SEIDEL’S MORPHISM OF TORIC 4-MANIFOLDS

SILVIA ANJOS AND REMI LECLERCQ

ABSTRACT. Following McDuff and Tolman’s work on toric manifolds [3I], we focus on 4-
dimensional NEF toric manifolds and we show that even though Seidel’s elements consist
of infinitely many contributions, they can be expressed by closed formulas. From these
formulas, we then deduce the expression of the quantum homology ring of these manifolds
as well as their Landau—-Ginzburg superpotential. We also give explicit formulas for the
Seidel elements in some non-NEF cases. These results are closely related to recent work
by Fukaya, Oh, Ohta, and Ono [14], Gonzélez and Iritani [18], and Chan, Lau, Leung, and
Tseng [7]. The main difference is that in the 4-dimensional case the methods we use are more
elementary: they do not rely on open Gromov—Witten invariants nor mirror maps. We only
use the definition of Seidel’s elements and specific closed Gromov—Witten invariants which
we compute via localization. So, unlike Alice*, the computations contained in this paper are
not particularly pretty but they do stay on their side of the mirror. This makes the resulting
formulas directly readable from the moment polytope.

1. INTRODUCTION

Let (M,w) be a closed connected symplectic manifold and let as usual Ham(M,w) denote
its Hamiltonian diffeomorphism group. Under a suitable condition of semipositivity, Seidel
defined in [35] a morphism, S, from m(Ham(M,w)) to — after a mild generalization due to
Lalonde, McDuff, and Polterovich [27] — QH,.(M,w)*, the group of invertible elements of
the quantum homology of (M, w). This morphism has been extensively used in order to get
information on the topology of Hamiltonian diffeomorphism groups as well as the quantum
homology of symplectic manifolds. It has also been extended in various directions, see the
end of the introduction for some of these extensions related to the present work.

A quantum class lying in the image of S is called a Seidel element. In [31], McDuff and
Tolman were able to specify the structure of the lower order terms of Seidel’s elements asso-
ciated to Hamiltonian circle actions whose maximal fixed point component, Fi,,x, is semifree.
Recall that this condition means that the action is semifree on a neighborhood of Fi,,x which
means, in our case, that the stabilizer of each point is trivial or the whole circle. When the
codimension of F,.x is 2, their result immediately ensures that if there exists an almost com-
plex structure J on M so that (M, J) is Fano, i.e so that there are no J—pseudo-holomorphic
spheres in M with non-positive first Chern number, all the lower order terms vanish. In the
presence of J—pseudo-holomorphic spheres with vanishing first Chern number, there is a priori
no reason why arbitrarily large multiple coverings of such objects should not contribute to the
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Seidel elements. As a matter of fact, McDuff and Tolman exhibited an example of such a phe-
nomenon when (M, J) is a NEF pair, which by definition do not admit J—pseudo-holomorphic
spheres with negative first Chern number.

In this paper, we show that even though there are indeed infinitely many contributions to
the Seidel elements associated to the Hamiltonian circle actions of a NEF 4-dimensional toric
manifold, these quantum classes can still be expressed by explicit closed formulas. Moreover,
these formulas only depend on the relative position of representatives of elements of 7o (M)
with vanishing first Chern number as facets of the moment polytope. In particular, they are
directly readable from the polytope.

More precisely, we consider (see Section [2] for precise definitions):

e a 4-dimensional closed symplectic manifold (M, w), endowed with a toric structure
and admitting a NEF almost complex structure,

e its corresponding Delzant polytope P, which is assumed to have n > 4 facets,
e a Hamiltonian action generated by a circle subgroup A, with moment map ®4.

We assume additionally, that the fixed point component of A on which ®, is maximal is a 2—
sphere, Fiax C M, whose momentum image is a facet of P, D. We denote by A € Ho(M;7Z)
the homology class of Fiax and by ®pax = Pa(Finax)-

In this case, McDuff-Tolman’s result ensures that the Seidel element associated to A is

S(A) = A X qtq)max -+ Z aB ® ql_cl(B)tcbmax_W(B)
BeH(M;7)>0

where Hj (M;7)>° consists of the spherical classes of symplectic area w(B) > 0 and ap €
H,.(M;Z) denotes the contribution of B. As mentioned above, when there exists a Fano almost
complex structure, all the lower order terms vanish and we end up with S(A) = A ® qt®max,

In the non-Fano case, one has to be careful about the number and relative position of facets,
in the vicinity of D, corresponding to spheres in M with vanishing first Chern number. We
denote the number of such facets by #{c; = 0}. Theorem [£.4]lists all the contributions made
to the Seidel element associated to A in the 6 cases when #{c; = 0} < 2. We denote the
facets and the corresponding homology classes in M in a cyclic way, that is, D, which we
denote by D,, below, has neighbooring facets D,,_1 on one side and D,,;1 = D on the other,
and they respectively induce classes A,,, A,_1, and A, 11 = Ay in Ho(M;Z).

Figure [l shows the relevant parts of the different polytopes we need to consider. Dotted
lines represent facets with non-zero first Chern number and we indicate near each facet with
non-trivial contribution the homology class of the corresponding sphere in M. For example,
in Case (3c), only three homology classes contribute: A,_1, A,, and A;; A,_1 and A; have
vanishing first Chern number while ¢;(4,,) # 0.

Theorem [4.4l. With the notation and under the assumptions above, the following homology
classes have non trivial contributions to S(A):

(1) A, contributes by as, = Ay,.
(2) When ¢1(Ay) =0,
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FIGURE 1. The cases appearing in Theorems [£.4] and [1.5] and Appendix [A]

(2a) then kA, (with k> 0) contributes by axa, = An,

(2b) and when c1(A1) =0, then kA, + 1Ay (with k >0 and 1 > 0) contributes and its
Apifk>1

contribution is arA, +14, = { _ A, otherwise

(8) When ¢1(A,) # 0,
(3a) when c1(A1) =0, then kA; (with k > 0) contributes by axa, = —Ai,
(8b) when c1(A1) = 0 and c1(Az) = 0, then KAy + 1Ay (with k > 0 and [ > 0) also

Ay ifk>1

contributes, and its contribution is apa,+14, = { A otherwise
2 )

(8¢) when ¢1(Ap—1) =0 and ¢1(A1) =0, then kA,—1 and lAy (with k >0 and 1> 0)
also contribute, and their contributions are aga, , = —An—1 and aja, = —A;.

n—1

Moreover, in each case, if the facets immediately next to the ones mentioned correspond to
spheres with non-zero first Chern number, then these are the only non-trivial contributions.

Now, under the same assumptions, Theorem gives the explicit expression of the Seidel
element associated to A when #{c; = 0} < 2. Notice that we give (without proofs) the
expression of the Seidel elements for #{c; = 0} = 3 in Appendix [Al

Theorem Under the assumptions above, and in the cases described by Figure [, the
Seidel element associated to A is

(1) S(A) = A, © gt

tq)max
(2a) S(A)=An®q T —w(An)
témax témax_w(Al) 1

(2b) S(A) = An®‘]m—fll®q

1 — t—w(A) | 1 — ~w(An)—w(Ar)
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tq)max_w(Al)
(3a) S(A) = A, @ ¢ — A4, ®q

1 —t~w(d)
tq)max_w(Al)
— Pmax __ _
(3b) S(A) =4, qt Al ® q 1 — (—w(An)
A témax A tq)max_w(A2) t_w(Al)_w(A2)
_ 1®qm— 2®q 1 o(A2) . 1 — t—w(A1)—w(Az)
tcbmax_W(Anfl) tq)max_w(Al)

(30) S(A) = An®qtq)max _An—l ®q _Al X q 1

1— t—w(Anfl) _ t—w(Al) :

Interest of our approach. This work is closely related to recent work by Fukaya, Oh,
Ohta, and Ono [13], Gonzalez and Iritani [I8], and Chan, Lau, Leung, and Tseng [7]. Roughly
speaking, for toric NEF symplectic manifolds, on one side Fukaya, Oh, Ohta, and Ono showed
that quantum homology is isomorphic to the Jacobian of the open Gromov—Witten invariants
generating function, Jac(WW°P"). On the other side, Gonzalez and Iritani expressed the Seidel
elements in terms of Batyrev’s elements via mirror maps. Finally, Chan, Lau, Leung, and
Tseng proved that WP coincides with the Hori—Vafa superpotential. Then by using this
open mirror symmetry and the aforementioned results, they showed that the Seidel elements
correspond to simple explicit monomials in Jac(W©°P"). In the 4-dimensional case, these
results are clearly related to ours — see for example the discussion on the Landau—Ginzburg
superpotential in Example [[.3] below —, however our approach is somehow more elementary
and stays on the symplectic side of the mirror.

We now sketch our approach. The Seidel element of a symplectic manifold (M, w) associated
to a loop of Hamiltonian diffeomorphisms ¢ based at identity is defined by counting pseudo-
holomorphic sections of (My,2) which is a symplectic fibration over 52 with fibre M and
whose monodromy along the equator is given by ¢ (this construction is called the clutching
construction, see Section 2.2 for more details). To compute Seidel’s elements when (M, w) is a
toric 4-dimensional symplectic manifold and ¢ = A is one of the distinguished circle actions,
we proceed as follows.

(1) Following Gonzalez and Iritani [I8], and Chan, Lau, Leung, and Tseng [7], we notice
that (My, ) is a toric 6-dimensional symplectic manifold, see Proposition 2f]. This
allows us to reduce the computation of the Seidel elements to the computation of some
1-point Gromov—Witten invariants, see Section

(2) Then we compute the latter by induction using localization formulas from Spielberg’s
[36, B37] or Liu’s [28] for the base cases and the splitting axiom satisfied by Gromov—
Witten invariants for the inductive steps, see Section [£.4l

(3) Step (2) completely ends the computation up to some particular O—point Gromov—
Witten invariants which we preliminarily compute using a localization argument, see

Section .3l

1Actually, this first step does not require M to be 4-dimensional.
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Application in terms of Seidel’s morphism and quantum homology. As mentioned
above, Seidel’s morphism has been extensively studied for its applications. However not many
things are known concerning § itself, for example its injectivity. It is obvious that Seidel’s
morphism is trivial for symplectically aspherical manifolds since these particular manifolds
do not admit non-constant pseudo-holomorphic spheres at all. In [35], Seidel showed that for
all m > 1 Seidel’s morphism detects an element of order m + 1 in 7; (Ham(CP™, wy;)), with
wgt the Fubini-Study symplectic form. In the case of CPP? for example, this makes the Seidel
morphism injective. Determining non-trivial elements of the kernel of S in cases when S is
not “obviously” trivial would be interesting, for example to test the Seidel-type second order
invariants introduced by Barraud and Cornea via their spectral sequence machinery [3]. In
order to find such classes, one should first compute all the Seidel elements in specific cases;
here are families of examples for which the present work allows such computations.

Example 1.1 (Hirzebruch surfaces). It is well-known that Hirzebruch surfaces For are sym-
plectomorphic to S% x S? endowed with the split symplectic form wy, with area p > 1 for the
first S?—factor, and with area 1 for the second factor. Recall that Fo is Fano, Fy is NEF,
and that for all k > 2, Fop, admits spheres with negative first Chern number. As we shall
see in Section [5.3, the computations we present in this paper allow us not only to compute
directly the Seidel elements associated to the circle actions of Fo, but also to compute the
Seidel elements associated to the circle actions of Foi for all k > 2, that is, in the non-NEF
cases. We present explicitly the case of Fy.

Similar computations can be made for Fop1 which can be identified with the 1-point blow-up
of CP? endowed with its different symplectic forms.

Example 1.2 (2- and 3-point blow-ups of CP?). In the same spirit, consider the symplectic
manifold obtained from CP? by performing 2 or 3 blow-ups. It carries a family of symplectic
forms w,, where v > 0 determines the cohomology class of w,. It is well-known that it is
symplectomorphic to M, ., or M, c,, respectively the 1- or 2-point blow-up of 52 x 52
endowed, as above, with the symplectic form w,. Here, ¢y and cy are the capacities of the
blow-ups.

In previous works, Pinsonnault [33], and Anjos and Pinsonnault [2] computed the homotopy
algebra of the Hamiltonian diffeomorphism groups of M,, ., and M, ., c,. In particular they
showed that all the generators of its fundamental group do not depend on the symplectic form
nor the size of the blow-ups provided that p > 1. In both cases, all the generators but one
can be obtained as Hamiltonian circle actions associated to a Fano polytope while the last one
s associated to a NEF polytope. When p = 1, the fundamental group of the Hamiltonian
diffeomorphism group is generated only by the former. So the computations we present here
again allow us to compute all the Seidel elements of the 2- and 3-point blow-ups of CP?,
regardless of the symplectic form and sizes of the blow-ups.

Then we turn to quantum homology. Following [31], we deduce from the expression of the
Seidel elements described in Theorem a presentation of the quantum homology of 4—
dimensional NEF toric manifolds. Batyrev [4] and Givental [16] [I7] showed that the quantum
homology of Fano toric manifolds is isomorphic to a polynomial ring quotiented by relations
given as the derivatives of the well-known Landau—Ginzburg superpotential. For NEF toric
manifolds see also the works by Chan and Lau [6], Fukaya, Oh, Ohta, and Ono [13, 12], Iritani
[24], Usher [38], and references therein. As an application of our computations we are able
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to give explicit expressions for the potential in the NEF case which can be read directly from
the moment polytope, and obviously can be related with Chan and Lau’s results.

Example 1.3 (4- and 5-point blow-ups of CP2?). To illustrate what is explained above, we
explicitly compute the Seidel elements of the 4— and 5-point blow-ups of CP2. Note that these
manifolds are NEF and do not admit any Fano almost complex structure. Then we deduce
their quantum homology and we give the explicit expression of the related Landau—Ginzburg
superpotential, see Section[.d Of course, this expression agrees with Chan and Lau’s result
[6] and in Remark we indicate how.

Extensions and applications. We now discuss some extensions of Seidel’s morphism for
which there is hope to get explicit information in the setting of and with similar techniques
as the ones used in the present work.

Homotopy of Ham in higher degrees. As mentioned above, since [33] and [2] the homotopy
algebra of the Hamiltonian diffeomorphism groups of the 2- and 3-point blow-ups of CP? is
completely understood. It would be interesting in this case to compute explicitly some in-
variants of the higher-degree homotopy groups generalizing Seidel’s construction: the Floer-
theoretic invariants for families defined by Hutchings in [22] and the quantum character-
istic classes introduced by Savelyev in [34]. Briefly recall that the former are morphisms
m«(Ham(M,w)) — End,_1(QH.(M,w)) obtained as higher continuation maps in Floer ho-
mology. The latter are defined via parametric Gromov-—Witten invariants and lead to ring
morphisms H,(QHam(M,w), Q) — QHap++(M,w). Both constructions restrict to the Seidel
representation, respectively in degree 1 and 0.

Bulk extension. In this paper, what is called quantum homology should more precisely be
refered to as the small quantum homology ring. There is also a notion of big quantum
homology ring, obtained by considering not only the usual quantum product but also a family
of deformations via even-degree cohomology classes of M, see e.g Usher [38] and Fukaya, Oh,
Ohta, and Ono [14] for a precise definition. For b € H® (M), one ends up with QH?(M,w)
isomorphic to QH,.(M,w) as a vector space but with a twisted product. In [14], the authors
extended Seidel’s morphism to morphisms 7 (Ham(M,w)) — QHY(M,w)* and generalized
in the toric case part of the results of McDuff and Tolman [31]. It would be interesting to see
which information on the big quantum homology can be extracted from the present work.

Lagrangian setting. The Seidel morphism has been extended to the Lagrangian setting in
works by Hu and Lalonde [20], and Hu, Lalonde, and Leclercq [2I]. Following McDuff and
Tolman [31], Hyvrier [23] computed the leading term of the Lagrangian Seidel elements asso-
ciated to circle actions preserving some given monotone Lagrangian. He showed that when
the latter is the real Lagrangian of a Fano toric manifold, all lower order terms vanish. It
could be interesting to study the Lagrangian case in NEF toric manifolds, however the pre-
liminary question of the structure of the lower order terms has to be tackled with different
techniques than the ones used in [23] since they require the use of almost complex structures
which generically lacks regularity. Let us also mention that Hyvrier’s work as well as such a
possible extension provide examples where one can apprehend the categorical refinement of
the Lagrangian Seidel morphism due to Charette and Cornea [§].
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Organization of the paper. The paper is organized as follows. In Section [2] we review
the necessary background material, that is toric geometry, quantum homology, and Gromov—
Witten invariants. Section [3] is devoted to the case of toric 4-dimensional NEF manifolds
where we specify these notions. In Section dl we precisely state the main theorems enumer-
ating all the contributions to the Seidel morphism and the expression of the Seidel elements
(Section E1]) and we prove them (Section to Section £.4). Finally, we describe explicit
examples and applications mentioned in the introduction in Section Bl In Appendix [A] we
gather additional computations of Seidel’s elements in more cases, completing Theorem
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2. TORIC MANIFOLDS AND QUANTUM HOMOLOGY

2.1. Toric geometry: the symplectic viewpoint. Recall that a closed symplectic 2m—
dimensional manifold (M, w) is said to be toric if it is equipped with an effective Hamiltonian
action of a m—torus T and with a choice of a corresponding moment map ® : M — t*, where
t* is the dual of the Lie algebra t of the torus T'. There is a natural integral lattice tz in t
whose elements H exponentiate to circles Ay in T, and hence also a dual lattice t, in t*. The
image ®(M) is well-known to be a convex polytope P, called a Delzant polytope. 1t is simple
(m facets meet at each vertex), rational (the conormal vectors n; € t to each facet may be
chosen to be primitive and integral), and smooth (at each vertex v € P the conormals to the
m facets meeting at v form a basis of the lattice tz7). We describe them as follows:

P=Pk) ={xet|mz) <k,i=1,...,n}
where P has n facets Dq,...,D, with outward] primitive integral conormals n; € tz and

support constants k = (K1, ...,kn) € R™

Delzant showed in [I0] that there is a one—to—one correspondence between toric manifolds and
Delzant polytopes given by the map that sends the toric manifold (M,w, T, ®) to the polytope
®(M). (See [26] and the references therein for more details on this background material.)

2It seemed more relevant to follow the same convention as in [31] even though the polytope is often defined
by P’ = {x € t*|(n,z) > —kK4s, i =1,..., N} for inward normals 7;.
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2.2. The clutching construction. Let (M,w) be a closed symplectic manifold and A =
{Ap} be aloop in Ham(M,w) based at identity. Denote by M the total space of the fibration
over CP! with fiber M which consists of two trivial fibrations over 2-discs, glued along their
boundary via A. Namely, we consider CP! as the union of the two 2-discs

Dy ={[1:2€CP||z] <1} and Dy ={[z:1] € CP'||z| <1}
glued along their boundary
OD; = {[1:e727%), 9 c [0,1[} = {[e*" : 1], 6 € [0,1[} = D».
The total space is
My = (M xDiUM x Ds) /., with (z,[1: e”2™]) ~ (Ag(z), [e* : 1)).

This construction only depends on the homotopy class of A. Moreover, 2, the family (pa-
rameterized by S?) of symplectic forms of the fibers, can be “horizontally completed” to give
a symplectic form on My, wp x = Q+ k-7 (wp) where wy is the standard symplectic form on
S? (with area 1), 7 is the projection to the base of the fibration and x a big enough constant
to make wp ,, non-degenerate. (Once chosen, x will be omitted from the notation.)

So we end up with the following Hamiltonian fibration:
(Mv w)C_>. (MAa WA) — (527 WO)‘

In [31], McDuff and Tolman observed that, when A is a circle action (with associated moment
map P, ), the clutching construction can be simplified since, then, My can be seen as the
quotient of M x S by the diagonal action of St, 2™ (z, (21, 22)) = (Ag(x), (€27 21, 2™ 25)).
The symplectic form also has an alternative description in M x g1 S3. Let a € Q(S?) be the
standard contact form on S% such that da = x*(wp) where x : S3 — 52 is the Hopf map and
wo is the standard area form on S? with total area 1. For all ¢ € R, w + cda — d(®pa) is a
closed 2-form on M x S® which descends through the projection, p: M x S% — M x g1 S3,
to a closed 2—form on Mjy:

(1) we = p(w + cda — d(Ppar))

which extends Q. Now, if ¢ > max ®,, w, is non-degenerate and coincides with wy , for some
big enough .

In the case of a toric symplectic manifold fiber, the same arguments lead to the fact that
(Mp,wp) itself is toric. This fact has been already noticed and used in other instances,
e.g. by Gonzéles—Iritani [I8, Section 3.2] and Chan-Lau-Leung-Tseng [7, Section 4] in more
general settings than what we will need in this paper, so that we only give here the specific
statement which we will need, and refer the reader to the aforementioned works for details.

Proposition 2.1. Let (M?™ w,T,®) be a toric symplectic manifold with associated Delzant
polytope P. Denote by (Ma,wp) the total space resulting from the clutching construction
associated to A, Hamiltonian circle subgroup of T'. A admits a representative in T given as
the exponential of 0b where 6 € [0,1] and b € tz, the lattice of circle subgroups of T

Then there exist a (m + 1)-dimensional torus Ty C Ham(Mp,wp), and a moment map
Op: My — ) > t* x R such that (Mp,wn,Tx, @) is a toric symplectic manifold, whose
associated Delzant polytope Py and integral lattice t% are given by

Py={(z,z0) € ¢ xR)* |z € P, ¢ + (x,b) <29 <0} and £} =tz x ZCtxR
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(0,1)

—b | (bv_l)

FIGURE 2. The polytopes associated to the fiber M (left) and to the total
space My (right)

where ¢ > max{(x,b),x € P} coincides with the constant ¢ appearing in () above.

Moreover, the outward normals of Py, na, are given in terms of the ones of P, n, as follows:
A = {(77@70)7771 € 77} U {(07 1)7 (b7 _1)} .

The polytopes P and P are illustrated by Figure The upper and lower facets of P
correspond to two copies of P, the former horizontal, the latter orthogonal to (b, —1) € t* x R.

2.3. Toric geometry: the algebraic viewpoint. We now briefly review toric varieties
since we will use this viewpoint extensively. Good basic references are Cox—Katz [9] and
Batyrev [4]. There is also a good summary of the definition and some properties of smooth
toric varieties in Spielberg [37]. In what follows we mainly use his notation.

Let m > 0 be a positive integer, t; = Z" be the m—dimensional integral lattice and t; =
Hom(tz, Z) be its dual space. Moreover, let t = t7 ®z R and t* = }, ®z R be the R-scalar
extensions of tz7 and 7, respectively.

A convex subset o C t is called a regular k—dimensional cone (1 < k < m) if there exists
a Z-basis of tz, {m,...,nm}, such that the cone o is generated by n1,...,n;. The vectors
M,..., Mk € tz are the integral generators of o. If ¢’ is a (proper) face of o, we will write
o' < o. A finite system X = {o1,...0,} of regular cones in t is called a regular m-dimensional
fan of cones if any face ¢’ of a cone ¢ € X is in the fan and any intersection of two cones
01,09 € X is again in the fan. A fan X is called a complete fan if t = U;0;. The k—skeleton
2(*) of the fan ¥ is the set of all k—dimensional cones in X. A subset of the 1-skeleton of a
fan is called a primitive collection of X if it is not the set of generators of a cone in 3, while
any of its proper subset is. We will denote the set of primitive collections of 3 by P.

Suppose the 1-skeleton of ¥ is given by 7n1,...,nq. Let z1,..., 24 be a set of coordinates in
C% and let t: C* — t7 ®7 C be a linear map such that t(z;) = n;. For each primitive collection
P ={ni,...,n;,} we define a (d — p)-dimensional affine subspace in C% by

AP) == {(21,...,24) €EC?| 2z, = ... =2z, =0}
Moreover, we define the set U(X) to be the open algebraic subset of C? given by
Ux)=c’\ | AP).
peEP

The map ¢: C? — t¢ induces a map between tori (C*)¢ — (C*)™ that we will also call ¢.
Its kernel, D(X) := ker(s: (C*)¢ — (C*)™), is a (d — m)-dimensional subtorus. Then the
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quotient
Xy :=U(X)/D(X)

is called the toric manifold associated to . Note that there is a torus of dimension m acting
on Xy. Moreover, Delzant [10] showed that if X, is a projective simplicial toric variety then
it can be constructed as a symplectic quotient and therefore it is endowed with a symplectic
form w (it is also endowed with an action of a m-dimensional torus). From the moment
polytope of this symplectic toric manifold it is possible to recover the fan . However, as
explained in [5, Part B], changing the cohomology class of the symplectic form corresponds to
changing the lengths of the edges of the polytope. The size of the faces of a polytope cannot
be recovered from the fan which only encodes the combinatorics of the faces. Hence, the fan
does not give the cohomology class of the symplectic form.

Standard results about toric manifolds explain how to obtain the cohomology ring of the toric
variety Xs. Assume the moment map @ : Xy, — t* is chosen so that each of its components
is mean-normalised. Let Px, C t* be the image of the moment map. Let Dy,..., D, be the
facets of P (the codimension—1 faces), and let ny,...,n, € tz denote the outward primitive
integral normal vectors. Let C' be the set of subsets I = {i1,...,ix} C {1,...,n} such that
1<k<mand D; N...ND;, # 0. Consider the two following ideals in Q[Z,..., Z,]:

Lin(2) = (3 (e.n)Z | v € 45) and SR(Z) = (Zi, .. Ziy | {in.,in} ¢ C).

The ideal Lin(X) is generated by linear relations and the ideal SR(X) is called the Stanley—
Reisner ideal. A subset I C {1,...,n} is called primitive if I is not in C' but every proper
subset is. Clearly,

SR(X) =(Zi, ... Zi, | {i1,...,ix} €{1,...,n} is primitive).
The map which sends Z; to the Poincaré dual of ®~1(D;) (which we shall also denote by
Z; € H*(Xx;Q)) induces an isomorphism
2) H*(Xs;Q) 2R(Z1, .., Z,]/(Lin(S) + SR(S)).
Moreover, there is a natural isomorphism between Hs(Xy;Z) and the set of tuples (ay, ..., a,) €
Z" such that > a;n; = 0, under which the pairing between such an element of Hy(Xx;Z) and

Z; is a;. The linear functional 7; is constant on D; and let n;(D;) denote its value. Under the
isomorphism of (2] we have

(3) [w] :Zm(D,-)Z,- and ¢ (Xx) :ZZZ-.

Dually, let R(X) C Z™ be the subgroup of Z" defined by
(4) RE):={(m,---s7m) €EZ" |yim + ...+ =0} X Z"™.
Then the group R(X) is canonically isomorphic to Ha(Xx;Z).

2.4. Small quantum homology and Gromov—Witten invariants. Except for our appli-
cation in terms of the Landau-Ginzburg potential in Section [B] we will work with the (small)
quantum homology ring with coefficients in the ring II := II"™[¢, ¢~ !]. The variable ¢ is of
degree 2 and TI"™V is a generalised Laurent series ring in a variable of degree 0:

(5) Y .= {thﬂmé@, #{/{>c|rﬁ750}<oo,Vc€R} .

KER
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The quantum homology QH,(M;II) = H,(M,Q) ®q II is Z-graded so that deg(a ® qitr) =
deg(a) + 2d with a € H.(M). The quantum intersection product axb € QH;\;_gim pr (M;11),
of classes a € H;(M) and b € H;(M) has the form

axb= Z (axb)p @ g BB
BeHS (M;Z)

where H5 (M;7Z) is the image of mo(M) under the Hurewicz map. The homology class (a *
b)B € Hiyj_dim M+2c,(B) (M) is defined by the requirement that

(axb)p-pc= ngg(a, b,c) forall c e H (M).

In this formula GW% 3(a,b,c) € Q denotes the Gromov-Witten invariant that counts the
number of spheres in M in class B that meet cycles representing the classes a,b,c € H.(M).
The product * is extended to QH (M) by linearity over II, and is associative. It also respects
the Z—grading and gives QH , (M) the structure of a graded commutative ring, with unit [M].

Gromov—Witten invariants can also be interpreted as homomorphisms
GWH: H*(M; Q)% @ H,(Mos;Q) — Q

GW%k(al, coag;B) = / eviai U...eviar U PD(p),

Mo 1 (A;J)

where Mo,k(A§ J) is the compactified moduli space of J-holomorphic spheres with k& marked
points in M representing the homology class A. Let us recall that in general GW% clat, ... ak)
is the homomorphism

GWY,: H*(M;Q)®" - Q, (ar,...,ar) = GWY (a1, ..., ap; [Mox])
so that when k = 3, GW%g(al, as,as) = GW%g(al,ag,ag; [pt]).

For easy reference, we gather here the properties of Gromov—Witten invariants which will be
used explicitly at several places in the computations of Section @t The first two are extracted
from [30, Proposition 7.5.6] and the third is the particular case of [30, Theorem 7.5.10] for

the invariants GW%4(‘117 coyag;[pt]) = GW%’A‘{I’Q’&‘*} (a1,...,a4) (see [30, Remark 7.5.1.(vi)])
when £k = 4.

Proposition 2.2. Let (M,w) be a semipositive compact symplectic manifold, A € Ho(M;7Z),
k>1, and ay,...,ar € H*(M;Q). Then the following properties hold.

(Divisor) If (A, k) # (0,3) and deg(ar) = 2 then

GWilk(ar,...,ar) = GW_y (a1, ap-1) - /Aak.

(Zero) If k # 3 then GW{Y, = 0. If k =3 then

GW{k(ar, az,a3) = / a1 Uas Uas.
M
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(Splitting) If k = 4 then GW%4((L1, ..., ay4; [pt]) is equal to
Z ZGW%ﬁ(alva?veu)gyu GW%’3(GM,CL3,CL4)
A:AO+A1 v,
where (e,), is a basis of H*(M;Q), gy, are the coefficients of the cup-product matriz:

Gup = [y €0 Uen, and g"* the coefficients of its inverse.

2.5. Gromov—Witten invariants of toric manifolds. In this section we present Spiel-
berg’s formula from [37, Corollary 8.4] for the computation of Gromov—Witten invariants of
toric manifolds, which we will use in Section Note that Liu proved a more general result
n [28], however since we only need to compute genus—0 Gromov—Witten invariants we will
use Spielberg’s formulation and notation.

Definition 2.3. [37, Definition 6.4] Let ¥ be a complete reqular fan in Z™ and let Ps be its
dual polytope. A graph T is a finite 1-dimensional CW—-complex with the following decorations:

1. A map o : Vert(T') — Y mapping each vertez b of the graph to a vertex o(b) of Ps;
2. A map d: Edge(T") — Z~ representing multiplicities of maps;

3. A map S : Vert(I') — B({1,...,p}) associating to each vertex a set of marked points.
These decorations are subject to the following compatibility conditions:

(a) If an edge e € Edge(I") connects two vertices by, by € Vert(I') labeled o(by) and o(ba),
then the two cones must be different and have a common (m — 1)-dimensional face:
O'(bl) N 0(52) € E(m_l);

(b) The graph represents a stable map with homology class A;
(¢) The CW-complex T' contains no loops;

(d) For any two vertices by, by € Vert(I'), the sets of associated marked points are disjoint:
S(b1) N S(ba) = 0;

(e) Every marked point is associated with some vertez.

The following notation will be useful to understand the statement of the theorem. We define
the following subset of Vert:

Verty s := {b € Vert | val(b) = ¢, deg(b) =t + s},

where val : Vert(I') — Z~¢ is the function assigning to each vertex the number of outgoing
edges and deg : Vert(I') — Z~( assigns to each vertex the number of its special points:

deg(b) = #5(b) + #{e € Edge(I") | b € de}
where de = {by(e),ba(e)} associates to an edge e the two vertices by(e), ba(e) it connects.
We also need the following result:

Lemma 2.4. [37, Lemma 6.10] Let 01,09 € 2™ be two m—cones in ¥ that have a common
(m—1)—face T € 2= Let Miys- .M, , be the generators of the common face T, such that

01 = <77i17 oy M1 777(1)> and oy = <77i17 coey M1 777(2)>‘
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n

Let wy, ... ,wy be the weights of a diagonal action of (C*)™ on C™ with respect to the standard
basis. The induced C*~action on the invariant 2-sphere V. has weight w3l at the point Vs,
given by

n
wg; = Z<n£7um>w£7
=1
where {uy, ..., um} is a basis of ¥, dual to {ni,, ..., i, 0-1)}-

Corollary 2.5. [37, Corollary 6.11] Let e € Edge(I") and by, bs € Je be the vertices at its two
ends. Let o; = o(b;) be the m—cones of the vertices b; and T = o1 N oy its common (m — 1)
face, that are generated as in the Lemma above. For a stable map (C;x1,...,xp; f) fized by
the torus action, let C. be the irreducible component of C corresponding to the edge e. Let
F := (by,e) € Vert(T') x Edge(T") be such that by € de. At the point pp := [~ (Vo)) N Ce,
the pull back to C, of the torus action on V; has the weight wp at pp:
1 n
Wr = o ;(ne,umfw,
where d. is the multiplicity of the component C. and the vectors u; are as in the lemma above.

We will introduce some further notation, grouping together certain weights on a graph I'. We
will write o1 ¢ o9 for the property of o1 and o9 having a common (m — 1)—dimensional proper
face: 01 009 < 01,09 € 2™ and o1 N oy € ™Y The total weight of a m—dimensional
cone o is defined to be
o L o
Wrotal = H Wy -

oo
Finally, let o € (™ be a m-cone in the fan ¥ that has a common (m — 1)-face 7 with
o1 : aoor. Then a and o7 have (m — 1) generators in common; let 7;, € Y@ be the generator
of o1 that is not a generator of . We then set \% := ~;_, where (y1,...,7,) represents the
homology class of 7 (see (@)).

Since we are interested only in 1-point Gromov-Witten invariants we will give a simplified
version of Spielberg’s formula.

Theorem 2.6. [37, Corollary 8.4] The 1-point genus—0 Gromov—Witten invariants for a toric
variety Xy, are given by

1
Wi (Z) =Y ——Tr-
GW, T (Ze) EF:‘AF‘ r-Sr
where Ar is the automorphism group of the graph T,

00 t t—3
TF:H H (wgo(tba)l)t_l'<l_[ . )( . Tt . )

t=1beVert; (T") i=1 WF;(b) Wy (b) WE(b)

H (—1)mm2m H 1=A+1

m!)2(wgs)2m A2 .
ecEdge ( ) ( 02) a:aFog = o1 7 o1
Oe={b1,b2} and aoo H Wy — E T Way
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Sr = H H ( 1 +...+ 1 >8 .ﬁ(wz(l))zk

w w
t,5 beVerty o(I) N F1(b) F1(b)

and where

we use the convention 0° = 1;

- Zb=2z2p . 7l

o(1) is the fized point the marked point is mapped to;

0 if mgXl,
w3 if aoo(l) andny € Efj()l)\z:g”.

we define wg(l) = {

3. TORIC 4-DIMENSIONAL NEF MANIFOLDS

Now we restrict ourselves to the case of toric 4-dimensional NEF manifolds. We explain the
construction of My and its properties including its cohomology ring. This will play a very
important role in the next section.

3.1. Toric and homological data. We consider a 4-dimensional toric manifold (M, w, T, ®)
and its moment 2—dimensional Delzant polytope P. Assume it has n facets that we denote by
D;,i=1,...,n. Let vq,...,v, denote the outward primitive integral normal vectors and let
A; denote the circle action corresponding to v;, that is, A; is the circle action whose moment
map is given by @y, := (v;, (-)).

We pick a w-tame almost complex structure J and denote by ¢1 (M) the first Chern class of
(T'M,J). We assume that (M, J) is NEF, that is (c¢; (M), B) > 0 for every class B € Hy(M,Z)
with a J—pseudo-holomorphic representative.

Moreover, we consider the particular case when there are at most 2 (consecutive) facets
corresponding to spheres with vanishing first Chern number and assume their normal vectors
are v, and vy (recall that we denote v, 41 by v; as for the D}s). Since the polytope P is Delzant
we can assume that the facets D,,_1 and D, are perpendicular. Moreover, as explained in
[15, Section 2.5], the vectors v; satisfy the relations

(6) V-1 + vip1 = dvy,

where —d; = D, - D; denotes the self-intersection of the facet D;. Since the first Chern number
vanishes on the facets D,, and D, it follows that D,, - D,, = D1 - D1 = —2. Therefore we can
assume that the vectors v; satisfy the following relations:

(7) Up_1 = —€2, VUp = —€1, v =ey—2e and vy = 2ey — 3eq,
where the vectors e, e form the canonical basis of Z2.

Next, using the clutching construction described in Section 2.2, we construct the manifold
My, associated to the loop A, which we will denote simply by M, in order to simplify
the notation. As we noticed in Proposition 1], My is a toric manifold with moment map
®,. The moment image is a 3—dimensional polytope Py with n + 2 facets which we de-
note by D{\, .., DA D{)\,D,{X with corresponding outward primitive integral normal vectors
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My s Ty Moy M- D{\, ..., D) are the vertical facets of Py “coming from” the facets of P, while
D{,\ and D{\ are respectively the bottom and top facets. Note that the vectors nq,...,n, are
induced by the normal vectors vy, ...,v,. More precisely, n; = (v;,0) with i = 1,...,n. It fol-

lows from ([7]) together with the clutching construction that the vectors n; satisfy the following
relations

NMn-1 = —€2 N3 = age + PBzez = —e1 —e3
T = —€1 = e3

N = ez — 2ep nj = ajer + Bjes

N2 = 2e2 — 3e1

where now the vectors eq, es, e3 form the canonical basis of Z3. Clearly, it follows from the
definition of n;, with i = 1,...,n, together with (6) that

(8) Ni—1 + Nit1 = d;m;.

Example 3.1. Consider the second Hirzebruch surface, with a polytope with normal (outward)
vectors (0,—1),(—1,0),(—=2,1),(1,0) where the facet normal to (—1,0) corresponds to a curve
of zero Chern number (in this example we have only one facet where the first Chern number
vanishes). In this case the vectors n; are the following:

m = (-2,1,0), 2 =(1,0,0), n3 = (0,—1,0), ny = (—1,0,0), m = (—1,0,—1), n = (0,0,1).
The vertical facets of Py and the corresponding outward normals are represented in Figure
[Bl Note that the polytope is closed, but in Figure [3] we only draw the facets in which we are

interested.

2

m

TIn

DA

n

FIGURE 3. Some vertical facets of the polytope P and their outward normals.

The manifold M, is 6-dimensional, hence its fan ¥ lives in the lattice Z3. Then the 1-
dimensional cones of the fan Y. are generated by the vectors n; defined above. The set of
primitive collections of the fan ¥ is given by the following set:

P={{nms}t - Am -1t Amesmats - Az b Amsa s oo {m3s e b A=z i b {me, e } -
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From (2) it follows that the cohomology ring of M), is given by the following isomorphism:
H*(Ma;Q) = Q[21,. - - Zn, Z, Zy] /(Lin(2) + SR(X))

where SR(Y) is the Stanley—Riesner ideal of ¥ and Lin(X) is the ideal generated by the linear
relations. The former is generated by the set of primitive collections:

9) Z1Zs,...,Z0Zn-1,222y,...,7000,, L35, .. L3y s
Zn—32n-1,Zn-32n, Zn—2Zn and ZpZy,
while the ideal Lin(X) is generated by the following three elements:

(10) I +2721+3729 —a3ls3 — ... — Qp_oZy_o + Ly,
(11) Zn1— 21— 27y — B323 — ... — Bn—2Zp_2, and
(12) 7, — 7.

In view of the relations (I0)—-({12), Z,,—1, Z, and Z; are linear combinations of the others, so
that the set {Z1,...,Z,—2,Zp} is a basis of the degree 2 part of the cohomology ring. The
degree 2 homology Ho(My;Z) can be identified with the group R(X) C Z"*2 given by

R(Z) = {0y %00 W) € Z2 [9am 4 - 4 Yo+ Wi + e = 0},

where we identify ny,m; with 7,41, 7,42 respectively. If follows from the definition of the
vectors 7; that a basis for the degree 2 homology, Ha(Ma;Z), can be given by the set
{A ..., An—2, Ay} which is dual to the basis of the degree 2 cohomology, that is, Z;(\;) =1
if i = j and 0 otherwise. More precisely, the generators are given by

A= (1,0,...,0,1,-2,0,0), X =(0,1,0,...,0,2,-3,0,0),

Aj=(0,...0,1,0,...,0,85,0;,0,0), j=3,...,n—2, and X\, =(0,...,0,—1,1,1),
where the entry 1 in A; is located at the j-th entry.

From the description of the set of primitive collections, it is easy to get the set of maximal
cones in . Next we list some 3—dimensional cones (the ones that are going to be relevant for
our computations):

01 = (=2, M—1,M) 04 = (01,72, M) o7 = (=1, > M) 010 = (12,13, M)
02 = (=1, M) o5 = (12,13, M) o8 = (11, M, M)
o3 = <771777n7nb> 06 = <77n—2ﬂ7n—1ﬂ7t> 09 = <7717772777t>

Consider now, for example, the invariant 2-sphere V;,ns,, connecting the fixed points corre-
sponding to o9 and o3. Since o9 = (-1, Mn, M) and o3 = (N1, My, M), the homology class of
Voones i1s Poincaré dual to Z, Z;,. Hence the primitive relations yield

<Z1’ V02ﬂ03> = ZIZan = ZIZ2Zb7 <Zb, Vcrzﬂcrs> = 07
<Z2’ V02003> =0, ... (Zn—z, V02003> =0.

Since {Z1,...,Zn—2,Zp} is dual to {\1,..., \p_2, A\p}, this implies that V,,ns, = A1. For
another example, consider the homology class of V,,ns, which is Poincaré dual to Z3Z.
Since 11 + 13 = dana (see ([®)) it follows that 2a3 + 353 = 1 and ag + 283 = do. Using (I0)
and (II]) one obtains

<Zla Vo4ﬂo‘5> = ZIZ2Zb7 <Z27 Vo‘4ﬂcr5> = Z22Zb = _d2ZIZ2Zb7 <Zb7 V04ﬂ05> = 07

(Z3,Vosnos) = ZoZsZy = Z1Z22Zy,  (Z4,Veyrios) =0, .. (Zn_2,Ve,nes) = 0.
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Therefore V,,nos = A1 —da2A2+ A3. Calculations of the homology classes of the other invariant
spheres are similar. Moreover, it is not hard to check that the ones not identified in the
diagram of Figure ] all include contributions of generators \; distinct from A1, Ao, and .

g6 01
o7 b o9
A A1
a8 Ao a3
A — 2\ A2 —2)

oo Ao + Ao — 2\ o4
A — d2do + A3 At —d2Az + A3
010 g5

FIGURE 4. Diagram representing some invariant 2-spheres of the toric mani-
fold My and their homology classes.

Let A; € H. (M;Z) with i = 1,...,n denote the homology class of the pre-image under the
moment map @ of the facet D;. Since M, is the total space of a fibration with fiber M,
these homology classes can be identified with some invariant 2—spheres in My, V; o, - More

precisely, we have A, = A, A1 = Ay — 21 Let] Amax = N = Vosnos = Voo, . Since
aA(MpA)=2Z1+ ...+ Zp+ Zp + Zy,

where c¢;(My) is the first Chern class of the tangent bundle of Mj, it follows easily that
(c1(Mp), A1) = (c1(Mp), A2) = 0 and (c1(Mnp), \p) = 1. Therefore we have (c1(My), Ap) =
<CI(MA)7A1> =0 and <Cl(MA)7Amax> =1L

As we shall see in Section .1 in order to compute certain Gromov—Witten invariants we
will need to know some more information about the ring structure of the cohomology of My,
namely certain relations satisfied by the coefficients of the cup-product matrix G = (guu)upu,
with g,, = fMA ey Ue,, (for some basis (e,), of the cohomology ring), and its inverse, G~ =

(9" )vp-

By noticing that the cohomology of M, is non-zero only in even degrees, that the degree
0 and degree 6 groups are 1-dimensional (respectively generated by 1 and the fundamental
class of My, [M,]), and that g,, # 0 only if the degrees of e, and e, sum up to 6, it is easy

3The notation Amax is due to the fact that this is the homology class of a section of M, through points on
the maximal fixed point component of the action (prior to the clutching construction).
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to see that, as soon as (e,), is ordered so that the degree increases, G decomposes as

0 Q- 01
05 g ©
BT 0
R 00

with B the matrix composed of the (g,,u)|ey‘:2,‘eu|:4.

Now, let us specify the basis. Recall that the set {Z1,...,Z,_2, Zp} is a basis of the degree
2 part of the cohomology. Notice that by (@) and (I2]) we have Zg = 0. Then the degree 4
part of the cohomology consists of all products Z;Z; and Z;Z;, with 1 <i < j <n —2. In
view of the relations coming from SR(X), Z1Z; = 0 for 3 < j < Z,_5. Then, multiplying
(II) by Z; immediately leads to the relations Z12 + 27175 = 0. Hence, for ¢ = 1, only Z1Z
and Z1Z;, need to be considered. Recall that we have 2a3 + 383 = 1 and a3z + 283 = do
as seen above. Then multiplying (I0) and () by Z2 gives ZyZs = Z1Zy + 2737, and
73 = —dyZ1Zs + (1 — 2d2) Z2Zy,. Thus for i = 2 we only have to consider Z»Z;,. Hence, we
can explicitly write some part of B:

0Ty Z0Zy Zoly ...
Z, | -2 —2 1 0—0
Zs 1 1 —dy
Zs | 0 0 1

(13) Zy |0 0 0
\ 0 0 0
Zno| 0 0 0
Z 1 0 0

Indeed, the vanishing terms come from the relations given by the ideal SR(X), while the
non-zero terms can be computed using the definition. For example, since Z7 7, is Poincaré
dual to Vyyne, = A2 — 2A1 (see Figure H), it follows that Z1Z2Z; is given by

/ Z1Za7h = Za(hg — 20) = 1.
Mp

Using this computation together with the relations given by the ideals SR(X) and Lin(X) we
can obtain the other non-vanishing terms.

In order to simplify the notation, we will denote g,,, and g"* by using the indices of the
corresponding elements e, and e,. For example, for e, = Z; and e, = 227, g, will
be denoted g9, and g”# will be denoted gh?. Of course G and G~ ! are symmetric so
that g,, = gu and g = gM”. Moreover, note that by commutativity of the cup-product,
permuting the indices does not change the value g1 95 = g5.12 = g2,15- However, this fails for
the coefficients of G1.
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Since G'G = 1, we get relations between the coefficients of G and G~! by multiplying
particular lines of G—! with columns of G. For example,

Zglb,ugy’lb 1 _oglhl 4 glb2 _ g

Zglbﬂxg%m —0 _oglhl 4 glb2 L glbb g

v

ng,ugy’% — 0« g'b!

v

_ d2glb,2 + glb,3 =0

which lead to the fact that ¢g'®®* = —1. By using the lines of G~! corresponding to Z;Zs,
Z9 7y, and again the columns of G corresponding to Z1Zs, Z1 2y, and ZyZp,, we get some more
relations between the coefficients of the matrix G~!. We gather in the next lemma the result
of these computations.

Lemma 3.2 (Some coefficients of G™1).

glb,b —— 912,11 -1 92b,b -0
glb,2 _ 29113,1 -1 , giz,i — 2915,212 " ’ g2b,2 — 29211,1 )
glb,l _ d2glb,2 + glb,3 =0 gtst — d2g 2 4 gl?® = 0 g2b,1 _ d2926,2 + g2l),3 =1

3.2. Gromov—Witten invariants. We now compute some Gromov-Witten invariants of
My using Spielberg’s machinery from [37]. In particular we will use a simplified version of its
main theorem which we give in Section

We need to know the weights of the torus action at the different charts. By general theory each
3—dimensional cone gives a chart of the toric manifold near a fixed point. For our calculations
it will be convenient to know the following weights, which we compute using Lemma 2.4

g2 = (7711 17771’L777b> o7 = (77n 17777’L777t>

o2 __ o7
Wgs = ay Woe = a1

wg? = ag +wt Woe = a2 + wp

Wo2 = Wp — wg; = Wy — Wp
o3 = <771777n777b> o8 = (N1;ns )
wed = —ay wgs = —ay
"”—Qal—i—ag—i—wt wos = 2a1 + az + wp
wgg =wp — wgg = w; — Wy
o4 = (771,772,77b> o9 = (11, M2, M)
Wga = —2a1 — az — wy Woe = —2a1 — az — wp
wgs = 3a1 + 2a2 + 2wt wg, = 3a1 + 2az + 2wy
Woa = Wh — W) = W — Wp

where the a1, as € Z are linear functions on the weights wq, . ..
calculating Gromov—Witten invariants of this manifold. In the next lemma we will compute
some invariants which will be needed later in the proof of Theorem

,wn. Now we are ready to begin
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Lemma 3.3 (Gromov—Witten invariants).
1 if i=1,j=0b
M M. S :
GWA,ﬁax—i-Aml(ZiZj) = GWAI::ax-i-An-i-ALl(ZiZj) = 0 Zf 1= 1,] =2 and

0 if i=2j=b

9 if i=1,j=0b

GWA,i,\aerAl,l(ZiZj): 2 af i=1,7=2

1 if i=25=b

Proof. We first compute the invariant GW%;X AL+ Al,l(ZIZb)' We use the formula from
Section Since the marked point has to lie in the cone o3 or o4, we need to consider the
graphs which contain one of these cones and which represent the class Apax + An + A1, It
follows that we should consider the following graphs:

.0'3
g4 g3 g2 g7
e ° ® ®
a7 08 g9
4) ® e ®
g2 g3 g8 g9
(2) ® ® ® ) ®os
04 g3 g8 a7 g2 03 g4
3)e ° ® ® (5 @ ®

Therefore Theorem gives the following computation
(a1 +ag + wt)(ag + wy)
ar(a; + wp — wy)
B (a1 +ag +w)(ar +az +wp) (a1 + 2(wp — wy)) (a1 + ag + wi) (a1 + az + wp)

GW%ran+An+A1,1(leb) =1 +...+06)=-

(wp — wy)? (wp — wp)2(ag + wp — wy)
(a1 +as + wb)2 (a1 +as + wt)z(al + wp — wt) 1
(wp — we)? (wp — wi)?

We can compute the invariant

My
GwAmax +An+A171 (Zl Z2)

in a similar way. In this case the marked point lies in the cone o4 or g9 so we need to consider
the same graphs as in the computation above plus the following graph:

g9 a7 os g9

(6) e ° ° °

The formula now gives for GW%r:aerAnJrAl’l(ZlZg) =(1)+...+(6):

(3a1 + 2a9 + 2wy ) (a2 + wi) (a1 + a2 + wy)
ai(wp — wi)(ar + wy — wy)
n (3a1 + 2a2 + 2wp) (a1 + az + wy)(ag + a2 + wp)
(wp — wi)?(a1 + wi — wp)

GWAMH[:ax‘l'An‘l'Al 71 (Zn Zb) =
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(3ay + 2as + 2wi) (a1 + ag +wi)(ag + az +wy)  (3ay + 2ag + 2wy (a1 + ag + wp)?

(wp — we)* (a1 + wp — wy) N a1 (wp — wy)?
(3a1 + 2a9 + 2wy) (a1 + ag + wy (3a1 + 2a9 + 2wyp) (a1 + a2 + wp)(ag + wp)

2
. for )
ay (wp — we) ay(wy — wp) (a1 + we — wp)

=0.

The remaining invariants can be computed using the same formula, therefore we leave their
computation for the interested reader. O

4. SEIDEL MORPHISM IN THE NEF CASE

In this section we explain how to compute the Seidel element associated to a Hamiltonian
circle action fixing a facet of a toric 4-dimensional NEF symplectic manifold.

4.1. The Seidel morphism. Recall from Section that, starting from any closed sym-
plectic manifold (M,w) and a loop of Hamiltonian diffecomorphisms A C Ham(M,w), one
can construct a Hamiltonian fibration 7: (My,ws) — (8% wo) with fiber (M,w), where
wp = Q+ k-7 (wp) for some big enough k. Then, following [35], one can define Seidel’s mor-
phism, under some appropriate semi-positivity assumption on (M,w), by counting pseudo-
holomorphic section classes in st (My;7Z), with respect to some arbitrary choice of such a
section. This choice was made canonical in [27].

In view of our goal, we now focus on the following specific case:

(i) The manifold M admits an almost complex structure J so that (M, J) is NEF (that is,
there are no J-pseudo-holomorphic spheres with (c; (M), B) < 0).

(ii) The symplectic manifold (M,w) is a toric 4-dimensional manifold, whose associated
Delzant polytope has n > 4 facets.

(ili) A is a circle action, with moment map ®,, whose maximal fixed point component
corresponds to a divisor, denoted by Fiyax-

Notation 4.1. Since the first Chern class of M (and of M only) is extensively used in what
follows, we will denote c1(M) by ¢1 and {c1(M), B) by c1(B).

We now extract from [31] the results which will be used in this section. Notice that in our
specific setting, Fi,a.x is semifree and has dimension 2. We denote by ®pax = P (Finax) the
maximal value of the moment map. Concerning the choice of the section mentioned above,
recall that in the toric case it is convenient to choose opmax = {x} X D1 Up {2} X Dy (see the
description of the clutching construction, Section 2.2)) for any fixed point of the S'-action z
lying in Fluax. If we let Apax = [0max] € Hy (M;Z) then all the contributions to the Seidel
morphism come from the section classes Anax + B with B € HQS (M;Z) and are determined
by counting Gromov—Witten invariants in the classes Ap.x + B, see e.g [31, Definition 2.4].
Lastly, by [31, Lemma 2.2] the sum of the weights which appear in the formula giving the
Seidel morphism, as part of the exponent of the ¢ variable, is mpa.x = —1.
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Theorem 4.2 (Theorem 1.10 and Lemma 3.10 of [31]). Under the assumptions (i)—(iii) above,
the Seidel element associated to the circle action A is

S(A) = [Fmax] ® qtémax + Z ap ® ql_cl (B)témax_w(B)
BeH5(M;7)>0

where H5(M;7)>° consists of the spherical classes of symplectic area w(B) > 0 and ap €
H.(M;Z) is the contribution of the section class Amax + B defined by requiring that ap -prc =
GW%:MJFB 1(¢) for all homology classes ¢ € H,(M;Z). Moreover,

(i) If ap # 0 either ¢c1(B) =0 and ap € Hy(M;Z) or c1(B) =1 and ap € Hy(M;Z).
(ii) If ap # 0 then B intersects Fiax.

(iii) If c1(B') > 1 for all J-holomorphic spheres B’ which intersect Fyax, then all the lower
order terms vanish.

(iv) If c1(B') > 1 for all J-holomorphic spheres B' which intersect Fax but are not included
in Fiax, then ap # 0= ¢1(B) = 0.

Remark 4.3. Item (i) above reads: If ap # 0 then ¢;(B) = 0 and |ap| = 2. Indeed, when
M is 4-dimensional, |ap| = 4 means that ap has to be a multiple of the fundamental class
[M], however this case can easily be ruled out. (See for example the end of the proof of [31]
Theorem 1.10].)

Item (ii) is [31, Lemma 3.10] and shows that, even though the formula above might contain
infinitely many terms, computing the Seidel morphism is somehow “local” (that is, one does
not need to know the whole polytope). <

Recall the notation we introduced in Section B We consider the case when the polytope P,
associated to M, admits n > 4 facets, Dq,...D,. These facets correspond to divisors whose
homology classes we respectively denote by Aj,...A,. We put A, = [Fiuax] and we see the
indices mod n. For any n-tuple a = (a1,...,a,) € Z", we denote by A; = Y. a;A; the
homology class of the union of (possibly multiply covered) spheres in M whose projection to
P is given by Dz = U; D;.

Thus Theorem [£.2] combined with Remark [4.3], implies that the Seidel element is given by

S(A) = An (039 qtq>max + ZaAa ® qtq>max—W(Arl)

a

where a4, # 0 if and only if
(1) Dg is connected and intersects D,
(2) ¢1(A4z) =0 (i.e, by NEF condition, for all i so that a; # 0, ¢1(A4;) = 0).

In Theorem (4.4l below, we compute each contribution a4, in the case of polytopes where any
Dy satistying (1) and (2) contains at most two facets corresponding to spheres with vanishing
first Chern number. Notice that in case the facets corresponding to divisors with vanishing
first Chern number are not D,, and/or D; (that is, Cases (3b) and (3c)), the content of
Section Bl has to be slightly adapted.



SEIDEL’S MORPHISM OF TORIC 4-MANIFOLDS 23

Theorem 4.4. Let (M,w) be a closed NEF toric 4—dimensional symplectic manifold. As-
sume that its associated Delzant polytope has n > 4 facets. Let A be a circle action, whose
mazximal fized point component is a divisor Fyax and denote Ay, = [Finax] its homology class.
The following homology classes have non trivial contributions to S(A), the Seidel element
associated to A:

(1) A,, contributes by an, = A,.
(2) If c1(Ay) =0,
(2a) then kA, (with k> 0) contributes by axa, = An,

(2b) and if c1(Ay) = 0, then kA, + 1Ay (with k > 0 and | > 0) contributes and its
A, ifk>1,

contribution is agA, +14, = { — A, otherwise

(3) If c1(An) # 0,
(3a) if c1(A1) =0, then kA; (with k > 0) contributes by ara, = —A1,
(8b) if c1(A1) = 0 and c1(Az) = 0, then kA + lAy (with k > 0 and I > 0) also
contributes, and its contribution is
WkAr+lAz = Ay otherwise.

(8¢c) if c1(An—1) = 0 and c1(A1) = 0, then kA,_1 and lA; (with k > 0 and [ > 0)
also contribute, with respective contributions aga, , = —An—1 and aja, = —A;.

Moreover, in each case, if the facets immediately next to the ones mentioned above correspond
to spheres with non-zero first Chern number, then these are the only non-trivial contributions.

As a corollary, we compute the Seidel element associated to A in these different cases. (See
also Figure [[l in the introduction.) Recall that we also compute in Appendix [A] the Seidel
element associated to A when there exist three divisors in the vicinity of A, with vanishing
first Chern number.

Theorem 4.5. Under the assumptions and with the notation of Theorem[{.4) above, the Seidel
element associated to A is as follows.

(1) If c1(An), c1(An_1) and ¢ (A1) are all non-zero, then S(A) = A,, ® qt®max,
(2) If c1(Ay) =0,

(2a) but c1(Ap—1) and c1(Ay) are non-zero, then
tq)max

S(A) = An ® 4Ty

(2b) and c1(A1) =0 but c1(An—1) and c1(A2) non-zero, then

tq)max tq)max_w(Al) 1
— A1 ®q

S(A) = A, ®q

1 — t—w(An) 1—¢w(A) | 1] - wlAn)—w(Ar)

(3) If Cl(An) 7& 0;
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(8a) if c1(A1) =0 and c1(An—1),c1(A2) non-zero, then

témax_w(Al)

_ Pmax _ _
S(A)_An®qt Al@ql_t—w(Al)’

(3b) if c1(A1) = c1(A2) =0 but c1(Ap—1) and c1(A3z) non-zero, then

_ A t@max A tq)max_w(Al)

=A@t = MO T my

tq)max tq)max_w(A2) ) t_w(Al )_w(AQ)
1

- <A1 ®q m —Ay®q 1 — t—w(A2) — t—w(A1)—w(A2) ’

(3¢) if c1(Ap—1) = c1(A1) =0, c1(An—2) and c1(A2) non-zero, then

tq)max_w(Anfl) tq>max_w(A1)

_ (I)max _ e — T (AL
S(A) = A, ®qt A1 ® 4T 0 1— ()’

We start by deducing Theorem from Theorem .4l The proof of the latter is postponed
to the next subsection since it is much more involving.

Proof of Theorem [{.3 It is a staigthforward consequence of Theorems and [£.41

(@):

([2al):

Bal):

Ba):

By Theorem A4 only A, contributes and its contribution is of the form S(A) =
An ® qtémax'

Here A,, and its iterations induce the only non-trivial contributions. The contribution
of kA,, being A, @q¢1(kAn)tPmax—w(kAn) e get the result by summing over k (starting
at k= 0):

> témax
_ Pmax _W(An) k — -
S(A) = A, @ gt (;_0:(15 ) ) — A ® s

This case is similar to (Zal) except that we sum the contributions of all the kA;’s
starting at k = 1 (thus, the new —w(A;) as power of t).

This case is similar to ([Bal) (but for both A,,_1 and Ay).

Now we turn to (BDl). The first two terms coincide with the sum of the contributions induced
by A, and kA;. However, we also have to count the contributions of kA4; + [As. As before,

we can

—A1®q

see that

tq)max_w(Al)_w(AQ)
(1— t_""(Al))(l _ t—w(Al)—w(Az))

o
- Z ak(A1+Az)+lA1®qtq’max—(k+l)w(A1)—kw(A2)
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which sums the contributions of k(A; + Ag) + [A; (with £ > 1 and [ > 0), that is, the
contributions of all terms of the form kA; 4+ [As with k > [ > 1. In the same way,
tq)max_2w(A2)_W(Al) i~

(1 — t-w(@2))(1 — @@ —w(A2) - l;_:l k(A1 +Az)+1Az

A2 ® q ® qtq)max_kw(Al)—(k‘l'l)w(Az)

which sums the contributions of all terms of the form kA +1As with k < [. Thus the formula
given for the case (3D is indeed the sum of all non-trivial contributions.

Finally, let us look at (2B]). First decompose

1 —w(An)—w(Ar)
=1+
1 — t—w(An)—w(A1) 1 — ¢t—w(An)—w(A1)
and by replacing, we check that
A A témax A tq)max_w(Al) 1
S(A) =4, ®¢q 1w ®q 1 —¢t—w(A) | ] — —w(An)—w(A)
tq)max témax_w(Al)
=An@a 1—t—wa) A ®a 1 — t—w(Ar)
tq)max_w(An)_w(Al)
+An®q

(1 _ t_w(A”))(l _ t—w(An)—w(Al))
témax—2w(A1)—w(An)

(1 — = (AD)(1 — t—w(An—w(AD)

—A1®q

Now the first term counts the contributions of all terms of the form kA,, (as in (Zal) above),
the second term counts the contributions of kA4; (or A, + kA, see above) and then the last
two count (as for (BD) but with A,, playing the role of A; and A; playing the role of As) all
the contributions of the terms of the form kA, +[A; (with k& and [ both non-zero). O

4.2. Proof of Theorem 4.4l The proof is more or less a case-by-case proof and we focus on
Case (2l), since all the difficulties which one might encounter are already present and since
the methods used to compute the Gromov—Witten invariants are the same. Notice that Case
(2b) is one of the spectific cases described in Section [l

We need to determine the class ap of Theorem [£.2] where B = kA,, + lA; € Hy(M;Z). Recall
that this class is determined by the requirement that
ap-c= GW%:MJFBJ(C), for all c € H,(M;Z).

In the notation for the Gromov—Witten invariant we can either use the homology class ¢ or its
Poincaré dual. Let us define By ; := Apax + kA, +[A1. Now we claim that in order to prove
the theorem in Case (28) it is sufficient to compute the following Gromov—Witten invariants.

Theorem 4.6. For any k,l € N we have

0 ifk>1
2 ifk<l

1 ifk>1

2 ifk<i

oWz - { oWz = {

0 ifk>1
-1 ifk<l

where Zy, Za, Zy, € H?*(My; Q) are defined in Section [31

GWIA (Z:2) = {
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Since the proof of this theorem is quite long and technical, we postpone it to Sections [£.3] and
4] and we first finish the proof of Theorem [£4] by proving the claim.

The class ap is a linear combination of the homology classes of the pre-images, under the
moment map P of the facets of the polyope P = ®(M), that is,

(14) ag = ZaiAi,
i=1

where a; € Z. Since the dimension of the Z-module H5(M;Z) is n — 2, we can assume
that two of the coefficients a; vanish. The following lemma shows that we can choose the
coefficients ao = az = 0.

Lemma 4.7. All the classes A; are linear combinations of the basis elements {\1,..., Ap—2},
defined in Section [3.

Proof. 1t is known from the diagram of Figure [ that A, = A\ and A1 = Ay — 21 which
gives \y = A, and Ay = 24, + A;. Recall that n; = «a;eq + Bieo where i = 1,...,n. Let
Vij = o —a;B;. It is not hard to check that Relation (&) implies that ~; ;41 = 1. Moreover
vij # 01if j # i+ 1 because the polytope is convex. We can write all the A’s as linear

combinations of the basis elements )\;, using the same argument as we use in Section Bl for A,,
and Aj, which yields:

Apn_1= A2, Ay =23+ 753 M+ As,
Ap—2 = A3+ Yn—1,n-3 An—2, e Az = Ay + 742 A3 + Mg,
Ap_3 = A4+ VYn—2n-4 -3+ An_2, Ay = A1 —da Mg + As.

Since A\,—o = A,_1 it follows from the second equation that A\,_3 = A,_2 — Yp—1,n—34n_1.
Substituting this in the third equation we can find an expression of \,,_4 as a linear combi-
nation of A, _o and A,,_;. Going around the polytope we easily see that we can, recursively,
determine an expression of each \; as a linear combination of the A}s with i # 2,3. In par-
ticular, we obtain expressions for A3 and A4 which implies, by the last two equations, that As
and Aj are linear combinations of the remaining Als. O

Therefore, from now on, we assume ag = az = 0 in the linear combination (I4]). Recall that

ap-c=GWY* 1 (PD(c))

for ¢ € Ho(M;Z). If ¢ does not contain A,_1, Ay, A1, Ay then clearly the Gromov—Witten

invariant GW%{’;&X 451 (PD(c)) vanishes when B = kA, + [A;. Therefore

0=GW)Y* _; (PD(4s)) =ap- Az =a
because ao = az = 0. Then, using that a4 = 0, we get
0=GWY* 5 (PD(Ay) =ap-As=as
and by repeating the process around the polytope we get for all k, 3 < k <n — 2,
0=GWY* o (PD(A)) =ap - Ap = app



SEIDEL’S MORPHISM OF TORIC 4-MANIFOLDS 27

so that all the coefficients vanish except a,,a;. That is, we obtain ap = a,A, + a1A; for
some a,,a; € Z when B = kA, + [A;. Since PD(As) = Z3Z;, and PD(A;) = Z1Z,, it follows
from Theorem that if £ > [ then

0=GWgp (Z22) =ap - Az = (anAn +a14r) - Ap = ay,
1= ng/;;’\ (leb) =ap-A = (anAn + alAl) A =a, — 2ay.
k

2t
We conclude that a,, =1, a1 =0 and ag = A,, in this case. If £ < [ then we obtain
—1= wa){;k (Z2Zy) = a1 and 2 = GW{,‘{BAk (Z1Zy) = an, — 2a;.

1 0L

Therefore, in this case, a, =0, a1 = —1 and ag = —A;. This concludes the proof of Theorem

44, Case (20).

4.3. An intermediate result. Before giving the proof of Theorem 6] we first need an

intermediate result about some particular 0—point Gromov—Witten invariants. Recall that,

by the divisor axiom, the O—point invariant GWéM A(A), for A#0 € Hy(Mp;Z), is given by
1 My

WGWA,?, (h,h,h)

where h € H?*(My;Q) is such that h(A) = [, h # 0. From now on we will suppress the

indication of the number of marked points when that number is clear from the context and
the expression for the Gromov—Witten invariant.

GW (A) =

Proposition 4.8. Let k and | be non-negative integers. Then
1

L k=0

QWMA(kA, +14)=¢ ~p ¥ k=0
1

E if k=1,

0 otherwise.

Proof. In Steps 1 and 2 below, we prove the result in the first two cases. Then, in Step 3.,
we prove the result in the remaining cases by adapting Steps 1 and 2. A good reference for
what follows is [2§].

Step 1. Let k£ > 0. We begin with some preliminaries about moduli spaces of stable curves.
Let Mom((CIP’l, k) denote the moduli space of genus 0, n—pointed, degree k stable maps to CP*.
Let p : Mo 1(CP, k) — Mo o(CP!, k) be the universal curve, and let ev : Mg 1 (CP!, k) — CP!
be the evaluation map at the marked point. MO,O((C]P’l, k) is a smooth Deligne-Mumford stack
of dimension 2k —2 and the map p is the forgetting morphism, which forgets the marked point.
The following short exact sequence over CP!:

0— O(C]pl — O(C]pl(l) D Ocpl(l) — O(C]pl (2) = T(C]pl — 0,
induces the short exact sequence

0— Tépl = Oc]pl(—Q) — Oc]pl(—l) D Oc]pl(—l) — O(C]pl — 0.
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Given a genus 0, 0-pointed, degree k stable map u : C' — CP', we have a short exact sequence
of vector bundles over the domain C:

(15) 0— U*O(C]pl(—2) — U*Ocpl(—l) D U*Ocpl(—l) — OC — 0.
Since H°(C,u*Ocp1(—2)) = {0} and H(C,u*Ocpr (—1) ®u*Ocpr(—1)) = {0}, the long exact
sequence in cohomology associated to (I5]) becomes

0— HYC,0¢) - HY(C,u* Ocp1 (—2)) = HY(C,u*Ocpr (—1) & u*Ocp1 (—1)) — 0
where the complex dimension of H!(C,u*Ocp1(—2)) and H(C,u*Ocp1 (—1) @ u*Ocpr (—1))
are respectively 2k — 1 and 2k — 2.

Next we define two bundles over Mg o(CP!, k):
By :=p.ev*Ocp1(—2) and Vj := peev(Ocpi(—1) @ Ocpr(—1)).

The bundle Ej, has rank 2k — 1 and its fiber over [u : C — CP'] is H'(C,u*O¢p: (—2)), while
Vi has rank 2k — 2 and fiber H'(C, u*Ogp1 (—1) @u*Ogp1(—1)). They belong to the following
short exact sequence

0—>0m— E,— Vi, —0,
where O is the trivial line bundle over ﬂo,o(C]P’l, k). Therefore, the Euler and Chern classes
of these bundles satisfy

(16) e(Ey) = car—1(Ex) =0,  e(Vi) = car—2(Vi) = con—2(Ek),
Finally, recall that f[ﬂo o (CP1 1) e(Vg) = k_13 (see Manin [29]).

Step 2. We now consider the case of a toric fibration 7 : M — CP! where the total space is
a toric manifold of (complex) dimension 3 and each fiber is diffeomorphic to the toric surface
M. Using the previous notation, we want to show that

wamg:/ 1= L
[Mo,0(Ma,kAR)]vir k

We first introduce some notation. We have
H¢.(point; Z) = H*(BC*;Z) = H*(CP*;, Z) = Z[u],
where u = ¢;(Ocpee (—1)) is the first Chern class of the tautological line bundle over BC* =

CP>. Let L, denote the C*—equivariant line bundle over a point given by the 1-dimensional
C*-representation t + t"*. Then

(c1)cs (Lmy) = mu € Hz.(point; Z) = Z]u).
The action of C* on CP! by t - [x,y] = [tz,y] has two fixed points: 0 = [0 : 1] and oo = [1 : 0]

and at these points
(c1)c(ToCPY) = u,  (c1)c (TooCPY) = —u.

There is a unique lift of this action to My which acts trivially on 771(0). This lift induces a
C*—action on Mg o(My,kA,) and we have
ﬂo,o(MA, k‘An)C* = FyU F

where Fyy and F., can be identified with Mg (CP!, k) as moduli spaces of maps to 7~ *(0)
and 7~ !(00), respectively.
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By virtual localization [19],

1 1
/_ 1 :/ vir +/ vir
[MO,O(MA,kAn)}Vir [Fo]vir EC* (NFO ) [Foo]vir EC* (NFoo)
where N}’;{if and N}i are the virtual normal bundles to Fy and F,, respectively.

Let ¢ = [u: C — CP'Y € Fy. As explained in [28], the tangent space T, 51 and the obstruction
space Tg at the moduli point & € Mg o(My, kAy) fit in the tangent-obstruction exact sequence:
a7 0 — Ext’(Qc, Oc) = H(C,u*TMy) — T}

— Ext' (Q¢, 0c) = H (C,u*TMy) — T¢ — 0
where

° ExtO(QC, Oc¢), respectively Ext! (Qc, O¢), is the space of infinitesimal automorphisms,
respectively deformations, of the domain C,

o HO(C,u*TMy), respectively H'(C,u*TMy), is the space of infinitesimal deformations
of, respectively obstructions to deforming, the map wu.

Equivalently,
0 — Ext’(Qc, Oc¢) —H(C,u*TCP") & L, — T}
— Ext'(Qc, 0¢) = H(C,u*O(=2)) = T¢ 0.
Together with the fact that e(Fjx) = 0, this leads to

/ 1 _/ e(By) 0
[Fo]vir €C* (N}%r) Mo.o(CP? k) e(Ly,) )

Suppose now that £ € Fi. In this case (I7) is equivalent to
0 — Ext’(Q¢, O¢) =H(C,u*TCP") & L_, — T}
— Ext!'(Q¢, 0¢) = H'(C,u*O(-2)) ® L_y, = T — 0

so that
/ L / e(Ey ® L_y)
(Faelvir € (NFE) S Rpo(CPL k) u
where
2%—1 2%—1
e(Br® L_y) = Z (—u)'eop—1-i(Ex) = —ue(Vy) + Z con—1—i(Ex)(—u)’
i=0 i=2

by ([I6). Together with the aforementioned result due to Manin, this now yields

1 / !
_— = — € V = 733"
/[Foo]vir ecx (N};}oi ) mO’O((CPl ,k;) ( k) kg

This proves that GW(kA4,,) = —k—lg, which finishes the proof of the first case of the proposition.
The second case follows by symmetry.
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Step 3. For the third and fourth cases we adapt Steps 1 and 2 above to the case of genus 0,
1-pointed, stable maps u : C — CP! x CP' of degree k to the first sphere and of degree I to
the second sphere. We denote the moduli space of such maps by Mo 1(CP! x CP!, (k,1)), it
is a Deligne-Mumford stack of dimension 2k + 2I.

As above, we define the evaluation map ev : Mg 2(CP! x CP!, (k,1)) — CP* x CP! and the
forgetful map p : Mo 2(CP! x CP*, (k,1)) — M1 (CP' x CP!, (k,)) which forgets the second
marked point, and we consider the following short exact sequence over CP! x CP':

0 =Ocp1(—2) X Ocp1(—2) —
— (Ocp1 (—1) ® Ocpi(—1)) x (Ocpr (—1) ® Ocp1(—1)) = Ocpr x Ocpr — 0.
Given [u: C — CP! x CP'] € My 1(CP! x CP!, (k,1)), this exact sequence pulls-back to
0 = u*(Ocp1(—2) x Ocp1(—2)) —
— u*((Ocpr (—1) ® Ocpr (1)) x (Ocpr(—1) ® Ocpr(—1))) = w* (Ocpr x Ocpr) — 0.
In a similar way to the previous case we define bundles
B = psev* (Ocpr (=2) x Ocp1(—2)) and
Vii = p«ev*((Ocpr (—1) ® Ocpr(—1)) x (Ocpr (—1) ® Ocpr(—1)))

over Mo 1(CP! x CP!, (k,1)). Now Ey; and Vi, have rank 2k + 2l — 2 and 2k + 2] — 4,
respectively. In this case we have the following short exact sequence of bundles

0—)0/\/( —)EkJ _>Vk,l —)0,
where, again, O is the trivial bundle. So relations (I6]) become in this case
e(Ery) = cortoa—2(Fr1) =0,  e(Viy) = coartou-a(Viy) = cortoi—a(Ery) -
We consider the same C*—action as above, with fixed points 0 = [0 : 1] and co = [1 : 0], and

its lift to My acting trivially on m_1(0). It induces a C*-action on My o(Ma, kA, + A1).
Analogously to the first case we have

Moo(Mp, kA, +1A1)" = Fy U Fi
where Fp and Fi, can now be identified with Mg 1(CP! x CP?, (k,1)).
Again, by virtual localization [19],

/ 1 :/ . vir +/ . vir \ -’
[Mo,0(Ma,kAn-+LAD]vir (Fovir ecr (NR')  Jipa)vir ecs (NEL)
However, in this case, since dim Mg 1(CP! x CP, (k,1)) = 2k + 2l and both Euler classes

e(Ey;) and e(Ey; ® L_,) have smaller degree than this dimension we conclude that both
integrals

/ 1 / e(Ek)
— = and
[Fo]"ir ec (NF() ) MO,I(CPlXCPlv(kvl)) C(Lu)

/ # . / e(Ek & L_u)
[Fao]vir € (NEY) S Ro1 (CPT X TP (k1)) u

vanish, unless k = [ when we can reduce the calculation of the Gromov-Witten invariant to
the first case by considering curves in class k(A4, + A4;). O
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4.4. Proof of Theorem We are now ready to prove Theorem which will conclude
the proof of Theorem [£.4]

We use an induction argument. First notice that using the results from Spielberg recalled in
Section [2.5], we can easily compute the value of the three Gromov—Witten invariants of Theo-
rem [£.6] for the base cases k = 0,1 and | = 0, 1 (see LemmaB.3] for the computation of some of
these invariants). Now we assume they hold for all values 4, j such that i <k—1and j <l—1
and we will prove they also hold for i = k and j = [. Because [M] - [o] = 1 for any section
class o, the divisor axiom for Gromov-Witten invariants (see Proposition [2:2]) implies that the
1-point invariant GW%:M +p1(¢) equals the 3-point invariant GW%;X +pa([M],[M],c). Tt
follows easily, from the fan description of the manifold My in Section [B] that PD([M]) = Z,.
Therefore we need to compute the Gromov—Witten invariants

GW%rjr}ax‘i‘B,g (Zb7 Zb’ Z)

with Z € H*(M;Z) since the degrees satisfy the equation 2deg Z, +deg Z = 2N +2¢;1 (By,) +
2m —6 where dim My = 2N = 6, deg Z}, = 2, ¢1(By,;) = 1 and m = 3 is the number of marked
points.

The main idea of the proof is to compute well-chosen Gromov-Witten invariants via the
splitting axiom along two different partitions and then deduce relations from the two resulting
expressions. Namely, we start with GW%CAL (21, Zy, Zy, Z1; [pt]), from which we will deduce:

Lemma 4.9. GW%:‘Z(Zle) and GW%/‘;AZ(ZlZg) satisfy the following equations:

(18)  (k—20)GWR* (Z12,) + GWE (Z125) = k — 2, ifk>1,
(19) (k=2 GW* (Z12,) + Gw%gl(zlzg) =2k —4l+2, if k<.

Proof. Step 1. We use the partition Sy = {1,2}, 51 = {3,4} of the index set {1,2,3,4}
and apply the splitting axiom so that we get:

CWA (21,20, 20, Z0s[0t]) = Y GWs(Z1, 2, e0) 97 QW i€, Zo, Z1)
Co+C1=DBy

where the sum runs over all Cy, C7 such that

Co = Amax + koA, + oAy or Co = koA + oAy
Ci=kA,+14 C1 = Apax + k1A, + 11 A1

with kg + k1 = k and [y + [; = [. In order to ease the reading, we used in the equality above
as well as in the rest of this proof, the Einstein summation convention with respect to the
basis of the cohomology (and thus forgot Em L from the notation).
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This leads us to
GWp (21, 202y, Z1:[pt]) = GWL 5(Z1, 2y e0) 97 GWIR s, (e 2o, 1)
+ GW%gA,l,ff(Zl’ Zy, ev) g G'VV(])\TIBA (€us Zv, Z1)

M v M
T Z GWBkAo,zoﬁ(Zlv Zsev) 97 GWis 41, 4, 3(€ns 2o, Z1)
1<ko+lo<k+I1-1

+ GWé\,@A(Zl, Zy,en) gt GW%fZ73(eM, Zy, Z1)
+ GW]k\ﬁ\n-i-lAL?)(Zl? Zb7 el/) gu,u wa‘frﬁaxﬁ(e“’ Zb, Zl)

Mp Vi My
+ Z GWkoAn—‘rloAl,fi(Zl? Zb? eV) g GWBkl,ll 73(6117 Zb7 Zl)
1<ko+lo<k+I—-1

Now, by using the divisor axiom (see Proposition 2.2) together with the fact that [ A, Ly =
fAl Zp =0, we end up with:
(20) GW%:LA(ZM Zy,Zy, Z1; [pt]) = 2 GW%:hg(Zl, Zy,ey) g°* GWS@A (e“, Zy, 7).

Moreover, kal Z1 = Z1(Amax + kA, +1A1) = k-2, kal Zp = 1 and by the zero axiom (see
Proposition 2.2)):

-2 lf eu = Z17
GWoz (e 2, 21) 2/ e UZyUZ =4 1 ife, =2,
Ma 0 otherwise.

So one gets that (20) leads to
(21)  GWRA (21,20, 2, Zis[pt]) = 2(k —20) Y GWRA ((e,) (9" — 29"") .

v:ley|=4

Remark 4.10. From the diagram of Figure[] GWKAI ,(ey) # 0 only if the class e, is Poincaré

dual to one of the following homology classes: A,_1, An, A1, A2, Amax, O Amax + A1, since
the marked point should lie in one of the following cones: o3, o3, 04, 07, 03, or og. Their
Poincaré duals are the classes Z,,_1 %2y, Z,Zy, Z12y, ZoZy, Z1 4y, and Zq1 Zs, respectively. Note
that the only ones that belong to the basis of the cohomology are 717y, Z5Z, and Z1Zs.
Therefore, at most three terms appear in the summation in Equation (2I]) above and the
coefficients can be computed thanks to Lemma <

In the case of Equation (2I), we end up with

(22) ng{:lvﬁt(zl, Zv, Z, Z1; [pt]) = 2(k — 2l)GWf;i{§hl(leb) .
Step 2. We use the partition Sy = {1,4},5; = {2,3}.

The same Gromov—Witten invariant is given by the following expression

(23) GWg, (21, Zo, Z, Z0; [pt]) = GWo 3 (Z1, Z1se) ¢ GW ™ o(ep, 2o, Z)

My Vi My
+ Z GWkoAn+loA1,3(Z17 Z17 eV) g GWBkl,ll ,3(611" Zb, Zb)
1<ko+lo<k+I
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Since (by the zero axiom):

4 if €y = Zl
GW(J]’\{;\(Zlyzler):/ Z%Ue,,: -2 ife,=Zsore, =2, |,
My 0 otherwise
ko — 210 if €y = Zl,
and / e, = ly if e, = Zo,
koAn+loA1L 0 otherwise

it follows from the divisor axiom that (23] is equal to

(24) = > (g™ —2¢ —28")GWE" | (ey)
p:leu|=4
M
> D (ko= 20)*CW(koAn +1oAr) (ko — 2l0)g™ + 1o g™) GWEE 1 (e,)
#o 1<ko+lo<k+l

where GW (koA,, + lpA1) denotes the O—point invariant in class koA, + lgA;. These were
computed in Proposition .8 In order to simplify the expression, we will denote them by
GWy. We will also omit the index 1 indicating the number of marked points for the various
1-point Gromov—Witten invariants appearing in what remains of the proof.

In view of Remark [£.10] above and Lemma B.2] equation (24]) actually reads

= — ZGW (Z1Z2) Z (k’o — 2[0)2GW0 |:(k70 gl’lb + lo) GW%Q L (Z1Zb)
1<ko+lo<k-+1 ’

+ho g P GWES (Z224) + ko g TGW (2122))} .
Then, using Proposition [4.8], we separate the summation in three summations: kg = 0, Iy = 0,
and k() = lo:
(25)

1
= —2GW (Z1Z2 + Z 410 <—%> GWAB{CAJI (Z1Zy)
lo=1

k
1
+ >k <_/<:—8> [gl’lb ngﬁ (zy) + gl’szWg[kAl (Z22) + gl’lzGW%:‘l J(leg))}
ko=1
min(k,l)

-y k0<k3> [ gD CW (21 2) + g" P CWy)  (ZaZ) + gl’mGW%fhll(ZlZg))}
ko=1

Applying the induction hypotheses and Lemma we can simplify even further this expres-
sion. However we need to consider two different cases:

(a) If k£ > [ then (25) is equal to

k—1 l
=— 2GW%€f1(2122 — A+ Z ghlb 4 g2 o112y Z gt Z (g™ + 1)
(26) k1=0 k1=l ko=1

:_QGW (Z1Z)+l(gl’2b—291’12)—(k+2[)gl’1b—5l
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(b) If £ <l then (25) is equal to

= —2GWy" (21 25) 421— 22—2 L0 gh20 4 9ght2)

11=0 l1=k+1 ko=1

(27) k
. Z(gl,lb _gl,2b +25]1,12)
ko=1

= —2GWH* (Z1Z) — 4(k +1) = 8(1 — 1 — k) + 6k — 2k(2g"2 — g2)

Step 3. We use the fact that the results of Steps 1 and 2 coincide, i.e. when k > [,
22)=(26)) while when k < I, (22)=(27).
First we consider the case k > [, (22)=(26) leads to
M M
2(k —21) GW 2 (Z123) + 2GW ! (Z122) = 1(g" — 29M12) — (k + 20) g"' — 5.

In particular, when & = 1,0 =0 and k = 1,1 = 1, it follows from the base cases (Lemma [3.3])
that the matrix elements satisfy:

(28) ghlb — _9 and 99112 _ gl2b — 3
respectively. Getting back to the general case, we finally deduce:
(a) For k > 1, 22)=(20) together with (28] give

(k — 21) GWMA (212,) + GW A (Z122) = k-2,

(b) and for k < I, 22)=27)) together with (28)) give
(k —20) GW ™ (Z12,) + Gw%gl(zlzg =2k —4l+2.

This ends the proof of the lemma. O

We now proceed along the same lines but for two other Gromov—Witten invariants, namely,
M M
GWB£Z74(Z17Zb,Zb7Z2§ [pt]) and GWB£I’4(ZQ,Zb,Zb,ZQ; [pt]).

Since the method is exactly the same, we leave the computation to the interested reader and
we simply give the four resulting equations.

Lemma 4.11. From GVVMA (21, Zy, Zy, Z; [pt]), we deduce

(29) 1GWE (Z12y) + (k — 2)GWE (Z22y) — GW N (Z122) =1, ifk>1,
(30) 1GWH (Z12) + (k — 21)nggl(zgzb) — ngkfl(zlzg) =4l —k—-2, ifk<l

Lemma 4.12. From GWB (Zg, Zy, Zy, Za; [pt]) we deduce:
(31) (2 +2d2 — 1) GW (Z22) + dgGWMA (Z125) = ifk>1,
(32) (2 +2dy — 1) GW (Z27) + dgGWMA (Z1Zy) =1 -2, ifk <1,

where dy comes from the matriz G, see Table (I3)).
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In order to conclude the proof of Theorem [4.6], we consider two linear systems:

e one given by the equations (I8), ([29)), (31), corresponding to the case k > [ of Lemmas
49 417, and E12] above,

e the other given by the equations (19)), (3Q), (B2]) corresponding to the case k < I.

The unknowns of these linear systems are the Gromov—Witten invariants we are looking for,
namely, GW%CAI(Zle), GW%CAI(ZlZg), and GW%{‘I(ZQZb). The unique solutions of these
systems give us the desired result.

5. APPLICATIONS AND EXPLICIT EXAMPLES

In this section we show some applications of our results and illustrate their relevance with some
particular examples. More precisely, in Section [5.1] we show how to obtain an expression for
the Landau—Ginzburg superpotential from the moment polytope of a NEF toric 4-manifold.
In Section we compute the Seidel elements, the quantum homology ring and the Landau—
Ginzburg superpotential for two examples of NEF toric surfaces, namely CP? blown—up at 4 or
5 points. Finally, in Section (£.3] we show how we can use the Fano and NEF computations to
obtain explicit expressions of Seidel elements for some particular non-NEF manifolds, namely
the Hirzebruch surfaces Fo or For_1 with £ > 2. As an example, we compute them explicitly
for Fy.

5.1. The Landau—Ginzburg potential. In this section we follow the works of McDuff-
Tolman [31] and Ostrover—Tyomkin [32] which were themselves developments of original ideas
due to Batyrev [4] and Givental [16] [I7]. In particular, we will also use quantum cohomology.
The definition is similar to quantum homology in Section 2.4] except that the coefficient ring
is II := 1"V [g, ¢71], with

v .— {Zr,{t“ ‘ re €Q, #{k<cl|ry,#0} <oo,Vce ]R}
KER

(compare with (5])) and that the product on QH*(M;w) = H*(M;Q) ®¢ II is Poincaré dual

to the intersection product and is called the quantum cup product.

Let us recall some notation. Consider a torus 7" with Lie algebra t and lattice tz. Let (M,w)
be a smooth toric 2m—manifold with moment map ® : M — t* and with moment polytope P.
Let D1,...,D, be the facets of P, inducing homology classes 4; = [®~Y(D;)] € Ho(M;7Z),
and let vy,...,v, denote the outward primitive integral vectors normal to the facets. The
moment polytope is given by

P={xet'|(z,vj) <kj, for j=1,...,n}

where x; € R. Any face of P, given as the intersection of facets Dj,,..., Dy, admits a dual
cone consisting by definition of those elements in t which are positive linear combinations of
Vj,, ..., 05, As explained in [31} Section 5.1}, any vector in t lies in the dual cone of a unique
face of P. Therefore, a subset I = {i1,...,ix} C {1,...n} determines a unique face of P
whose dual cone contains v;;, + ...+ v;, . This face is given as the intersection of facets which
we (still) denote by Dj,, ..., Dj, and there exist unique positive integers ci, ..., c; so that

'Ui1+---+vik_Clvj1_---_céng:0-
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Batyrev showed that if I is primitive, the sets I and J = {j1,...,j¢} are disjoint. Moreover,
if 81 € Ho(M;Z) is the class corresponding to the above relation (recall from Section 23] that
Hy(M;Z) is isomorphic to the set of (a1, ...,a,) € Z" such that 3 a;u; = 0), then by (3):

(33) Cl(ﬂj):k—cl—...—Cg,
w(Br) = vi, (Diy) + .. + 03, (Dsy) — 10, (Dyy) — ... — v, (Dj,)
(34) =Kip + ... F Ry, —ClKj — ... — CKj, -

Denote by A; the circle action corresponding to v;, that is, A; is the circle action whose
moment map ®p, is given by the composition of the moment map ® : M — t* with the
linear functional v; € t. Let S*(A;) = y; @ ¢~ 't~%(P) € QH®Y(M,w)* be the cohomological
counterpart of the Seidel element. In [31] the authors show the following result.

Proposition 5.1. Let QH*(M,w) denote the small quantum cohomology of the toric manifold
(M,w). The map © which sends Z; to the Poincaré dual of ®~1(D;) induces an isomorphism

Q[Z,. .., Z,) ®11/(Lin(P) + SRy (P)) = QH*(M,w),

where the ideal Lin(P) is generated by the linear relations

Lin(P) = <Z(x,vj)zj |z e t§>
and the ideal SRy (P) is given by
SRy (P) = <Y,~1 LY, S YR LLY @ g BB T = iy, .. i} is pm’mz’tz’ve> :
where
(35) Y; = Z; + higher order terms,
is a lift of the Seidel element y; in Q[Zy, ..., Z,) @ I, such that ©(Y;) = y;.

As McDuff and Tolman explain in [31], in general, it is not possible to find Y; without prior
knowledge of the ring structure on QH*(M,w) but, in special cases, we can indeed describe
Y;. In the Fano case the higher terms vanish and we may take Y; = Z;. In the NEF case
there might be higher order terms in the Seidel elements y;, however, from [31, Theorem 1.10)
we know that the lifts Y; of y; are determined by some linear combination of the Z; which is
unique up to the additive relations Lin(P) (see [31, Example 5.4] for more details).

5.1.1. Fano case. In this case the Landau—Ginzburg superpotential is given by
n
W = Z 2Vt
j=1

.. . (3 (3
where for v; = (vj1,...,0;,) € Z™ the term 2% is the monomial 27" ... zp]™.

We now recall a result obtained by Givental in [17] (which we illustrate with Ostrover—
Tyomkin’s formalism, see [32, Proposition 3.3]).

Theorem 5.2. If (M,w) is a symplectic Fano manifold, then
QH*(M,w) = T[zf,...,25]/Jw as T-algebras

rTm

and in particular
QH(M,w) = TT™V[E . 22]/Jw as TI™Y —algebras
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where Jy is the ideal generated by all partial derivatives of W.

In [32] the authors consider the natural homomorphism

U:Q[Z1,..., Za) T = H[255, ..., 22E]

rm

such that SRy (P) is in the kernel of ¥ and the image of the additive relations gives the ideal
Jw. In this case the homomorphism is defined by

U(Z;) = qz"7t"

and it is easy to see that W satisfies the desired properties. Indeed, as we saw above, in the
Fano case we may set Y; = Z; hence

SRy (P) = <ZZ- o Ziy = Z5 28 @ g P00 | T = iy, i) s primitive>
and
(Ziy ... Ziy — Z5) .. 250 @ g PPy
— gFzvin L ViRt t Ry _ gertecte ey ey ik tetey, @ ger(Byw(Bn) —
by [B3)) and (B4]). Therefore the ideal SRy (P) is in the kernel of .

The image of the additive relations is the following

n

U Z(m,vj)Zj :qZ(az,vj)z”jt“f.
j=1

j=1
On the other hand, we have

1474 - -
_ 5,1 vj,i—1 Vim ki _ V) 1K
£ —qzig VjiZy e 2 coezm T =g V27t

(2

az;
j=1 j=1
Note that if x = e; is the i~th vector of the canonical base in R" then (z,v;) = v;; and one
obtains the desired result.

5.1.2. NEF case. In this subsection we give the explicit expression of the Landau—Ginzburg
superpotential when M is a NEF 4-dimensional toric manifold for which at most 2 of the
homology classes A; = [®~1(D;)] of the pre-image of the facets D; have vanishing first Chern
number. It follows from the proof of the next proposition that the result generalizes to any
number of classes (corresponding to facets of the polytope) with Chern number zero, but
the expressions get more complicated as we increase the number of such classes. Moreover,
Theorem still holds for these cases.

Proposition 5.3. If M is a NEF toric 4-manifold and A; = [®~1(D;)] where D; is a facet
of the moment polytope then the Landau—Ginzburg superpotential is given by the following
expression:

(1) if c1 vanishes only on the class Ay then

n

_ Vigki Vi 4K +RKp_1—K

W_E 2VItRT 4 VR R TR R
j=1
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(2) if c1 vanishes only on the classes Ax_1 and Ay then

n
W = E 2VitRi SVk k1T RE—1— Kk + SVk—1¢REtRE—2—Kk—1
Jj=1
+ SVk k1T RE—2— Kk -1 + SVk—1¢Rkt+1HRE—2—KE

Proof. Case (1): in this case the Seidel elements are given by Theorem

S(Aj) =Aj@qt" if j#k—1,kk+1,

. t/‘fkfl_w(Ak)

j— Fk—1

S(Ap-1) = Ap1 @ @™ = A @ 47—y
the

S(Ae) = Ak @ 07—y

tﬁkﬁ»l_w(Ak)

SBe41) = App1 @ g™+ — A ® ¢— oy

If S* denotes the Seidel morphism in cohomology then we have

S*A)=Zj@q 't i j Ak -1k k+1,

. 1@ (Ak) T
S*(Ag-1) = Zk—l—Zk@’m ®q 't ;

—KE

* _ -1

. 1w (Ak) s
S (Ak+1) = Zk+1 — Zk X m QKq 't k+1

Thus in equation (B3] we may take

. 3 1
Yy =Z; if jEk-Lkk+1, Yi=2@— s,

1(Ak) 1 (Ak)

Vi1 =Zk =2k @ 7oy Vet = Zent — e © oy

where w(Ag) = Kgi1 + Kk—1 — 2K¢. In this case, the definition of the homomorphism W is
such that

(36) V1<j<n, VU(Y;) =qz"t"

So one obtains

S

(Z;) = qz%t" it j#Ek—-1,kk+1,
(Zk—l) = qZkalthfl _|_ qzvktnk+1+nk*1_ﬁk :
(
(

S

N Zk;) — qzvktnk(l _ tw(Ak)) — qzvktnk _ qzvktﬁk+1+ﬁk,1—nk ,

Zk—l—l) — qzvkﬂtﬂkﬂ + qzvktlikﬂ-i%kﬂ—ﬂk )

S
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It is clear, by definition of ¥ and the proof in the Fano case that SRy (P) is in the kernel of
the homomorphism. Computing the image of the additive relations gives

n n
\I'(Z(x ”J')ZJ') =g ) (w,05)2 % — q(a, vp) 2 kTR
j=1 j=1
4 q(x7 fuk_l)zvktﬁkﬂ'i"ikq—ﬁk + q(x7 vk+1)zvkt’€k+l+’$k71_’ik'

In order to obtain the derivatives of the potential we need

(x,v5—1) + (x,v541) — (z,v5) = (z,vg), that is, vg_1 + Vg1 = 20k,
which holds, if dim M = 4 and ¢;(Ay) = 0, as noticed already in Section B.Il Equation ().
Case (2): In this case Theorem [A.5] gives the following:

Y=2;, if jAk—2k—Lkk+1,
1w(Ag—1) 1w (Ag—1)+w(Ag)
— L1 ®
(1— tw(Ak—l))(l — tw(Ak71)+w(Ak))

Yio=Zp0o—Zp1® T

@ (Ag—1)+2w(Ag)

T2k ) (1 oA el
1 1 (Ax) 1
Vi1 = <Zk_1 ® 1 — pw(A_1) 2k ® 1— tw(Ak)> 1 — tw(Ap—1)+w(Ag) ’
1 e Ar-1) 1
Y = <Zk ® 100 Zp—1® = tW(Akl)) | oA ) Fe(Arn)
1@ (Ak) 1@ (Ap—1)+w(Ap)
Yit1 = 241 — 2k ® T Zy @ (1 — t=(A0) (1 — ) e(An)

1w(Ag)+2w(Ag_1)

A O R A — et )

Therefore, as above, if we define ¥ such that it satisfies ([B6]) then we obtain
U(Z;) =gzt if j#k—-2k—-1kk+1,
\I’(Zk—2) — qzkaztlik& + qzvktﬁk+1,k—1+ﬁk—2 + qzvkﬂtlik& (t“k,kfl + t“k«rl,k),
\I/(Zk_l) = qzVh-1RRe1(] — t’ﬂc,k—l""ik—zk—l) 4 qZUk R (R Lk fFR-2k-1)
\Ij(Zk) — qzvktﬁk(l _ t’ik+1,k+’€k71,k) + qzvk—lt’ik—2 (tﬁk,kfl _ t’ik+1,k)7
\Ij(Zk_H) — qzvk+1tl€k+1 + qzvk—ltnkal,k‘i’Rk—Z + qzvktﬂk+1 (t“kfl,k + t“kfz,kfl)

where k; ; = k; — kj. Again, it is clear that SRy (P) is in the kernel of the homomorphism
and it is not hard to check that the image of the additive relations gives the derivatives of the
superpotential, under the assumptions that vy_1 + vig41 = 2v; and vg_o + v = 20%_1. O

5.2. NEF examples: The case of a blow—up of CP? at 4 or 5 points. In this section,
as an application of our results, we compute explicitly the small quantum cohomology (and
homology) of the manifold obtained from CP? by performing 4 and 5 blow-ups, X; and Xj
respectively. Note that these manifolds admit NEF almost complex structures, but no Fano
ones. Since the computations are similar, we show the full computations for X4 and only give
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the final result for X5. As already noticed in Example [[.2], X, is symplectomorphic to the 3—
point blow-up of S? x S? endowed with the split symplectic form w,, for which the symplectic
area of the first factor is u and the area of the second factor is 1 (see [2, Section 2.1] for more
details). Let ¢;, i = 1,...,4 be the capacities of the blow-ups. Let B, F' € Hs(Xy;Z) be the
homology classes defined by B = [S? x {p}], F = [{p} x S?] and let E; € Ho(X4;Z) be the
exceptional class corresponding to the blow-up of capacity ¢;. Consider X4 endowed with the
standard action of the torus 7' = S! x S! for which the moment polytope is given by
P={(z1,20) ER*|[0<zo<pymo+a1 Sp—c3, —1<21 <0, c1 Szp—a1 < p+1—cp}
so the primitive outward normals to P are as follows:

v = (0, 1), Vo = (1, 1), V3 = (1,0), V4 = (1, —1), Vs = (0, —1), Ve = (—1,0), and U7 = (—1, 1).

The normalised moment map ® : X, — R? is given by
1 1
(13(2:1, . ,27) = ( — 5’23‘2 + €1, —5’21‘2 +u— 62>,
where

A+33—c+c3—3p and e — &t — 3 — 3 +33p+ 33 — 3u?
3(c2 + 3+ ck—2u) 3(c2 + 3+ % —2u)

€1 =

Moreover, the homology classes A; = [®~1(D;)] of the pre-images of the corresponding facets

DZ' are: Al = F—EQ—Eg, A2 = Eg, Ag = B—El—Eg, A4 = El, A5 = F—El, Aﬁ = B—Eg,

and A7 = F5. Let A; be the circle action associated to v;. Since the complex structure on Xy

is NEF and T-invariant, it follows from Theorem that the Seidel elements associated to

these actions are given by the following expressions
H—e2

S(A1) = (F — By — E3) ®QW )

t#+62—1+61—62

S(A2) = B3 @ gt~ "1™ —(F — B — E3) ® e r—
te1ter—e2

—(B—El—E?))@an
€1

S(A3) = (B — E1 — E3) ®q1_ti17+03—u )

t61+62+63—ﬂ

S(Ay) = E1 @ qt "™ — (B — E1 — E3) ® EppT——

S(As) = (F - F)®qt?,  S(A¢) = (B — Ey) @qt'™,

+1—co—e1—€ #H—CS_El_EQ
S(A7) = By ® gt 7 2—(F—E2—E3)®QW-
Therefore we have

x 1 TR « St

SM)=40¢ 7o SW)=4L00 T
Lyes—p N ltl—u—cz—el—i-eg 1 te2—€e1—c

* _ —1,c3—p—e1+eg - -

S'(A2) =Z2® g7t AR T A% T pmaa
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1 tp—Cc3—€1—€2

S*(Ag) = Zy®@q T — Z3®¢

1 —tn—er=es”’
S*(As) = Zs @ g~ 12, S*(Ng) = Zg @ ¢ 1971,
J’_ —u—
S*(A7) _ Z7 ® q_ltCQ_“_1+€1+€2 . Zl ® q_l t51 €2—HU—C3
1— tl—cz—cg :
Thus in equation (B3] we may take
1 tl—c2—cs th—c1—cs
N=2%0 1 — ¢l—c2—c3’ Yo=%-49 1 — ¢l—c2—cs3 3@ 1 — tp—c1—c3’
1 tH—c1—cs
B=BO T maa N=A-BOT s =%
t1—02—03

Ys = Zg, and Y7:Z7—Zl®m-

There are fourteen primitive sets:
{1,3},{1,4},{1,5},{1,6},{2,4},{2,5},{2,6},{2,7},{3,5},{3,6},{3, 7}, {4,6}, {4, 7}, {5, 7}.
Let tg3 =1— tl=e2=e3 and t1,3 =1—tF"47%. The corresponding multiplicative relations for

QH*(X4,w,), that is, the generators of the ideal SRy (P) defined in Proposition B.1l can be
written as follows

I1Zs = 7y @ qttost1 s — 71 @ qt' 2t 3 — Z3 @ qth a3,
21Z4t173 =1Z3QtH 7% 4+ Z3® qtu_cltg,g,
Z1Z5 = 1 ® ¢*t'ta 3,
Z1Zg = Z7 @ qt%tas — 7y @ qt' ™3,
ZoZytost1 3 = Z3(Za + Z3 + Zy) @ tH "Bty 5 + 717, @ 117275 5
_ 7,24 @ titimei—er—2es
ZoZstostis = 2125 Q727 Bty g+ Z3Zs @ tH 1Bty 5 + T3 @ gt Bty 3,
ZoZgtost1 3 = Z1Z6 @ 117275y 3+ Z3Z6 @ th "Bty 3 + 71 @ qt' 5t 3,
(37) ZyZrtastis = Z1(Z1 + Zo + Zn) @ 17Ty 5 + D3 Z7 @t Bty g
Ty @ tiTHmei—ea2es.
Z3Zs = Zy @ qtty 3 — Z3 @ qth' ™3,
Z3Zg =1 ® ¢°tty 3,
Z3Zrtas = Z1Z5 @ t' 7273 4 71 @ qt' "2ty 3,
ZyZgt13 = Z5 @ qt' "ty 3 + Z3Z6 @ AT,
Z4Zrtasti s = Z1 24 @ t1 278y 5+ Z3Z7 @ tHT T By 4
L ZuZy @ gttt ] @ 2ptlei—eagy o o
Z5Zstos = 7175 @ 17275 4 Zo @ gt 2ty 3

where we should also take in account the additive relations Zg = Z1 + 279 + Z3 — Z5 and
Zy = —Zy — Zo+ Zy + Zs. It follows from Proposition Bl that QH*(X4,w,,) is isomorphic
as a ring to Q[Z1,..., Z,] ® II/I where I is the ideal generated by the relations above. We
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can describe the result also in terms of homology. For that consider the homology classes
A; = [®@7Y(D;)] € Ho(Xy;Z). They are additive generators of Hy(Xy;Z) and multiplicative
generators of QH,(Xy4,w,). Moreover QH4(X4,w,) is generated, as a subring of QH,(X4,w,),
by the elements gA;. These generators are E; ® g, where i = 1,2,3, (F — E1)®q, (B—FE3)®gq,
(F — Ey — E3)®q, and (B — E; — E3) ® q. In what follows in order to simplify notation we
shall drop the sign * for the quantum product. The multiplicative relations (37 translated to
homology together with the additive relations give a complete description of the IT"™V—algebra
QH4(X4,w,). More precisely, we obtain

QH (X4, w,) = I [u, v]/J

where u = (F — By — E3) ® q(1 —t2t=1)=1 o = (B~ B} — E3) ® q(1 — t1+e=#)=1 and J
is the ideal generated by the two following relations:

(38) Wit (v 4+t (1 +vt®) = (1 +vt), and v*t(u+ ) (1 4+ ut®) = u(l + ut?).

It follows from Proposition 53] (1) that the Landau—-Ginzburg superpotential is given in this

example by

W = 29" + 21 29t" ™3 21 + 2125 17 4 2yt 4 27 M4 2 et T
(39) 2 2 1 1
4oz thTaTes  poppt e

Therefore we have

ow

o =t 2y MO — 272t — ) 2t g gp e
21

ow

D = tH 4z th — 2’12’2_215_01 _ 22—2 + Zl—ltu+1—62 4 ghtl—ca—cs,
22

Passing to homology, simplifying the expressions and setting u = 25 Lt=# and v = 2y U we

obtain relations (38]), as we wish.
Similar arguments give an explicit description of the quantum homology algebra Q) Hy (X5, Wu)'
Moreover, we have .
QH4(Xs5,wy) = "™V [u,v]/J

where again u = (F — By — E3) ® q(1 —t2ts—H)=1 oy = (B — E; — F3) ® q(1 — te1 1)1
and J is now the ideal generated by the two following relations:

u2t”(v + tcz_l)(l +ut?) = (1 4+ vt) (v + tc4_1),

V2t (u A+ TR (1 + ut®®) = (14 ut®) (u + t4H).
In this case the Landau—Ginzburg superpotential is given by

W = zoth + 2129t" 73 29 + 2125 1t 25 b4 2y 2y T o
+ 21—122tﬂ+1—62 + zthe1es 4 th‘u+1_c2_63 + 21—1tu+1—02—04 + 22—1t1—01—64'

Remark 5.4. Note that these results agree with the results of Chan and Lau. The manifolds
X4 and X5 coincide with the surfaces X7 and X, respectively, described in [6, Appendix A].
We obtain the same expressions for the potential after changes of variable: replacing zo by
zlzz_lt_cl, keeping the variable z; and letting q; = tF~¢1 7%, go = tF™2, g3 = t2, g4 = t1 727
and g5 = t® in the potential for X7 leads to (89) above. Similarly, making the same change
of variable for Xig and letting q; = tFC17%, go = 1%, g3 = tH~2 74 gy =2, g5 =t}
and ¢gg = t® we see again that the two expressions for the potential agree. <
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5.3. Non-NEF examples. Particularly interesting examples which are relevant for our
study are the Hirzebruch surfaces. We use the conventions and the description adopted in [2]
for these surfaces. We recall that the toric “even” Hirzebruch surfaces (Fo,w,), 0 < k < £
with £ € N and £ < 1 < £+ 1, can be identified with the symplectic manifolds (52 x 52,0.1“)
where w,, is the split symplectic form with area ;> 1 for the first S2—factor, and with area
1 for the second factor. The moment polytope of For is

{(ml,xg) €R2 ‘ 0< 21 <1, 294+ kx1 >0, 20 — ka1 §/L—k}
and its primitive outward normals are
v1 = (1,0), va = (=k,—1), v3 = (—=1,0), and vy = (—k, 1).

Let Azf and Agf represent the circle actions whose moment maps are, respectively, the first and
the second component of the moment map associated to the torus action T acting on Foy.
We will also denote by A2F, A2% the generators in m(Thy). It follows from the classification
of 4-dimensional Hamiltonian S'-spaces given by Karshon in [25] that A2* A2% satisfy the
relations A?¥ = kA2 + (k —1)A2, and A%% = kAQ + AQ,. Since F is Fano and Fy is NEF we
can obtain from our results the Seidel elements associated to A , A2, and AZ , and thus the
ones associated to the circle actions of Fy; even though for all k > 2, Fy is non-NEF.

In particular, we can give explicit expressions for the Seidel elements associated to F, which
admits a pseudo-holomorphic sphere with negative first Chern number, representing the class
B — 2F where B = [S? x {p}], and F = [{p} x S?]. Since Fy is Fano it is easy to check that
the Seidel elements associated to the circle actions A2 and A2, are given by S(A? ) = B ®qt%
and S(AY)) = F ®qt2 (see [31, Example 5.7]). From this case we can also obtain the following
products in the quantum homology ring: F«F =1®¢ %t " BxB=1®q¢ %t ', FxB=p
and deduce the remaining products from these ones.

For the toric manifold Fy the normalised moment map is given by
1 1 1 1 p+1
®r,mn 20 = (—glal + 5 - e—plal — glaP + 1)
where € = Gi. Let A%,f denote the circle action associated to the normal vector v; to the

polytope of the surface For. Then Theorem implies that, in the case of Fy, the Seidel
elements associated to these actions are given by

1
1, tate
S(A2)=(B+F)®qt2¢, S(A,) = (B—F)@gm and
2 2 u toate
S(sz) = S(Av4) = F® qt5+6 — (B — F) ® QW .

Since AZ, = A2, S(A2)) = S(A2) and it follows that for the non-NEF toric manifold F4 the

v1?
Seidel elements associated to the circle actions A} and AZ, are given by

S(AL) = S(A2)? « S(A0) = (B +2F) @ gt~ + B @ gt # 2,
4 042 0 0 L
S(A,) = S(Ae,)"* S(Ag,) = S(Ag,) = Feqtz,
because S(A2 )? = 1. Therefore in this case, since AZ = A , it follows that

vl

S(AL) = qt2 % @ (B+2F + B gt' ).
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Since v1 + v3 = 0 it follows that S(Aj,) = S(AZ) ™! = (S(Azl)_l)2 * S(A2 )1 and since

SAN)l=B-F)® qit%ﬂ
“ 1 —tl=n
we obtain
S(AL) = ﬂ@ [B—2F + B gt
v3 _(1—t1 u)2 q ]

Finally, since vy = 2v3 + (0,1), v = 2v3 + (0,—1), and S(AZ)) = S(AZ,)~" it follows that
S(AL) = S(AL) = S(AL)? « S(AL,), hence

qt2+46
(1 —tl=m)d

It follows that in equation (B5]) we may take

S(Ay,) = S(AY,) = [Fo(1—t'"7"2 —4t7""(B - 2F + B qt'™")] .

1
Yi=2Z1+(Zs+Za+ Zs) 0t Y3 = m(zs +(Zs + Zo + Za) @ 1),
1 1
Yo = —————(Zy — 4" Y- Yi= ————(Z4 — 4t*71Y5).
2 (1—t#—1)2( 2 3), Yi (1—t#—1)2( 4 3)

Since the ring structure on the quantum homology is known we can check that this choice of
Y; satisfies the equations induced by the primitive relations, that is,

ViVs—1®¢°t and YpY; — (Y3)'®q 2th°

are generators of the ideal SRy (P). In order to have a potential W such that the isomorphism
in Theorem holds we need that the homomorphism ¥, inducing the isomorphism, satisfies
equations (36). Recall that the generators of the ideal SRy (P) should be in the kernel of ¥
and the image of the additive relations gives the derivatives of the potential.

V(Y1) = qut & V(7)) + (2o + Z3 + Z4)t“ L= gt
‘I’(Yz)zqzl_zy_l U(Zy) — 4t MU (YV3) = gz 2y (1 — t#71)?
U(Y3) = gz ! U(Z3) + W (Zy + Zs + Zy)t" ' = qzy (1 —t#71)?
U(Ya) = gz 2yt 2 & ‘P(Z4) — 4T (Y3) = gz Pyt TR (1 — )

Since the additive relations are Z; — Z3 — 27y — 274 = 0 and Z4 — Z> = 0 it follows from
equations (40Q) that the derivatives of the potential W are given by the following expressions:

i G = W)~ W) 20(2) — 20(7)

(40)

=gt —qzy H(1 =72 = 16qz T — 2(qey P ey T 4 g ettt T (1 — R )2,
ow _ _ 9 _ _
q223—22 = U(Zs) — ¥(Z2) = (97 2ot ™2 — 4z 22’2 D=2
Therefore the potential is given by
(41) W =zt + (27 + 27225 1 4 27 220t 72 (1 — 4712 4 162, e

Remark 5.5. In this non-NEF example we see that the number of terms corresponding to the
quantum corrections in the Landau—Ginzburg superpotential is still finite. In the formalism
of [6] and [7] the primitive rays of the fan (or the interior normal vectors of the polytope) are
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given by v1 = (1,0), vo = (0,1), v3 = (=1, —4), and vy = (0,—1) and the polytope is defined
by the following inequalities

1 >0, x0 >0, 4t1 +to —x1 —4we > 0and t1 — z9 > 0,

where the t;’s are positive numbers. Let ¢ = exp(—t;) be the Kéhler parameters. Then, in
their formalism, the potential is given by

4

W =z1(1—2q1q2 + 413) + 22 + %(1 —2q1¢2 + ¢3q3) + Z—;(l +14q192 + 703).
2

In this expression z; and 2z correspond to z; 2,22_ Land zt, respectively, in equation (1)) while
q1 =t and go = t*~2. Moreover, if [7, Conjecture 6.7] holds then we can obtain the open
Gromov—Witten invariants of F4 from our computation of the potential. In particular we see
that there must be some negative open Gromov—Witten invariants, phenomenon which does
never happen in the NEF case. <

We conclude that, even in this non-NEF example, although there are infinitely many contri-
butions to the Seidel elements associated to the Hamiltonian circle actions, these quantum
classes can still be expressed by explicit closed formulas. It is clear that as we increase the
value of k the expressions for the Seidel elements corresponding to the circle actions Agf, Agf
in F9, are going to be harder to write explicitly. However, from the work of Abreu and Mc-
Duff in [I] we know that the generators of the fundamental group of the symplectomorphism
group of (9% x SQ,wu) are given by ASI,AS2 and Agl, so our computations allow us to give a
complete description of the Seidel representation for these manifolds (regardless of the value

of p provided that p > 1).

Remark 5.6. The “Odd” Hirzebruch surfaces (F%_l,w/’l), 1 <k </ with £ € N and

¢ < u < £+1, can be identified with the symplectic manifolds (CP2# @2,0%) where the
symplectic area of the exceptional divisor is p > 0 and the area of the projective line is g+ 1.

Its moment polytope is
{(z1,20) ER* |0 <2y + 22 <1, 2a(k— 1)+ kay >0, kao+ (k—D)ay > k—p—1}.

Similar computations can be made for Fg;_1, since F; is Fano and we can show that Agf_l =

AZR=1 = (k — 1)Al + kAL, using Karshon’s classification of Hamiltonian circle actions. <

APPENDIX A. ADDITIONAL COMPUTATIONS OF SEIDEL’S ELEMENTS

We gather here results of computations of Seidel’s elements in the case when the number of
facets, in the vicinity of D,,, corresponding to spheres in M with vanishing first chern number
is 3 (this is complementary to Theorem 5] see Figure [I). In order to ease the reading, we
denote the weights w(A4;) by w;.

(2¢) If ¢1(Ap) = c1(A1) = c1(A2) = 0 but ¢1(A,,—1) and ¢1(As) are non-zero, then

S A A tq)max A tq)max_wl 1
O Ty N

— 1t~ Wn 1 — t—w1
tq)max témax_WQ > t_wl —w2 :| 1

_<A1®qm_A2®q1—t—w2 T R
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(2d) If ¢1(Ap) = c1(Ap—1) = c1(A1) = 0 but ¢1(A2) and ¢1(A,—2) are non-zero, then

témax témax_wnfl 1
S(A) = [(An ®q 1 _twn An-1®4q 1 — ¢t—wn-1 > 1 — twn—wn
tq>max tq>max_wl 1
+ (ANMW —A®g 1—t—w1> Ep——
tq)max 1
_An ® q 1 _ t_w":| ’ 1 _ t—wn_wnfl_wl

(3d) If ¢1 (A1) = c1(A2) = c1(As) = 0 but ¢1(Ay,), ¢1(A4) and ¢;(A,—1) are non-zero, then

tq>max_wl

S(A) = A@qt® ™ — A ® q 1o

—_
témax témax_WZ t_wl_WZ
- <A1®qm —420¢ 1_t—w2> 1 fwi-w2
témax témax_WZ t_wl —w2—w3
— (Al ® q 1 —pwi - A2 ® q 1 _ w2 > : (1 _ t_wl_UJZ_WB)(l _ t_wl_UJZ)
tq>max tq>max_w3 t—w1—2w2—2w3
i <A2 S St L e t“"3> A= tor (1 — o)
(3e) If ¢1(Ap—1) = c1(A1) = c1(A2) = 0 but ¢1(Ay,), c1(As) and ¢1(A,,—2) are non-zero, then
® tq)max_wn—l témax_wl
S(A) = A, ® gt —An—1®q1_tTH —A1®QW
tq>max tq>max_w2 t_wl_UJZ
- (Al@qil_t—m — A2 ®q 1—t—w2> R ——
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