+),

which has expected dimension

|y|N − |z+|
N + µN (σ0 +B)− 1 = |y|N − |z+|

L + µv(σ0) + µL(B).

Let Σ(g, σ0) denote the map MC∗(N) 7→MC∗(L)⊗ ΛL defined by

y 7→
∑

B,z+

#M(Pg , N ;σ0 +B;F,G, JP ; y, z+)e
Bz+,

where the coefficients count dimension 0 moduli spaces. We note that when restricted to
MC∗(L−), Σ(g, σ0) coincides with ΨL.

Consider now the moduli spaces M(Pg, N ;σ0 +B;F,G, JP ; y, z+) of dimension 1, which are
compactified by the breakings in the Morse flowlines in N , on L±. By the choices made for
(F,G), we write down the boundary components for y = y+:

• MMorse(y+, y
′
+)×M(Pg, N ;σ0 +B;F,G, JP ; y

′
+, z+)
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• MMorse(y+, x−)×M(Pg, N ;σ0 +B;F,G, JP ;x−, z+)

where MMorse denotes the moduli space of Morse trajectories (in N) connecting the two critical
points. It follows that

Σ(g, σ0) ◦ ∂
N
Morse(y+) = 0.

Thus

ΨL(
∑

i

aixi,−) = Σ(g, σ0)(
∑

i

aixi,−) =
∑

j

bjΣ(g, σ0) ◦ ∂
N
Morse(yj,+) = 0.

This is a contradiction. �

4. Correspondence between the analytic and geometric Seidel maps

We first recall the construction of the analytic Seidel map and restate it in the current geo-
metric setting. Then we show that the two constructions coincide. In a way similar to Seidel
[11], the comparison uses the PSS isomorphism in the Lagrangian setting, for which we will
adapt the construction of Biran-Cornea [3] or Hu-Lalonde [7] using Hamiltonian fibrations.

For the purpose of this section, we reparametrize the half discs D2
± as

D2
± =

{
z ∈ C :

∣∣∣∣z −
i

2

∣∣∣∣ 6
1

2
and ±ℜz > 0

}
,

and let ∂0 = D2
+ ∩ iR and ∂+ = D2

+ ∩ {z : |z − i
2 | =

1
2}. Let PLM be the space of contractible

paths in M with both ends on L and P̃LM the covering space whose elements are equivalent
classes [l, w] of pairs (l, w)

l : ([0, 1], {0, 1})→ (M,L) and w : (D2
+, ∂0, ∂+) → (M,L, l),

where l(t) = w(i(1 − t)). The equivalence relation is the following

(l, w) ∼ (l′, w′) ⇐⇒ l = l′ and w ∼∂+ w′.

The Floer homology of (M,L) is constructed from a choice of a time-dependent Hamiltonian
function H and a compatible almost complex structure J on M . The action functional as well
as the metric are then defined as:

aH([l, w]) = −

∫

D2
+

w∗ω +

∫

[0,1]

Ht(l(t))dt,

and

(ξ, η)J =

∫

[0,1]

ω(ξ(t), Jtη(t))dt, for ξ, η ∈ C∞(l∗TM).

Then the Floer homology FH∗(M,L;H, J) can be seen as the Morse homology of P̃LM for aH
in the metric (, )J . The differential daH and (, )J are well defined on PLM already and the
equation of negative gradient flow lines can be written in PLM as well:

(4.1)

{
∂u
∂s

+ Jt(u)
(
∂u
∂t

−XHt
(u)

)
= 0 for all (s, t) ∈ R× [0, 1],

u|R×{0,1} ⊂ L

The action of PLHam(M,ω) on PLM lifts to an action of an extension group P̃LHam(M,ω)

on P̃LM . An element of P̃LHam(M,ω) can be represented as (g, g̃), where g ∈ PLHam(M,ω)

and g̃ is determined by the action of (g, g̃) on point elements [p, p] ∈ P̃LM in the following

fashion. Let’s denote (g, g̃) ◦ [p, p] by [pg, wgp]. Let [l, w] ∈ P̃LM and [lg, wg] = (g, g̃) ◦ [l, w], then

lg(t) = gt ◦ l(t)

and wg is defined as follows (we write wg instead of w(g,g̃) to simplify the notation). Consider
w as a homotopy from a constant path l(0) to l, i.e. it is spanned by a one-parameter family
ατ∈[ 1

2
,1] with α 1

2
(t) = l(0) and α1(t) = l(t). The action of g on w is then the strip obtained as
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the image gt(ατ (t)). Now we define the action of (g, g̃) on w as the half disk obtained by gluing
the above strip along its boundary at τ = 1

2 with wg
l(0). This defines w

g.

Now the push-forward by g of H and J is given by the pair (Hg, Jg):

Hg(t, x) = H(t, g−1
t (x)) +K(t, x) and Jgt = dgt ◦ Jt ◦ dg

−1
t .

where K(t, x) is the Hamiltonian function generating g. The lifted action of (g, g̃) on P̃LM then
defines an isomorphism of Floer homologies

Ψg̃ : FH∗(M,L;H, J) → FH∗(M,L;Hg, Jg) : [l, w] 7→ [lg, wg ]

which gives the relative Seidel map.
We consider the PSS isomorphism in the fibration setting. Let Z− be the half-disc with

infinite end:
Z− := D2

− ∪∂0 (R
+ × i[0, 1]) ⊂ C,

and choose a C∞ z-dependent (z ∈ Σ−) Hamiltonian function and a compatible almost complex
structure (H,J) on M such that

• (H,J)|z∈D2
−
= (0, J0) and

• (H,J)|ℜz>1 = (H, J),

where J0 is a generic compatible almost complex structure. The equation is

(4.2)

{
∂u
∂s

+ Jz(u)
(
∂u
∂t

−XHz
(u)

)
= 0 for all z = s+ it ∈ Z−,

u|∂Z− ⊂ L

Then finite energy solutions converge to critical points l of daH as s → ∞. We may mark the
point 1

2 (1,−i) and consider the evaluation map from the moduli space of the solutions to (4.2).
The PSS isomorphism QH∗ → FH∗ is then defined by counting the intersections with cycles in
L− := L×

{
1
2 (−1, i)

}
of the moduli space under the evaluation.

The equation (4.2) can be written also as the ∂-equation for a holomorphic section in the
fibration over Z− as follows. Let P− =M × Z− and consider the symplectic form:

Ω− := κ(ω + dHz ∧ dt) + ds ∧ dt.

Associated to this symplectic structure, the symplectic connection is given by

Hor(x, z) = Span(x,z)

(
∂

∂s
,
∂

∂t
−XHz

)
.

The almost complex structure J̃− on P− is given by Jz along the fibers and

J̃−

(
∂

∂s

)
=

∂

∂t
−XHz

.

Then the ∂-equation for J̃−-holomorphic sections σ− : Z− → P− with boundary on L × ∂Z−

coincides with (4.2) and the graph of a solution of (4.2) gives a J̃−-holomorphic section. Thus
we obtain the geometric version of the PSS isomorphism in one direction.

Let τ : C → C be the anti-linear map reversing the real part:

τ(s+ it) = −s+ it.

Define D+ = τ(D−), Z+ = τ(Z−) and P+ = M × Z+. We first carry out the PSS fibration

construction also for (Hg, Jg), obtaining on P+ an almost complex structure J̃g+ tamed by the
symplectic form Ωg+, where

Ωg+ = κ(ω + dHg
z ∧ dt) + ds ∧ dt when s < −1,

and equals to the product form over D2
+. In this case, pseudoholomorphic sections with finite

energy converge to critical points lg of daHg as s → −∞. Then counting of moduli spaces of
sections gives the other direction FH∗ → QH∗ of the PSS isomorphism.

Now the statement we will show is
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Proposition 4.1. The composition

QH∗(M,L)
PSS
−−−→ FH∗(M,L)

Ψg̃

−−→ FH∗(M,L)
PSS
−−−→ QH∗(M,L)

coincides with the geometric Seidel’s map ΨL(g, σ0) for an appropriately chosen σ0.

Proof: The proof is an application of the gluing method to explicitly identify the moduli
spaces involved. Note that this only concerns the moduli spaces of dimension 6 1. It is analogous
to the proof showing that PSS maps are isomorphisms (cf. [3]). Recall that Ψg̃ is induced from
the geometric map

g : [0, 1]×M → [0, 1]×M : (t, x) 7→ (t, gt(x)).

Consider for each R > 0 the map GR : [1, R + 1] × [−1, 1]×M → [−R − 1,−1]× [−1, 1]×M
between subsets of P− and P+ given by

GR(s, t, x) = (s−R− 2, g(t, x)).

It is then straightforward to check that GR∗(Ω−) = Ωg+. It follows that P± may be glued
symplectically using GR:

Pg(R) := {(P− \ (R + 1,∞)×M) ∪ (P+ \ (−∞,−R− 1)×M)} /GR,

and we obtain a Hamiltonian fibration, which is homotopic to Pg given in the previous geometric
construction. The symplectic form Ω(R) on P (R) can be written as

Ω(R) = κτ(R) + ωD2

where τ(R) is a coupling form.

The almost complex structures on P± are glued by GR as well, and the result is denoted J̃g(R).
For pseudoholomorphic sections u± in P± with finite energy, which converges to [lg, wg] and [l, w]
respectively, their limits at s → ±∞ are identified naturally by g. It follows that under gluing
by GR, u± give rise to a pseudoholomorphic section of Pg(R), for R big enough, using standard
gluing argument. Let M(P+, l

g) and M(P−, l) be the moduli spaces of pseudoholomorphic
sections with prescribed limits at infinity, and M(P (R)) the moduli space of pseudoholomorphic
sections. The same gluing argument (together with compactness) shows that for all R > 0,

M(P (R)) ∼= ∪lM(P+, l
g)×M(P−, l).

Next we identify the maps. Let α− denote a chain in L− and l̃ = [l, w]. Let M(P−, l̃) be the
subspace of M(P−, l) such that

Iµ(w#(−u−)) = 0

where we think of u− as a map from the half disc to M via the projection P− → M . Then the
PSS map QH∗ → FH∗ is defined at the chain level as

PSS(α−) =
∑

l̃−

#(ev−M(P−, l̃) ⋔ α−)l̃,

where ev− is the evaluation map

M(P−, l̃) → L− : u− 7→ u−
(
1

2
(1,−i)

)
.

On the other hand, let α+ be a chain in L+ = L×
{
1
2 (1, i)

}
and M(P+, l̃

g) be the subspace of
M(P+, l

g) such that

Iµ(w
g#u+) = 0.

Then the PSS map FH∗ → QH∗ is defined as

PSS(l̃g) =
∑

B∈π2(M,L),α+

#(ev+M(P+, l̃
g#B) ⋔ α+)e

Bα+.
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It follows that the composition in the statement is defined by

PSS ◦Ψg̃ ◦ PSS(α−) =
∑

l̃

#(ev−M(P−, l̃) ⋔ α−)PSS(l̃
g)

=
∑

l̃,B,α+

#(ev−M(P−, l̃) ⋔ α−)#(ev+M(P+, l̃
g#B) ⋔ α+)e

Bα+

=
∑

α+,B

#((ev− × ev+)M(P (R), σgw#B) ⋔ (α− × α+))e
Bα+.

where the last equality uses the isomorphism of the moduli spaces via gluing, where σgw can be
formally written as w#(−wg). Here the notation M(P (R), σ) means the subset of M(P (R))
such that u(R) lies in the section class σ.

Comparing with the expression for ΨL(g, σ0), we see that the only thing left to show is that

w#(−wg) belongs to the same section class for any l̃ = [l, w]. Then take σ0 to be the common
class and the proposition is established. This we show in the next lemma. �

Lemma 4.2. Let l̃ = [l, w] ∈ P̃LM and g̃ ∈ P̃LHam(M,ω). The equivalence class of the section
σgw = w#(−wg) of P (R) defined above does not depend on w.

Proof: We show that the sections σgw are homotopic, which implies equivalence. Suppose that
(g, g̃) = id then the resulting bundle (Pg , N) is the trivial bundle pair. Let pr : (Pg , N) → (M,L)
be the projection to the fiber, then pr(w#(−w)) represents 0 in π2(M,L). In particular, w#(−w)
is homotopic to the section {l(0)}×D2. Thus, the equivalent class of w#(−wg) does not depend
on w.

Let p̃ = [p, p] be the trivial path and lifting to P̃LM where p ∈ L. Then σgp = p#(−wgp).

Choose a path {pt} on L which connects p and p′, then it is obvious that σgp and σ
g
p′ are homotopic

through sections with boundary on N by σgpt . It follows that the equivalent class of σgp does not
depend on the point p.

For general [l, w] we show that it is the combination of the above two special cases. First,
(g, g̃) may be reparametrized such that gt = g1 for t > 1

3 , and w
g
p maps D+ ∩ {ℑz < 2

3} to g1(p)

for all p ∈ L. Then, w may be reparametrized such that w = l(0) on D+ ∩ {ℑz > 1
3}. The

resulting section σgw is homotopic to the original w#(−wg).
We can now identify the section σgw with the special cases. Forℑz > 2

3 , the section σ
g
w coincides

with σg
l(0) and for ℑz < 1

3 , the section σgw coincides with g1 ◦ (w#(−w)). For 1
3 < ℑz < 2

3 , the

section σgw coincides with g1(l(0)).
Similar construction for another element [l′, w′] gives a section σgw′ . Now the homotopies

described in the special cases define a homotopy between the sections σgw and σgw′ . �

5. A second proof of Theorem 1.1

We now present another proof of the main theorem based on the analytic Seidel map which is
proved to be trivial in the symplectically aspherical case, thanks to additional algebraic structures
and ideas appearing in Leclercq [9]. This algebraic proof, which is geometrically less meaningful,
is conceptually more elementary. We present it in the particular case when the coefficient ring
R = Z2 and the pair (M,L) is symplectically aspherical since the proofs of the intermediate
steps are fully written in this case in [9]. The extension to the most general case of the theorem
is expected to be straightforward.

Recall that since we work under the symplectic asphericity condition, the quantum homology
of L is actually its Morse homology and we may forget about the Novikov ring on the Floer side.

First, notice that there is an “instantaneous” version of the analytic Seidel map described
in Section 4, consisting in using, instead of an isotopy g ∈ PLHam(M,ω), only a Hamiltonian
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diffeomorphism preserving L, g1 ∈ HamL(M,ω). We let ΨiL(g1) denote this instantaneous
version, as well as its Morse counterpart.

Indeed, for any diffeomorphism h ∈ Diff(L), we can consider the morphism ΨiL(h) identifying
the complexes MC∗(L; f, ρ) and MC∗(L; f

h, ρh), where fh = f ◦ h−1 and ρh = (h−1)∗ρ, via the
following equivalences:

x ∈ Critk(f) ⇔ xh = h(x) ∈ Critk(f
h)

γ flow line of (f, ρ) ⇔ γh = h ◦ γ flow line of (fh, ρh)

This identification induces an isomorphism on homology which commutes with the usual com-
parison morphism. (The commutativity can be obtained at the chain level, by choosing a regular

homotopy (f ,ρ) between (f0, ρ0) and (f1, ρ1) and on the other side (fh,ρh).) The action of h
on the (Morse) homology of L can then be seen as the composition of this identification with
the usual Morse comparison morphism (in order to end up in the initial complex MC∗(L; f, ρ)).

Now if we choose g1 ∈ HamL(M,ω), we can compare the Floer and Morse instantaneous
Seidel maps respectively associated to g1 and its restriction to L. The first step of this second
proof is to show that they do coincide, via the Lagrangian PSS morphism.

Lemma 5.1. The following diagram commutes in homology:

MC∗(L;F, ρ)
Ψi

L(g1|L)

//

PSS

��

(g1)∗

++
MC∗(L;F

g1 , ρg1)

PSS

��

comp
// MC∗(L;F, ρ)

PSS

��
FC∗(L;H, J)

Ψi
L(g1)

// FC∗(L;H
g1 , Jg1)

comp
// FC∗(L;H, J)

(5.1)

Proof. Since the PSS morphism commutes with the classical Morse and Floer comparison mor-
phisms (see e.g [9, Lemma 2.3] for a proof), the right square of (5.1) commutes in homology.

Now the left square commutes (at the chain level) for any regular choices of Floer and Morse
data on the left and their respective pullbacks via the Hamiltonian diffeomorphism and its
restriction to L. Indeed, in that case, there is an identification of the moduli spaces defining the
involved PSS morphisms. �

Since (5.1) commutes, it suffices to prove that the composition of the two morphisms at the
Floer level induces the identity in homology. In order to do so, we express the action of ΨiL(g1)
on FH∗(L) in terms of the (non-instantaneous) analytic Seidel map (and Poincaré duality).

Lemma 5.2. The following diagram commutes:

FC∗(L;H, J)

ΨL(g) ''O
OOO

OOO
OOO

OO

Ψi
L(g1) // FC∗(L;H

g1 , Jg1)
PD // FC ∗̂(L; Ĥg1 , Ĵg1)

FC∗(L;H
g, Jg)

66

PD // FC ∗̂L; Ĥg, Ĵg)

ΨL(g′)

66mmmmmmmmmmmm

(5.2)

where g′ is the isotopy defined as g′t = g1 ◦ g
−1
1−t. (The doted arrow, usually denoted [ΨL(g

′)]!,
is defined by the commutativity of the right square, that is, by pre- and post-composing ΨL(g

′)
with Poincaré duality.)

Let us briefly recall the Floer theoretic version of Poincaré duality. This isomorphism is

defined by identifying the complexes FC(L;H, J) and FC(L; Ĥ, Ĵ) for any regular pair (H, J),

where (Ĥ, Ĵ) is “dual” to (H, J), that is, is defined as Ĥt(x) = −H1−t(x) and Ĵt = J1−t. The
generators are geometrically the same orbits but considered with the opposite orientation, and
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so are the half-tubes defining the respective differentials. (A priori ∗̂ = −∗, if the references
of the Maslov indices are chosen so that they geometrically coincide. Other choices amount to
global shifts of the degree which do not matter here.)

Via straightforward computations, it is easy to see that (Ĥg)g
′

= Ĥg1 = Ĥg1 and (Ĵg)g
′

=

Ĵg1 = Ĵg1 , and that all the involved pairs are regular if and only if (H, J) is. Thus, (5.2) makes
sense as it is (on the complexes).

Remark 5.3. Notice for later use, that Poincaré duality commutes with the usual comparison
morphism of Floer homology, since it even commutes at the chain level as soon as one uses
timewise dual homotopies.

Proof of Lemma 5.2. Figure 5.4 illustrates the evolution of an orbit along (5.2).

Figure 5.4.

Namely, for each time t, we have:

x(t)  xg(t) = gt(x(t))  PD(xg)(t) = g1−t(x(1 − t))

 
(
PD(xg)

)g′
(t) = g1(x(1 − t))  PD−1

[(
PD(xg)

)g′]
(t) = g1(x(t)) = xg1 (t)

The half-tubes defining Floer differential evolve in a similar way and the commutativity of the
diagram immediately follows. �

Now comes the crucial point: When (M,L) is symplectically aspherical, the analytic Seidel
map acts trivially on (Morse) homology.

Lemma 5.5. The analytic Seidel map (of Proposition 4.1), is the identity, that is, ΨL(g) acts
on Floer homology as the usual comparison morphism.

Remark 5.6. Recall that the PSS morphism and ΨL(g) can be composed since the action of
g preserves the component of P(L) consisting of contractible (in π1(M,L)) paths (see Bialy–
Polterovich [2, Theorem 1.8] for the proof of this result in the weakly exact case).

The proof of the theorem now easily follows. Indeed, Lemma 5.5 allows us to replace the
Seidel map by the usual comparison morphism, in the diagram induced in homology by (5.2).
Thus, we get the commutative diagram

FH∗(L)

comp

��

Ψi
L(g1) // FH∗(L)

FH∗(L)
PD

// FH∗(L) comp
// FH∗(L)

PD−1

OO
(5.3)

Now, as noticed above (see Remark 5.3), the comparison morphism commutes with Poincaré
duality, thus we can permute the two morphisms composing the bottom line of (5.3). Since the
Floer comparison morphism is natural, this shows that ΨiL(g1) acts on FH∗(L) as the compar-
ison morphism and this, in turn, proves that the bottom line of (5.1) induces the identity in
homology, which concludes the proof of Theorem 1.1.
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Therefore, it only remains to prove Lemma 5.5. The fact that, for a symplectically aspheri-
cal pair (M,L), ΨL(g) acts on Floer homology as the comparison morphism can be indirectly
deduced from the commutative diagram of [9, Proposition 3.1], by first arbitrarily “cutting” in
two parts the Hamiltonian isotopy which we consider. However, the proof of [9, Proposition 3.1]
itself can be easily adapted to immediately show that the diagram

MC∗(L; f, ρ)

PSS

��

PSS // FC∗(L;H
g, Jg)

FC∗(L;H, J)

ΨL(g)

66mmmmmmmmmmmmm

(5.4)

commutes in homology, and this commutativity amounts to the triviality of the analytic Seidel
map (compare with Proposition 4.1).

Proof of Lemma 5.5. We know from [9, §3.1-3.2] that all the involved groups are MH∗(L)–
modules, and that this additional structure is preserved by the PSS morphism and by ΨL(g).
Thus Φ = (PSS)−1 ◦ΨL(g) ◦ PSS is an endomorphism of MH∗(L) (as a module over itself).

Now Φ([L]) = [L], since [L] generates MHtop(L) (due to Z2 coefficients, signs are arbitrary).
Since [L] is also the unit of the ring (MH∗(L), · ), we have for any a ∈MH∗(L):

Φ(a) = Φ(a · [L]) = a · Φ([L]) = a · [L] = a .

Thus Φ is the identity and (5.4) commutes. Now, since the PSS morphism commutes with the
usual comparison morphisms, the composition of the PSS morphisms in (5.4) is nothing but the
Floer comparison morphism. Thus both morphisms

ΨL(g), comp: FC∗(L;H, J)
//// FC∗(L;H

g, Jg)

coincide in homology. �
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