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Abstract. In [9], we proved that symplectic homeomorphisms preserv-
ing a coisotropic submanifold C, preserve its characteristic foliation as
well. As a consequence, such symplectic homeomorphisms descend to
the reduction of the coisotropic C.

In this article we show that these reduced homeomorphisms continue
to exhibit certain symplectic properties. In particular, in the speci�c
setting where the symplectic manifold is a torus and the coisotropic is a
standard subtorus, we prove that the reduced homeomorphism preserves
spectral invariants and hence the spectral capacity.

To prove our main result, we use Lagrangian Floer theory to construct
a new class of spectral invariants which satisfy a non-standard triangle
inequality.

Contents

1. Introduction 2
1.1. Context and main result 2
1.2. Main Tools: Lagrangian Floer theory and spectral invariants 5
Organization of the paper 8
Aknowledgements 8
2. Floer homology and spectral invariants 8
2.1. Lagrangian Floer homology 8
2.2. Lagrangian spectral invariants 13
2.3. Hamiltonian Floer theory, spectral invariants, and capacity 16
2.4. Comparison between Lagrangian and Hamiltonian spectral

invariants 17
2.5. Products in Lagrangian Floer theory and the triangle inequality 20
2.6. A Künneth formula for Lagrangian Floer homology and a

splitting formula for spectral invariants 24
3. Lagrangian Floer theory of tori 26
3.1. HF (L0, L1) and the associated spectral invariants 26
3.2. Product structure and the triangle inequality 28
3.3. A splitting formula 33
4. Proof of the main theorem (Theorem 4) 33

Date: February 16, 2015.
2010 Mathematics Subject Classi�cation. Primary 53D40; Secondary 37J05.
Key words and phrases. symplectic manifolds, symplectic reduction, C0�symplectic

topology, spectral invariants.
1



2 VINCENT HUMILIÈRE, RÉMI LECLERCQ, SOBHAN SEYFADDINI

References 38

1. Introduction

1.1. Context and main result. The main objects under study in this pa-
per are symplectic homeomorphisms. Given a symplectic manifold (M,ω),
a homeomorphism φ : M → M is called a symplectic homeomorphism if it
is the C0�limit of a sequence of symplectic di�eomorphisms. This de�ni-
tion is motivated by a celebrated theorem due to Gromov and Eliashberg
which asserts that if a symplectic homeomorphism φ is smooth, then it is a
symplectic di�eomorphism in the usual sense: φ∗ω = ω.

Understanding the extent to which symplectic homeomorphisms behave
like their smooth counterparts constitutes the central theme of C0�symplectic
geometry. A recent discovery of Buhovsky and Opshtien suggests that these
homeomorphisms are capable of exhibiting far more �exibility than sym-
plectic di�eomorphisms: In [5], they construct an example of a symplectic
homeomorphism of the standard C3 whose restriction to the symplectic sub-
space C × {0} × {0} is the contraction (z, 0, 0) 7→ (1

2z, 0, 0). Such behavior
is impossible for a symplectic di�eomorphism but of course very typical for
a volume-preserving homeomorphism. On the other hand, it is well-known
that symplectic homeomorphisms are surprisingly rigid in comparison to
volume-preserving maps. The following example of rigidity is the starting
point of this article: Recall that a coisotropic submanifold is a submanifold
C ⊂ M whose tangent space, at every point of C, contains its symplectic
orthogonal: TCω ⊂ TC. Moreover, the distribution TCω is integrable and
the foliation it spans is called the characteristic foliation of C.

Theorem 1 ([9]). Let C be a smooth coisotropic submanifold of a symplectic
manifold (M,ω). Let φ denote a symplectic homeomorphism. If C ′ = φ(C)
is smooth, then it is coisotropic. Furthermore, φ maps the characteristic
foliation of C to that of C ′.

Prior to the discovery of the above theorem, the special cases of La-
grangian submanifolds and hypersurfaces have been treated, respectively, by
Laudenbach�Sikorav [11] and Opshtein [17].

We are now in position to describe the problem we are interested in. De-
note by F and F ′, respectively, the characteristic foliations of the coisotrop-
ics C and C ′ from the above theorem. The reduced spaces R = C/F and
R′ = C ′/F ′ are de�ned as the quotients of the coisotropic submanifolds by
their characteristic foliations. These spaces are, at least locally, smooth man-
ifolds and they can be equipped with natural symplectic structures induced
by ω. Since φ(F) = F ′, the homeomorphism φ induces a homeomorphism
φR : R → R′ of the reduced spaces. It is a classical fact that when φ is
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smooth, and hence symplectic, the reduced map φR is a symplectic di�eo-
morphism as well. It is therefore natural to ask whether the homeomorphism
φR remains symplectic, in any sense, when φ is not assumed to be smooth.
This is the question we seek to answer in this article.

We begin by �rst supposing that the reduction φR is smooth. It turns
out that this scenario can be resolved rather easily using a result of [9].

Proposition 2. Let C be a coisotropic submanifold whose reduction R is a
symplectic manifold1, and φ be a symplectic homeomorphism. Assume that
C ′ = φ(C) is smooth and therefore is coisotropic and admits a reduction R′.
Denote by φR : R → R′ the map induced by φ. Then, if φR is smooth, it is
symplectic.

We would like to point out that a similar result, with a similar proof, has
already appeared in [5] (See Proposition 6).

Proof. We will prove that for any smooth function fR on R′, the Hamilton-
ian �ow generated by the function fR ◦ φR is φ−1

R φtfRφR, where φ
t
fR

is the
Hamiltonian �ow generated by fR. It is not hard to conclude from this that
φR is symplectic: For example, it can easily be checked that φR preserves
the Poisson bracket, i.e. {hR ◦ φR, gR ◦ φR} = {hR, gR} ◦ φR for any two
smooth functions hR, gR on R′.

Let fR : R′ → R be smooth. We denote by gR : R → R the function
de�ned by gR = fR ◦ φR. Let f and g be any smooth lifts to M of fR and
gR, respectively.

First, notice that by de�nition the restrictions to C of f ◦φ and g coincide.
Since g is constant on the characteristic leaves of C, its Hamiltonian �ow φtg
preserves C. Thus H = (f ◦φ−g)◦φtg vanishes on C for all t. By [9, Theorem

3], the �ow of the continuous Hamiltonian2H follows the characteristic leaves
of C. On the other hand we know that this �ow is given by the formula
φtH = (φtg)

−1φ−1φtfφ. This isotopy descends to the reduction R where it

induces the isotopy (φtgR)−1φ−1
R φtfRφR. But since φ

t
H follows characteristics it

must descend to the identity. Hence (φtgR)−1φ−1
R φtfRφR = Id as claimed. �

When φR is not assumed to be smooth, the situation becomes far more
complicated. The question of whether or not φR is a symplectic homeomor-
phism seems to be very di�cult and, at least currently, completely out of
reach. Given the di�culty of this question, one could instead ask if there ex-
ist symplectic invariants which are preserved by reduced homeomorphisms.
In this spirit, and since symplectic homeomorphisms are capacity preserving,
Opshtein formulated the following a priori easier problem:

Question 3. Is the reduction φR of a symplectic homeomorphism φ preserv-
ing a coisotropic submanifold always a capacity preserving homeomorphism?

1This is always locally true.
2The continuous function H generates a continuous �ow in the sense de�ned by Müller

and Oh [16].
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Partial positive results have been obtained by Buhovsky and Opshtein [5].
They proved in particular that in the case where C is a hypersurface, the map
φR is a �non-squeezing map� in the sense that for every open set U containing
a symplectic ball of radius r, the image φR(U) cannot be embedded in a
symplectic cylinder over a 2�disk of radius R < r. This does not resolve
Opshtein's question, but since capacity preserving maps are non-squeezing
it does provide positive evidence for it. In the case of general coisotropic
submanifolds, they conjecture that the same holds and indicate as to how
one might approach this conjecture.

In this article, we work in the speci�c setting where M is the torus
T2(k1+k2) equipped with its standard symplectic structure and C = T2k1+k2×
{0}k2 . The reduction of C is T2k1 with its usual symplectic structure. Our
main theorem shows that, in this setting, the reduced homeomorphism φR
preserves certain symplectic invariants referred to as spectral invariants. This
answers Opshtein's question positively, as it follows immediately that the
spectral capacity is preserved by φR.

More precisely, for a time-dependent Hamiltonian H, denote by c+(H)
the spectral invariant, de�ned by Schwarz [20], associated to the fundamen-
tal class of M . Roughly speaking, c+(H) is the action value at which the
fundamental class [M ] appears in the Floer homology of H; see Equation
(12) in Section 2.3 for the precise de�nition. (We should caution the reader
that our notations and conventions are di�erent than those of [20]. For ex-
ample, c+(H) in this article corresponds to c(1;H) in [20] where 1 is the
generator of H0(M).)3 For degenerate or continuous functions one de�nes
c+(H) = limi→∞ c+(Hi) where Hi is a sequence of smooth non-degenerate
Hamiltonians converging uniformly to H. This limit is well-de�ned because
c+ satis�es a well-known Lipschitz estimate. We refer the reader to Section
2.3 for further details. Here is our main result:

Theorem 4. Let φ be a symplectic homeomorphism of the torus T2(k1+k2)

equipped with its standard symplectic form. Assume that φ preserves the
coisotropic submanifold C = T2k1+k2 × {0}k2. Denote by φR the induced
homeomorphism on the reduced space R = T2k1. Then, for every time-
dependent continuous function H on [0, 1]×R, we have:

c+(H ◦ φR) = c+(H),

where H ◦ φR(t, x) := H(t, φR(x)).

Note that Theorem 4 implies that other related symplectic invariants
which are constructed using spectral invariants are also preserved by φR.
Here is one example of such invariants: Following Viterbo [[22], De�nition
4.11], we de�ne the spectral capacity of an open set U , denoted by c(U), by

c(U) = sup{c+(H) |H ∈ C0([0, 1]×M), support(Ht) ⊂ U ∀t ∈ [0, 1]},
3In [20], after constructing c(1;H) the author proceeds to normalize the Hamiltonian

H by requiring that
∫
M
H(t, x)ωn = 0 for each t ∈ [0, 1]. This leads to an invariant of

Hamiltonian di�eomorphisms, c(1;φ1
H).
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where C0([0, 1]×M) denotes the space of time-dependent continuous func-
tions on M . The following is an immediate corollary of Theorem 4.

Corollary 5. The map φR, from Theorem 4, preserves the spectral capacity,
i.e. c(φR(U)) = c(U) for any open set U .

In De�nition 5.15 of [20], Schwarz de�nes a very similar capacity which
he denotes by cγ . It can easily be checked that φR preserves cγ as well.

1.2. Main Tools: Lagrangian Floer theory and spectral invariants.

For proving Theorem 4, we will use the theory of Lagrangian spectral invari-
ants. These invariants were �rst introduced by Viterbo [22] in the setting
of cotangent bundles and using generating functions. In [15], Oh recon-
structed the same invariants using Lagrangian Floer homology. There have
been many developments in the theory since then; see Section 2 for speci�c
references.

In this article, we will use Lagrangian Floer homology, in the speci�c
setting where the symplectic manifold and the Lagrangians are all tori, to
construct a new class of spectral invariants. Below, we describe our settings
and give a brief overview of the construction and properties of the particular
spectral invariants which will be used in the proof of Theorem 4.

The symplectic manifold we will be working on is the product

M = T2k1 × T2k1 × T2k2 × T2k2 .

We denote by (q1, p1) and (Q1, P1) the coordinates on the �rst and second
T2k1 factors in the above product, respectively. The coordinates (q2, p2) and
(Q2, P2) are de�ned similarly. We equip M with the standard symplectic
structure given by

ωstd = dq1 ∧ dp1 + dQ1 ∧ dP1 + dq2 ∧ dp2 + dQ2 ∧ dP2 .

The Lagrangian submanifolds of M whose Floer homology we will be study-
ing are

L0 = Tk1 × {0} × Tk1 × {0} × Tk2 × {0} × Tk2 × {0} ,

L1 = Tk1 × {0} × Tk1 × {0} × Tk2 × {0} × {0} × Tk2 .

Notice that both L0 and L1 decompose as products of smaller Lagrangians,
i.e. Li = L× L′i, where

L = Tk1 × {0} × Tk1 × {0} × Tk2 × {0} ⊂ T2k1 × T2k1 × T2k2 ,

L′0 = Tk2 × {0} ⊂ T2k2 , and L′1 = {0} × Tk2 ⊂ T2k2 .

Observe that L0∩L1 = L×{0}. In Section 3.1, we will construct an isomor-
phism between the Morse homology of L, denoted by HM(L), and the Floer
homology group HF (L0, L1); see Theorem 18 for a precise statement. We
will then use this isomorphism to associate a critical value of the Lagrangian
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action functional AL0,L1

H to a non-zero class a ∈ HM(L) and a Hamiltonian
H : [0, 1]×M → R. We will denote this critical value by

`(a;L0, L1;H).

This is the spectral invariant associated to a and H. Roughly speaking,
`(a;L0, L1;H) is the action value at which the Morse homology class a ap-
pears in the Floer homology group HF (L0, L1).

Main properties of spectral invariants. We now list some of the main prop-
erties of the spectral invariant `(a;L0, L1;H).

1. Spectrality: Let Spec(H) denote the set of critical values of the action

functional AL0,L1

H . Then, for any Hamiltonian H and a ∈ HM(L) \ {0},
`(a;L0, L1;H) ∈ Spec(H).

For further details, see Section 2.2.1.

2. Continuity: The following inequality holds for any Hamiltonians H,H ′∫ 1

0
min
M

(Ht −H ′t) dt 6 |`(a;L0, L1;H)−`(a;L0, L1;H ′)|

6
∫ 1

0
max
M

(Ht −H ′t) dt .

For further details, see Sections 2.2 and 3.1.

3. Splitting Formula: Let F and F ′ denote two Hamiltonians on T2k1 ×
T2k1 ×T2k2 and T2k2 , respectively. De�ne the Hamiltonian F ⊕F ′ on M by
F ⊕ F ′(z1, z2) = F (z1) + F ′(z2), for z1 ∈ T2k1 × T2k1 × T2k2 and z2 ∈ T2k2 .
In Section 3.3, we obtain the following �splitting� formula:

`(a;L0, L1;F ⊕ F ′) = `(a;L,L;F ) + `([pt];L′0, L
′
1;F ′),

where `(a;L,L;F ) denotes the standard Lagrangian spectral invariant asso-
ciated to a ∈ HM(L) and `([pt];L′0, L

′
1;F ′) denotes the spectral invariant

associated to the only non-zero class in HF (L′0, L
′
1). See Sections 2.2 and

2.2.3 for the de�nitions of `([pt];L′0, L
′
1;F ′) and `(a;L,L;F ), respectively.

Section 2.1.2 provides further details on HF (L′0, L
′
1).

4. Triangle Inequalities: Given two Hamiltonians H,H ′ we denote by
H#H ′ the Hamiltonian whose �ow is the concatenation of the �ows of H
and H ′; see Equation (18) for a precise de�nition of H#H ′. Consider two
Morse homology classes a, b ∈ HM(L) such that the intersection product
a · b 6= 0. Lastly, for i = 0, 1, denote by [L′i] the fundamental class in
HM(L′i). Then, the following triangle inequalities hold:

`(a · b;L0, L1;H#H ′) 6 `(a;L0, L1;H) + `(b⊗ [L′1];L1, L1;H ′),

`(a · b;L0, L1;H#H ′) 6 `(a⊗ [L′0];L0, L0;H) + `(b;L0, L1;H ′).

The �rst three of the above properties are more or less standard, and
in fact, we prove these in a more general setting in Section 2.1. The fourth
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property, which is perhaps the most interesting one, is speci�c to our settings
and is di�erent than the triangle inequality which appears in the standard
setting where only one Lagrangian is considered.

Proofs of triangle inequalities of this nature consist of two main steps.
First, one must prove a purely Floer theoretic version of the triangle in-
equality where Morse homology classes and the Morse intersection product
are replaced with their Floer theoretic analogues. We do this, in a more
general setting than what is described here in the introduction, in Section
2.5; see Theorem 17. The second step involves establishing a correspondence
between the Morse and Floer theoretic versions of the intersection product,
the latter being usually referred to as the pair-of-pants product. It is well-
known that when L0 and L1 coincide (and some technical assumptions are
satis�ed) the two versions of the intersection product coincide up to a PSS-
type isomorphism; see Equation (2.5.2). In our case, however, such a direct
correspondence does not exist; the pair-of-pants product is not even de�ned
on the tensor product of a single ring! In Theorem 21 and Remark 22, we
fully describe the relation between the intersection product on HM(L) and
the pair-of-pants products ∗ : HF (L0, L1)⊗HF (L1, L1)→ HF (L0, L1) and
∗ : HF (L0, L0)⊗HF (L0, L1)→ HF (L0, L1).

Comparing the two forms of spectral invariants. Using the aforementioned
properties of the spectral invariants `(a;L0, L1;H), one can deduce several
other interesting properties of these invariants. Here, we will mention a
comparison result which plays a signi�cant role in our proof of Theorem 4.

Denote by `([Li];Li, Li;H) the standard Lagrangian spectral invariant
associated to the fundamental class [Li] ∈ HM(Li); see Section 2.2.3 for the
de�nition. The triangle inequality allows us to compare the two forms of
spectral invariants. More precisely, we prove the following in Section 3.2.1.

Proposition 6. For i = 0, 1, denote by [Li] the fundamental classes in
HM(Li). Then, for any non-zero a ∈ HM(L) and any Hamiltonian H:

`(a;L0, L1;H) 6 `([Li];Li, Li;H).

In particular, `([L];L0, L1;H) 6 `([Li];Li, Li;H), where [L] ∈ HM(L) is
the fundamental class.

Remark 7. In de�ning the above spectral invariants `(a;L0, L1;H), we were
inspired by the construction of �conormal spectral invariants� de�ned in a
cotangent bundle T ∗N via consideration of the Lagrangian Floer homology of
the zero section 0N and the conormal ν∗V of a submanifold V ⊂ N (see e.g.
[15]). Indeed, if we heuristically think of the torus T2k1 ×T2k1 ×T2k2 ×T2k2

as a compact version of the cotangent bundle to Tk1 ×Tk1 ×Tk2 ×Tk2 , then
the Lagrangian L0 corresponds to the zero section and L1 corresponds to the
conormal bundle of the submanifold V = Tk1 × Tk1 × Tk2 × {0}.

Of the above four properties of the spectral invariants `(a;L0, L1;H), the
�rst three also hold for conormal spectral invariants. We believe that, by
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readjusting the techniques used in this paper, one could obtain an appro-
priately reformulated version of the triangle inequality for conormal spectral
invariants. This would then lead to the following comparison inequalities,
corresponding to Proposition 6: For every homology class a ∈ HM(V ), and
every Hamiltonian H on T ∗N ,

`(a; 0N , ν
∗V ;H) 6 `([N ]; 0N , 0N ;H).

As far as we know, the triangle inequality has not yet been proven for conor-
mal spectral invariants. However, the above comparison inequalities were
proven, via generating-function techniques, in [22].

The idea that conormal spectral invariants could be useful in studying the
behavior of spectral invariants under symplectic reduction has been present
in works based on generating function theory (e.g. [21], [8], [19]) and goes
back to Viterbo [22]. To the best of our knowledge, this article is the �rst
place where this idea is implemented in Floer theory. We found this imple-
mentation to be necessary for our purposes as Floer theory is better suited
for working on compact manifolds.

Organization of the paper. In Sections 2.1�2.4 we recall Floer theoretic
preliminaries, de�ne Lagrangian and Hamiltonian spectral invariants, and
prove some of their essential properties. In Section 2.5, we de�ne the pair-
of-pants product and prove a purely Floer theoretic version of the triangle
inequality in a fairly general setting. In Section 2.6, we prove a Künneth for-
mula for Lagrangian Floer homology and use it to derive a splitting formula
for spectral invariants. In Section 3, we specialize the Floer theory of Sec-
tion 2 to the speci�c settings introduced above. In Section 3.2, we prove the
aforementioned triangle inequality. Lastly, in Section 4, we use the results
from Sections 2 and 3 to prove Theorem 4.

Aknowledgements. We are grateful to Claude Viterbo for several helpful
conversations.

This work is partially supported by ANR Grants ANR-11-JS01-010-01
and ANR-13-JS01-0008-01. The research leading to these results has received
funding from the European Research Council under the European Union's
Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement
307062.

2. Floer homology and spectral invariants

2.1. Lagrangian Floer homology. In this section, we review the construc-
tion of Floer homology. Throughout the section, we �x a closed symplectic
manifold (M,ω), two closed non-disjoint connected Lagrangian submanifolds
L0, L1 and p ∈ L0 ∩ L1 an intersection point. Recall that

• (M,ω) is symplectically aspherical if ω|π2(M) = 0,
• a Lagrangian L of (M,ω) is weakly exact, or the pair (M,L) is rela-
tively symplectically aspherical, if ω|π2(M,L) = 0.
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We say that the pair (L0, L1) is weakly exact with respect to p, if any disk inM
whose boundary is on L0∪L1 and is �pinched� at p has vanishing symplectic
area. More precisely, denote by D the unit disk in C centered at 0. Denote
by ∂D+ the upper half of ∂D, ∂D+ = {z ∈ C : |z| = 1, Im(z) > 0}, and by
∂D− its lower half.

De�nition 8. The pair of Lagrangians (L0, L1) is weakly exact with respect
to p ∈ L0∩L1 if for any map u : (D, ∂D+, ∂D−, {−1, 1})→ (M,L0, L1, {p}),∫
D u
∗ω = 0.

Notice that in this case both L0 and L1 are weakly exact and thus M is
symplectically aspherical.

Example 9. The Lagrangians we will consider in Sections 3 and 4 form
weakly exact pairs with respect to any point in their intersections. Recall
from Section 1.2 in the introduction that for i = 1 and 2, Li = L × L′i are
Lagrangians of (Tk×Tl, ωTk ⊕ωTl) so that Tl = L′0×L′1 and L′0 ∩L′1 = {0}.
(In this example only, k and l denote the respective integers 4k1 + 2k2 and
2k2 to ease the reading.) We �x a point p = (pk, 0) in L0 ∩ L1.

First notice that since L is a subtorus of Tk, π2(Tk, L) = 0 so that (L,L)
is a weakly exact pair with respect to pk.

Next, consider a pinched disk

u : (D, ∂D+, ∂D−, {−1, 1})→ (Tl, L′0 × {0}, {0} × L′1, {0}) .
Denote by γ0 and γ1 the loops respectively in L

′
0 and L

′
1, de�ned by u(∂D−) =

γ0 × {0} and u(∂D+) = {0} × γ1. Since [u(∂D−)] = [u(∂D+)] ∈ π1(Tl) =
π1(L′0) × π1(L′1), γ0 and γ1 are null-homotopic in L′0 and L′1 respectively.
By gluing to u two disks vi ⊂ L′i bounding γi, we obtain a sphere in Tl
whose symplectic area necessarily vanishes. Since the vi's are included in
Lagrangians we deduce that ωTl(u) = 0. Therefore (L′0, L

′
1) is weakly exact

with respect to the single intersection point 0.
Finally, since the product of weakly exact pairs is weakly exact, we deduce

that (L0, L1) is weakly exact with respect to p. J

Let H : [0, 1] × M → R be a smooth Hamiltonian function. We will
denote by XH the 1�parameter family of vector �elds induced by H by
ω(Xt

H , · ) = −dHt for all t and by φtH its �ow satisfying: φ0
H = Id and for all

t, ∂tφ
t
H = Xt

H(φtH). We �rst consider a non-degenerate Hamiltonian, which
means in this case that the intersection φ1

H(L0)∩L1 is transverse. A generic
Hamiltonian is non-degenerate.

We denote by Ω(L0, L1; p) the set of paths x from L0 to L1 which are
in the connected component of the constant path p. Such a path admits a
capping x̄ : [0, 1] × [0, 1] → M so that: For all t ∈ [0, 1], x̄(0, t) = p and
x̄(1, t) = x(t), [0, 1]× {0} is mapped to L0 and [0, 1]× {1} to L1.

Two cappings x̄1 and x̄2 of x ∈ Ω(L0, L1; p) have the same symplectic
area since x̄1#(−x̄2) is a pinched disk as de�ned above so that it has area
0 by assumption. (Recall that −x̄2 stands for x̄2 with reverse orientation.)



10 VINCENT HUMILIÈRE, RÉMI LECLERCQ, SOBHAN SEYFADDINI

Thus we can de�ne the action functional by the formula:

AL0,L1

H : Ω(L0, L1; p)→ R , x 7→ −
∫
x̄∗ω +

∫ 1

0
Ht(x(t)) dt .(1)

The critical points of AL0,L1

H are paths x ∈ Ω(L0, L1; p) which are orbits
of H that is for all t, x(t) = φtH(x(0)). These orbits are in one-to-one
correspondence with φ1

H(L0) ∩ L1 so that their number is �nite since H is
non-degenerate and M compact. One de�nes the Floer complex as the Z2�

vector space CF (L0, L1; p;H) = 〈Crit(AL0,L1

H )〉Z2 . The set of critical values

of AL0,L1

H is called its spectrum and is denoted by Spec(H).
Now Floer's di�erential is de�ned thanks to perturbed pseudo-holomorphic

strips: we pick a 1�parameter family of tame, ω�compatible, almost complex
structures J . We de�ne the set of Floer trajectories between two orbits of
H, x− and x+, as

M̂L0,L1(x−, x+;H,J) =

u : R× [0, 1]→M

∣∣∣∣∣∣∣∣
∂su+ Jt(u)(∂tu−Xt

H(u)) = 0
∀t, u(±∞, t) = x±(t)
u(R× {0}) ⊂ L0

u(R× {1}) ⊂ L1


where the limits u(±∞, t) are uniform in t. There is an obvious R�action
by reparametrization s 7→ s + τ and we de�neML0,L1(x−, x+;H,J) as the

quotient M̂L0,L1(x−, x+;H,J)/R.
Requiring that the pair (H,J) is regular, that is the linearization of

the operator ∂J,H : u 7→ ∂su + Jt(u)(∂tu − XH(u)) is surjective for all

u ∈ M̂L0,L1(x−, x+;H,J), ensures that ML0,L1(x−, x+;H,J) is a smooth
manifold. We denote its 0� and 1�dimensional components respectively by

ML0,L1

[0] (x−, x+;H,J) andML0,L1

[1] (x−, x+;H,J).

Remark 10. It turns out that we do not need to consider graded complexes.
As a consequence, we do not mention the di�erent standard indices usually
entering into play in such theories. In particular, we do not require additional
assumptions concerning these indices.

Nonetheless, let us recall that the (i + 1)�dimensional component of

M̂L0,L1(x−, x+;H,J) consists of those Floer trajectories whose Maslov�Viterbo
index equals i + 1, see e.g [3]. When there are no such trajectories, we put

ML0,L1

[i] (x−, x+;H,J) to be the emptyset.

The 0�dimensional component of the moduli space of all Floer trajectories

running between any two orbits,ML0,L1

[0] (H,J) = ∪x−,x+M
L0,L1

[0] (x−, x+;H,J)

is compact. Floer's di�erential is de�ned by linearity on CF (L0, L1; p;H)
after setting the image of a generator as

∂L0,L1

H,J (x−) =
∑
x+

#ML0,L1

[0] (x−, x+;H,J) · x+

where #M is the mod 2 cardinal ofM and the sum runs over all orbits x+.
Since the asphericity assumption prevents bubbling of disks and spheres, by
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Gromov's compactness Theorem and standard gluingML0,L1

[1] (H,J), the 1�

dimensional component ofML0,L1(H,J), can be compacti�ed, and this fact

ensures that (∂L0,L1

H,J )2 = 0 that is, ∂L0,L1

H,J is a di�erential.

The Floer homology of the pair (L0, L1) is the homology of this com-

plex HF (L0, L1; p;H,J) = H(CF (L0, L1; p;H), ∂L0,L1

H,J ). Because it is often
useful to keep in mind the speci�c Floer data which we used to de�ne the
complex, we will keep (H,J) in the notation, however the homology does
not depend on the choice of the regular pair (H,J).4 Indeed, there are
morphisms

ΨH′,J ′

H,J : CF (L0, L1; p;H)→ CF (L0, L1; p;H ′)

inducing isomorphisms in homology which are called continuation isomor-

phisms. Roughly, ΨH′,J ′

H,J is de�ned thanks to a regular homotopy between

(H,J) and (H ′, J ′), (H̃, J̃), by considering the 0�dimensional component of

the moduli space of Floer trajectories for the pair (H̃, J̃) running from an
orbit of H to an orbit of H ′ with boundary condition on L0 and L1 respec-
tively. It is also standard�and the proof is based on the same principle by

considering a homotopy between homotopies�that ΨH′,J ′

H,J does not depend

on the choice of the homotopy (H̃, J̃). From these facts, one gets that they
are �canonical�, that is they satisfy

ΨH,J
H,J = Id and ΨH′,J ′

H,J ◦ΨH′′,J ′′

H′,J ′ = ΨH′′,J ′′

H,J(2)

for any three regular pairs (H,J), (H ′, J ′), and (H ′′, J ′′).

We now present two situations which will be of particular interest to us
and in which one can actually compute Floer homology.

2.1.1. The case of a single Lagrangian. Assume that L0 and L1 coincide and
denote L = L0 = L1. Assume moreover that L is connected. In that case,
the assumption that the pair (L,L) is weakly exact with respect to any given
point p ∈ L is equivalent to requiring the Lagrangian L to be weakly exact.

It is well-known that there exists an isomorphism between the Floer ho-
mology of (L,L) and the Morse homology of L, called PSS isomorphism. It
was de�ned in the Hamiltonian setting by Piunikhin�Salamon�Schwarz [18],
then adapted to Lagrangian Floer homology by Kati¢�Milinkovi¢ [10] for
cotangent bundles, and by Barraud�Cornea [4] and Albers [2] for compact
manifolds. For details, we refer to Leclercq [12] which deals with weakly
exact Lagrangians in compact manifolds which is the situation we are inter-
ested in here.

The PSS morphism requires an additional choice of a Morse�Smale pair
(f, g), consisting of a Morse function f : L → R and a metric g on L. It is

4This being said, when there is no risk of confusion we will denote HF (L0, L1; p;H, J)
by HF (L0, L1; p) to simplify the notation.
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de�ned at the chain level ΦL
H,J : CM(L; f, g)→ CF (L,L; p;H,J) by count-

ing the number of elements of suitable moduli spaces. It commutes with the
di�erential and thus induces a morphism in homology:

ΦL
H,J : HM(L)→ HF (L,L; p;H,J)

(as the notation suggests, we will omit the Morse data). It is an isomorphism

and its inverse ΦH,J
L : HF (L,L; p;H,J) → HM(L) is de�ned in the same

fashion. The main properties of the PSS morphism which will be needed are
the following two:

(1) PSS morphism commutes with continuation morphisms, that is

HM(L)
ΦLH,J //

ΦL
H′,J′ ((

HF (L,L; p;H,J)

ΨH
′,J′

H,J
��

HF (L,L; p;H ′J ′)

(3)

commutes for any two regular pairs (H,J) and (H ′, J ′).
(2) PSS morphism intertwines the Morse and Floer theoretic versions

of the intersection product in homology, the latter being known as
pair-of-pants product, see subsection 2.5.2 for the precise statement.

2.1.2. The case of two Lagrangians intersecting transversely at a single point.
When L0 and L1 intersect transversely at a single point p, the Hamilton-
ian H = 0 is non-degenerate. The associated Floer complex obviously
has a single generator, p itself. Moreover, for any choice of almost com-
plex structure J such that (0, J) is regular, the boundary map is trivial
since the 0�dimensional component of the moduli space of Floer trajecto-
ries from p to itself is empty. It follows that HF (L0, L1; p; 0, J), and hence
HF (L0, L1; p;H,J) for any regular (H,J), is isomorphic to the group with
two elements. We will refer to this isomorphism, which is uniquely de�ned,
as a PSS-type morphism and will denote it by

ΦL0,L1

H,J : Z2 → HF (L0, L1; p;H,J).

The only non-zero class in HF (L0, L1; p;H,J) will be denoted by [pt].
Since there exists only one isomorphism between two given groups with

two elements, the following diagram commutes for any two regular pairs
(H,J) and (H ′, J ′):

Z2

Φ
L0,L1
H,J //

Φ
L0,L1
H′,J′ ((

HF (L0, L1; p;H,J)

ΨH
′,J′

H,J
��

HF (L0, L1; p;H ′, J ′)

(4)
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2.2. Lagrangian spectral invariants. Spectral invariants for Lagrangians
in cotangent bundles were introduced by Viterbo [22] using generating func-
tions. This was adapted to Floer homology by Oh [15]. Since then there have
been several extensions to other settings. See in particular Leclercq [12] for
a single weakly-exact Lagrangian and Zapolsky [23] for a weakly exact pair
of Lagrangians intersecting at a single point.

We provide below a new extension of the de�nition for a general weakly-
exact pair (L0, L1) with a given intersection point p.

To give this de�nition, the starting observation is the standard fact that
for every Floer trajectory u ∈ML0,L1(x−, x+;H,J),

AL0,L1

H (x−)−AL0,L1

H (x+) =

∫
R×[0,1]

‖∂su‖2dsdt > 0,

where ‖ · ‖ is the norm associated to the metric ω(·, J ·). Thus the action de-
creases along Floer trajectories. Now let H be a non-degenerate Hamiltonian
and let a ∈ R be a regular value of the action functional, i.e. a /∈ Spec(H). It
follows from this observation that if CF a(L0, L1; p;H) denotes the Z2�vector
space generated by Hamiltonian chords of action< a, then CF a(L0, L1; p;H)
is a subcomplex of CF (L0, L1; p;H). We denote ia : HF a(L0, L1; p;H,J)→
HF (L0, L1; p;H,J) the map induced in homology by the inclusion. For ev-
ery non-zero Floer homology class α ∈ HF (L0, L1; p;H,J), we de�ne the
spectral invariant associated to α to be the number

`(α;L0, L1; p;H) = inf{a ∈ R : α ∈ im(ia)} .(5)

We wish to have the ability to compare the spectral invariants of di�erent
Hamiltonians. For this purpose it will be convenient to �x a reference Floer
homology group: pick a regular pair (Href , Jref) and set

HFref(L0, L1; p) = HF (L0, L1; p;Href , Jref) .

De�nition 11. For every non-degenerate Hamiltonian function H, the spec-
tral invariant associated to α ∈ HFref(L0, L1; p), α 6= 0, is the number

`(α;L0, L1; p;H) := `(ΨH,J
Href ,Jref

(α);L0, L1; p;H) .

As the notation suggests, the number `(α;L0, L1; p;H), both in the above
de�nition and in Equation (5), does not depend on the necessary choice of an
almost complex structure J so that the pair (H,J) is regular. This follows
from the following inequality which holds for every two regular pairs (H,J),
(H ′, J ′):

`(ΨH′,J ′

Href ,Jref
(α);L0, L1; p;H ′) 6 `(ΨH,J

Href ,Jref
(α);L0, L1; p;H)

+

∫ 1

0
max
M

(H ′t −Ht) dt .
(6)

We now sketch a proof of the above inequality. Since the continuation mor-
phism is injective, the image of any non-zero class α ∈ HF (L0, L1; p;H,J) is

non-zero. By de�nition of ΨH′,J ′

H,J there exist Floer trajectories for a homotopy
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(H̃, J̃) between the generators of CF (L0, L1; p;H) whose linear combination

represents α and the generators of CF (L0, L1; p;H ′) representing ΨH′,J ′

H,J (α).
Computing the energy of such a trajectory and using the fact that the result
is positive yields:

`(ΨH′,J ′

H,J (α);L0, L1; p;H ′) 6 `(α;L0, L1; p;H) +

∫ 1

0
max
M

(H ′t −Ht) dt .

Thus, in particular Inequality (6) follows.
Furthermore, Inequality (6) implies that for every non-degenerate H, H ′,∫ 1

0
min
M

(Ht −H ′t) dt 6 |`(α;L0, L1; p;H)− `(α;L0, L1; p;H ′)|

6
∫ 1

0
max
M

(Ht −H ′t) dt .
(7)

As a consequence, the number `(α;L0, L1; p;H) is Lipschitz continuous with
respect to the HamiltonianH. Moreover, it follows that `(α;L0, L1; p;H) can
be de�ned by continuity for every continuous function H : [0, 1]×M → R.

2.2.1. Spectrality. It is rather easy in our situation (where one does not need
to keep track of cappings) to prove the spectrality property of the invariants
`(α;L0, L1; p;H) regardless the non-degeneracy of H. Namely, for all non-
zero α ∈ HFref(L0, L1; p),

`(α;L0, L1; p;H) ∈ Spec(H) .

We will need the following consequence of this property (we refer to [14,
Lemma 2.2] for a proof).

Corollary 12. Let L be a weakly exact closed Lagrangian of (M,ω) and
H : [0, 1] × M → R be continuous. If H|L = c for some c ∈ R, then
`(α;L,L; p;H) = c for all α 6= 0 in HF (L,L; p).

We end this subsection by recalling that Spec(H), for any Hamiltonian
H, is a measure zero subset of R. This fact will be used in Section 4.

2.2.2. Naturality. Lagrangian Floer homology is natural in the sense that
for any symplectomorphism ψ : (M,ω)→ (M ′, ω′) and any two Lagrangians
L0 and L1 of (M,ω), the following Floer homologies are isomorphic

HF (L0, L1; p;H,J) ' HF (ψ(L0), ψ(L1);ψ(p);H ◦ ψ−1, (ψ−1)∗J)(8)

since the respective complexes as well as the respective moduli spaces in-
volved in the de�nition of the di�erential are in one-to-one correspondence.
This one-to-one correspondence is given on the generators of the complex by
the obvious identi�cation

x ∈ Crit
(
AL0,L1

H

)
⇔ ψ(x) ∈ Crit

(
Aψ(L0),ψ(L1)
H◦ψ−1

)
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where ψ(x) denotes the orbit of H ◦ψ−1 given as t 7→ ψ(x(t)). Furthermore,
the above bijection preserves the action, namely

∀x ∈ Crit
(
AL0,L1

H

)
, AL0,L1

H (x) = Aψ(L0),ψ(L1)
H◦ψ−1 (ψ(x)) .

From this, it is easy to see that the respective Lagrangian spectral invari-
ants coincide: For any non-zero Floer homology class α inHF (L0, L1; p;H,J)
and its image via (8), αψ in HF (ψ(L0), ψ(L1);ψ(p);H ◦ ψ−1, (ψ−1)∗J), we
have

`(α;L0, L1; p;H) = `(αψ;ψ(L0), ψ(L1);ψ(p);H ◦ ψ−1) .(9)

2.2.3. The case of a single Lagrangian. In the particular situation of Section
2.1.1 where we consider a single Lagrangian L (= L0 = L1), one can easily
associate spectral invariants not only to Floer homology classes of (L,L)
but also to (Morse) homology classes of L via the PSS isomorphism. For
convenience, we denote these invariants in the same way: To any a 6= 0 in
HM(L), we associate

`(a;L,L;H) = `(ΦL
H,J(a);L,L; p;H)(10)

with p any point in L and the right-hand side de�ned by (5).
As in the general case, this quantity requires the additional choice of

an almost complex structure J such that (H,J) is regular, it is Lipschitz
continuous with respect to H, so that it is independent of the choice of J
and its de�nition naturally extends to any continuous H : [0, 1]×M → R.

The naturality (9) of spectral invariants also holds in this case. More
precisely, it reads

`(a;L,L; p;H) = `(ψ∗(a);ψ(L), ψ(L);ψ(p);H ◦ ψ−1)(11)

for all non-zero homology classes a of L and all symplectomorphisms ψ. Here
ψ∗(a) denotes the image of a by the morphism induced by ψ|L on HM(L).
Indeed, to see that this holds one should pick a Morse�Smale pair (f, g) on L,
and use (f ◦ψ−1, (ψ−1)∗g) as Morse�Smale pair on ψ(L). For these choices,
the following diagram commutes:

HM(L; f, g)
ψ∗=(ψ|L)∗ //

ΦLH,J
��

HM(ψ(L); f ◦ ψ−1, (ψ−1)∗g)

Φ
ψ(L)

H◦ψ−1,(ψ−1)∗J
��

HF (L,L; p;H,J)
ψ∗
// HF (ψ(L), ψ(L);ψ(p);H ◦ ψ−1, (ψ−1)∗J)

even at the chain level (this is a mild generalization of [7, Lemma 5.1] where
ψ was assumed to be a Hamiltonian di�eomorphism preserving L). The fact
that spectral invariants do not depend on the Morse data then leads to (11).

Finally, in the case of a single Lagrangian one spectral invariant will be of
particular interest to us, namely the one associated to [L], the fundamental
class of L: `([L];L,L;H).
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2.3. Hamiltonian Floer theory, spectral invariants, and capacity.

2.3.1. Hamiltonian Floer homology. We work in a symplectically aspherical
manifold (M,ω). Formally, this case is very similar to the Lagrangian case
of section 2.1.1.

Namely, we pick a Hamiltonian H which is non-degenerate in the sense
that the graph of φ1

H , Γφ1H
, intersects transversely the diagonal ∆ ⊂M×M .

Instead of Ω(L,L; p), we consider the set of contractible free loops in
M . We denote this set by Ω(M) and a typical element by γ. The action
functional AH : Ω(M)→ R is de�ned by the same formula as (1) except that
for γ ∈ Ω(M), γ̄ denotes a capping of γ, that is a disk inM whose boundary
is mapped to the image of γ. Again, the asphericity condition ensures that
AH is well-de�ned.

Its critical points are the contractible 1�periodic orbits of H which form a
�nite set by genericity of H and generate a Z2�vector space which we denote
CF (M ;H).

We again pick a 1�parameter family of tame, ω�compatible, almost com-
plex structures J and consider the moduli spaces:

M̂(γ−, γ+;H,J) =

{
u : R× S1 →M

∣∣∣∣ ∂su+ Jt(u)(∂tu−Xt
H(u)) = 0

∀t, u(±∞, t) = γ±(t)

}
and their quotient by the obvious R�reparametrization in s which we denote
M(γ−, γ+;H,J). These moduli spaces share the same properties as their
Lagrangian counterpart and the di�erential is de�ned accordingly:

∂H,J(γ−) =
∑
γ+

#M[0](γ−, γ+;H,J) · γ+

on generators and extended by linearity. Again, the sum runs over all con-
tractible 1�periodic orbits of H and M[0] is the 0�dimensional component
of the moduli spaceM.

The Floer homology of (M,ω) is de�ned as the homology of this complex
HF (M) = H(CF (M ;H), ∂H,J) and does not depend on the choice of the
regular pair (H,J) in the sense that there are continuation isomorphisms
de�ned in the exact same fashion as in the Lagrangian case and built via
regular homotopies of the data. When H is C2�small enough, the Floer
complex coincides with the Morse complex of M .

Finally, there is also a PSS morphism constructed from a regular pair
(H,J) and a Morse�Smale pair (f, g) on M similarly to its Lagrangian
counterpart. As for the latter, we will omit the Morse data and denote
it ΦH,J : HM(M)→ HF (M ;H,J).

2.3.2. Hamiltonian spectral invariants. This case corresponds to the one
studied by Schwarz in [20]. As in the Lagrangian case described above, the
Floer complex is naturally �ltered by action values since the action functional
decreases along Floer trajectories. So any regular value of the Hamiltonian

action AH gives rise to a subcomplex CF a(M ;H)
ia

↪→ CF (M ;H) and the
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Hamiltonian spectral invariants are de�ned for any non-zero Floer homology
class ofM as in (5). Thanks to the PSS isomorphism, one can also associate
spectral invariants to any non-zero (Morse) homology class of α ∈ HM(M)
as in Section 2.2.3. We will temporarily use the notation c(α;H,J) to denote
these invariants.

These invariants share similar properties with their Lagrangian counter-
parts. In particular they satisfy a Lipschitz estimate similar to (7). It fol-
lows that they are independent of the choice of almost complex structure and
hence we will denote them c(α;H). Furthermore, being Lipschitz continuous,
c(α;H) extends to continuous functions on [0, 1] ×M , i.e. for a continuous
H ∈ C0([0, 1] ×M) we can de�ne c(α;H) = limi→∞ c(α;Hi) where Hi is
any sequence of smooth non-degenerate Hamiltonians converging to H.

As in 2.2.3, one of these invariants will be of greatest interest to us,
c+(H) = c([M ];H), the Hamiltonian spectral invariant associated to the
fundamental class of M . It follows from the above discussion that for non-
degenerate H, it is de�ned via the following expression:

c+(H) = inf{a ∈ R : PSS([M ]) ∈ im(HF a(M ;H)
ia∗−→ HF (M ;H))} .(12)

2.3.3. The spectral capacity c. Following Viterbo [22], we extract from c+

the spectral capacity c mentioned in the introduction. Namely, for any open
set U in M , we de�ne

c(U) = sup{c+(H) : H ∈ C0([0, 1]×M), supp(Ht) ⊂ U∀t ∈ [0, 1]} .

This quantity satis�es the properties de�ning a capacity, see [22].

2.4. Comparison between Lagrangian and Hamiltonian spectral in-

variants. There is an action-preserving isomorphism between the Hamil-
tonian Floer complex of (M,ω) associated to a regular pair (H,J) and the
Lagrangian Floer complex of the diagonal ∆ ' M seen as a Lagrangian in
(M ×M, (−ω) ⊕ ω) and associated to an appropriate regular pair (Ĥ, Ĵ).
The goal of this section is to prove that the respective spectral invariants
coincide (see also [12, Section 3.4]). Given Hamiltonians H and G on M , we
will denote by H ⊕ G the Hamiltonian given for every (x, y) ∈ M ×M by
H ⊕G(x, y) = H(x) +G(y).

Proposition 13. Let (M,ω) be a symplectically aspherical manifold. Let
α 6= 0 in HM(M) and denote α̂ the corresponding class in HM(∆). For any
continuous time-dependent Hamiltonian H on M , c(α;H) = `(α̂; ∆,∆; 0 ⊕
H). In particular, c+(H) = `([∆]; ∆,∆; 0⊕H).

Notice that we are in the case of a single Lagrangian submanifold ∆, so
that `(α̂; ∆,∆; 0⊕H) refers to this particular setting, see Section 2.2.3.

At several points in this paper, and to begin with in the proof of the
proposition above, we will need to work with Hamiltonians H such that
Ht = 0 for t near 0 and 1. This can always be achieved, without a�ecting
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the spectral invariants of H, by time reparametrization. This is the content
of the following remark.

Remark 14. Let (H,J) be a regular pair. Pick a smooth increasing function
σ : [0, 1]→ R so that σ(t) = 0 for all t ∈ [0, ε] and σ(t) = 1 for all t ∈ [1−ε′, 1]
for some ε, ε′ so that 0 < ε < 1−ε′ < 1. Then de�ne Hσ

t (x) = σ′(t)Hσ(t)(x).
There is an obvious bijection between the sets of orbits of H and Hσ which
leads to a bijection on the Floer complexes as vector spaces:

CF (M ;H)→ CF (M ;Hσ) , γ 7→ [γσ : t 7→ γ(σ(t))](13)

which preserves the action, namely AHσ(γσ) = AH(γ) (since geometrically
the orbits are the same, a capping of γ also caps γσ).

Then de�ne Jσ as Jσt (x) = Jσ(t)(x). Notice that (Hσ, Jσ) is regular, and
that there is a bijection between the moduli spaces M(γ−, γ+;H,J) and
M(γσ−, γ

σ
+;Hσ, Jσ) so that (13) induces an action-preserving isomorphism of

the di�erential complexes. Notice that geometrically the main objects (orbits
and Floer's strips) remain the same. It is thus easy to see that geometrically
the representatives of a given Floer homology class remain unchanged along
the process so that, together with the fact that the action is preserved, the
associated (Hamiltonian) spectral invariants coincide.

For the same reason, given a Lagrangian L, the Lagrangian spectral invari-
ants associated to H also remain unchanged along such reparametrization.

We now prove Proposition 13.

Proof. First notice that if (M,ω) is symplectically aspherical, then the diag-
onal ∆ is a weakly exact Lagrangian of (M ×M, (−ω)⊕ ω).

We �rst prove the proposition for non-degenerate Hamiltonians. So we
start with a regular pair (H,J) and apply Remark 14 with σ : [0, 1] → R
so that σ(t) = 0 for all t ∈ [0, 1/2]. Then Hσ = 0 and Jσt = J0 for all
t ∈ [0, 1/2].

Now we consider for t ∈ [0, 1
2 ] the Hamiltonian Ĥt = Hσ

1
2
−t ⊕ H

σ
1
2

+t
on

M ×M . There is a bijection:

CF (M ;Hσ)→ CF (∆,∆; Ĥ) ,

[γ : S1 →M ] 7→
[
x :
[
0, 1

2

]
→M ×M

]
with x(t) = (γ(1

2 − t), γ(1
2 + t))

(14)

since x is an orbit of Ĥ if and only if γ is an orbit of Hσ. Notice that by
de�nition of σ, Ĥt = 0⊕Hσ

1
2

+t
so that by Remark 14 above

`([∆]; ∆,∆; Ĥ) = `([∆]; ∆,∆; 0⊕H)(15)

and x(t) = (γ(0), γ(1
2 + t)).

Again, we need an appropriate family of almost complex structures Ĵ on
M ×M which we obtained by putting Ĵt(x, y) = −Jσ1

2
−t(x) × Jσ1

2
+t

(y) for

t ∈ [0, 1
2 ]. It is easy to see that (Hσ, Jσ) is regular and that the bijection (14)
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above is compatible with the di�erentials of the complexes. Indeed, pick any
two generators of CF (M ;Hσ), γ− and γ+ and any cylinder u : R×S1 which
uniformly converges to γ± when s converges to ±∞. Denote respectively by

x± the generators of CF (∆,∆; Ĥ) given by (14) from γ± and consider

û : R×
[
0, 1

2

]
→M ×M , û(s, t) =

(
u
(
s, 1

2 − t
)
, u
(
s, 1

2 + t
))
.

When s goes to ±∞, û uniformly converges to (γ±(1
2−t), γ±(1

2 +t)) = x±(t).

The boundary conditions are: û(s, 0) = (u(s, 1
2), u(s, 1

2)) and û(s, 1
2) =

(u(s, 0), u(s, 1)) which both lie in ∆ for any s ∈ R. Finally, projecting
Floer's equation

∀t ∈ [0, 1
2 ], ∂sû+ Ĵt(û)(∂tû−Xt

Ĥ
(û)) = 0

to both components of the product shows that it is satis�ed if and only if

∀t ∈ [0, 1], ∂su+ Jσt (u)(∂tu−Xt
Hσ(u)) = 0 .

Thus û ∈ M∆,∆(x−, x+; Ĥ, Ĵ) if and only if u ∈ M(γ−, γ+;Hσ, Jσ) and
(14) induces an isomorphism of complexes.

Finally, remark that there is an obvious correspondence between the cap-
pings of a 1�periodic orbit γ and the half-cappings of its associated orbit x.
In particular, a capping γ̄ of γ can be thought of as a half-capping for x,
by putting x̄ = (x̄1, x̄2) : D2 → M ×M , with x̄1 the constant half-capping
mapping D2 to γ(0) and x2 the half-capping mapping ∂D+ to the image of
γ and ∂D− to γ(0). By doing so, not only x̄ maps ∂D+ to the image of x
in M ×M and ∂D− to (γ(0), γ(0)) ∈ ∆, but the symplectic area of γ̄ with
respect to ω and the symplectic area of x̄ with respect to (−ω)⊕ω coincide.
It easily follows that the action is preserved along the above transformation,

namely AHσ(γ) = A∆,∆

Ĥ
(x).5

Now pick a Morse�Smale pair (f, g) on M and de�ne (f̂ , ĝ) on ∆ by

putting f̂(x, x) = f(x) and ĝ(x,x)((ξ, ξ), (η, η)) = gx(ξ, η) for all x in M and

all ξ and η in TxM . Then the pair (f̂ , ĝ) is a Morse�Smale pair for ∆ and it is
easy to show that the moduli spaces involved in the de�nition of the Hamil-
tonian PSS morphism inM correspond to those de�ning the Lagrangian PSS
morphism in M ×M with respect to ∆ along the above process. Thus, for
any non-zero homology class α ∈ HM(M), which we denote α̂ when seen as

a homology class in HM(∆), c(α;Hσ) = `(α̂; ∆,∆; Ĥ). In particular, when

α = [M ], α̂ = [∆] so that c+(Hσ) = `([∆]; ∆,∆; Ĥ).
Combined with (15), this concludes the proof for smooth non-degenerate

Hamiltonians H. In view of the extension of both c and ` to C0([0, 1]×M),
Proposition 13 easily follows from the non-degenerate case. �

5 To be perfectly precise, we should have used an additional time-reparametrization to
de�ne Ĥ on the whole interval [0, 1]. Since such a reparametrization is harmless in terms
of spectral invariants as explained in Remark 14, we omitted it.
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2.5. Products in Lagrangian Floer theory and the triangle inequal-

ity. Let L0, L1, and L2 denote three Lagrangian submanifolds of (M,ω).
We �x three intersection points p01 ∈ L0 ∩ L1, p12 ∈ L1 ∩ L2, p02 ∈ L0 ∩ L2

and suppose that each pair (Li, Lj) is weakly exact, in the sense of De�nition
8, with respect to the intersection point pij ∈ Li ∩ Lj . In this section, we
describe the usual product structure on Lagrangian Floer homology.

We will be closely following the construction of this product as described
in [1, Section 3]. There exist several other ways of de�ning the same product;
see for example [3]. Let Σ denote the Riemann surface obtained by removing
three points from the boundary of the closed unit disk in C. We view Σ as
a strip with a slit:

Σ = (R× [−1, 0] t R× [0, 1])/ ∼,
where (s, 0−) ∼ (s, 0+) for all s > 0. This is indeed a Riemann surface
whose interior is naturally identi�ed with R × (−1, 1) \ (−∞, 0] × {0} and
whose boundary consists of the three components R × {−1}, R × {1}, and
(−∞, 0]×{0−, 0+}. At any point, other than (0, 0), the inclusion of Σ into C
induces the standard complex structure (s, t) 7→ s+it. At the point (0, 0) the
complex structure is given by the map {z ∈ C : Re(z) > 0} → Σ, z 7→ z2.

Figure 1. Abbondandolo�Schwarz's strip with a slit, Σ

For 0 6 i < j 6 2, denote by (Hij , Jij) a regular pair (of a Hamiltonian
and a compatible time-dependent almost complex structure) for the weakly
exact pair of Lagrangians (Li, Lj). Without loss of generality, we may assume
that Hij(t, x) = 0 for t near 0 and 1; see Remark 14. To de�ne the product
structure, we need some auxiliary data: For s ∈ (−∞,∞) and t ∈ [−1, 1] let
J(s,t) denote a family of almost complex structures on M such that

J(s,t) =


J t+1

01 if s 6 −1, t ∈ [−1, 0],
J t12 if s 6 −1, t ∈ [0, 1],

J
t+1
2

02 if s > 1, t ∈ [−1, 1].

Furthermore, Choose a function K : R× [−1, 1]×M → R such that

K(s, t, x) =


H01(t+ 1, x) if s 6 −1, t ∈ [−1, 0],
H12(t, x) if s 6 −1, t ∈ [0, 1],
1
2H02( t+1

2 , x) if s > 1, t ∈ [−1, 1].
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For any three Hamiltonian chords xij ∈ CF (Li, Lj ; pij ;Hij), consider the
moduli space M(x01, x12;x02) of maps u : Σ → M solving the Floer-type

equation ∂su + J(s,t)(u)(∂tu − Xs,t
K (u)) = 0 and subject to the following

asymptotic and boundary conditions
∀t ∈ [−1, 0], u(−∞, t) = x01(t+ 1) and ∀t ∈ [0, 1], u(−∞, t) = x12(t),

∀t ∈ [−1, 1], u(+∞, t) = x02

(
t+1

2

)
,

u(R× {−1}) ⊂ L0, u(R× {1}) ⊂ L2, u((−∞, 0]× {0−, 0+}) ⊂ L1.

For generic choices of K and J , the moduli space M(x01, x12;x02) is
a smooth �nite dimensional manifold. Its 0�dimensional component, de-
noted by M[0](x01, x12;x02), is compact and thus �nite. We denote by
#M[0](x01, x12;x02) its cardinality modulo 2. We can now de�ne a bilin-
ear map

CF (L0, L1; p01;H01)×CF (L1, L2; p12;H12)→ CF (L0, L2; p02;H02)

(x01, x12) 7→
∑
x02

#M[0](x01, x12;x02) · x02 .

This map depends on the auxiliary data (K,J). However, it can be shown
that it induces a well-de�ned associative product at the level of homology:

HF (L0, L1; p01;H01, J01)⊗HF (L1,L2; p12;H12, J12)

−→ HF (L0, L2; p02;H02, J02) .

We will refer to this product as the pair-of-pants product. Given Floer
homology classes α, β, we will denote their pair-of-pants product by α ∗ β.

2.5.1. Compatibility of the pair-of-pants product with continuation maps. De-
note by H ′ij , 0 6 i < j 6 2, three additional Hamiltonians which are

non-degenerate with respect to the pairs (Li, Lj) and pick three almost
complex structures J ′ij so that the pairs (H ′ij , J

′
ij) are regular. Let α ∈

HF (L0, L1; p01;H01, J01) and β ∈ HF (L1, L2; p12;H12, J12). The pair-of-
pants product ∗ is compatible with continuation maps in the following sense:

(16) Ψ
H′01,J

′
01

H01,J01
(α) ∗Ψ

H′12,J
′
12

H12,J12
(β) = Ψ

H′02,J
′
02

H02,J02
(α ∗ β) .

One can prove this formula by considering 0� and 1�dimensional components
of suitable moduli spaces of objects combining continuation Floer strips and
pair-of-pants strips with slits.

Note that this compatibility between pair-of-pants and continuation maps
allows one to consider the pair-of-pants product as a product on Lagrangian
Floer homology, independently of the auxiliary data:

HF (L0, L1; p01)⊗HF (L1, L2; p12) −→ HF (L0, L2; p02) .
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2.5.2. The pair-of-pants product when L0 = L1. As mentioned in Section
2.1.1, in the case of a single Lagrangian L, the PSS isomorphism intertwines
the Morse and Floer theoretic versions of the intersection product. Namely,

ΦL
H,J(a · b) = ΦL

H,J(a) ∗ ΦL
H,J(b)(17)

for any regular pair (H,J) and any two classes a and b in HM(L). So in
the case of a single Lagrangian, the pair-of-pants product turns HF (L,L; p)
into a ring with unit ΦL

H,J([L]), where [L] is the fundamental class of L.

2.5.3. The triangle inequality. We continue to work with the Lagrangians
L0, L1, L2 from the previous sections. We call a triple (L0, L1, L2) of La-
grangians weakly exact if any disk with boundary on L0 ∪ L1 ∪ L2 and
�corners� at p01, p12, p02 has vanishing symplectic area. More precisely, de-
note by D the closed unit disk in C, and �x the three points z0 = 1, z1 =

e
2π
3
i, z2 = e−

2π
3
i on the boundary of D. Let γ0 denote the segment on the

boundary of D between z0 and z1, and similarly de�ne γ1, γ2.

De�nition 15. The triple (L0, L1, L2) is weakly exact with respect to the
intersection points (p01, p12, p02) if

∫
D v
∗ω = 0 for every disk

v : (D, γ0, γ1, γ2, z0, z1, z2)→ (M,L0, L1, L2, p01, p12, p02).

Our main motivation for introducing the above de�nition is to establish
sharp estimates needed to prove the triangle inequality satis�ed by spectral
invariants.

Example 16. Weakly exact pairs of Lagrangians in the sense of De�nition
8 provide examples of weakly exact triples. Namely, if (L0, L1) is weakly
exact with respect to p ∈ L0 ∩ L1, then (L0, L0, L1) and (L0, L1, L1) are
weakly exact with respect to (p, p, p) since a disk as in the de�nition above
is a particular case of pinched disks as in De�nition 8. This, combined with
Example 9, shows that the triples in which we will be interested in the course
of the proof of Theorem 4 (more precisely, in Theorem 23 below) are weakly
exact with respect to (p, p, p) for any p ∈ L0 ∩ L1. J

Let H01, H12 denote any two time-dependent Hamiltonians onM . De�ne

H01#H12(t, x) =

{
2H01(2t, x) if t ∈ [0, 1

2 ]
2H12(2t− 1, x) if t ∈ [1

2 , 1].
(18)

Once again, without loss of generality we may assume that both H01 and
H12 vanish for t near 0 and 1, see Remark 14. Hence, H01#H12 is a smooth
Hamiltonian. Observe that φ1

H01#H12
= φ1

H12
◦ φ1

H01
. The main goal of this

section is to prove the following triangle inequality:

Theorem 17. Let (L0, L1, L2) be a triple of Lagrangians which is weakly
exact with respect to (p01, p12, p02), where pij ∈ Li ∩ Lj. Denote by α, β
homology classes in the reference Floer homology groups HFref(L0, L1; p01)
and HFref(L1, L2; p12), respectively. The following inequality holds:

`(α∗β;L0, L2; p02;H01#H12) 6 `(α;L0, L1; p01;H01)+`(β;L1, L2; p12;H12).
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Note that, the compatibility of the pair-of-pants product with continu-
ation maps, as described in Section 2.5.1, allows us to view α ∗ β in the
reference Floer homology group HFref(L0, L2; p02). We will now prove the
triangle inequality.

Proof. Recall that, by Inequality (7), the spectral invariant `(· ;Li, Lj ; pij ;H)
depends continuously on H. Hence by replacing H01, and H12 with nearby
non-degenerate Hamiltonians if needed, we may assume that H01, H12 and
H01#H12 are all regular.

Write H02 = H01#H12. As in the previous section, take Hamiltonian
chords xij ∈ CF (Li, Lj ; pij ;Hij) and consider the moduli space appearing in
the de�nition of the pair-of-pants product,M(x01, x12;x02). For any ε > 0,
it is possible to pick the function K : R× [−1, 1]×M → R in the auxiliary
data (K,J) such that∣∣∣∣∂Ks,t

∂s

∣∣∣∣ 6 ε

4
if s ∈ [−1, 1], and

∂Ks,t

∂s
= 0 otherwise.(19)

Indeed, this can be achieved by making a small perturbation of the following
function

K ′(s, t, x) =

{
H01(t+ 1, x) for t ∈ [−1, 0],
H12(t, x) for t ∈ [0, 1].

We leave it to the reader to verify that proving the triangle inequality

amounts to showing that AL0,L2

H02
(x02) 6 AL0,L1

H01
(x01) +AL1,L2

H12
(x12). We will

now prove this last inequality. For any u ∈ M(x01, x12;x02), the following
holds:

0 6
∫

Σ
‖∂su(s, t)‖2dsdt =

∫
Σ
ω(∂su, J(s,t)(u)∂su)dsdt

=

∫
Σ
ω(∂su, ∂tu−Xs,t

K (u))dsdt =

∫
Σ
u∗ω −

∫
Σ
dKs,t(∂su)dsdt .

Now, let x̄ij denote homotopies from the chords xij to the constant paths
pij , i.e. cappings for xij . Since, the triple (L0, L1, L2) is weakly exact with
respect to (p01, p12, p02), the disk x̄01#x̄12#u#(−x̄02) has symplectic area
zero. Hence, we see that∫

Σ
u∗ω = −

∫
D

(x̄01)∗ω −
∫
D

(x̄12)∗ω +

∫
D

(x̄02)∗ω .

On the other hand, Equation (19) implies that
∫

Σ ∂sKs,t(u) dsdt 6 ε and
hence we obtain the following:

−
∫

Σ
dKs,t(∂su)dsdt = −

∫
Σ
∂s(Ks,t ◦ u) dsdt+

∫
Σ
∂sKs,t(u) dsdt

6
∫ 1

0
H01(t, x01(t))dt+

∫ 1

0
H12(t, x12(t))dt−

∫ 1

−1
H02(t, x02(t))dt+ ε .
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We conclude from the above that

0 6
∫

Σ
‖∂su(s, t)‖2dsdt 6 AL0,L1

H01
(x01) +AL1,L2

H12
(x12)−AL0,L2

H02
(x02) + ε

which �nishes the proof of the triangle inequality. �

2.6. A Künneth formula for Lagrangian Floer homology and a split-

ting formula for spectral invariants. Let (M ′, ω′) and (M ′′, ω′′) denote
two closed symplectically aspherical symplectic manifolds. Let (L′0, L

′
1) de-

note a pair of Lagrangians in M ′ which is weakly exact with respect to a
�xed intersection point p′ ∈ L′0 ∩ L′1. Take (H ′, J ′) to be a regular pair
(of a Hamiltonian and an almost complex structure), as de�ned in Section
2.1, for the weakly exact pair of Lagrangians (L0, L1). Similarly, we de�ne
(L′′0, L

′′
1), p′′ ∈ L′′0 ∩ L′′1, and (H ′′, J ′′) in M ′′.

Consider the product Lagrangians L0 = L′0×L′′0, L1 = L′1×L′′1 in (M ′×
M ′′, ω′⊕ω′′), the HamiltonianHt(x, y) = H ′⊕H ′′(t, (x, y)) := H ′t(x)+H ′′t (y),
and the almost complex structure J = J ′ ⊕ J ′′. Note that the pair (L0, L1)
is weakly exact with respect to the intersection point (p′, p′′) ∈ L0 ∩ L1.
It is easy to see that the Hamiltonian H is non-degenerate, and moreover,
the Hamiltonian chords of H are of the form x = (x′, x′′) where x′, x′′ are
Hamiltonian chords of H ′ and H ′′.

The pair (H,J) is regular for (L0, L1): This is because the linearization
of the operator u 7→ ∂su + Jt(u)(∂tu −Xt

H(u)) splits into a product of the
corresponding linearizations for (H ′, J ′) and (H ′′, J ′′); see, for example, [13]
for further details. It follows that, for any two chords x− = (x′−, x

′′
−) and

x+ = (x′+, x
′′
+) of H, the moduli space M̂L0,L1(x−, x+;H,J), used in the

de�nition of the Floer boundary map, coincides with the product

M̂L′0,L
′
1(x′−, x

′
+;H ′, J ′)× M̂L′′0 ,L

′′
1 (x′′−, x

′′
+;H ′′, J ′′).

We leave it to the reader to conclude from the discussion in the preceding
paragraph that

CF (L0, L1; p;H) = CF (L′0, L
′
1; p′;H ′)⊗ CF (L′′0, L

′′
1; p′′;H ′′) ,

where the boundary map ∂ is de�ned by ∂x = ∂′x′ ⊗ x′′ + x′ ⊗ ∂′′x′′, with
∂′ and ∂′′ denoting the boundary maps for the Floer complexes of H ′ and
H ′′, respectively. Recall that we are working over Z2 and thus applying the
standard Künneth formula we obtain
(20)
HF (L0, L1; p;H,J) = HF (L′0, L

′
1; p′;H ′, J ′)⊗HF (L′′0, L

′′
1; p′′;H ′′, J ′′) .

2.6.1. A splitting formula for spectral invariants. We present in this section
a splitting formula6 for spectral invariants in the situation described above.
Consider a Floer homology class α = α′⊗α′′ 6= 0 in HF (L′0, L

′
1; p′;H ′, J ′)⊗

6This is sometimes called the �product formula� in the literature. We have chosen
this alternative terminology in order to avoid any possible confusion with the triangle
inequality coming from product of homology classes.
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HF (L′′0, L
′′
1; p′′;H ′′, J ′′). By the discussion above, α is a homology class in

HF (L0, L1; p;H,J). The following splitting formula holds:

(21) `(α;L0, L1; p;H) = `(α′;L′0, L
′
1; p′;H ′) + `(α′′;L′′0, L

′′
1; p′′;H ′′).

In [6, Section 5], a more abstract and general version of the above formula
is proven for spectral invariants of �decorated Z2�graded complexes�, see [6,
Theorem 5.2]. Formula (21) is an immediate corollary of this theorem.

2.6.2. Compatibility of the Künneth Formula with the pair-of-pants product.
In this section, we describe the compatibility of the Künneth formula (20)
with the pair-of-pants product as de�ned in Section 2.5.

Let L0 = L′0 × L′′0, L1 = L′1 × L′′1 ⊂ M ′ × M ′′ be as in the previous
section, and consider additionally a third Lagrangian L2 = L′2 × L′′2. For
0 6 i < j 6 2, take three intersection points pij = (p′ij , p

′′
ij) ∈ Li ∩ Lj

and suppose that (L′i, L
′
j), (L′′i , L

′′
j ) are weakly exact with respect to the

intersection points p′ij , p
′′
ij , respectively. Lastly, let (H ′ij , J

′
ij) and (H ′′ij , J

′′
ij)

denote regular pairs for (L′i, L
′
j) and (L′′i , L

′′
j ), respectively.

As in the previous section, we consider the split Hamiltonians and almost
complex structures Hij = H ′ij ⊕ H ′′ij , Jij = J ′ij ⊕ J ′′ij . By the Künneth for-

mula (20), HF (Li, Lj ; pij ;Hij , Jij) is generated by elements of the form α′⊗
α′′, where α′ ∈ HF (L′i, L

′
j ; p
′
ij ;H

′
ij , J

′
ij) and α′′ ∈ HF (L′′i , L

′′
j ; p
′′
ij ;H

′′
ij , J

′′
ij).

Therefore, describing the pair-of-pants product, in this setting, reduces to
describing the product for such elements.

Consider α′⊗α′′ ∈ HF (L0, L1; p01;H01, J01) and β′⊗β′′ ∈ HF (L1, L2; p12

;H12, J12). Then, the following equality holds in HF (L0, L2; p02;H02, J02) :

(22) (α′ ⊗ α′′) ∗ (β′ ⊗ β′′) = (α′ ∗ β′)⊗ (α′′ ∗ β′′).
The reasoning as to why the above holds is very similar to the reasoning for
the Künneth formula (20): Let xij = (x′ij , x

′′
ij) denote Hamiltonian chords for

Hij = H ′ij ⊕H ′′ij . Recall from Section 2.5 the moduli spaceM(x01, x12;x02)
which is used to de�ne the pair-of-pants product. Such moduli spaces split
into products:

M(x01, x12;x02) =M(x′01, x
′
12;x′02)×M(x′′01, x

′′
12;x′′02).

2.6.3. Compatibility of the Künneth formula with the PSS isomorphism and
the splitting formula. Consider the case of a single Lagrangian L = L′ ×L′′.
The PSS morphism as described in this particular case in Section 2.1.1 is
compatible with the Künneth formula (20). This was the content of [13,
Claim 3.4] in the more general case of monotone manifolds. More precisely,
the Morse theoretic version of Künneth's formula is satis�ed, that is

HM(L) = HM(L′)⊗HM(L′′) .

As in the Floer theoretic case this can be proven, even at the chain level, by
choosing a Morse�Smale pair (f, g) on L which splits, that is f = f ′ ⊕ f ′′
and g = g′⊕ g′′ where (f ′, g′) and (f ′′, g′′) are Morse�Smale pairs for L′ and
L′′, respectively.
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Now, for such split Morse and Floer data, respectively (f, g) and (H,J),
one can easily prove that for all a′ ∈ HM(L′; f ′, g′) and a′′ ∈ HM(L′′; f ′′, g′′),

ΦL
H,J(a′ ⊗ a′′) = ΦL′

H′,J ′(a
′)⊗ ΦL′′

H′′,J ′′(a
′′)(23)

again, even at the chain level, since the moduli spaces involved in the con-
struction of the PSS isomorphism themselves split along the product. (The
fact that the PSS isomorphism is compatible with Morse and Floer contin-
uation morphisms then allows one to consider, at the homological level, non
necessarily split data.)

It follows that the splitting formula (21) restricts to the following:

`(a⊗ b;L,L;H ′ ⊕H ′′) = `(a;L′, L′;H ′) + `(b;L′′, L′′;H ′′)(24)

for all non-zero Morse homology classes a ∈ HM(L′) and b ∈ HM(L′′). No-
tice that this corresponds to [14, Theorem 2.14] in the case of Hamiltonians
with complete �ows on cotangent bundles.

3. Lagrangian Floer theory of tori

In this section, we specialize the theory developed in Section 2 to the
settings introduced in Section 1.2. Recall that,M = T2k1×T2k1×T2k2×T2k2

and that it is equipped with the standard symplectic form ωstd. Furthermore,
recall that the Lagrangians we are interested in, L0 and L1, are de�ned as
follows

L0 = Tk1 × {0} × Tk1 × {0} × Tk2 × {0} × Tk2 × {0} ,

L1 = Tk1 × {0} × Tk1 × {0} × Tk2 × {0} × {0} × Tk2 .

As noted in Section 1.2, Li = L× L′i, where

L = Tk1 × {0} × Tk1 × {0} × Tk2 × {0} ⊂ T2k1 × T2k1 × T2k2 ,

L′0 = Tk2 × {0} ⊂ T2k2 , and L′1 = {0} × Tk2 ⊂ T2k2 .

The pairs of Lagrangians (L,L), (L′0, L
′
1), and (L0, L1) = (L × L′0, L ×

L′1) are all weakly exact with respect to any point in their corresponding
intersections; see Example 9. We �x, for the rest of this article, in the
intersection of each of the above pairs the point all of whose coordinates
are zero, and carry out the constructions of Floer homology and spectral
invariants (as described in Section 2) with respect to this intersection point.
We will omit the intersection point from our notation.

3.1. HF (L0, L1) and the associated spectral invariants. In this section,
we construct an isomorphism between Morse homology HM(L) and Floer
homology HF (L0, L1;H,J). We will then use this isomorphism to associate
spectral invariants to Morse homology classes.

Theorem 18. There exists a PSS-type isomorphism

ΦL0,L1

H,J : HM(L)→ HF (L0, L1;H,J),
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associated to every regular pair (H,J). Furthermore, the isomorphism ΦL0,L1

H,J

is compatible with continuation morphisms in the following sense:

ΦL0,L1

H,J = ΨH,J
H′,J ′ ◦ ΦL0,L1

H′,J ′ ,(25)

where (H ′, J ′) is any other regular pair.

Proof. Pick a Hamiltonian F and an almost complex structure j, on T2k1 ×
T2k1 × T2k2 , such that (F, j) is regular for the pair of Lagrangians (L,L).
Similarly, we pick (F ′, j′), on T2k2 , such that (F ′, j′) is regular for the pair
(L′0, L

′
1). De�ne the Hamiltonian F ⊕ F ′ on M by F ⊕ F ′(z1, z2) = F (z1) +

F ′(z2), for z1 ∈ T2k1 × T2k1 × T2k2 and z2 ∈ T2k2 .
We know from Sections 2.1.1 and 2.1.2 that there exist a PSS isomor-

phism ΦL
F,j : HM(L) → HF (L,L;F, j) and a PSS-type isomorphism be-

tween Φ
L′0,L

′
1

F ′,j′ : Z2 → HF (L′0, L
′
1;F ′, j′).

We de�ne

ΦL0,L1

F⊕F ′,j⊕j′ : HM(L)→ HF (L,L;F, j)⊗HF (L′0, L
′
1;F ′, j′)

to be the tensor product of these two isomorphisms, i.e. ∀ a ∈ HM(L) we
have:

ΦL0,L1

F⊕F ′,j⊕j′(a) = ΦL
F,j(a)⊗ [pt],(26)

where [pt] denotes the non-trivial homology class in HF (L′0, L
′
1;F ′, j′). On

the other hand, the Künneth formula (20) tells us that

HF (L0, L1;F ⊕ F ′, j ⊕ j′) = HF (L,L;F, j)⊗HF (L′0, L
′
1;F ′, j′).

Hence, ΦL0,L1

F⊕F ′,j⊕j′ gives an isomorphism betweenHM(L) andHF (L0, L1;F⊕
F ′, j⊕ j′). For an arbitrary regular pair (H,J) we de�ne ΦL0,L1

H,J : HM(L)→
HF (L0, L1;H,J) by the formula

ΦL0,L1

H,J = ΨH,J
F⊕F ′,j⊕j′ ◦ ΦL0,L1

F⊕F ′,j⊕j′ .

The proof of the second half of the theorem, concerning the compatibility

of ΦL0,L1

H,J with continuation morphisms, is an immediate consequence of the
de�nition above and the fact that continuation morphisms are canonical in
the sense of Equation (2). �

As an immediate consequence of Theorem 18, we can associate spectral
invariants to elements of HM(L).

De�nition 19. For every regular Hamiltonian H, the spectral invariant as-
sociated to a non-zero element a ∈ HM(L) is the number

`(a;L0, L1;H) := `(ΦL0,L1

H,J (a);L0, L1;H),

where the right-hand side is de�ned via Equation (5).
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Remark 20. The above de�nition is compatible with De�nition 11. In
e�ect, what we have done in the above de�nition is to take the reference pair
(Href , Jref) of De�nition 11 to be the pair (F ⊕ F ′, j ⊕ j′) from the proof of
Theorem 18.

It follows immediately from Inequality (7) that for non-degenerate H, H ′,
we have:∫ 1

0
min
M

(Ht −H ′t)dt 6 |`(a;L0, L1;H)−`(a;L0, L1;H ′)|

6
∫ 1

0
max
M

(Ht −H ′t)dt .
(27)

We conclude that `(a;L0, L1;H) can be de�ned by continuity for every con-
tinuous function H : [0, 1]×M → R.

We end this subsection by mentioning that, as in Section 2.2.1, one can
easily verify the spectrality property, `(a;L0, L1;H) ∈ Spec(H).

3.2. Product structure and the triangle inequality. Recall that the
Morse homology of any manifoldX carries a ring structure where the product
of a, b ∈ HM(X) is given by the intersection product a · b.

Consider the Lagrangian submanifolds L0 = L × L′0, L1 = L × L′1. As
a consequence of the Künneth formula for Morse homology, the homology
ring HM(Li) can be written as the tensor product of the rings HM(L) and
HM(L′i), i.e.

HM(Li) = HM(L)⊗HM(L′i).

For 1 6 j 6 3, let (Hj , Jj) denote three regular pairs. Recall that in Section
2.5 we de�ned the pair-of-pants product. Here, we will consider the following
two instances of the pair-of-pants product

∗ : HF (L0, L1;H1, J1)⊗HF (L1, L1;H2, J2)→ HF (L0, L1;H3, J3),

∗ : HF (L0, L0;H1, J1)⊗HF (L0, L1;H2, J2)→ HF (L0, L1;H3, J3).

The next theorem describes the relation between the above two pair-of-pants
products and the intersection product on HM(L).

Theorem 21. Denote by [L′i], for i = 0, 1, the fundamental class in HM(L′i)
and by a, b ∈ HM(L) any two Morse homology classes. The intersection and
pair-of-pants products satisfy the following relations:

(1) ΦL0,L1

H1,J1
(a) ∗ ΦL1

H2,J2
(b⊗ [L′1]) = ΦL0,L1

H3,J3
(a · b),

(2) ΦL0
H1,J1

(a⊗ [L′0]) ∗ ΦL0,L1

H2,J2
(b) = ΦL0,L1

H3,J3
(a · b).

Proof. We will only prove the �rst of the above two identities. The second
is proven in a similar fashion.

Recall that L ⊂ T2k1×T2k1×T2k2 and L′0, L
′
1 ⊂ T2k2 . Let F and F ′ denote

two non-degenerate Hamiltonians on T2k1×T2k1×T2k2 and T2k2 , respectively.
We claim that it is su�cient to prove the theorem in the special case where
H1 = H2 = H3 = F ⊕ F ′. Indeed, this can be deduced using the following
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two ingredients: First, the compatibility of PSS and PSS-type isomorphisms
with continuation isomorphisms, as described by Diagram (3) and Equation
(25). Second, the compatibility of continuation isomorphisms with the pair-
of-pants product as described by Equation (16). We will prove the theorem
in this special case and leave it to the reader to verify that this indeed does
imply the general case.

Pick almost complex structures J, J ′ such that the pairs (F, J) and (F ′, J ′)
are both regular. Now, it follows from Equation (26) that

ΦL0,L1

F⊕F ′,J⊕J ′(a) = ΦL
F,J(a)⊗ [pt],

where [pt] denotes the non-trivial homology class in HF (L′0, L
′
1;F ′, j′). We

also know, from Equation (23), that

ΦL1
F⊕F ′,J⊕J ′(b⊗ [L′1]) = ΦL

F,J(b)⊗ Φ
L′1
F ′,J ′([L

′
1]).

We will be needing the following identity, whose proof we postpone for the
time being:

(28) [pt] ∗ Φ
L′1
F ′,J ′([L

′
1]) = [pt].

Using the above, we obtain the following:

ΦL0,L1

F⊕F ′,J⊕J ′(a) ∗ ΦL1
F⊕F ′,J⊕J ′(b⊗ [L′1])

=
(
ΦL
F,J(a)⊗ [pt]

)
∗
(

ΦL
F,J(b)⊗ Φ

L′1
F ′,J ′([L

′
1])
)

=
(
ΦL
F,J(a) ∗ ΦL

F,J(b)
)
⊗
(

[pt] ∗ Φ
L′1
F ′,J ′([L

′
1])
)

by Equation (22)

= ΦL
F,J(a · b)⊗

(
[pt] ∗ Φ

L′1
F ′,J ′([L

′
1])
)

by Equation (17)

= ΦL
F,J(a · b)⊗ [pt] by Equation (28)

= ΦL0,L1

F⊕F ′,J⊕J ′(a · b) by Equation (26).

It remains to prove Equation (28). Recall that

L′0 = Tk2 × {0} ⊂ T2k2 , L′1 = {0} × Tk2 ⊂ T2k2 .

Let

Λ0 = T1 × {0} ⊂ T2, Λ1 = {0} × T1 ⊂ T2 ,

and observe that (up to a symplectomorphism)

L′0 = Λ0 × · · · × Λ0︸ ︷︷ ︸
k2 times

, L′1 = Λ1 × · · · × Λ1︸ ︷︷ ︸
k2 times

.

Equations (3) and (16) tell us, respectively, that continuation morphisms
are compatible with the PSS isomorphism and the pair-of-pants product.
From this, one can conclude that it is su�cient to verify Equation (28) for
any speci�c choice of a regular pair (F ′, J ′). Furthermore, the regular pair
used for de�ning HF (L′0, L

′
1) can indeed be di�erent from the one used for
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de�ning HF (L′1, L
′
1). We will verify the formula for the choices described in

the next two paragraphs.
For HF (L′1, L

′
1) we pick a regular pair of the form

(f ⊕ · · · ⊕ f︸ ︷︷ ︸
k2 times

, j ⊕ · · · ⊕ j)︸ ︷︷ ︸
k2 times

,

where (f, j) denotes a regular pair on the 2�torus T2, the almost complex
structure j ⊕ . . . ⊕ j denotes the obvious split almost complex structure on
Tk2 , and f ⊕ . . .⊕ f(z1, . . . , zk2) = f(z1) + . . .+ f(zk2).

For HF (L′0, L
′
1) we pick a regular pair of the form

(0, j0 ⊕ . . .⊕ j0),

where 0 denotes the zero Hamiltonian. Recall that since L′0 and L′1 intersect
transversely the zero Hamiltonian is non-degenerate for this pair.

Now, by the Künneth formula (20) we have the following splittings

HF (L′0, L
′
1; 0, j0 ⊕ · · · ⊕ j0) = HF (Λ0,Λ1; 0, j0)⊗k2 , and

HF (L′1, L
′
1; f ⊕ · · · ⊕ f, j ⊕ · · · ⊕ j) = HF (Λ1,Λ1; f, j)⊗k2 .

Furthermore, the above splittings are compatible with the pair-of-pants prod-
uct as described by Equation (22). This implies that Equation (28) is an
immediate consequence of the following claim:

Claim. Denote by p the unique intersection point of Λ0 and Λ1 and by
[p] the Floer homology class represented by this point. Note that this is
the unique non-zero class in HF (Λ0,Λ1; 0, j0). The pair-of-pants product
∗ : HF (Λ0,Λ1; 0, j0) ⊗ HF (Λ1,Λ1; f, j) → HF (Λ0,Λ1, ; 0, j0) satis�es the
following identity:

[p] ∗ ΦΛ1
f,j([Λ1]) = [p].(29)

The proof of the above claim boils down to computing one of the simplest
instances of the pair-of-pants product. This is well-known to experts, and
thus we only present a sketch of the proof while avoiding the technical details.

Proof of Claim. Once again, by Equations (3) and (16), it is su�cient to
verify the above claim for a given choice of a regular pair (f, j). We pick
f as follows: begin with a C2�small Morse function on the circle Λ1 and
extend it trivially to the product T2 = Λ0 × Λ1. Furthermore, we pick f
such that f |Λ1 has only two critical points. Denote the maximum by Q and
the minimum by q.

Let Λ′1 = φ1
f (Λ1). Since f is C2�small, Λ′1 intersects Λ0 transversely at a

single point. We denote this point by p′. See Figure 2.
It is well-known that there exists a natural identi�cation ofHF (Λ1,Λ1; f, j)

with HF (Λ1,Λ
′
1; 0, j̃), where j̃t = (φtf )−1

∗ jt; see for example [12, Section

2.2.2] or [3, Remark 1.10]. The point Q represents a homology class [Q] ∈
HF (Λ1,Λ

′
1; 0, j̃), which corresponds to the fundamental class [Λ1] ∈ HM(Λ1).
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Figure 2. Pair-of-pants product in T2

Also, HF (Λ0,Λ
′
1; 0, j0) is generated by [p′], the homology class represented

by the point p′.
Again, using Diagram (3) and Equation (16), we see that Equation (29)

is equivalent to

(30) [p] ∗ [Q] = [p′].

This last equality can be veri�ed without much di�culty. First, note that
[p] ∈ HF (Λ0,Λ1; 0, j0), [Q] ∈ HF (Λ1,Λ

′
1; 0, j̃), and [p′] ∈ HF (Λ0,Λ1; 0, j0),

and thus, the Hamiltonians in question are all zero. Furthermore, we can take
j0 to be the standard complex structure on T2 and j such that j̃ = j0. Hence,
to verify that [p]∗ [Q] = [p′], we must count the number of holomorphic disks
on T2 with boundary on Λ0 ∪ Λ1 ∪ Λ′0 and corners at the points p, Q, and
p′. We leave it to the reader to verify that there exists only one such disk:
the one highlighted in Figure 2. This proves Equation (30). �

This completes the proof of Theorem 21. �

Remark 22. For i = 0, 1, denote by Hk(L
′
i) the Morse homology group of

degree k of L′i. Suppose that x ∈ Hk(L
′
i) where k 6= dim(L′i). Then, one can

modify the proof of Theorem 21 to obtain the following additional identities:

(1) ΦL0,L1

H1,J1
(a) ∗ ΦL1

H2,J2
(b⊗ x) = 0,

(2) ΦL0
H1,J1

(a⊗ x) ∗ ΦL0,L1

H2,J2
(b) = 0.

The above combined with Theorem 21, give us a full description of the
relation between the intersection product on HM(L) and the pair-of-pants
products

∗ : HF (L0, L1)⊗HF (L1, L1)→ HF (L0, L1),

∗ : HF (L0, L0)⊗HF (L0, L1)→ HF (L0, L1).

We will not prove these additional identities, as they are not needed for the
proof of Theorem 4 and their proofs are very similar to the proof of the
previous theorem. We mention here that, in the same way that the proof
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of Theorem 21 was reduced to establishing Equation (30), proving these
identities reduces to showing the following:

[p] ∗ [q] = 0,

where p and q are de�ned as in Figure 2.

3.2.1. The triangle inequality. In this section, we use Theorem 21 to prove
the two triangle inequalities mentioned in the introduction. Recall that given
two Hamiltonians H,H ′, their concatenation H#H ′ is de�ned by

H#H ′(t, x) =

{
2H(2t, x) if t ∈ [0, 1

2 ],
2H ′(2t− 1, x) if t ∈ [1

2 , 1].

Theorem 23. Denote by [L′i], for i = 0, 1, the fundamental class in HM(L′i)
and by a, b ∈ HM(L) any two Morse homology classes such that a · b 6= 0.
The following inequalities hold:

(1) `(a · b;L0, L1;H#H ′) 6 `(a;L0, L1;H) + `(b⊗ [L′1];L1, L1;H ′),
(2) `(a · b;L0, L1;H#H ′) 6 `(a⊗ [L′0];L0, L0;H) + `(b;L0, L1;H ′).

Proof. We will only prove the �rst of the two inequalities, as the second one
is proven in a very similar fashion.

By continuity of spectral invariants (27), it is su�cient to prove the in-
equality in the special case where H, H ′ and H#H ′ are all non-degenerate.
Pick an almost complex structure J such that the pairs (H,J), (H ′, J), and
(H#H ′, J) are all regular. Now, the triangle inequality becomes a simple
consequence of Theorem 21 and the triangle inequality of Theorem 17. In-
deed,

`(a · b;L0, L1;H#H ′) = `(ΦL0,L1

H#H′,J(a · b);L0, L1;H#H ′)

= `(ΦL0,L1

H,J (a) ∗ ΦL1
H′,J(b⊗ [L′1]);L0, L1;H#H ′)

6 `(ΦL0,L1

H,J (a);L0, L1;H) + `(ΦL1
H′,J ′(b⊗ [L′1]);L1, L1;H ′)

= `(a;L0, L1;H) + `(b⊗ [L′1];L1, L1;H ′).

Note that the triangle inequality of Theorem 17 can be applied here because
by Example 16 since (L0, L1) is a weakly exact pair, (L0, L1, L1) is a weakly
exact triple. �

We now use the triangle inequality to prove Proposition 6.

Proof of Proposition 6. We will only provide a proof in the case i = 1. The
other case is proven in a similar fashion.

Applying Theorem 23 in the special case where b = [L] and H = 0 we
obtain

`(a;L0, L1; 0#H ′) 6 `(a;L0, L1; 0) + `([L1];L1, L1;H ′).

Now, `(a;L0, L1; 0) = 0 because the spectrum of the zero Hamiltonian is
the singleton {0}. The Hamiltonian 0#H ′ is a reparametrization of H ′ and
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so, by Remark 14, `(a;L0, L1; 0#H ′) = `(a;L0, L1;H ′). This �nishes the
proof. �

3.3. A splitting formula. In this subsection, we will use the splitting for-
mula (21) to obtain a similar formula in our current setting. This will be
used in the proof of Theorem 4.

Recall that, M = T2k1 × T2k1 × T2k2 × T2k2 . Let F and F ′ denote
two Hamiltonians on T2k1 × T2k1 × T2k2 and T2k2 , respectively. De�ne
the Hamiltonian F ⊕ F ′ on M by F ⊕ F ′(z1, z2) = F (z1) + F ′(z2), for
z1 ∈ T2k1 × T2k1 × T2k2 and z2 ∈ T2k2 . This Hamiltonian appeared in the
proof of Theorem 18.

Theorem 24. Let F ⊕ F ′ denote any Hamiltonian of the form described
in the previous paragraph. Let a ∈ HM(L) denote a non-zero class. The
following formula holds:

`(a;L0, L1;F ⊕ F ′) = `(a;L,L;F ) + `([pt];L′0, L
′
1;F ′),

where [pt] denotes the non-zero class in HF (L′0, L
′
1).

Proof. By continuity of spectral invariants (27), it is su�cient to prove the
theorem for non-degenerate F and F ′. Pick almost complex structures J and
J ′ such that the pairs (F, J) and (F ′, J ′) are regular. We have the following
chain of equalities:

`(a;L0,L1;F ⊕ F ′)

= `(ΦL0,L1

F⊕F ′,J⊕J ′(a);L0, L1;F ⊕ F ′) by De�nition 19

= `(ΦL
F,J(a)⊗ [pt];L0, L1;F ) by Equation (26)

= `(ΦL
F,J(a);L,L;F ) + `([pt];L′0, L

′
1;F ′) by Equation (21)

= `(a;L,L;F ) + `([pt];L′0, L
′
1;F ′) by De�nition 10.

�

4. Proof of the main theorem (Theorem 4)

We start this section by introducing the notations needed for the proof.
As in Theorem 4, we consider a symplectic homeomorphism φ of (T2k1 ×
T2k2 , ωstd) which preserves the coisotropic submanifold C = T2k1 × Tk2 ×
{0}k2 . Observe that the characteristic foliation F is parallel to the subtorus
{0}2k1×Tk2×{0}k2 . The map φ induces a homeomorphism φR on the reduced
space R = C/F = T2k1 . Throughout the proof, given a homeomorphism
θ between two spaces X and Y , and a time-dependent function ρ on Y ,
i.e. a function ρ : [0, 1] × Y → R, the composition ρ ◦ θ will denote, with
a slight abuse of notation, the time dependent function on X de�ned by
ρ ◦ θ(t, x) = ρ(t, θ(x)) for all t ∈ [0, 1] and x ∈ X. We want to show that φR
preserves the spectral invariant c+, i.e. for every time-dependent continuous
function fR on R, c+(fR ◦ φR) = c+(fR).



34 VINCENT HUMILIÈRE, RÉMI LECLERCQ, SOBHAN SEYFADDINI

Let fR be a time-dependent continuous function on the reduced space
R and denote gR = fR ◦ φR. We denote by f and g, respectively, the
standard lifts of fR and gR to T2k1 × T2k2 , given by f(z1, z2) = fR(z1) and
g(z1, z2) = gR(z1), for all z1 ∈ T2k1 , z2 ∈ T2k2 . Note that by construction,
f coincides with g ◦ φ−1 on the coisotropic submanifold C. The situation is
summarized in the following diagram:

T2k1+2k2
φ // T2k1+2k2 g //

��

g ◦ φ−1 ( 6=)

��

f

��
C

φ|C //

⋃
red ��

C

⋃
red��

g|C //

��

(g ◦ φ−1)|C
��

f |C
��

R
φR // R gR // gR ◦ φ−1

R fR

Our proof will be based on the use of Lagrangian spectral invariants
applied to graphs of symplectic maps. Given a Hamiltonian function H
on a standard symplectic torus T2n, the graph of its time�1 map φ1

H is

a Lagrangian submanifold of T2n × T2n. This graph is the image of the
diagonal by the time�1 map of the Hamiltonian function 0⊕H on T2n×T2n

given by (0⊕H)t(q, p;Q,P ) = Ht(Q,P ). It will be convenient for us to see
these Lagrangians as deformations of a standard �coordinate� Lagrangian
subtorus rather than as deformations of the diagonal in T2n×T2n. Therefore
we introduce the following two symplectic identi�cations:

Ψ : T2k1+2k2 × T2k1+2k2 → T2k1 × T2k1 × T2k2 × T2k2 ,

(q1, p1, q2, p2;Q1, P1, Q2, P2) 7→
(q1, P1 − p1;P1, q1 −Q1; q2, P2 − p2;P2, q2 −Q2),

and ΨR : T2k1 × T2k1 → T2k1 × T2k1 ,

(q1, p1;Q1, P1) 7→ (q1, P1 − p1;P1, q1 −Q1).

We see that Ψ sends the diagonal of T2k1+2k2×T2k1+2k2 to the Lagrangian
subtorus

L0 = Tk1 × {0} × Tk1 × {0} × Tk2 × {0} × Tk2 × {0} ,

already introduced in Section 1.2, and ΨR sends the diagonal of T2k1 ×T2k1

to the Lagrangian subtorus

LR = Tk1 × {0} × Tk1 × {0}.

The proof of Theorem 4 will consist of a series of equalities and inequalities
between spectral invariants. These identities are organized in four claims
that we now give.

The �rst claim follows immediately from Proposition 13 and the naturality
of Lagrangian spectral invariants (11). For example, (31) below is due to the
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fact that

c+(fR) = `([∆]; ∆,∆; 0⊕ fR) = `([LR];LR, LR; (0⊕ fR) ◦Ψ−1
R )

with ∆ the diagonal of T2k1 × T2k1 .

Claim.

c+(fR) = `([LR];LR, LR; (0⊕ fR) ◦Ψ−1
R ) ,(31)

c+(gR) = `([LR];LR, LR; (0⊕ gR) ◦Ψ−1
R ) ,(32)

c+(g) = `([L0];L0, L0; (0⊕ g) ◦Ψ−1) ,(33)

c+(g ◦ φ−1) = `([L0];L0, L0; (0⊕ g ◦ φ−1) ◦Ψ−1) .(34)

The next statement gives a relation between the spectral invariants of
Lagrangians and functions de�ned on di�erent spaces. This will be based on
the splitting formula (21). As in Section 1.2, we denote

L1 = Tk1 × {0} × Tk1 × {0} × Tk2 × {0} × {0} × Tk2 .

We also recall that L0 and L1 split in the following form (see Section 1.2):

L0 = L× L′0 and L1 = L× L′1.

Claim.

`([LR];LR, LR; (0⊕ fR) ◦Ψ−1
R ) = `([L];L0, L1; (0⊕ f) ◦Ψ−1) ,(35)

`([LR];LR, LR; (0⊕ gR) ◦Ψ−1
R ) = `([L0];L0, L0; (0⊕ g) ◦Ψ−1) .(36)

Proof. The Lagrangians L0 and L1 both contain LR and moreover can be
decomposed in the form

Li = LR × Λ︸ ︷︷ ︸
=L ⊂ T2k2×T2k2×T2k1

× L′i︸︷︷︸
⊂ T2k2

for i = 0 and 1

where Λ = Tk2 × {0} ⊂ T2k2 . Then, if we denote F = (0 ⊕ f) ◦ Ψ−1 and
FR = (0 ⊕ fR) ◦ Ψ−1

R , we see that we can decompose F according to this

spliting: F = FR ⊕ 0⊕ 0, where both 0's are seen as functions on T2k2 . By
Theorem 24,

`([L];L0, L1;F ) = `([L];L,L;FR ⊕ 0) + `([pt];L′0, L
′
1; 0).

The second term on the right hand side vanishes. We may then apply the
splitting formula (24):

`([L];L0, L1;F ) = `([L];L,L;FR ⊕ 0)

= `([LR];LR, LR;FR) + `([Λ]; Λ,Λ; 0),

where again the second term vanishes. This proves Equation (35).
To prove Equation (36), one only needs to replace the pair (L0, L1) by

(L0, L0), the pair (L′0, L
′
1) by (L′0, L

′
0), the function f by g and the function

fR by gR, and repeat the same argument. �
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We will also need the following equality which is essentially a manifes-
tation of the fact that at any �xed time, the functions f and g ◦ φ−1 are
constant on the leaves of the coisotropic submanifold C and coincide on it.

Claim.

`([L];L0, L1; (0⊕ f) ◦Ψ−1) = `([L];L0, L1; (0⊕ g ◦ φ−1) ◦Ψ−1) .(37)

Proof. Denote F = (0⊕ f) ◦Ψ−1 and G = (0⊕ g ◦ φ−1) ◦Ψ−1. Since f and
g ◦ φ−1 coincide on C, the continuous functions F and G coincide on the
coisotropic submanifold

W = Ψ(C × C) ⊂ T2k1 × T2k1 × T2k2 × T2k2 .

Observe that the Lagrangian L1 is contained in W .
Since f and g are the respective lifts of fR and gR, their restriction to

each leaf of C only depends on the time variable. Since φ−1 preserves the
characteristic foliation of C, the function g ◦ φ−1 is also a function of time
on each leaf of C. From this we deduce that F and G are functions of time
on each characteristic leaf of W .

Now let (Fk)k∈N, (Gk)k∈N be sequences of smooth Hamiltonians which
uniformly converge to F and G, respectively, with the additional property
that for all k ∈ N, Fk and Gk are functions of time on each leaf of W and
Fk − Gk = 0 on W . Such sequences can be constructed as follows. Let
F ′k, G

′
k be two sequences of Hamiltonians that converge uniformly to F , G.

Note that the restrictions of F and G coincide on W and are functions of
time on each leaf hence admit the same reduced function H. Let Hk be a
sequence of Hamiltonians on the reduced space of W which converges to H
uniformly. Each function Hk can be lifted to a function H ′k de�ned on W .
By construction the functions F ′k − H ′k and G′k − H ′k converge to 0 on W .

Denote by F ′′k and G′′k their trivial extensions to T2k1 × T2k1 × T2k2 × T2k2 ,
which also converge to 0. The functions Fk = F ′k−F ′′k and Gk = G′k−G′′k suit
our needs: They converge respectively to F and G and they both coincide
with the leafwise function H ′k on W .

We will next show that `([L];L0, L1;Fk) = `([L];L0, L1;Gk) for all k.
The claim would then follow by taking the limit of both sides as k → ∞.
Fix k and let Hr = rGk + (1 − r)Fk where r ∈ [0, 1]. We will in fact prove
the stronger statement that `([L];L0, L1;Hr) is a constant function of the
variable r.

For any r, r′ ∈ [0, 1] the Hamiltonians Hr and Hr′ are functions of time
on each leaf of W and Hr = Hr′ on W . This is because the same statement
is true for Fk and Gk. It is not hard to check that this implies that for any
point p ∈W and any t ∈ [0, 1] we have:

(38) φtHr(p) and φ
t
Hr′

(p) belong to the same characteristic leaf of W.

Now, consider a critical point of the action functional AL0,L1

Hr
: It is a Hamil-

tonian chord φtHr(p) where p ∈ L0 and φ1
Hr

(p) ∈ L1. The Hamiltonian Hr
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is a function of time on characteristic leaves and so its �ow φtHr preserves

W . Since φ1
Hr

(p) ∈ L1 ⊂ W , we conclude that φtHr(p) ∈ W for all t ∈ [0, 1].

Using (38), we see that φtHr′
(p) ∈W for any t, r′ ∈ [0, 1]. Furthermore, (38)

implies that φ1
Hr′

(p) ∈ L1: This is because the Lagrangian L1 ⊂ W and

hence any characteristic leaf of W which intersects L1 is entirely contained
in L1. We conclude from the above that t 7→ φtHr′

(p) is a critical point of the

action functional AL0,L1

Hr′
and so there exists a bijection between the critical

points of the two action functionals.
Next, we will show that the two chords φtHr(p) and φ

t
Hr′

(p) have the same

action. Since Hr and Hr′ coincide on the leaves of W we see, using (38),
that Hr(φ

t
Hr

(p)) = Hr′(φ
t
H′r

(p)). Hence, to show that the two chords have

the same action we must prove that any two cappings ur of φ
t
Hr

(p) and ur′

of φtHr′
(p) have the same symplectic area. We will prove this using (38) as

well. Suppose that r < r′. Fix any choice of ur and de�ne ur′ = ur#v,
where v : [r, r′] × [0, 1] → T2n × T2n is de�ned by: v(s, t) = φtHs(p). We
must show that the symplectic area of v is zero: Note that (38) implies that
for any �xed t the path s 7→ φtHs(p) is contained in the same characteristic

leaf of W . Therefore, ∂v∂s is always tangent to the characteristic leaves of W .
This combined with the fact that the image of v is contained in W yields
that ωstd(∂v∂s ,

∂v
∂t ) = 0. Hence, v has zero symplectic area and the symplectic

area of ur coincides with that of ur′ .
We conclude from the previous two paragraphs that Spec(Hr) = Spec(Hr′)

for any r, r′ ∈ [0, 1]. Recall that the spectrum of any Hamiltonian has mea-
sure zero. We see that r 7→ `([L];L0, L1;Hr) is a continuous function taking
values in a measure zero set and thus it must be constant. This �nishes the
proof. �

Finally, the following claim is a direct application of Proposition 6.

Claim.

`([L];L0, L1; (0⊕ g ◦ φ−1) ◦Ψ−1) 6 `([L0];L0, L0; (0⊕ g ◦ φ−1) ◦Ψ−1) .

(39)
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End of the proof of Theorem 4. We now gather the identities collected
in the above claims. Using the fact that φ−1 preserves c+, we obtain:

c+(fR)
(31)
= `([LR];LR, LR; (0⊕ fR) ◦Ψ−1

R )

(35)
= `([L];L0, L1; (0⊕ f) ◦Ψ−1)

(37)
= `([L];L0, L1; (0⊕ g ◦ φ−1) ◦Ψ−1)

(39)

6 `([L0];L0, L0; (0⊕ g ◦ φ−1) ◦Ψ−1)

(34)
= c+(g ◦ φ−1)

= c+(g)

(33)
= `([L0];L0, L0; (0⊕ g) ◦Ψ−1)

(36)
= `([LR];LR, LR; (0⊕ gR) ◦Ψ−1

R )

(32)
= c+(gR).

Switching the roles played by fR and gR yields the reverse inequality c+(gR) 6
c+(fR). Hence, c+(fR) = c+(gR).
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