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Abstract. Since spectral invariants were introduced in cotangent bun-
dles via generating functions by Viterbo in the seminal paper [Vit92],
they have been defined in various contexts, mainly via Floer homology
theories, and then used in a great variety of applications. In this pa-
per we extend their definition to monotone Lagrangians, which is so
far the most general case for which a “classical” Floer theory has been
developed. Then, we gather and prove the properties satisfied by these
invariants, and which are crucial for their applications. Finally, as a
demonstration, we apply these new invariants to symplectic rigidity of
some specific monotone Lagrangians.
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1. Introduction and main results

Spectral invariants were introduced into symplectic topology by Viterbo
[Vit92], and subsequently their theory was developed by Schwarz [Sch00],
Oh [Oh05a] in the context of periodic orbit Floer homology, by Oh [Oh97],
Leclercq [Lec08], Monzner–Vichery–Zapolsky [MVZ12] in the context of La-
grangian Floer homology, by Chaperon [Cha95], Bhupal [Bhu01], Sandon
[San11], and Zapolsky [Zap13a] for Legendrian submanifolds of contact man-
ifolds and for contactomorphisms, and by Albers–Frauenfelder [AF10] in Ra-
binowitz Floer homology.

They have been used in numerous deep applications, such as metrics
on infinite-dimensional groups of symmetries [Vit92, Sch00, Oh05b, Kha09,
Lec08, San10, MZ11, CS15, Zap13a, Zap13b, Sey14]; the symplectic camel
problem [Vit92, Thé99]; quasi-morphisms on the Hamiltonian group [EP03,
Ost06, Ush11, FOOO11]; quasi-states and symplectic and contact rigid-
ity [EP06, EP09, MVZ12, Zap13a]; orderability and contact nonsqueezing
[San11, AM13]; C0-symplectic topology [Sey13a, Sey13b, HLS16, HLS15a,
HLS15b]; function theory on symplectic manifolds [EPZ07, BEP12], [PR14]
and the references therein; quantum measurements and noise [Pol12, Pol14];
surface dynamics [HLRS16]; and contact dynamics [Zap13a]. There are other
applications, and it is not feasible to list all of them here, but the above sam-
ple should give the reader a feeling of the power of this wonderful tool of
symplectic topology.

Spectral invariants have been defined in various contexts, such as peri-
odic orbit Floer homology and Lagrangian Floer homology for weakly exact
Lagrangians. The present paper extends their definition to the setting of
Lagrangian Floer homology for monotone Lagrangian submanifolds. This is
so far the most general case for which meaningful theory can be developed,
while staying in the realm of “classical” Floer theory, that is avoiding the more
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advanced and complicated techniques such as virtual fundamental cycles and
Kuranishi structures, used, for instance in [FOOO09a, FOOO09b, FOOO11].

Future applications of spectral invariants for monotone Lagrangians in-
clude inter alia new results on the Lagrangian Hofer metric [KZ].

1.1. Main result. Let us briefly review the setting in which we will be
working. Throughout this paper we fix a closed connected symplectic mani-
fold (M,ω) of dimension 2n and a closed connected Lagrangian submanifold
L ⊂M . We have the natural homomorphisms

ω: π2(M,L)→ R , the symplectic area, and

µ: π2(M,L)→ Z , the Maslov index.
We say that L is monotone if there is a positive constant τ such that

ω(A) = τµ(A) for every A ∈ π2(M,L) .

The minimal Maslov number NL of L is defined to be the positive gen-
erator of the subgroup µ

(
π2(M,L)

)
⊂ Z if it is nontrivial, otherwise we set

NL = ∞. In this paper we assume that L is monotone of minimal Maslov
number at least two. Usually we will assume that NL is finite, which then
implies that the group of periods ω

(
π2(M,L)

)
⊂ R is infinite cyclic; in this

case we let A = τNL ∈ R>0 be its positive generator. Otherwise NL = ∞,
which is the case of L being weakly exact.

A few remarks on the setting are in order:
(1) For the most part, we limit ourselves to closed symplectic manifolds,

however, using techniques developed by Frauenfelder–Schlenk [FS07]
and Lanzat [Lan13], it is straightforward to generalize to the case of
manifolds which are convex at infinity [EG91], which we will assume
whenever M is noncompact.

(2) Most results here are formulated for the case of finite NL, and we
leave to the reader the straightforward task of adapting them to the
case NL =∞.

(3) The monotonicity of L implies that M is monotone, more precisely
the homomorphisms ω: π2(M) → R and c1: π2(M) → Z either van-
ish1 or satisfy ω = 2τc1.

We wish to emphasize that our symplectic manifold M is monotone through-
out this paper, as a result of the monotonicity assumption on L.

We proceed to formulate the main result of this paper. A few preliminaries
are in order. Fix a ground ring R, which we assume to be commutative
throughout. If its characteristic is different from 2, we require that the
following assumption be satisfied.

Assumption (O): The second Stiefel–Whitney class w2(TL) of L van-
ishes on the image of the boundary homomorphism π3(M,L)→ π2(L).

1Then M is symplectically aspherical, for example when π2(M) = 0 or NL =∞.
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Remark 1. Assumption (O) is satisfied if L is relatively Pin±, that is
either one of the classes w2(TL) or w2(TL) + w2

1(TL) is in the image of
the restriction morphism H2(M ;Z2) → H2(L;Z2). However it is a strictly
weaker assumption, see §1.7.

In [BC09, BC12], and [Zap15, Section 4] it is shown how to define the
quantum homology QH∗(L) of L over R. This is an algebra over R,
where the product operation is

?: QHj(L)⊗QHk(L)→ QHj+k−n(L) ,

with a unit which is given by the fundamental class of L, [L] ∈ QHn(L). It
follows that QH∗(L) 6= 0 if and only if [L] 6= 0. We assume that this is the
case throughout the text.
Remark 2. The ability to work over an arbitrary ring R, developed in
[BC12], [Zap15], allows for additional applications, as exemplified in Theo-
rem 17. Also see Section 2.6 for examples of Lagrangian submanifolds and
their quantum homology with various choices of coefficients.

In §3 below we define the Lagrangian spectral invariant associated to
L, which is a function

`: QH∗(L)× C0
(
M × [0, 1]

)
→ R ∪ {−∞} .

We use the abbreviation

(1) `+ = `([L]; ·) .
For a smooth Hamiltonian H on M we let Spec(H : L) ⊂ R be its action
spectrum relative to L, that is the set of critical values of the associated
action functional, see the definitions in §2.

Given a continuous function H: M × [0, 1] → R, we denote by H the
function defined by Ht(x) = −H1−t(x). In case H is smooth, we have φt

H
=

φ1−t
H φ−1

H for all t. If H,K: M × [0, 1]→ R are continuous and Ht = Kt = 0
for t close to 0, 1, we define H]K: M × [0, 2]→ R to be their concatenation
with respect to the time variable.2

Our first result concerns the main properties of the spectral invariant.

Theorem 3. Let L be a closed connected monotone Lagrangian submanifold
of (M,ω) with minimal Maslov number NL ≥ 2. The spectral invariant

`: QH∗(L)× C0
(
M × [0, 1]

)
→ R ∪ {−∞}

satisfies the following properties.

Finiteness: `(α;H) = −∞ if and only if α = 0.
Spectrality: For H ∈ C∞

(
M × [0, 1]

)
and α 6= 0, `(α;H) ∈ Spec(H : L).

Ground ring action: For r ∈ R, `(r ·α;H) ≤ `(α;H). In particular, if r
is invertible, then `(r · α;H) = `(α;H).

2The definition of spectral invariants can be generalized in a straightforward manner
to Hamiltonians parametrized by a time interval which is not necessarily [0, 1].



SPECTRAL INVARIANTS FOR MONOTONE LAGRANGIANS 5

Normalization: If c is a function of time then

`(α;H + c) = `(α;H) +

∫ 1

0
c(t) dt .

We have `+(0) = 0.
Continuity: For any Hamiltonians H, K, and α 6= 0:∫ 1

0
min
M

(Kt −Ht) dt ≤ `(α;K)− `(α;H) ≤
∫ 1

0
max
M

(Kt −Ht) dt .

Monotonicity: If H ≤ K, then `(α;H) ≤ `(α;K).
Triangle inequality: For all α and β:

`(α ? β;H]K) ≤ `(β;H) + `(α;K) .

Lagrangian control: If for all t, Ht|L = c(t) ∈ R (respectively ≤, ≥),
then

`+(H) =

∫ 1

0
c(t) dt (respectively ≤,≥) .

Thus for all H: ∫ 1

0
min
L
Ht dt ≤ `+(H) ≤

∫ 1

0
max
L

Ht dt .

Non-negativity: `+(H) + `+(H) ≥ 0.

Theorem 3 is proved in §4 below as part of the more general Theorem 36.
We say that H is normalized if

∫
M Ht ω

n = 0 for all t. We have the
following, by now standard, observation.

Proposition 4. If H is normalized, then for α ∈ QH∗(L) \ {0} the spectral
invariant `(α;H) only depends on the homotopy class of the path {φtH}t∈[0,1]

relative to the endpoints.

See §3.4 for a proof. Thus the spectral invariant descends to a function

`: QH∗(L)× H̃am(M,ω)→ R ∪ {−∞} .
This function satisfies a number of properties, analogous to those formulated
in Theorem 3. See §4.3 for details.

1.2. Overview of the construction of spectral invariants. We present
here a brief sketch of the construction of `. The reader is referred to §3 for
full details.

Assume that H: M × [0, 1] → R is such that φ1
H(L) intersects L trans-

versely. It is then possible to choose a time-dependent family of ω-compatible
almost complex structures J on M for which the Floer complex(

CF∗(H : L), ∂H,J
)

is defined. This complex is filtered by the action functional of H, and we let

CF a∗ (H : L) ⊂ CF∗(H : L)
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be the submodule generated by elements whose action is < a. From the
definition of the Floer boundary operator ∂H,J it follows that this submodule
is in fact a subcomplex. We let

HF∗(H,J : L) and HF a∗ (H,J : L)

be the homologies of
(
CF∗(H : L), ∂H,J

)
and

(
CF a∗ (H : L), ∂H,J

)
, respec-

tively, and we let

ia∗: HF
a
∗ (H,J : L)→ HF∗(H,J : L)

be the morphism induced on homology by the inclusion.
There is a canonical map, the so-called PSS isomorphism

PSSH,J : QH∗(L)→ HF∗(H,J : L) .

For α ∈ QH∗(L) we then define

`(α;H) = inf{a ∈ R | PSSH,J(α) ∈ im ia∗} .
It is then shown that ` is continuous in H in the sense of Theorem 3, which
implies that is possesses a unique extension to the set of continuous Hamil-
tonians.

1.3. Additional properties of spectral invariants. Theorem 3 collects
the more basic properties of the Lagrangian spectral invariants. The lat-
ter satisfy a number of other properties, of which we mention three in this
introduction. For the full list the reader is referred to Theorem 36 in §4.

The quantum homology of M acts on QH∗(L) via the so-called quantum
module action [BC09], [Zap15, Section 4.5]

•: QHj(M)⊗QHk(L)→ QHj+k−2n(L) .

We have the corresponding Module structure property, where

c: QH∗(M)× C0(M × S1)→ R

is the Hamiltonian spectral invariant [Oh05a], see also §3.1:

Proposition 5. Let H1, H2 be Hamiltonians, with H2 being time-periodic.
Then for a ∈ QH∗(M) and α ∈ QH∗(L) we have

`(a • α;H1]H2) ≤ c(a;H2) + `(α;H1) .

This is proved as part of the properties of spectral invariants, Theorem 36.
Next we show that Lagrangian spectral invariants generalize Hamiltonian

spectral invariants. Let ∆ ⊂M ×M be the Lagrangian diagonal where the
symplectic structure is ω⊕ (−ω). In the following theorem QH∗(∆) denotes
the Lagrangian quantum homology of ∆.

Theorem 6. There is a canonical algebra isomorphism QH∗(∆) = QH∗(M).
For any class α ∈ QH∗(∆) = QH∗(M) and any time-periodic Hamiltonian
H on M we have

c(α;H) = `(α;H ⊕ 0) .
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See §4.2.2 for a proof.
The last property we wish to mention is a relation between the spectral

invariants of two monotone Lagrangians Li ⊂ (Mi, ωi) such that the product
L1 × L2 is monotone of minimal Maslov at least two. In this case both L1,
L2 have minimal Maslov number at least 2. In §4.2.3 below we prove the
following property:

`(α1 ⊗ α2;H1 ⊕H2) ≤ `(α1;H1) + `(α2;H2)

where αi ∈ QH∗(Li),H i is a Hamiltonian onMi, and α1⊗α2 ∈ QH∗(L1×L2)
denotes the element canonically associated to α1, α2. In case the ground ring
R is a field, we have an equality.

1.4. Hofer bounds. We now explain a relation between Lagrangian spec-
tral invariants associated to two Lagrangian submanifolds L, L′ = ϕ(L) for
some ϕ ∈ Ham(M,ω), and the Hofer norm of ϕ, as well as the Lagrangian
Hofer distance between L and L′.

First, as we shall see in Theorem 36, Lagrangian spectral invariants sat-
isfy a Symplectic invariance property, expressed as follows. Let ψ ∈
Symp(M,ω), and let L′ = ψ(L). To ψ there is associated an isomorphism

ψ∗: QH∗(L)→ QH∗(L
′) ,

see Section 2.10. Denote by `′ the spectral invariant associated to L′. Then
for any α′ ∈ QH∗(L′) and any Hamiltonian H we have

`′(α′;H) = `(ψ−1
∗ (α′);H ◦ ψ) .

For a fixed α′ ∈ QH∗(L′), this property allows us to compare `′(α′; · ) and
`(ψ−1
∗ (α′); · ) as functions defined on C0(M × [0, 1]) or on H̃am(M,ω).
The following proposition states that when ψ is Hamiltonian, the differ-

ence between these two functions is bounded from above by theHofer norm
of ψ, defined as

‖ψ‖ = inf
{ ∫ 1

0 oscM (Ht) dt |H : M × [0, 1]→ R with φH = ψ
}
.

Proposition 7. Let L and L′ be Hamiltonian isotopic Lagrangians. Let
α ∈ QH∗(L). For all ϕ ∈ Ham(M,ω) such that ϕ(L) = L′ we have

|`(α;H)− `′(ϕ∗(α);H)| ≤ ‖ϕ‖ and |`(α; χ̃)− `′(ϕ∗(α); χ̃)| ≤ ‖ϕ‖ ,

where H ∈ C0(M × [0, 1]) and χ̃ ∈ H̃am(M,ω) are arbitrary elements.

This property is somewhat surprising since, in the monotone case, one might
have expected a bound in terms of Hofer’s geometry of the universal cover of
the Hamiltonian diffeomorphism group and not of the group itself (compare
to the weakly exact case [Lec08] and [MVZ12] where the Lagrangian spectral
invariants only depend on time-1 objects).

In a similar vein we formulate a relation with the Lagrangian Hofer dis-
tance (see [Che00]). Here we use a variant of this distance defined on the
universal cover of the space of Lagrangians which are Hamiltonian isotopic
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to a given one L. It is defined as follows. Recall that given a Hamiltonian H,
the associated path of Lagrangians Lt = φtH(L) is exact, meaning the tan-
gent vector to this path at every point Lt is given by an exact 1-form on Lt.
Conversely, any exact path of Lagrangians starting at L can be represented
in such a way. Given a homotopy class L̃ of exact paths of Lagrangians from
L to L′ we define the Hofer length of L̃ to be

‖L̃‖ = inf
{ ∫ 1

0 oscM (Ht) dt | [{φtH(L)}t∈[0,1]] = L̃
}
.

Such a homotopy class induces a natural isomorphism QH∗(L) ' QH∗(L
′),

as follows. Assume Lt = φtH(L) is an exact path of Lagrangians from L to
L′. The symplectomorphism φH induces an isomorphism (φH)∗: QH∗(L)→
QH∗(L

′), see §2.10. We have

Theorem 8. The induced isomorphism QH∗(L) → QH∗(L
′) only depends

on the homotopy class of the path {Lt}t∈[0,1] relative to the endpoints.

Remark 9. It follows that Lagrangian quantum homology forms a local
system over the space of Lagrangians which are Hamiltonian isotopic to L.

We then have

Proposition 10. Let L̃ be a homotopy class of exact paths of Lagrangians
connecting L and L′, and let α ∈ QH∗(L), α′ ∈ QH∗(L′) be quantum ho-
mology classes corresponding to each other by the above natural isomorphism
induced by L̃. Then

|`(α;H)− `′(α′;H)| ≤ ‖L̃‖ and |`(α; χ̃)− `′(α′; χ̃)| ≤ ‖L̃‖

for any H ∈ C0(M × [0, 1]) and χ̃ ∈ H̃am(M,ω).

Propositions 7, 10, and Theorem 8 are proved in §5.
Remark 11. Let L̃ be the universal cover of the space of Lagrangians
Hamiltonian isotopic to L, that is an element of L̃ is a homotopy class of exact
paths of Lagrangians starting at L, relative to the endpoints. Over L̃ we have
the natural local system of algebrasQH → L̃ whose fiber at a homotopy class
L̃ with endoint L′ is given by QH∗(L′). The above isomorphisms provide
a canonical trivialization of this local system, that is QH = QH∗(L) × L̃.
The above discussion allows us, given α ∈ QH∗(L), to view the associated
spectral invariant as a function on the space

L̃ × H̃am(M,ω) .

Proposition 10, together with the Continuity property, implies that every
such function is Lipschitz with respect to the natural Hofer (pseudo-)metric
on this space.

1.5. An application to symplectic rigidity. We now present a sample
application of this theory to symplectic rigidity. If e ∈ QH∗(M) is any
nonzero idempotent, Entov–Polterovich [EP09] defined two classes of rigid
subsets of M , namely heavy and superheavy subsets with respect to e:
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Definition 12. A closed subset X ⊂ M is called e-heavy if for every
F ∈ C∞(M) we have

lim
k→∞

c(e; kF )

k
≥ min

X
F ,

and it is called e-superheavy if for every F ∈ C∞(M)

lim
k→∞

c(e; kF )

k
≤ max

X
F .

In [EP06] they also introduced the notion of a symplectic quasi-state. In
the following definition {·, ·} stands for the Poisson bracket and ‖ · ‖C0 for
the supremum norm.

Definition 13. A quasi-state on M is a functional ζ: C0(M) → R satis-
fying

Normalization: ζ(1) = 1.
Quasi-linearity: For F,G ∈ C∞(M) with {F,G} = 0 we have ζ(F +G) =
ζ(F ) + ζ(G).
Monotonicity: For F,G ∈ C0(M) with F ≤ G we have ζ(F ) ≤ ζ(G).

They developed a construction of (nonlinear) symplectic quasi-states on
M using idempotents in QH∗(M). We refer the reader to [EP08] for details.
Briefly, if QH∗(M) ' F ⊕ Q as an algebra where F is a field, then the
spectral invariant c(e; ·), where e ∈ F is the unit, has the property that the
functional

F 7→ ζe(F ) = lim
k→∞

c(e; kF )

k
is a symplectic quasi-state.
Remark 14. If e gives rise to a symplectic quasi-state as above, the notions
of e-heavy and e-superheavy coincide [EP09].

In this paper we use Lagrangian spectral invariants to prove the super-
heaviness of certain Lagrangian submanifolds. Namely, we have the following
result, proved in §6 below:

Proposition 15. Let e ∈ QH∗(M) be an idempotent. If e • [L] 6= 0, then L
is e-heavy. Furthermore, if e gives rise to a symplectic quasi-state as above,
thanks to Remark 14, L is e-superheavy.

Remark 16. This proposition is analogous to, and in certain cases follows
from, Proposition 8.1 of [EP09].3 This is essentially because the quantum
inclusion iL of Biran–Cornea [BC09], appearing in the formulation of the
cited proposition in the guise of the map jq, is dual to the quantum action
QH(M) 3 e 7→ e • [L] ∈ QH(L).

We apply this proposition to two examples of monotone Lagrangians. First
we consider the monotone product S2 × S2 in which there is a monotone

3We thank Leonid Polterovich for pointing this out to us.
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Lagrangian torus LS2×S2 defined as follows. View S2 ⊂ R3 as the set of unit
vectors. Then

LS2×S2 =
{

(x, y) ∈ S2 × S2 |x · y = −1
2 , x3 + y3 = 0

}
,

where x·y is the Euclidean scalar product. See [EP10] and references therein.
The other example is the Chekanov monotone torus LCP 2 ⊂ CP 2 [CS10].

We refer the reader to the paper by Oakley–Usher [OU16], in which they
review various constructions of monotone tori in S2 × S2 and in CP 2, and
prove that they are all Hamiltonian equivalent. Also see the paper by Gad-
bled [Gad13]. One possible description of LCP 2 is as follows. Consider the
degree 2 polarization of CP 2 by a conic. This conic is a complex (and
thus symplectic) sphere, in which there is a monotone Lagrangian circle, the
equator. The Lagrangian circle bundle construction [BC01, Bir06] in this
situation yields LCP 2 .

Theorem 17. • The Chekanov torus LCP 2 is superheavy with respect
to the fundamental class [CP 2] taken over the ground ring R = C.
• Over the ground ring R = C, the quantum homology QH∗(S2 × S2)
contains two idempotents e±. The torus LS2×S2 is e+-superheavy.

We prove this in §6.

1.6. Relation with previous results. The properties of the Lagrangian
spectral invariants listed in Theorem 3 have previously appeared in other con-
texts, and consequently they are more or less standard, see [Vit92, Oh05a,
MVZ12]. The major exception here is the Module property, see Proposi-
tion 5. An early version of this result was establised in [MVZ12] for the zero
section of a cotangent bundle, in case a = [M ] and α = [L]. An inequal-
ity identical to ours in the setting of weakly exact Lagrangians was proved
in [DKM14]. Triangle inequality for Floer–homological spectral invari-
ants was first proved by Oh [Oh99], although the inequality proved there
included an error term. In the context of Hamiltonian Floer homology the
sharp inequality was proved by Schwarz [Sch00]. A sharp triangle inequality
for Lagrangian spectral invariants was proved in [MVZ12] based on the trick
due to Abbondandolo–Schwarz [AS10].

Theorem 6 was proved by Leclercq [Lec08] for weakly exactM . The canon-
ical isomorphism QH∗(∆) = QH∗(M) appears, for example, in [BPS03].

Various versions of Proposition 15 have appeared in the literature, see for
example [EP09], as well as [BC09]; these results use early ideas appearing
in [Alb05]; see also [FOOO11]. Let us point out that the estimates on spec-
tral invariants in these papers use quantities such as depth and height of
a Hamiltonian relative to L, which in our opinion are somewhat artificial,
and they do not have a clear “symplectic” meaning. In contrast, Lagrangian
spectral invariants do possess such a meaning, and therefore the compari-
son of Hamiltonian and Lagrangian spectral invariants, used in the proof of
Proposition 15 seems to be a more natural approach.
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The superheaviness of the Chekanov torus LCP 2 ⊂ CP 2 was proved by Wu
[Wu12]. The proof there relies on the fact that HF∗(LCP 2) 6= 0, which in
turn uses the machinery of toric degenerations, while our proof does not rely
on it. The superheaviness of the torus LS2×S2 was established by Eliashberg–
Polterovich [EP10]. Again, our proof is based on a more natural approach
to estimating Hamiltonian spectral invariants via Lagrangian ones.

1.7. Discussion. We use quantum homology over arbitrary rings, there-
fore the issue of orientations plays a crucial role. This was resolved in the
context of periodic orbit Floer homology in [FH93], which gave rise to the
notion of coherent orientations, which has been used ever since. Coherent
orientations for Lagrangian Floer homology are constructed in [FOOO09b],
and for Lagrangian quantum homology in [BC12]; see also [HL10, WW15].
We use here the notion of canonical orientations, which also appears in
[Sei08, Wel08, Abo15]. This has the advantage that the structures inher-
ent to the theory are more transparent. The drawback, of course, is a higher
level of abstraction, and that computations are less straightforward.

Assumption (O) is the minimal assumption under which the so-called
canonical quantum homology can be defined [Zap15]. The corresponding
chain complex distinguishes homotopy classes of disks, rather than their ho-
mology classes or symplectic area, which are the more usual equivalence re-
lations appearing in Floer theories. The advantage of the canonical complex
is that there are no further assumptions or choices required for its definition,
for instance L is not required to be orientable or relatively (S)Pin.

The drawback of the canonical complex is that the resulting homology is
oftentimes too small and does not contain the desired classes, for example,
it may happen that not all singular homology classes of L appear in it. To
remedy this, there is the possibility of forming quotient complexes, where
cappings having the same area or the same homology class are identified,
in which case the homology of the complex is better behaved. In order
to form such quotient complexes, further assumptions and choices need to
be made. Even though precise assumptions can be formulated in terms of
various obstruction classes, we point out that any sort of quotient complex
can be formed once L is assumed to be relatively Pin± and a relative Pin±

structure has been chosen.

Definition 18. We say that L is relatively Pin± if the class w±(L) is
in the image of the restriction morphism H2(M ;Z2) → H2(L;Z2), where
w+(L) = w2(TL) and w−(L) = w2(TL) + w2

1(TL).

In [Zap15, Section 7] the notion of a relative Pin± structure is defined, follow-
ing the category-theoretic approach appearing in [WW15], and it is shown
how to produce coherent orientations for disks in M with boundary on L
and how to use them to define the aforementioned quotient complexes.
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Example 19. Here we point out that, as we mentioned above, assumption
(O) is strictly weaker than L being relatively Pin±. An example is fur-
nished by the Lagrangian RP 5 ⊂ CP 5. Indeed, assumption (O) is satisfied
since π2(RP 5) = 0. On the other hand RP 5 is not relatively Pin± since
the restriction map H2(CP 5;Z2)→ H2(RP 5;Z2) vanishes while the classes
w2(RP 5) = w2(RP 5) + w2

1(RP 5) do not. 4

1.8. Overview of the paper. In §2 we review the construction of La-
grangian and symplectic Floer and quantum homology with canonical orien-
tations, as well as the relevant Piunikhin–Salamon–Schwarz isomorphisms.
Various algebraic structures and operations appearing in these theories are
also described, and examples of quantum complexes for various Lagrangians
with different coefficients are given. In §3 we define the Lagrangian spec-
tral invariants and prove basic properties thereof. In §4 we prove the main
properties of spectral invariants. In §5 we prove the Hofer bounds on spec-
tral invariants formulated in §1.4. Finally §6 contains the proofs regarding
superheavy Lagrangians.

1.9. Acknowledgements. RL is partially supported by ANR Grant ANR-
13-JS01-0008-01. FZ is partially supported by grant number 1281 from the
GIF, the German–Israeli Foundation for Scientific Research and Develop-
ment, by grant number 1825/14 from the Israel Science Foundation, and
wishes to thank RL and Université Paris–Sud for the opportunity to visit
the maths department as a professeur invité, during which substantial por-
tions of the present paper, as well as of [Zap15], were written; the research
and personal atmosphere there were excellent, and the cafeteria was nice.
We are grateful to Leonid Polterovich whose suggestion lead us to Proposi-
tions 7 and 10. Finally, we thank the anonymous referee for a thorough and
detailed report on the previous version of this paper.

2. Background: Floer homology, quantum homology, and PSS

Here we collect the necessary preliminaries concerning the Floer theories
that we need in order to define and study Lagrangian spectral invariants, and
establish notation. Floer homology was defined by Floer [Flo89a, Flo88a,
Flo88b, Flo89b], and extended by Hofer–Salamon [HS95]. The Lagrangian
case was handled, for instance, by Floer (loc. cit.), Oh [Oh93], Biran–Cornea
[BC09, BC12], Seidel [Sei08], Fukaya–Ohta–Oh–Ono [FOOO09a, FOOO09b].

The principal reference for all the material in this section is [Zap15], where
the reader will find a detailed description of all the concepts not defined here;
the style of [Sei08] will undoubtedly be felt here, and indeed this book served
as inspiration for many of the constructions presented herein.

4We wish to thank Jean-Yves Welschinger for this example.
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2.1. Morse theory. We briefly recall the basic notions of Morse theory,
mostly in order to establish notation. For a Morse function f on a manifold
Q we denote by Crit f its set of critical points. The index of q ∈ Crit f is de-
noted by indf q, or just ind q if f is clear from the context. For a Riemannian
metric ρ on Q we let Sf (q), Uf (q) be the stable and the unstable manifolds
of f at q with respect to the negative gradient flow of f relative to ρ; mostly
we omit the subscript f . We say that the pair (f, ρ) is Morse–Smale if
every unstable manifold intersects every stable manifold transversely.

2.2. Floer homology. This section is concerned with Lagrangian and pe-
riodic orbit Floer homology.

2.2.1. Lagrangian Floer homology. We let

ΩL =
{
γ: [0, 1]→M | γ(0), γ(1) ∈ L , [γ] = 0 ∈ π1(M,L)

}
.

Let D2 ⊂ C be the closed unit disk with the standard conformal structure.
We consider the punctured disk Ḋ2 = D2 \ {1} with the induced conformal
structure and endow it with the standard positive end ε: [0,∞)× [0, 1]→ Ḋ2

defined by

(2) ε(z) =
eπz − i
eπz + i

.

A capping of an arc γ ∈ ΩL is a smooth map γ̂: (Ḋ2, ∂Ḋ2)→ (M,L) which
is b-smooth5 in the sense of [Zap15, Section 3.3], and satisfies

γ̂
(
ε(s, t)

)
−−−→
s→∞

γ(t) .

This condition in particular means that if we compactify Ḋ2 by adding an
interval at infinity according to the end ε to obtain a surface with corners,
then γ̂ extends to a smooth map defined on this surface. Sometimes we will
also use this extension, and by abuse of notation we will denote it by γ̂ as
well.

We let Ḋ2
− = D2 \ {−1} with the induced conformal structure. For a

capping γ̂ of γ we define its opposite as the map

−γ̂: Ḋ2
− →M given by − γ̂(σ, τ) = γ(−σ, τ) .

We call two cappings γ̂, γ̂′ equivalent, and denote γ̂ ∼ γ̂′, if the preglued map
γ̂](−γ̂′) defines the trivial element in π2(M,L) (see [Zap15, Section 3.4] for
details on pregluing). Two pairs (γ, γ̂), (γ′, γ̂′) are equivalent if γ = γ′ and
γ̂, γ̂′ are equivalent cappings. We let the class of (γ, γ̂) be denoted by [γ, γ̂]
and define

Ω̃L =
{

[γ, γ̂] | γ ∈ ΩL , γ̂ is a capping of γ
}
,

5This notion is borrowed from Schwarz’s thesis [Sch] and his book on Morse homology
[Sch93], where it appears under a different name. Roughly speaking, being b-smooth
means that γ̂ ◦ ε converges to γ sufficiently fast together with all derivatives as s→∞.
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which together with the obvious projection p: Ω̃L → ΩL forms a covering
space of ΩL. We usually denote elements of Ω̃L by γ̃ and it is understood
that it is the class [γ, γ̂].

For a time-dependent Hamiltonian H on M we have the action functional

AH:L: Ω̃L → R , AH:L

(
γ̃ = [γ, γ̂]

)
=

∫ 1

0
Ht

(
γ(t)

)
dt−

∫
Ḋ2

γ̂∗ω .

Its critical point set CritAH:L consists of the classes [γ, γ̂] for which γ is a
Hamiltonian arc of H, that is solves the ODE γ̇ = XH(γ).

We call the Hamiltonian H nondegenerate if for every critical point
γ̃ ∈ CritAH:L the linearized map φH,∗: Tγ(0)M → Tγ(1)M maps Tγ(0)L to a
subspace transverse to Tγ(1)L. For such a Hamiltonian there is a well-defined
function

mH:L: CritAH:L → Z
called the Conley–Zehnder index.6

Fix now a time-dependent ω-compatible almost complex structure J on
M . In [Zap15, Section 3.4] it is explained how to construct, for p > 2, a
Fredholm operator

Dγ̂ : W 1,p
(
Ḋ2, ∂Ḋ2; γ̂∗TM, (γ̂|∂Ḋ2)∗TL

)
→ Lp(Ḋ2; Ω0,1 ⊗ γ̂∗TM)

given a capping γ̂. This operator has index indDγ̂ = n−mH:L(γ̃). Ibid., it
is shown how to assemble these into a Fredholm bundle Dγ̃ over the space γ̃
of cappings7 in a given equivalence class.8

Recall [Zin13] that the determinant line of a Fredholm operator D is de-
fined to be

d(D) = d(kerD)⊗ d(cokerD)∨ ,

where for a finite-dimensional real vector space V we denote by d(V ) its top
exterior power.

The determinant line bundle d(Dγ̃) is well-defined and we have the fol-
lowing foundational lemma, proved in [Zap15, Section 3.7].

Lemma 20. The line bundle d(Dγ̃) is orientable if and only assumption
(O) holds. �

This allows us to define the rank 1 free Z-module C(γ̃) whose two generators
are the two possible orientations9 of the line bundle d(Dγ̃). The Lagrangian

6We normalize it so that if H is the pullback of a C2-small Morse function f : L → R
to a Weinstein neighborhood of L, then for q ∈ Crit f and q̂ being the constant capping
we have mH:L

(
[q, q̂]

)
= indf q, and in general mH:L

(
[γ,A]γ̂]

)
= mH:L

(
[γ, γ̂]

)
− µ(A) for

A ∈ π2(M,L, γ(0)).
7The set γ̃ =

{
(γ, γ̂) | γ̂ is a capping of γ

}
is of course a topological space.

8Strictly speaking, the family Dγ̃ is parametrized by a space which forms a fibration
over γ̃ with contractible fibers corresponding to auxiliary choices such as connections and
extensions of almost complex structures, but such details are irrelevant here.

9Note that γ̃ is a connected topological space.
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Floer complex as a Z-module is

CF∗(H : L) =
⊕

γ̃∈CritAH:L

C(γ̃) .

It is graded by mH:L and its generators are assigned actions using AH:L.
For γ̃± ∈ CritAH:L we let

M̃(H,J ; γ̃−, γ̃+) =
{
u: R× [0, 1]→M | ∂H,Ju = 0 , u

(
R× {0, 1}

)
⊂ L ,

u(±∞, ·) = γ± , γ̂−]u ∼ γ̂+

}
,

where
∂H,Ju = ∂su+ Jt(u)

(
∂tu−XH(u)

)
.

Remark 21. It is well-known that the Floer equation ∂H,Ju = 0 can be
considered as the negative gradient flow equation for the action functional.
To see this, define a scalar product on

Tγ̃Ω̃L = C∞
(
[0, 1], {0, 1}; γ∗TM, (γ|{0,1})∗TL

)
via

〈ξ, η〉 =

∫ 1

0
ω
(
ξ(t), Jtη(t)

)
dt .

Then the gradient of AH:L at γ̃ writes

∇γ̃AH:L = J(γ)
(
γ̇ −XH(γ)

)
.

For a fixed nondegenerate H there is a residual subset of almost complex
structures J for which the linearized operatorDu is surjective for any element
u ∈ M̃(H,J ; γ̃−, γ̃+). We call the pair (H,J) a regular Floer datum for L
if this is the case. Then it follows that M̃(H,J ; γ̃−, γ̃+) is a smooth manifold
of dimension mH:L(γ̃−)−mH:L(γ̃+).

The group R acts on M̃(H,J ; γ̃−, γ̃+) by shifts in the R variable; we let
M(H,J ; γ̃−, γ̃+) be the quotient. This is a smooth manifold of dimension
mH:L(γ̃−) − mH:L(γ̃+) − 1. If this dimension is 0, then it is a compact
manifold, meaning it is a finite set of points.

When mH:L(γ̃−) = mH:L(γ̃+) + 1 and u ∈ M̃(H,J ; γ̃−, γ̃+), the oper-
ator Du has index 1, is surjective, and its kernel is canonically isomor-
phic to R via the R-action by translations. In particular, since d(Du) =
d(kerDu)⊗d(cokerDu)∨ = d(R), we see thatDu has a canonical orientation,
corresponding to the positive orientation of R; we denote it by ∂u ∈ d(Du).

We define the boundary operator

∂H,J : CFk(H : L)→ CFk−1(H : L)

as the unique Z-linear map whose matrix element C(γ̃−) → C(γ̃+) is the
map ∑

[u]∈M(H,J ;γ̃−,γ̃+)

C(u)
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where C(u): C(γ̃−) → C(γ̃+) is an isomorphism of Z-modules, defined as
follows. Recall that C(γ̃±) are generated by orientations of the line bundles
d(Dγ̃±). Consider the following string of isomorphisms

d(Dγ̂−) ' d(Du)⊗ d(Dγ̂−) ' d(Dγ̂− ⊕Du) ' d(Dγ̂+
) ,

where the first isomorphism maps o− 7→ ∂u⊗o−, the second one is the direct
sum isomorphism (defined in [Zap15, Section 2]), while the third one is the
composition of linear gluing (defined in loc. cit., Section 3.2) and deformation
isomorphisms (see loc. cit., Section 3.4). The resulting isomorphism of
lines d(Dγ̂−) ' d(Dγ̂+

) gives rise to the desired isomorphism of Z-modules
C(γ̃−) ' C(γ̃+), which is C(u). It can be seen that this isomorphism only
depends on the class [u] ∈ M(H,J ; γ̃−, γ̃+). We have therefore defined the
boundary operator ∂H,J .

Theorem 22 ([Zap15, Section 3.8]). ∂2
H,J = 0. �

This allows us to define the Lagrangian Floer homology HF∗(H,J : L)
as the homology of the complex

(
CF∗(H : L), ∂H,J

)
.

There are continuation maps in Floer homology, defined as follows (see
[Zap15, Section. 3.8]). Let (H i, J i), i = 0, 1 be regular Floer data for
L. Consider a homotopy of Floer data (Hs, Js)s∈R, that is just a smooth
s-dependent family of Floer data, which satisfies (Hs, Js) = (H0, J0) for
s ≤ 0, (Hs, Js) = (H1, J1) for s ≥ 1. Given γ̃i ∈ CritAHi:L, i = 0, 1, we
define the solution space

(3) M
(
(Hs, Js)s; γ̃0, γ̃1

)
=
{
u: R× [0, 1]→M | ∂(Hs,Js)su = 0 ,

u
(
R× {0, 1}

)
⊂ L , u(−∞, ·) = γ0 , u(∞, ·) = γ1 , γ̂0]u ∼ γ̂1

}
,

where

(4) ∂(Hs,Js)su = ∂su+ Js(u)
(
∂tu−XHs(u)

)
.

Solutions of ∂(Hs,Js)su = 0 can alternatively be considered as the negative
gradient flow lines of the s-dependent functional AHs:L (see Remark 21).

We call the homotopy (Hs, Js)s regular if for all γ̃i ∈ CritAHi:L and
u ∈M

(
(Hs, Js)s; γ̃0, γ̃1

)
, the linearized operator Du is onto. In this case the

solution space (3) is a smooth manifold of dimension mH0:L(γ̃0)−mH1:L(γ̃1).
When this dimension vanishes, the solution space is compact, that is a finite
set of points.

The continuation map

Φ(Hs,Js)s : CF∗(H
0 : L)→ CF∗(H

1 : L)

is defined as the linear map with matrix coefficients C(γ̃0) → C(γ̃1), where
mH0:L(γ̃0)−mH1:L(γ̃1) = 0. This matrix coefficient equals∑

u∈M((Hs,Js)s;γ̃0,γ̃1)

C(u) ,
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where C(u): C(γ̃0)→ C(γ̃1) is an isomorphism, defined as follows. The lin-
earized operator Du is onto and has index 0, therefore it is an isomorphism;
we let ou ∈ d(Du) be the canonical positive orientation. The isomorphism
C(u) is then defined via the composition of the following string of isomor-
phisms

d(Dγ̃0
) ' d(Du)⊗ d(Dγ̃0

) ' d(Dγ̃0
⊕Du) ' d(Dγ̃1

) ,

the first isomorphism being o0 7→ ou ⊗ o0, the second being the direct sum,
and the third the composition of the linear gluing and deformation isomor-
phisms, similarly to the definition of the boundary operator above.

It is then proved that Φ(Hs,Js)s is a chain map, and, considering homo-
topies of homotopies, that the resulting map on homology is independent
of the chosen homotopy of Floer data, thereby giving rise to continuation
morphisms

ΦH1,J1

H0,J0 : HF∗(H
0, J0 : L)→ HF∗(H

1, J1 : L) ,

which satisfy

ΦH2,J2

H1,J1ΦH1,J1

H0,J0 = ΦH2,J2

H0,J0 and ΦH,J
H,J = id .

It follows that the continuation morphisms are isomorphisms and we thus
have a direct system of graded modules

(
HF∗(H,J : L)

)
(H,J)

indexed by
regular Floer data, connected by the continuation isomorphisms. The direct
limit of this system is the abstract Lagrangian Floer homology HF∗(L).

This carries a product. In order to define it, we will review the Floer PDE
defined on punctured Riemann surfaces.

Recall [Sei08] that a punctured Riemann surface Σ is defined as the com-
plement, in a compact Riemann surface Σ̂ with boundary, of a finite set
Θ ⊂ Σ̂. Elements of Θ are called the punctures. There is the notion of an
end associated to a puncture. If θ denotes a boundary puncture of Σ, an
end associated to it is a proper conformal embedding

εθ: [0,∞)× [0, 1]→ Σ or εθ: (−∞, 0]× [0, 1]→ Σ

such that ε−1
θ (∂Σ) equals R± × {0, 1}. The punctures of Σ are given a sign

and the end is defined on the positive or on the negative half-strip according
to the sign. A perturbation datum on Σ is by definition a pair (K, I),
where K is a 1-form on Σ with values in C∞(M), for which K|∂Σ vanishes
along L, and I is a family of compatible almost complex structures on M
parametrized by points of Σ. Assume we have chosen a regular Floer datum
(Hθ, Jθ) associated to every puncture θ of Σ. Then (K, I) is said to be
compatible with the Floer data if for every θ

ε∗θK = Hθ
t dt and I

(
εθ(s, t)

)
= Jθt .

Given a perturbation datum (K, I) on Σ, we can define the corresponding
Floer PDE for smooth maps u: (Σ, ∂Σ)→ (M,L):

(5) ∂K,Iu := (du−XK)0,1 = 0 ,
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where XK is the 1-form on Σ with values in Hamiltonian vector fields on M
defined via ω

(
XK(ξ), ·

)
= −dK(ξ) for a tangent vector ξ ∈ TΣ. The symbol

0,1 denotes the complex antilinear part of a 1-form on Σ with values in a
complex vector bundle over it, in this case u∗TM .

Assume now Σ has a unique positive puncture θ, negative punctures θi,
and genus 0. Pick regular Floer data (H,J) and (H i, J i) associated to θ, θi,
respectively, and choose {γ̃i ∈ CritAHi:L}i and γ̃ ∈ CritAH:L. We can
define

M
(
K, I; {γ̃i}i, γ̃

)
=
{
u: (Σ, ∂Σ)→ (M,L) | ∂K,Iu = 0 ,

u asymptotic to γi, γ and γ̂1] . . . ]u ∼ γ̂
}
.

We call the perturbation datum (K, I) regular if for every choice of γ̃i, γ̃ and
every solution u ∈M

(
K, I; {γ̃i}i, γ̃

)
the linearized operator Du is surjective.

This is the case for a residual set of compatible perturbation data.
With these preliminaries in place we can define the product on HF∗(L).

Let Σ? be a punctured Riemann surface obtained from D2 by removing three
boundary points θi, i = 0, 1, 2, where the punctures are ordered in accordance
with the boundary orientation of ∂D2. We assign θ0, θ1 the negative sign and
θ2 the positive sign. We let (H i, J i) be regular Floer data associated to θi.
We pick a compatible regular perturbation datum (K, I). For γ̃i ∈ CritAHi:L

we consider the space M
(
K, I; {γ̃i}i

)
. By assumption, this is a smooth

manifold, and its dimension equals mH0:L(γ̃0) +mH1:L(γ̃1)−mH2:L(γ̃2)−n.
If this dimension is zero, this manifold is compact and therefore consists of
a finite number of points.

Assume now that the γ̃i satisfy mH0:L(γ̃0) + mH1:L(γ̃1) − mH2:L(γ̃2) =
n. For u ∈ M

(
K, I; {γ̃i}i

)
the operator Du is surjective and has index 0,

therefore it is an isomorphism, and as such d(Du) possesses the canonical
positive orientation, which we denote ou.

Similarly to the definition of the matrix elements of the boundary operator
above, we now define the matrix element∑

u∈M(K,I;{γ̃i}i)

C(u): C(γ̃0)⊗ C(γ̃1)→ C(γ̃2) ,

where C(u): C(γ̃0) ⊗ C(γ̃1) → C(γ̃2) is an isomorphism defined as follows.
Consider the string of isomorphisms

d(Dγ̃0
)⊗d(Dγ̃1

) ' d(Du)⊗d(Dγ̃0
)⊗d(Dγ̃1

) ' d(Dγ̃0
⊕Dγ̃1

⊕Du) ' d(Dγ̃2
)

where the first one maps o0⊗ o1 7→ ou⊗ o0⊗ o1, the second one is the direct
sum isomorphism, and the third one is the composition of linear gluing and
deformation isomorphisms. The resulting isomorphism d(Dγ̃0

) ⊗ d(Dγ̃1
) '

d(Dγ̃2
) yields the isomorphism C(u).

We have therefore defined a bilinear map

?K,I : CFk(H
0 : L)⊗ CFl(H1 : L)→ CFk+l−n(H2 : L) .
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In [Zap15, Section 3.8] it is shown that this map is a chain map, therefore it
induces a map on homology. Using cobordism arguments, it is shown that
this induced map on homology is independent of the conformal structure on
Σ? and of the choice of perturbation datum (K, I), which means that we
have a correctly defined bilinear map on homology

?: HFk(H
0, J0 : L)⊗HFl(H1, J1 : L)→ HFk+l−n(H2, J2 : L) .

Furthermore, this map respects continuation maps, in the sense that

? ◦ Φ⊗ Φ = Φ ◦ ? ,
therefore it induces a product ? on the abstract Floer homology HF∗(L).

It is further shown ibid. that this product operation is associative and has
a unit, thus HF∗(L) is an associative unital algebra.

2.2.2. Periodic orbit Floer homology. Let

Ω =
{
x: S1 →M | [x] = 0 ∈ π1(M)

}
be the contractible loop space of M . We view S2 as the Riemann sphere
C∪{∞}, and let Ṡ2 = S2 \ {1} be the sphere with one puncture. We endow
it with the standard positive end ε: [0,∞)× S1 → Ṡ2 defined by

ε(z) =
e2πz − i
e2πz + i

,

where we identify S1 = R/Z. A capping of x ∈ Ω is a b-smooth map
x̂: Ṡ2 → M with x̂

(
ε(s, t)

)
→ x(t) as s → ∞. Similarly to §2.2.1 we have

the notion of equivalence of two cappings x̂, x̂′ of x, meaning that their
pregluing x̂](−x̂′) is a contractible sphere; we denote this by x̂ ∼ x̂′. We call
two pairs (x, x̂), (x′, x̂′) equivalent if x = x′ and x̂ ∼ x̂′. The class of (x, x̂)
is denoted by [x, x̂]. Let

Ω̃ =
{

[x, x̂] |x ∈ Ω , x̂ a capping for x
}
.

This comes with the obvious projection Ω̃ → Ω making it into a covering
space. We denote elements of Ω̃ via x̃ and usually it will stand for [x, x̂].

For a Hamiltonian H: S1 ×M → R we have the action functional

AH : Ω̃→ R , AH
(
x̃ = [x, x̂]

)
=

∫
S1

Ht

(
x(t)

)
dt−

∫
Ṡ2

x̂∗ω .

Its critical point set CritAH is the set of classes [x, x̂] for which x is a periodic
orbit of H, ẋ = XH(x).

We call H nondegenerate if for each x̃ ∈ CritAH the linearized flow
φH∗: Tx(0)M → Tx(0)M does not have 1 as an eigenvalue. In this case we
have a well-defined Conley–Zehnder index10

mH : CritAH → Z .
10Similarly to the Lagrangian case we normalize it to equal the Morse index of a

critical point of H in case it is a C2-small Morse function, and to satisfy mH

(
[x,A]x̂]

)
=

mH

(
[x, x̂]

)
− 2c1(A) for A ∈ π2(M,x(0)).
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Given a time-periodic compatible almost complex structure J on M , we can
define the operator

Dx̂: W 1,p(Ṡ2; x̂∗TM)→ Lp(Ṡ2; Ω0,1 ⊗ x̂∗TM) ,

and assemble these into a bundle Dx̃ of Fredholm operators over the space of
cappings in class x̃, similarly to the Lagrangian case. We note that indDx̂ =
2n−mH(x̃). We have

Lemma 23 ([Zap15, Section 3.7]). The determinant line bundle d(Dx̃) is
orientable. �

We let C(x̃) be the free Z-module of rank 1 whose two generators are the
two possible orientations of the line bundle d(Dx̃). The Floer complex of H
as a Z-module is

CF∗(H) =
⊕

x̃∈CritAH

C(x̃) .

This is graded by mH and its generators are assigned actions given by AH .
We can similarly define the space of solutions of the Floer PDE,

M̃(H,J ; x̃−, x̃+)

for x̃± ∈ CritAH ; we put M(H,J ; x̃−, x̃+) = M̃(H,J ; x̃−, x̃+)/R. We call
(H,J) a regular Floer datum if for all x̃± and every solution u in this space
the linearized operator Du is onto. Then this solution space is a smooth
manifold of dimension mH(x̃−) −mH(x̃+). The quotient M(H,J ; x̃−, x̃+)
is a compact manifold whenever it is zero-dimensional, and therefore it is a
finite set of points.

Assume thatmH(x̃−)−mH(x̃+) = 1 and that u ∈ M̃(H,J ; x̃−, x̃+). Then
Du is surjective and has index 1. Its kernel carries a canonical orientation
and therefore Du is canonically oriented; we let this orientation be denoted
via ∂u.

Similarly to the Lagrangian case, we have the isomorphism

C(u): C(x̃−)→ C(x̃+)

for such u given by applying the direct sum, linear gluing and deformation
isomorphisms. The matrix element C(x̃−) → C(x̃+) of the boundary oper-
ator ∂H,J : CFk(H)→ CFk−1(H) is the sum∑

[u]∈M(H,J ;x̃−,x̃+)

C(u): C(x̃−)→ C(x̃+) .

It is proved in [Zap15, Section 3.8] that ∂2
H,J = 0 and we let HF∗(H,J) be

the homology of the resulting chain complex
(
CF∗(H), ∂H,J

)
.

Continuation maps

ΦH1,J1

H0,J0 : HF∗(H
0, J0)→ HF∗(H

1, J1)

are defined similarly to the Lagrangian case, and it is shown that they behave
well with respect to composition and that ΦH,J

H,J = id, implying that they are
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isomorphisms. We let HF∗(M) be the abstract Floer homology, which is the
limit of the direct system of graded modules

(
HF∗(H,J)

)
(H,J)

indexed by
regular Floer data, and connected by the continuation isomorphisms.

The product

∗: HFk(H0, J0)⊗HFl(H1, J1)→ HFk+l−2n(H2, J2)

is defined using the moduli space of solutions of the Floer PDE (5) on the
surface Σ∗ obtained from S2 by removing three points. It is shown to be
independent of the conformal structure on Σ∗ and the perturbation datum
used to define it, and moreover to behave well with respect to continuation
isomorphisms, that is ∗ ◦ Φ ⊗ Φ = Φ ◦ ∗. This means that we have a well-
defined product ∗ on the abstract Floer homology HF∗(M). It is further
shown to be supercommutative, associative, and unital.

There is an additional algebraic structure, namely the quantum module
action of HF∗(M) on HF∗(L). To describe it, consider the surface Σ• ob-
tained from D2 by removing two boundary and one interior point, where
the resulting interior puncture and one of the boundary ones are given the
negative sign, while the remaining boundary puncture is given the positive
sign. Using solutions of the Floer PDE for Σ•, we can define a bilinear map

•: HFk(H,J)⊗HFl(H0, J0 : L)→ HFk+l−2n(H1, J1 : L) ,

which behaves well with respect to continuation isomorphisms, thereby defin-
ing a bilinear operation •: HF∗(M)⊗HF∗(L)→ HF∗(L). This is shown to
make HF∗(L) into an algebra over the algebra HF∗(M), meaning we have
the structure of an HF∗(M)-module on HF∗(L) and in addition the latter
is a superalgebra over the former.11

2.3. Quantum homology. Here we briefly describe Lagrangian and sym-
plectic quantum homology. It is advantageous to think of quantum homol-
ogy as Morse–Bott Floer homology for the zero Hamiltonian and a time-
independent almost complex structure. Lagrangian quantum homology was
defined by Biran–Cornea [BC09, BC12]. We give here a different formulation.

2.3.1. Lagrangian quantum homology. A quantum datum for L is a triple
D = (f, ρ, J) where f : L→ R is a Morse function, ρ is a Riemannian metric
on L such that the pair (f, ρ) is Morse–Smale, and J is an ω-compatible
almost complex structure. The corresponding quantum complex is the Z-
module

QC∗(D : L) =
⊕

q∈Crit f

⊕
A∈π2(M,L,q)

C(q,A) .

Here C(q, A) is the rank 1 free Z-module generated by the orientations of the
determinant line bundle d

(
DA]TS(q)

)
, where the operator familyDA]TS(q)

11This means that we have a • (α?β) = (a •α) ? β = (−1)signα? (a •β) with a suitable
Koszul sign.
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is defined as follows. Denote

C∞A =
{
u ∈ C∞(D2, ∂D2, 1;M,L, q) | [u] = A

}
.

Let u ∈ C∞A and let

Du: W 1,p
(
D2, S1;u∗TM, (u|S1)∗TL

)
→ Lp(D2; Ω0,1 ⊗ u∗TM)

be the formal linearization of the Cauchy–Riemann operator at u. See
[Zap15, Section 4.2] for a more precise definition. The operators Du for
different u assemble into a Fredholm family DA over C∞A . We let

Du]TS(q)

be the restriction of Du to the subspace{
ξ ∈W 1,p(D2, S1;u∗TM, (u|S1)∗TL) | ξ(1) ∈ TqS(q)

}
.

Similarly the operators Du]TS(q) assemble into a family DA]TS(q). We
have

Lemma 24 ([Zap15, Section 4.2]). The line bundle d
(
DA]TS(q)

)
is ori-

entable if and only if assumption (O) holds. �

Thus we have defined the module C(q, A) and therefore also the module
QC∗(D : L). The grading on the latter module is determined by requiring
the elements of C(q, A) to have degree indf q − µ(A).

The boundary operator ∂D: QC∗(D : L)→ QC∗−1(D : L) is defined using
the moduli spaces of pearls defined by Biran–Cornea [BC09]. When suitable
genericity conditions are satisfies (see ibid. for their precise formulation), we
call the datum D regular. See [Zap15, Section 4.2] for a detailed description
of ∂D and for a proof that ∂2

D = 0 in the present context. We denote by
QH∗(D : L) the homology of

(
QC∗(D : L), ∂D

)
. It is the quantum homology

associated to the datum D.
There exist continuation isomorphisms relating the different QH∗(D : L),

which we define below in §2.4.1 and we let QH∗(L) be the limit of the corre-
sponding direct system of graded modules. This is the quantum homology
of L. We can also define an associative product ? on QH∗(L). It has degree
−n.

This product admits a unit, constructed as follows. Assume f has a unique
maximum q. The module C(q, 0) in this case is canonically isomorphic to Z.
We denote by 1q ∈ C(q, 0) the element corresponding under this isomorphism
to 1 ∈ Z. It can be shown that this is a cycle and that it acts as the unit for
? on the chain level. It follows that its class [L] ∈ QH∗(L) is independent of
D and that it is the unit for the product.

2.3.2. Quantum homology of M . This is defined similarly to the Lagrangian
case. A quantum datum on M is a triple D = (f, ρ, J) where (f, ρ) is a
Morse–Smale pair on M and J is a compatible almost complex structure.
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The quantum complex as a module is

QC∗(D) =
⊕

q∈Crit f

⊕
A∈π2(M,q)

C(q, A)

where C(q, A) is the rank 1 free Z-module generated by orientations of the
operator family DA]TS(q). Here DA is the Fredholm family composed of
the formal linearizations

Du: W 1,p(S2;u∗TM)→ Lp(S2; Ω0,1 ⊗ u∗TM)

for smooth maps u: S2 →M in class A.
Remark 25. This family is always orientable. In fact, it possesses a
canonical orientation, which can be seen as follows. Each Du is a real-
linear Cauchy–Riemann operator. On a closed Riemann surface the set of
complex-linear Cauchy–Riemann operators is a deformation retract of the
set of real-linear operators. The (real) determinant line bundle of the set
of complex-linear operators has a canonical orientation since for each such
operator its kernel and cokernel are complex vector spaces, which thus are
canonically oriented. Now just pull this orientation on the set of complex-
linear operators to the set of all real-linear operators by the retraction map.

The family DA]TS(q) has as representatives the operators Du]TS(q),
where Du]TS(q) is the restriction of Du to the subspace

{ξ ∈W 1,p(S2, u∗TM) | ξ(1) ∈ TqSf (q)} .

The family DA]TS(q) is orientable as well and therefore we have defined the
modules C(q,A). Its elements by definition have degree indf q − 2c1(A).

The boundary operator ∂D on QC∗(D) is in fact just the Morse boundary
operator, enriched by the local system π2(M). See [Zap15, Section 4.5] for
more details. We thus have the quantum homology QH∗(D) as the homology
of the resulting chain complex. This is shown to be independent of D using
continuation isomorphisms in Morse homology; thus we obtain the abstract
quantum homology QH∗(M).

It carries a supercommutative associative product ∗ with unit. There is
also the bilinear map

•: QH∗(M)⊗QH∗(L)→ QH∗(L)

of degree −2n, which makes QH∗(L) into a superalgebra over QH∗(M) sim-
ilarly to the case of Floer homology, see §2.2.2.

2.4. Piunikhin–Salamon–Schwarz isomorphisms. These were first de-
fined in [PSS96], and consequently extended to various other settings [KM05,
Alb08, BC09], [Zap15, Section 5]. They are commonly abbreviated to “PSS”,
and they relate Floer and quantum homologies.
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2.4.1. Lagrangian PSS. Fix a regular Floer datum (H,J) and a regular quan-
tum datum D for L. There are well-defined mutually inverse isomorphisms

PSSH,JD : QH∗(D : L)→ HF∗(H,J : L) ,

PSSDH,J : HF∗(H,J : L)→ QH∗(D : L) ,

which commute with continuation morphisms in Floer homology. For in-
stance, they allow us to define continuation isomorphisms in quantum ho-
mology, as follows. If D′ is another regular quantum datum for L, we define
the continuation morphism

ΦD
′
D := PSSD

′
H,J PSSH,JD : QH∗(D : L)→ QH∗(D′ : L) .

Since the PSS maps commute with Floer continuation maps, this is indepen-
dent of the Floer datum (H,J), and since the two PSS morphisms above are
mutually inverse, these satisfy

ΦD
′′
D′ Φ

D′
D = ΦD

′′
D and ΦDD = id .

Continuation morphisms in quantum homology can also be defined directly,
as in [BC09]. The properties of the continuation maps allow us to define
the abstract quantum homology QH∗(L) as the direct limit of the system
(QH∗(D : L))D. We then have the following naturally induced isomorphism:

(6) PSSH,J : QH∗(L)→ HF∗(H,J : L) .

We can also show that the PSS maps are unital algebra isomorphisms. In
particular, if (H i, J i), i = 0, 1, 2, are regular Floer data, then the following
diagram commutes:

QH∗(L)⊗QH∗(L)
? //

PSSH
0,J0

⊗PSSH
1,J1

��

QH∗(L)

PSSH
2,J2

��
HF∗(H

0, J0 : L)⊗HF∗(H1, J1 : L)
? // HF∗(H

2, J2 : L)

2.4.2. PSS isomorphism between periodic orbit Floer homology and quantum
homology. Analogously we can define the PSS isomorphisms between the
periodic orbit Floer homology HF∗(H,J) for a regular Floer datum (H,J)
and the quantum homology QH∗(D) for a regular quantum datum D:

PSS : QH∗(D)→ HF∗(H,J) and PSS : HF∗(H,J)→ QH∗(D) .

These similarly respect the Floer continuation maps, and therefore induce
the isomorphisms

PSSH,J : QH∗(M)→ HF∗(H,J) and PSSH,J : HF∗(H,J)→ QH∗(M) .

The induced isomorphism QH∗(M) ' HF∗(M) is a graded algebra isomor-
phism. Moreover, the superalgebra structures of QH∗(L) over QH∗(M) and
of HF∗(L) over HF∗(M) are intertwined by the PSS isomorphisms.
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2.5. Change of coefficients, twisting, quotient complexes, Novikov
rings. Here we describe various algebraic operations on the aforementioned
complexes.

2.5.1. Coefficients in a ring of characteristic 2. Regardless of whether the
assumption (O) is satisfied, we can define the Lagrangian Floer and quantum
homology of L with coefficients in an arbitrary (commutative) ring R of
characteristic 2. If (H,J) is a regular Floer datum for L, we put

CF∗(H : L;R) =
⊕

γ̃∈CritAH:L

R · γ̃ ,

and the boundary operator has matrix elements

#2M(H,J ; γ̃−, γ̃+): R · γ̃− → R · γ̃+

for γ̃± ∈ CritAH:L of index difference 1. Quantum homology is similarly
defined, and all of the above constructions go through.

2.5.2. Change of coefficients and twisting by a local system. The above com-
plexes are all defined over Z. One can tensor them with an arbitrary ring R
to obtain complexes over it. Another possibility is to use twisted coefficients.
Recall that if X is a topological space, a local system of groups on X is a
functor from the fundamental groupoid of X to the category of groups. More
concretely, it means that we are given a group Gx for every x ∈ X, and for
every homotopy class of paths from x to y an isomorphism Gx ' Gy, such
that the constant path at x induces the identity on Gx and concatenation
commutes with composition of isomorphisms. Similarly we have local sys-
tems of modules and so on. Borrowing terminology from geometry, we call
the isomorphisms corresponding to paths parallel transport operators.

Assume L is a local system of R-modules over Ω̃L and for a path u in Ω̃L

from γ̃− to γ̃+ let Pu: Lγ̃− → Lγ̃+
be the parallel transport map. Let

CF∗(H,J : L;L) =
⊕

γ̃∈CritAH:L

C(γ̃)⊗Z Lγ̃ .

For γ̃± ∈ CritAH:L with |γ̃−| = |γ̃+| − 1 we define the homomorphism∑
[u]∈M(H,J ;γ̃−,γ̃+)

C(u)⊗ Pu: C(γ̃−)⊗ Lγ̃− → C(γ̃+)⊗ Lγ̃+

where we use the lift of u to Ω̃L in the parallel transport map Pu. We let
∂H,J ⊗P be the operator whose matrix elements are these homomorphisms.
It is straightforward to show that (∂H,J ⊗ P)2 = 0 and we let HF∗(H,J :
L;L) be the resulting homology. Continuation maps carry over to yield the
abstract twisted Lagrangian Floer homology HF∗(L;L).

Similarly one can define twisted quantum homology QH∗(L;L). For the
reader familiar with the construction of the pearly complex we mention that
a pearly trajectory can be viewed as a path in Ω̃L, and the above construction
goes through. PSS isomorphisms can also be adapted to the twisted case.
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Remark 26. There is one particularly important case of twisted coefficients,
which corresponds to what it usually meant by a local system on L. Namely,
let B be a local system of R-modules on L. There are natural evaluation
maps

evi : Ω̃L → L , evi(γ̃ = [γ, γ̂]) = γ(i) for i = 0, 1 .

Consider the following local system on Ω̃L:

Eγ̃ = HomR

(
(ev∗0 B)γ̃ , (ev∗1 B)γ̃

)
= HomR(Bγ(0),Bγ(1)) .

Let P be the parallel transport operator of B. A path in Ω̃L can be viewed as
a map u: R× [0, 1] → M mapping the boundary to L. Assume u(±∞, ·) =
γ±. The parallel transport operator of E along u,

PEu : HomR(Bγ−(0),Bγ−(1))→ HomR(Bγ+(0),Bγ+(1)) ,

is given by
PEu (f) = Pu(·,1) ◦ f ◦ P−1

u(·,0) .

2.5.3. Quotient complexes. The usual approach used to define Floer homol-
ogy with arbitrary coefficients is to use the so-called coherent orientations,
introduced in [FH93]. The idea is to orient the various moduli spaces of
Floer curves so that gluing maps are, in an appropriate sense, orientation-
preserving. The approach chosen here, which follows that of [Zap15], by-
passes the need to orient moduli spaces by introducing canonical Z-modules
such as C(γ̃) above, and by using the canonical orientations on the moduli
spaces used in the definition of the boundary operator (namely the one given
by the action of R) and other algebraic operations. This allows us to de-
fine the above canonical complex (CF∗(H : L), ∂H,J) without any additional
choices beyond the Floer datum (H,J).

The drawback of our canonical Floer and quantum complexes is that they
all distinguish between homotopy classes of cappings rather than the more
usual equivalence relations in Floer theory, such as equivalence in homology
or having equal area, which are often needed in applications. This leads to
the need of forming quotient complexes. This process is summarized in the
current subsection. Even though we use Z coefficients below, everything goes
through over any ring.

In order to form these quotient complexes one needs to impose additional
assumptions on L and to choose further structures, such as a relative Pin±-
structure. It is at this point that our approach and the more conventional
one using coherent orientations converge. However we wish to emphasize
that we do not pick coherent orientations on moduli spaces, but rather use
the additional structures in order to form quotient complexes as described
below, which in our opinion is a more natural procedure, albeit it is less
traditional.

We first describe the case of periodic orbit Floer homology and the quan-
tum homology of M . Quotient complexes are formed using local systems.
Given a local system G (of groups, modules, etc.) on a topological space
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X, a subsystem G′ < G is a collection of subgroups G′x < Gx for every x,
which are preserved by the parallel transport maps. In particular this means
that the action of π1(X,x) on Gx preserves G′x.

The fundamental local system we need to use is π2(M), whose value at
q ∈ M is π2(M, q) and where for q, q′ ∈ M and a homotopy class of paths
from q to q′ the isomorphism π2(M, q) ' π2(M, q′) is given by the standard
action of paths on homotopy groups [Hat02]. It acts on Ω̃, in the following
sense. Fix q ∈M and let Ω̃q = {x̃ |x(0) = q}. Then π2(M, q) acts on Ω̃q by
appending spheres to cappings.

In order to form a quotient complex for which spectral invariants still
make sense, we need to use the local system π0

2(M), which is the subsystem
of π2(M) whose value at q is the group π0

2(M, q) := kerω. Fix a subsystem
G < π0

2(M). The action of π2(M) on Ω̃ restricts to an action of G. We
let Ω̃/G be the quotient space. It forms a covering space Ω̃/G → Ω. Note
that the fiber of this projection over x ∈ Ω consists of the set of equivalence
classes of cappings for x, where two cappings are equivalent if and only if
their difference defines an element of Gx(0).

The action functional of a Hamiltonian H onM , AH : Ω̃→ R, descends to
AGH : Ω̃/G → R. We see that CritAGH = CritAH/G in an obvious sense. In
[Zap15, Section 7] it is described how the quotient map CritAH → CritAGH
leads to a chain map(

CF∗(H), ∂H,J
)
→
(
CFG∗ (H), ∂GH,J

)
,

where

CFG∗ (H) =
⊕

x̃G∈CritAGH

C
(
x̃G
)
,

with C
(
x̃G
)
being the limit of the direct system of modules C(x̃) for x̃

ranging in the class x̃G ∈ Ω̃/G, and connected by canonical isomorphisms
([Zap15, Section 7.2]).
Remark 27. These canonical isomorphisms arise as follows. Recall that
C(x̃) is generated by the orientations of the family Dx̃. For two different
cappings x̂, x̂′ of x one can construct, using the gluing, direct sum, and
deformation isomorphisms, a canonical isomorphism of determinant lines

d(Dx̂) ' d(Dx̂′)⊗ d(Tx(0)M)⊗ d(Dx̂]−x̂′) .

By Remark 25 the operator Dx̂]−x̂′ , being a real-linear Cauchy–Riemann
operator on a closed Riemann surface, possesses a canonical orientation, and
the same is of course true of Tx(0)M . This yields an isomorphism d(Dx̂) '
d(Dx̂′), leading to an isomorphism C(x̃) ' C(x̃′), where x̃ = [x, x̂], x̃′ =
[x, x̂′]. It can be checked that all these isomorphisms satisfy the cocycle
condition and therefore lead to a uniform identification of all the modules
C(x̃) for x̃ ranging over x̃G.



28 RÉMI LECLERCQ, FROL ZAPOLSKY

The boundary operator ∂GH,J is well-defined by the requirement that the
above quotient map be a chain map. Thus there is an induced graded mor-
phism HF∗(H,J) → HFG∗ (H,J). These respect continuation morphisms
and thus lead to a canonical morphism HF∗(M)→ HFG∗ (M).

It is also shown ibid. that the product structure on the Floer complexes
descends to a product structure on the quotient modules. The morphism
HF∗(M)→ HFG∗ (M) is a morphism of algebras.

We next discuss how the Novikov ring appears in this formulation. In
general the local system π2(M) is not constant, meaning the fundamental
group π1(M, q) acts on π2(M, q) nontrivially, and this prohibits the exis-
tence of a module structure over “the group ring” Z[π2(M)], since π2(M) is
not a group, but rather just a groupoid. However in certain cases there is
such a structure. Namely, in case F is a constant local system over M and
φ: π2(M)→ F is a surjective morphism of local systems such that G = kerφ,
the quotient complex CFG∗ (H) inherits the structure of a module over the
group ring Z[F ], and the corresponding homology HFG∗ (M) the structure of
an algebra over Z[F ].

Two basic examples of this are as follows. If F = Z and φ(A) = c1(A)/NM ,
where NM is the minimal Chern number of M , then G = π0

2(M) and the
complex CF π

0
2(M)
∗ (H) inherits the structure of a module over the group ring

Z[Z] = Z[t, t−1], where t is a formal variable of degree −2NM . The reader
will identify this as the Novikov ring, familiar in Floer homology.

Another example is F = HS
2 (M) = im

(
π2(M) → H2(M ;Z)

)
with φ

being the Hurewicz morphism. In this case G is its kernel, and the complex
CFG∗ (H) carries the structure of a module over the group ring Z[HS

2 (M)].
In [Zap15, Section 7] there is a description of a completely analogous

construction of quotient complexes in quantum homology. The result is the
canonical quantum homology QHG

∗ (M). Taking quotient complexes respects
the PSS isomorphisms, therefore we have canonically QHG

∗ (M) = HFG∗ (M),
which is an algebra isomorphism; in case F is a constant local system and
G is the kernel of a surjective morphism of local systems φ: π2(M) → F , it
intertwines the resulting structures of algebras over Z[F ].

We have a similar situation concerning the Lagrangian case, but there are
necessary additional structures and assumptions due to the lack of canonical
orientations. We briefly describe this, referring the reader to [Zap15, Section
7] for details.

Analogously to the absolute case, we need to use local systems on L. We
have the local system π2(M,L) and its subsystem π0

2(M,L) = kerω. There
is an action of π2(M,L) on Ω̃L. Given a subsystem G < π0

2(M,L), we let
Ω̃L/G be the quotient of the induced action of G.

Assume (H,J) is a regular Floer datum for L. The action functional
AH:L: Ω̃L → R descends to AGH:L: Ω̃L/G → R and we have the obvious
quotient map CritAH:L → CritAGH:L. However, this does not immediately
lead to the formation of a quotient complex, as we have to identify the
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modules C(γ̃) for γ̃ ranging in a class γ̃G ∈ CritAGH:L, which in general
is impossible if we wish the boundary operator ∂H,J to induce a boundary
operator on the quotient complex.12

A sufficient condition for this to be possible is to assume that L is relatively
Pin± (Definition 18). If this holds, one can define the notion of a relative
Pin± structure on L [Zap15, Section 7]. A choice of such a relative Pin±

structure on L determines a system of orientations on the determinant line
bundles13 d(DA]0), which is sufficient to make the necessary identifications
of the modules C(γ̃) for γ̃ running over a class γ̃G ∈ Ω̃G

L , see ibid.
Fixing a relative Pin± structure on L we obtain the quotient complex(
CFG∗ (H : L), ∂GH,J

)
and the quotient chain map(

CF∗(H : L), ∂H,J
)
→
(
CFG∗ (H : L), ∂GH,J

)
.

This quotient map determines a unique bilinear map giving the abstract
homology HFG∗ (L) the structure of an associative unital algebra for which
the natural map HF∗(L)→ HFG∗ (L) is an algebra morphism.

The choice of a relative Pin± structure yields canonical isomorphisms

d(Du]0) ' d
(
Tu(1)L

)⊗µ(u)

for smooth maps u: (D2, S1) → (M,L). Therefore in order to be able to
orient the whole collection of operators Du]0 with varying u, we need to
restrict ourselves to the space of smooth maps u with w1(u) = 0, where
w1: π2(M,L) → Z2 is the natural morphism of local systems defined by
pulling back the first Stiefel–Whitney class w1(TL) by the boundary homo-
morphism π2(M,L)→ π1(L).

A module structure over a Novikov ring is similar to the absolute case. If F
is a constant local system on L and φ: kerw1 → F is a surjective morphism
of local systems with G = kerφ, using the relative Pin± structure one can
endow CFG∗ (H,L) with the structure of a module over the group ring Z[F ].
Again, there are two basic examples, φ: kerw1 → Z, φ = µ/ lcm(2, NL),
in which case one recovers the structure of a module over the Novikov ring
Z[Z] = Z[t, t−1]. The other example is the relative Hurewicz morphism
φ: kerw1 → HD,or

2 (M,L), where HD,or
2 (M,L) = ker

(
HD

2 (M,L)
w1−→ Z2

)
and HD

2 (M,L) = im
(
π2(M,L)→ H2(M,L;Z)

)
is the image of the relative

Hurewicz morphism. In this case CFG∗ (H : L) acquires the structure of a
module over Z[HD,or

2 (M,L)]. Note that in general only the “orientable” part
of HD

2 (M,L) can act on the quotient Floer complex. An example of this is
described in §2.6.1.

12Of course we can identify the modules C(γ̃) for various γ̃, since all of them are
abstractly isomorphic to Z, but such an identification will not in general lead to a well-
defined boundary operator on the quotient complex.

13The operator family DA]0 is defined as follows. Its representative over u ∈ C∞A is the
restriction of Du to the subspace ofW 1,p

(
D2, S1;u∗TM, (u|S1)∗TL

)
consisting of sections

which vanish at 1 ∈ S1.
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We also note that the quantum module structure

QH∗(M)⊗QH∗(L)→ QH∗(L)

descends to a well-defined module operation

QHGM
∗ (M)⊗QHGL

∗ (L)→ QHGL
∗ (L)

provided GM < π0
2(M) and GL < π0

2(M,L) are local systems such that
QHGL

∗ (L) is well-defined (by the above, this is the case if a relative Pin±

structure on L has been chosen), and such that for any q ∈ L the natural
morphism π0

2(M, q)→ π0
2(M,L, q) mapsGM,q intoGL,q. In this case the PSS

morphisms intertwine this module structure with the module structure on
the quotient Floer homologies. Moreover, if GM , GL are kernels of surjective
local system morphisms onto constant systems FM , FL where the following
diagram commutes:

π0
2(M) //

��

π0
2(M,L)

��
FM // FL

then by the above QHGM
∗ (M) inherits the structure of a Z[FM ]-module,

QHGL
∗ (L) the structure of a Z[FL]-module and the induced structures of a

Z[FM ]-module on QHGL
∗ (L) coincide.

Finally we note that quotient complexes can likewise be endowed with
twisted coefficients. In this case the twisting local system naturally lives on
the quotient space Ω̃L/G. Details are left to the reader.

2.6. Examples. Here we present a few examples of the canonical complex
and some quotient and twisted complexes for various Lagrangians. Details
of their computations can be found in [Zap15, Section 8].

Throughout R is the ground ring, and J0 denotes the standard integrable
complex structure on the corresponding symplectic manifold.

2.6.1. RPn in CPn for n ≥ 2. The Lagrangian real projective space RPn ⊂
CPn is the fixed point set of the antisymplectic involution given by complex
conjugation. It has minimal Maslov number n+ 1.

We take the quantum datum D = (f, ρ, J0), where ρ is the round metric
on RPn induced from Sn ⊂ S2n+1 ⊂ Cn+1, f a perfect self-indexing Morse
function with exactly n+1 critical points q0, . . . , qn, qi being of index i, with
exactly two gradient trajectories from qi to qi−1 for each i. This example is
interesting because RPn is not orientable for even n, and for n ≡ 1 mod 4
it is not relatively Pin±. However assumption (O) is satisfied. Indeed, for
n ≥ 3 we have π2(RPn) = 0, while RP 2 is Pin−, since w2 +w2

1 = 0, therefore
by Remark 1 it is satisfied as well. Thus the canonical quantum complex
can be defined, and it is fairly easily computed. As a module we have

QC∗(RPn) ' R
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for every ∗ ∈ Z, whereas the boundary operator is as follows:

. . . QCn−2j
0−→ QCn−2j−1

±2−−→ . . .

for every j ∈ Z. Here the sign depends on a basis chosen to identify QC∗
with R in each degree. We see that the canonical quantum homology in this
case is

QH∗(RPn) '
{
R/2R , n− ∗ is even
ker 2 , n− ∗ is odd

where 2: R → R is multiplication by 2. For instance if 2 is invertible in
R, we have QH∗(RPn) ≡ 0. At the other extreme, if 2 = 0 in R, we have
QH∗(RPn) = R for every ∗. If we take R = Z, then QH∗(RPn) ' Z2 for
even n−∗ and 0 for odd n−∗. Note that this is well-defined even if RPn is
not orientable!

There is another interesting phenomenon for even n. Note that π2(M,L) '
Z, the isomorphism being given by µ/(n+ 1): π2(M,L)→ Z. It follows that
π0

2(M,L) = 0 and therefore no interesting quotient complexes can be formed
if we want to keep a Z-grading. Note that the usual Novikov ring used in La-
grangian Floer or quantum homology in this case is R[t, t−1] with t of degree
−(n+ 1), corresponding to generator of the action of the groupoid π2(M,L)

on Ω̃RPn given by attaching a Maslov n + 1 disk. We see from the above
that the quantum homology of RPn, in case 2 is not invertible, has period 2
with respect to the degree. On the other hand the Novikov variable t has odd
degree −(n+ 1). It follows that the full Novikov ring R[t, t−1] cannot act on
QH∗(RPn) in this case. This of course has to do with the fact that RPn is
not orientable, that is w1(RPn) 6= 0, and that a generator of H1(RPn;Z2)
is given by the boundary of a Maslov n + 1 disk. Compare this with the
discussion of quotient complexes above in §2.5.3, where it is indicated that
in the nonorientable case only the “orientable part” of the full Novikov ring
can act, the orientable part in this case being R[t2, t−2] ⊂ R[t, t−1].

2.6.2. The Clifford torus L ⊂ CP 2. The Clifford torus is the monotone La-
grangian torus

L = {[z0 : z1 : z2] | |z0| = |z1| = |z2|} ⊂ CP 2 .

It has minimal Maslov NL = 2. We identify L with T2 = R2/Z2 by means
of the map

R2/Z2 → L , [θ1, θ2] 7→ [1 : e2πiθ1 : e2πiθ2 ] .

Abbreviate M = CP 2. The local system π2(M,L) is trivial. At the point
[1 : 1 : 1] it is freely generated, as an abelian group, by the classes of the
disks

D2 →M , z 7→ [1 : z : 1] , z 7→ [1 : 1 : z] , z 7→ [z : 1 : 1] ,

and we let A,B,C be the corresponding classes in π2(M,L), which we view
as global trivializing sections of this local system. We pick the quantum
datum (f, ρ, J0) where ρ is the standard flat metric on L ' R2/Z2, f is a
Morse function with 4 critical points q2, x, y, q0, where qi have index i while
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x, y have index 1, and where the gradient trajectories from q2 to x, y and
from x, y to q0 are slight deformations of pieces of the coordinate lines.

Consider π2(M,L) as a group. It is the free abelian group on the gen-
erators A,B,C. Let R[π2(M,L)] be the corresponding graded group ring,
which is the ring of Laurent polynomials in three variables of degree −2,
where we here denote eA, eB, eC , that is R[π2(M,L)] consists of finite sums
of the form

∑
i,j,k∈Z rijke

iA+jB+kC , rijk ∈ R.
The canonical complex QC∗(L) can be given the structure of a free module

over this group ring R[π2(M,L)]; we let the basis elements be denoted by
q2, x, y, q0 by abuse of notation. We thus have

QC∗(L) = R[π2(M,L)]⊗R R〈q2, x, y, q0〉

as a graded module. The boundary operator is linear over R[π2(M,L)] and
is given on generators by

∂x = (−eB + eC)q2 , ∂y = (−eA + eC)q2 ,

∂q0 = (−eA + eC)x+ (eB − eC)y ,

and of course for the maximum we have ∂q2 = 0.
From this we can compute the canonical quantum homology which turns

out to be R in even degrees and 0 in odd degrees. Over the ring R[π2(M,L)]
this homology is generated by the class of q2, that is [L]. We see that in this
case out of all the singular homology classes of L only the fundamental class
appears in the quantum homology.

To obtain more interesting results we can form a quotient complex cor-
responding to the trivial Pin+-structure on L and the subsystem π0

2(M,L),
which is a trivial local system, and whose group of global sections is the
free abelian group generated by the classes A−B,A−C. We note that the
quotient local system π2(M,L)/π0

2(M,L) is also trivial and is isomorphic to
the trivial system Z; we let t be the generator of the corresponding group
ring R[Z] = R[t, t−1]. We have the corresponding quotient map of rings

R[π2(M,L)]→ R[t, t−1] ,
∑
i,j,k∈Z

rijke
iA+jB+kC 7→

∑
i,j,k∈Z

rijkt
i+j+k .

The quotient complex as a module is thus given by

QC∗(L) = R[t, t−1]⊗R R〈q2, x, y, q0〉 ,

where we omit the superscript corresponding to π0
2(M,L) to simplify the no-

tation. The induced boundary operator is obtained by substituting t instead
of eA, eB, eC in the above, and thus vanishes. We see that in this case the
homology is

QH∗(L) = R[t, t−1]⊗R R〈q2, x, y, q0〉 ' H∗(L;R[t, t−1]) ,

that is the quantum homology is isomorphic to the singular homology with
coefficients in a suitable Novikov ring, which is the answer we are used to in
Floer theory.
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Another variation is to use twisted coefficients on this quotient complex.
We take the twisted coefficients corresponding to a local system on L with
R as the fiber at every point and monodromy σ, τ ∈ R× around the loops
given by the coordinates θ1, θ2. The complex as a module over R[t, t−1] is
unchanged, while the boundary operator is obtained by the substitution

eA 7→ σ · t , eB 7→ τ · t , eC 7→ σ−1τ−1 · t ,
therefore we have

∂x = t(−τ + σ−1τ−1)q2 , ∂y = t(−σ + σ−1τ−1)q2 ,

∂q0 = t(−σ + σ−1τ−1)x+ t(τ − σ−1τ−1)y .

Let us compute for which local systems this boundary operator vanishes.
In case R is a field, this is equivalent to the homology being nonzero, since
otherwise q2 is a boundary. We have the equations

τ2 = σ−1 , σ2 = τ−1 ,

that is σ = τ and τ3 = 1, that is σ = τ must be a cubic root of 1. These
correspond to the three components of the monotone Fukaya category of
CP 2.

2.6.3. The Chekanov torus in CP 2. The Chekanov torus L ⊂ CP 2 is ob-
tained as follows: we view CP 2 as the symplectic cut of the unit codisk
bundle of the standard round RP 2 by the geodesic flow on the boundary,
which then gives rise to a conic in CP 2; if we take a cotangent circle over a
point of RP 2 and flow it with the geodesic flow, it traces a Lagrangian torus,
and the Chekanov torus is the unique monotone one obtained in this way.
We let θ1 be the coordinate on the cotangent circle and θ2 the coordinate
given by the time of the geodesic flow.

The local system π2(M,L) is again trivial, and its group of global sections
is the free abelian group generated by the classes h, α, β, where h is the class
of the complex line, α is the class corresponding to contracting a cotangent
circle within its cotangent disk, while β is the class of a disk contracting a
simple closed geodesic on L, which has intersection number 2 with the conic.
We have

µ(h) = 6 , µ(α) = 0 , µ(β) = 2 .

We pick a quantum datum (f, ρ, J0), where ρ is the flat metric correspond-
ing to the coordinates θ1, θ2 and f is a Morse function with 4 critical points
q2, x, y, q0 of indices 2, 1, 1, 0, respectively, such that the isolated gradient
lines are slight deformations of segments of coordinate circles.

Viewing again π2(M,L) as a group, we have the corresponding graded
group ring R[π2(M,L)], consisting of finite sums

∑
i,j,k∈Z rijke

ih+jα+kβ , and
where the grading is given by the Maslov index. The canonical complex can
be given the structure of a free module over this ring, and denoting a basis
by q2, x, y, q0 by abuse of notation, we have

QC∗(L) = R[π2(M,L)]⊗R R〈q2, x, y, q0〉 .
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The boundary operator is given in this basis by

∂x = (−eβ+2(eh−2β−α+2eh−2β+eh−2β+α))q2 , ∂y = (eh−2β−α−eh−2β+α)q2 ,

∂q0 = (eh−2β−α − eh−2β+α)x+ (eβ − 2(eh−2β−α + 2eh−2β + eh−2β+α))y .

We will not compute the homology of this canonical complex. Instead we
will compute it for some quotient complexes and twisted coefficients.

First note that if R has characteristic 2, then q2 is the boundary of −e−βx
and therefore the homology vanishes. This still holds for any quotient com-
plex and any choice of twisted coefficients.

We can form the quotient complex corresponding to the trivial Pin+-
structure and the subsystem π0

2(M,L), which is freely generated by α and
h − 3β. The quotient group ring is R[t, t−1] with t of degree −2 and the
quotient map being given by eh 7→ t3, eα 7→ 1, eβ 7→ t. The quotient complex
as a module is

QC∗(L) = R[t, t−1]⊗R R〈q2, x, y, q0〉 .
The quotient boundary operator is

∂x = 7tq2 , ∂y = 0 , ∂q0 = −7ty .

Thus the homology vanishes if 7 is invertible in R, for instance if R is a field
of characteristic 6= 7.

In order to obtain nonzero homology in case R is a field, we use twisted
coefficients corresponding to a local system on L with R as the fiber at
every point and monodromy around the coordinate loops corresponding to
θ1, θ2 being σ, τ ∈ R×, respectively. The corresponding boundary operator
is obtained by substituting

eh 7→ t3 , eα 7→ σ , eβ 7→ t · τ ,
therefore

∂x = t(−τ + 2τ−2(σ−1 + 2 + σ))q2 , ∂y = tτ−2(σ−1 − σ)q2 ,

∂q0 = (tτ−2(σ−1 − σ)x+ t(τ − 2τ−2(σ−1 + 2 + σ))y .

Let us determine for which values of σ, τ this boundary operator vanishes.
We have the equations

σ2 = 1 , τ3 = 2(σ + σ−1)2 ,

which have solutions σ = 1 and τ is a cubic root of 8.

2.6.4. The torus LS2×S2 in S2×S2. The torus L = LS2×S2 can be viewed in
an analogous way to the Chekanov torus, namely,M = S2×S2 can be viewed
as the symplectic cut of the cotangent disk bundle of S2 by the geodesic flow
on the boundary, where the zero section becomes the antidiagonal ∆ ⊂
S2 × S2 while the boundary maps to the symplectic diagonal ∆ ⊂ S2 × S2.
Taking a cotangent circle over a point in S2 and flowing it with the geodesic
flow yields a Lagrangian torus, and there is a unique radius of the initial
cotangent circle for which the resulting torus is monotone in M — this is L.
We put coordinates θ1, θ2 on L, where θ1 is the coordinate of the cotangent



SPECTRAL INVARIANTS FOR MONOTONE LAGRANGIANS 35

circle while θ2 is the coordinate corresponding to the time of the geodesic
flow.

The local system π2(M,L) is trivial and is freely generated as an abelian
group by the classes A = [S2× pt], B = [pt×S2], α which is the class of the
cotangent disk contracting the initial cotangent circle, and finally β which
is the class of a disk contracting a closed geodesic lying on the torus L and
whose intersection number with ∆ is 2. We have

µ(A) = µ(B) = 4 , µ(α) = 0 , µ(β) = 2 .

We pick a quantum datum (f, ρ, J0) where ρ is the flat metric and f is a
Morse function with 4 critical points q2, x, y, q0 of indices 2, 1, 1, 0, respec-
tively, and where the gradient trajectories are slight deformations of segments
of coordinate circles.

Viewing π2(M,L) as a group, its group ring is R[π2(M,L)] with the same
notation as above. It is graded by the Maslov index. The canonical complex
has the structure of a free module over this ring with generators denoted by
abuse of notation q2, x, y, q0, thus

QC∗(L) = R[π2(M,L)]⊗R R〈q2, x, y, q0〉 .

The boundary operator relative to this basis is

∂x = (−eβ+eA−β+eB−β+eA−β−α+eB−β+α)q2 , ∂y = (eA−β−α−eB−β+α)q2 ,

∂q0 = (eA−β−α − eB−β+α)x+ (eβ − (eA−β + eB−β + eA−β−α + eB−β+α))y .

Again, we will not compute the homology of this canonical complex, but
rather we will pass to the quotient complex corresponding to the subsystem
π0

2(M,L) and the trivial Pin+-structure on L. This quotient complex is

QC∗(L) = R[t, t−1]⊗R R〈q2, x, y, q0〉

with the boundary operator obtained from the substitution eA, eB 7→ t2,
eα 7→ 1, eβ 7→ t:

∂x = 3tq2 , ∂y = 0 , ∂q0 = −3ty .

Thus the homology is nonzero whenever 3 is not invertible.
We can also twist this quotient complex by a local system on L with R as

the fiber at every point and monodromy around the basic loops corresponding
to θ1, θ2 being σ, τ ∈ R×. The boundary operator is obtained by substituting
eA, eB 7→ t2, eα 7→ σ, eβ 7→ t · τ :

∂x = t(−τ + τ−1(σ−1 + 2 + σ))q2 , ∂y = tτ(σ−1 − σ)q2 ,

∂q0 = tτ(σ−1 − σ)x+ t(τ − τ−1(σ−1 + 2 + σ))y .

If we wish the boundary operator to vanish, we obtain the equations

σ2 = 1 , τ2 = (σ + σ−1)2 ,

whose solutions are σ = 1 and τ = ±2.
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2.7. Duality. We first describe duality in Lagrangian Floer homology. To
this end we need to introduce Lagrangian Floer cohomology. We construct
everything over Z, but it is straightforward to adapt this to any coefficient
ring. Let (H,J) be a regular Floer datum for L. We let the corresponding
Lagrangian Floer cochain complex be

CF ∗(H,J : L) =
⊕

γ̃∈CritAH:L

C(γ̃)∨

where for a Z-module Q we let Q∨ = HomZ(Q,Z) be the dual module. Note
that if Q is free and of rank 1, there is a natural isomorphism Q∨ = Q given
by sending a generator q∨ of Q∨ to the generator q of Q with q∨(q) = 1.

The differential ∂∨H,J is defined as the operator whose matrix element

C(γ̃+)∨ → C(γ̃−)∨

is dual to the matrix element C(γ̃−)→ C(γ̃+) of ∂H,J . We let the differential

δH,J : CF k(H,J : L)→ CF k+1(H,J : L)

be defined as δH,J = (−1)k−1∂∨H,J .
Clearly we have δ2

H,J = 0 and we let HF ∗(H,J : L) be the cohomology of
the resulting cochain complex

(
CF ∗(H,J : L), δH,J

)
.

Similarly to the above, we can define the twisted Floer cochain complex
CF ∗(H : L;L) and the corresponding twisted cohomologyHF ∗(H,J : L;L).

For the remainder of this section we let L be the Z-bundle over Ω̃L with
fiber |d(Tγ(1)L)| over γ̃ ∈ Ω̃L, where for a real line V we let |V | be the free
Z-module of rank 1 whose two generators are the two orientations of V .

We now define the dual datum (H, J) as follows:

Ht(x) = −H1−t(x) , J t(x) = J1−t(x) .

It is also regular. There is a bijection

CritAH:L ↔ CritAH:L , γ̃ = [γ, γ̂] 7→ γ̃ = [γ, γ̂] ,

where γ(t) = γ(1− t) and γ̂(σ, τ) = γ̂(σ,−τ). We have

AH:L(γ̃) = −AH:L(γ̃) and mH:L(γ̃) = n−mH:L(γ̃) .

Likewise there are natural diffeomorphisms

M̃(H,J ; γ̃−, γ̃+)↔ M̃(H, J ; γ̃+, γ̃−) , u 7→ u(s, t) = u(−s, 1− t) .

It is proved in [Zap15, Section 3.11] that for any γ̃ ∈ CritAH:L there is a
natural isomorphism

(7) C(γ̃) = [C(γ̃)⊗ Lγ̃ ]∨ ,

leading to graded module isomorphisms

(8) CF∗(H : L) = CFn−∗(H,L;L) .



SPECTRAL INVARIANTS FOR MONOTONE LAGRANGIANS 37

Ibid., it is proved that the following diagram commutes for every γ̃± ∈
CritAH:L of index difference 1 and any u ∈ M̃(H,J ; γ̃−, γ̃+):

C(γ̃+)

C(u)

��

[C(γ̃+)⊗ Lγ̃+
]∨

(−1)n−mH:L(γ̃−)(C(u)⊗Pu)∨

��
C(γ̃−) [C(γ̃−)⊗ Lγ̃− ]∨

It follows that the identification of modules (8) is in fact an identification of
complexes, leading to a canonical isomorphism

HF∗(H, J : L) = HFn−∗(H,J : L;L) ,

which we refer to as the duality isomorphism. Continuation isomorphisms
are intertwined by this identification and therefore we have a canonical iso-
morphism of abstract homologies HF∗(L) = HFn−∗(L;L).
Remark 28. Roughly, the reason for twisting by the determinant bundle
of L in the formulation of duality is as follows: if [γ, γ̂] ∈ CritAH:L and
[γ, γ̂] ∈ CritAH:L are critical points corresponding to one another by the
above bijection, gluing the linearized operators Dγ̂ and Dγ̂ (composed with
the conformal isomorphism z 7→ −z) yields an operator on the disk, which
can be deformed into the Dolbeault operator ∂ on the trivial bundle pair
(Tγ(1)M,Tγ(1)L)→ (D2, S1). Therefore we have a canonical isomorphism

d(Dγ̃)⊗ d(Dγ̃) ' d(∂) ≡ d(Tγ(1)L) ,

leading to the identification (7). A similar argument shows the relation with
the (co)boundary operators. This appearance of the determinant bundle is
analogous to Poincaré duality on (not necessarily orientable) manifolds. An
orientation of L gives a trivialization of the Z-bundle L, which consequently
can be omitted.

Duality in periodic orbit Floer homology is a similarly defined canonical
identification HF∗(M) = HF 2n−∗(M). Here there is no need to twist by the
orientation bundle of M because it carries the canonical orientation coming
from the symplectic form.

We also have duality isomorphisms in quantum homologies of L and M ,
which take the form of canonical identifications

(9) QH∗(L) = QHn−∗(L;L) and QH∗(M) = QH2n−∗(M) .

The PSS maps can be defined between quantum and Floer cohomologies
and homologies with twisted coefficients, and they intertwine these canonical
identifications.

Finally we note that there are obvious degree-preserving homomorphisms

HF ∗(H,J : L)→ HF∗(H,J : L)∨ and QH∗(L)→ QH∗(L)∨ ,

coming from the duality pairing; similar homomorphisms exist for the twisted
versions. This observation, together with the duality isomorphism above
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leads to the following Poincaré duality pairing:

(10) 〈·, ·〉: QH∗(L)⊗QHn−∗(L;L)→ Z .

2.8. The Lagrangian diagonal in
(
M ×M,ω ⊕ (−ω)

)
. Recall that the

diagonal ∆ ⊂ M ×M is a Lagrangian submanifold. It is monotone if and
only if M is a monotone symplectic manifold and, in this case, the minimal
Maslov number of ∆ coincides with twice the minimal Chern number of M .
In this subsection we establish a relation between Lagrangian quantum and
Floer homology of ∆ and the quantum and Floer homology of M .

Let (H,J) be a time-periodic regular Floer datum on M . We define a
Floer datum (Ĥ, Ĵ) for ∆ ⊂M ×M as follows. First define

H1
t = Ht , H2

t = H1−t , J1
t = Jt , J2

t = −J1−t for t ∈ [0, 1
2 ] ,

and put

Ĥt(x, y) = H1
t (x) +H2

t (y) , Ĵt(x, y) = J1
t (x)⊕ J2

t (y) .

Then (Ĥ, Ĵ) is a regular Floer datum14 for the diagonal ∆.
We claim that there is a canonical isomorphism of chain complexes

(11)
(
CF∗(H), ∂H,J

)
=
(
CF∗(Ĥ : ∆), ∂

Ĥ,Ĵ

)
,

preserving the grading and the actions of the generators.
We start with the Hamiltonian orbits. A periodic orbit γ of H onM gives

rise to a Hamiltonian arc Γ: [0, 1
2 ] → M ×M of Ĥ with endpoints on ∆,

namely

Γ(t) =
(
γ1(t), γ2(t)

)
where γ1(t) = γ(t) , γ2(t) = γ(1− t) .

This defines a bijection between the periodic orbits of H and arcs of Ĥ with
endpoints on ∆.

If γ̂ is a capping of an orbit γ of H, we can define a capping Γ̂ of Γ,
as follows. The capping γ̂: Ṡ2 → M is defined on the punctured Riemann
sphere Ṡ2 = Ĉ \ {1} where Ĉ = C ∪ {∞}. There is a conformal embedding
R× R/Z→ Ṡ2 given by z = s+ it 7→ e2πz−i

e2πz+i
; it is onto S2 \ {±1}. Relative

to the coordinates (s, t) induced by this embedding we can define the maps

γ̂1(s, t) = γ̂(s, t) , γ̂2(s, t) = γ̂(s, 1− t) for t ∈ [0, 1
2 ] .

The same conformal embedding restricted to R× [0, 1
2 ] is onto the punctured

disk D2 \ {±1}. Composing the inverse of this embedding with the maps
γ̂1,2 we get maps γ̂1,2: Ḋ2 →M , where we abuse notation slightly. Putting

Γ̂(z) =
(
γ̂1(z), γ̂2(z)

)
14Note that this datum is defined for t ∈ [0, 1

2
]. We leave it to the reader to make the

necessary adjustments of the Floer theories.



SPECTRAL INVARIANTS FOR MONOTONE LAGRANGIANS 39

we see that Γ̂ is asymptotic to Γ at the puncture and that it maps the
boundary to ∆. The map thus defined

CritAH → CritA
Ĥ:∆

, γ̃ = [γ, γ̂] 7→ Γ̃ = [Γ, Γ̂]

is a bijection, which moreover preserves the action values and the grading.
Recall that

CF∗(H) =
⊕

γ̃∈CritAH

C(γ̃) and CF∗(Ĥ : ∆) =
⊕

Γ̃∈CritA
Ĥ:∆

C(Γ̃) .

We will now establish a canonical isomorphism C(γ̃) = C(Γ̃) where γ̃, Γ̃
correspond to each other by the above bijection. Consider a capping γ̂ of γ
and the corresponding Fredholm operator

Dγ̂ : W 1,p(Ṡ2, γ̂∗TM)→ Lp(Ṡ2,Ω0,1 ⊗ γ̂∗TM) .

We have seen that γ̂ gives rise to two maps γ̂1,2: Ḋ2 →M . Similarly, restrict-
ing sections of the bundles γ̂∗TM and Ω0,1 ⊗ γ̂∗TM to the disks produces
pairs of sections which agree on the boundary. This gives rise to natural
isomorphisms

W 1,p(Ṡ2, γ̂∗TM) 'W 1,p
(
Ḋ2, ∂Ḋ2; Γ̂∗T (M ×M), (Γ̂|∂Ḋ2)∗T∆

)
Lp(Ṡ2,Ω0,1 ⊗ γ̂∗TM) ' Lp

(
Ḋ2,Ω0,1 ⊗ Γ̂∗T (M ×M)

)
.

These isomorphisms intertwine the operators Dγ̂ and D
Γ̂
, thereby inducing

a Fredholm isomorphism between them (see [Zap15, Section 2]). It follows
that the determinant lines of these two operators are canonically isomor-
phic, which means that we have obtained the desired canonical isomorphism
C(γ̃) = C(Γ̃), and consequently the isomorphism (11) as modules.

We now must show that this module isomorphism is a chain isomorphism.
Given a Floer cylinder u: R× S1 →M of (H,J) asymptotic to orbits γ̃± =
lims→±∞ u(s, ·) we can define two maps ui: R× [0, 1

2 ]→M , i = 1, 2, via

u1(s, t) = u(s, t) , u2(s, t) = u(s, 1− t) .

Putting U(z) =
(
u1(z), u2(z)

)
, we obtain a map U : R × [0, 1

2 ] → M ×M
sending the boundary to ∆. It can be checked that ∂

Ĥ,Ĵ
U = 0 and that U

is asymptotic to Γ±. This defines a map

M̃(H,J ; γ̃−, γ̃+)→ M̃(Ĥ, Ĵ ; Γ̃−, Γ̃+) .

It can be seen that this map is a bijection. Indeed, given a Floer strip U for
(Ĥ, Ĵ), we can define a continuous map u: R× [0, 1]→M by gluing the two
components of U ; the resulting map solves the Floer PDE for (H,J) away
from the seams. It can also be seen that u is in fact C1 along the seams. It
then follows that it is smooth by elliptic regularity.
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It is then straightforward to show that the following diagram commutes:

C(γ̃−)
C(u) // C(γ̃+)

C(Γ̃−)
C(U) // C(Γ̃+)

using the gluing and deformation isomorphisms. This shows that the iso-
morphism (11) is indeed an isomorphism of chain complexes.

It can also be shown that the above procedure can be adapted to produce
a canonical isomorphism QH∗(M) = QH∗(∆). Moreover, the PSS maps on
both sides are respected by these isomorphisms, in particular we have the
following commutative diagram:

QH∗(M)

PSS
��

QH∗(∆)

PSS
��

HF∗(H,J) HF∗(Ĥ, Ĵ : ∆)

2.9. Lagrangian Floer and quantum homology of products. Here we
establish a relation between the Floer and quantum homologies of a pair of
Lagrangians L1, L2 with those of their product.

Let (Mi, ωi) be symplectic manifolds and Li ⊂ Mi Lagrangian subman-
ifolds, i = 1, 2, so that the product L1 × L2 is a monotone Lagrangian of
minimal Maslov number at least 2. This implies that both L1 and L2 are
monotone and have minimal Maslov numbers at least 2. Pick regular Floer
data (H i, J i)i for Li. We claim that there is a canonical chain isomorphism

(12) CF∗(H
1 : L1)⊗ CF∗(H2 : L2) = CF∗(H

1 ⊕H2 : L1 × L2) .

It is clear that there is a natural bijection

CritAH1:L1
× CritAH2:L2

= CritAH1⊕H2:L1×L2

preserving actions and the grading. We first need to establish a canonical
isomorphism C(γ̃1)⊗C(γ̃2) = C(γ̃) when γ̃i ∈ CritAHi:Li and γ̃ corresponds
to γ̃1 × γ̃2 via the bijection. This is done as follows. There is an obvious
isomorphism of vector bundles

γ̂∗T (M1 ×M2) = γ̂∗1TM1 ⊕ γ̂∗2TM2

which induces an isomorphism of the corresponding Sobolev spaces of sec-
tions, thereby producing a Fredholm isomorphism

Dγ̂ = Dγ̂1
⊕Dγ̂2

,

which implies, using the direct sum isomorphism, that

d(Dγ̂) = d(Dγ̂1
)⊗ d(Dγ̂2

) ,

therefore that we have the desired isomorphism C(γ̃) = C(γ̃1)⊗ C(γ̃2).
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We also claim that (H1⊕H2, J1⊕J2) is a regular Floer datum for L1×L2.
Moreover, if u: R× [0, 1]→M1×M2 is a solution of the Floer PDE for this
datum, and it has index 1, and we let ui: R× [0, 1]→Mi be its components,
then since Du = Du1 ⊕ Du2 and all the operators are surjective, it follows
that precisely one of the operators Dui is an isomorphism, while the other
has index 1. Therefore Floer trajectories of (H1 ⊕H2, J1 ⊕ J2) of index 1
have the form u = (u1, u2) where one of the ui is s-independent, while the
other is an index 1 Floer trajectory for its datum. This, together with the
Koszul signs arising from the direct sum isomorphisms as in [Zap15, Section
3.7], implies that the boundary operator ∂H1⊕H2,J1⊕J2 is indeed the tensor
product of the operators ∂Hi,Ji , in the graded sense. This shows that the
above isomorphism of modules (12) is a chain isomorphism, and so we have
a canonical map of Floer homologies

HF∗(H
1, J1 : L1)⊗HF∗(H2, J2 : L2)→ HF∗(H

1⊕H2, J1⊕ J2 : L1×L2) ,

which is injective in case the ground ring R is a PID, and an isomorphism if
it is a field.

We similarly have a map of quantum homologies

QH∗(L1)⊗QH∗(L2)→ QH∗(L1 × L2) ,

and the PSS isomorphisms are respected by these, so that we have a com-
mutative diagram

QH∗(L1)⊗QH∗(L2) //

PSS⊗PSS
��

QH∗(L1 × L2)

PSS
��

HF∗(H
1, J1 : L1)⊗HF∗(H2, J2 : L2) // HF∗(H

1 ⊕H2, J1 ⊕ J2 : L1 × L2)

2.10. Action of the symplectomorphism group. If ψ ∈ Symp(M,ω), let
L′ = ψ(L). In this subsection we construct a canonical chain isomorphism

ψ∗:
(
CF∗(H : L), ∂H,J

)
→
(
CF∗(H

ψ : L′), ∂Hψ ,Jψ
)
,

where (H,J) is a regular Floer datum for L, (Hψ, Jψ) is the Floer datum
Hψ = H ◦ ψ−1, Jψ = ψ∗J , which is regular for L′. Likewise, we construct a
chain isomorphism

ψ: QC∗(D : L)→ QC∗(Dψ : L′)

of quantum complexes where D = (f, ρ, I) is a regular quantum datum for L
and Dψ = (fψ, ρψ, Iψ) is the quantum datum with fψ = f ◦ ψ−1, ρψ = ψ∗ρ,
Iψ = ψ∗I, which is regular for L′.

First, note that there is an obvious bijection

ψ∗: CritAH:L → CritAHψ :L′

given by γ̃ = [γ, γ̂] 7→ γ̃ψ = [γψ = ψ ◦ γ, γ̂ψ = ψ ◦ γ̂]. It clearly preserves the
actions and Conley–Zehnder indices. Then there is a canonical isomorphism
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of Z-modules, C(γ̃) ' C(γ̃ψ), constructed in the following manner. The
symplectomorphism ψ induces a bundle pair isomorphism

ψ∗:
(
γ̂∗TM, (γ̂|∂Ḋ2)∗TL

)
→
(
(γ̂ψ)∗TM, (γ̂ψ|∂Ḋ2)∗TL

)
which in turn induces the commutative diagram of Fredholm operators and
Banach isomorphisms

W 1,p
(
Ḋ2, ∂Ḋ2; γ̂∗TM, (γ̂|∂Ḋ2)∗TL

) Dγ̂ //

ψ∗
��

Lp(Ḋ2; Ω0,1 ⊗ γ̂∗TM)

ψ∗
��

W 1,p
(
Ḋ2, ∂Ḋ2; (γ̂ψ)∗TM, (γ̂ψ|∂Ḋ2)∗TL

) D
γ̂ψ // Lp

(
Ḋ2; Ω0,1 ⊗ (γ̂ψ)∗TM

)
It follows that the operators Dγ̂ , Dγ̂ψ are canonically isomorphic and there-
fore so are their determinant bundles, whose orientations are the generators
of C(γ̃), C(γ̃ψ). The ensuing isomorphism of Z-modules

CF∗(H : L) ' CF∗(Hψ : L′)

is a chain isomorphism. Indeed, let γ̃± ∈ CritAH:L and define

M̃(H,J ; γ̃−, γ̃+)→ M̃(Hψ, Jψ; γ̃ψ−, γ̃
ψ
+) , u 7→ uψ = ψ ◦ u .

This map is easily shown to be a diffeomorphism, which also preserves the
canonical orientations in case γ̃± have index difference 1. It is clear that in
the latter case the following diagram commutes:

C(γ̃−)
C(u) //

ψ∗
��

C(γ̃+)

ψ∗
��

C(γ̃ψ−)
C(uψ) // C(γ̃ψ+)

which implies our claim.
The isomorphism in quantum homology is similarly constructed; the de-

tails are left to the reader. It is also obvious that ψ∗ intertwines the PSS
isomorphisms on homology, giving the commutative diagram

HF∗(H,J : L)
ψ∗ //

PSS
��

HF∗(H
ψ, Jψ : L′)

PSS
��

QH∗(L)
ψ∗ // QH∗(L

′)

3. Lagrangian spectral invariants: definition

Recall that in order to be able to define Lagrangian quantum and Floer
homology of L, we need to fix a ground ring R, a local subsystem G <
π0

2(M,L), and in case G is nontrivial and R has characteristic different from
2, a relative Pin± structure, in order to be able to form quotient complexes
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as described in §2.5.3. We fix these choices once and for all and omit them
from notation throughout §§3-4.

In this section, we define Lagrangian spectral invariants for continuous
time-dependent Hamiltonians on M , as well as for elements of H̃am(M,ω).
This is done using the following steps, each one performed in its own sub-
section.
§3.1: To any regular Floer datum (H,J) for L we associate a function

`( · ;H,J) : QH∗(L)→ R ∪ {−∞} .

§3.2: We show that for any non-zero α ∈ QH∗(L) and any regular Floer
data (H i, J i) for L, i = 0, 1 we have

(13)∫ 1

0
min
M

(H1 −H0) dt ≤ `(α;H1, J1)− `(α;H0, J0) ≤
∫ 1

0
max
M

(H1 −H0) dt .

§3.3: It follows that `(α;H,J) only depends on H, and we let the common
value be denoted by `(α;H). Also it follows that ` can be uniquely
extended to a function

` : QH∗(L)× C0
(
M × [0, 1]

)
→ R ∪ {−∞} .

§3.4: Finally we show that ` only depends on the homotopy class of the
path {φtH}t∈[0,1] with fixed endpoints, provided H is normalized, so
that ` descends to a function

` : QH∗(L)× H̃am(M,ω)→ R ∪ {−∞} .

3.1. Nondegenerate Hamiltonians. Pick a regular Floer datum (H,J)
for L and recall that in particular H is supposed to be nondegenerate. There
exists a canonical PSS isomorphism (6)

PSSH,J : QH∗(L)→ HF∗(H,J : L) .

The Floer complex can be naturally filtered by the action. Namely, for
a ∈ R define

CF a∗ (H : L) =
⊕

γ̃∈CritAH:L
AH:L(γ̃)<a

C(γ̃) .

If the matrix element C(γ̃−) → C(γ̃+) of the boundary operator ∂H,J is
non-zero, then there exists a Floer trajectory u ∈ M̃(H,J ; γ̃−, γ̃+). There-
fore, since the Floer equation is the negative gradient equation for AH:L (see
Remark 21), we obtain

AH:L(γ̃−)−AH:L(γ̃+) > 0 ,

because u, which connects critical points of AH:L of index difference one,
necessarily depends on s. Thus the action decreases along Floer trajectories,
the boundary operator preserves the above filtration, and CF a∗ (H : L) ⊂
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CF∗(H : L) is a subcomplex. We denote by HF a∗ (H,J : L) the homology of(
CF a∗ (H : L), ∂H,J

)
and let

ia∗: HF
a
∗ (H,J : L)→ HF∗(H,J : L)

be the map induced on homology by the inclusion. The Lagrangian spectral
invariant corresponding to a non-zero class α ∈ QH∗(L) is then defined as

`(α;H,J) = inf
{
a ∈ R : PSSH,J(α) ∈ im(ia∗)

}
.(14)

Finally, recall from §2.3.1 that there exists a canonical class [L] 6= 0 in
QH∗(L). The spectral invariant associated to this specific class will be of
particular interest to us and we will denote it

`+(H,J) = `([L];H,J) .(15)

We will also need spectral invariants coming from cohomology. We refer
the reader to §2.7 for relevant definitions. We note that

CF ∗a (H : L) := CF ∗(H : L)

/ ⊕
γ̃∈CritAH:L
Aγ̃>a

C(γ̃)∨

is a quotient cochain complex. We let HF ∗a (H,J : L) be the corresponding
cohomology and we denote by i∗a: HF ∗(H,J : L)→ HF ∗a (H,J : L) the map
induced on cohomology by the quotient map CF ∗(H : L) → CF ∗a (H : L).
Then for α∨ ∈ QH∗(L) we can define

(16) `(α∨;H) = sup
{
a ∈ R | PSSH,J(α∨) ∈ ker i∗a

}
,

where PSSH,J : QH∗(L)→ HF ∗(H,J : L) is the PSS isomorphism on coho-
mology.

Finally we will use Hamiltonian spectral invariants. If (H,J) is a time-
periodic regular Floer datum onM , the Floer complex CF∗(H) can similarly
be filtered by action to yield a subcomplex CF a∗ (H) generated by critical
points of action < a. Letting ia∗ be the map induced on homology by the
inclusion CF a∗ (H) ↪→ CF∗(H), we define for any non-zero class b ∈ QH∗(M)

c(b;H) = inf
{
a ∈ R | PSSH,J(b) ∈ im ia∗

}
.

3.2. Continuity property of `. We consider regular Floer data (H i, J i),
i = 0, 1. In this section we prove the property (13) of the invariants defined
by (14). In order to do so, it is enough to prove that, given ε > 0, we can
pick a regular homotopy of Floer data (Hs, Js)s∈R between (H0, J0) and
(H1, J1), which is stationary for s /∈ (0, 1), such that for any a ∈ R, the
corresponding continuation morphism

Φ(Hs,Js)s : CF∗(H
0 : L)→ CF∗(H

1 : L)
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maps CF a∗ (H0 : L) into CF a+b
∗ (H1 : L) where b =

∫ 1
0 maxM (H1

t −H0
t ) dt+ε.

Indeed, in this case we obtain the following commutative diagram

HF a∗ (H0, J0 : L)

Φ
��

ia∗ // HF∗(H
0, J0 : L)

Φ
��

QH∗(L)
PSSH

0,J0

oo

PSSH
1,J1

uujjjjjjjjjjjjjjjj

HF a+b
∗ (H1, J1 : L)

ia+b
∗ // HF∗(H

1, J1 : L)

which implies

`(α;H1, J1)− `(α;H0, J0) ≤
∫ 1

0
max
M

(H1
t −H0

t ) dt+ ε .

Since this is true for any ε > 0, we obtain the right inequality in (13). The
other inequality is obtained by exchanging the roles of H0 and H1.

To prove that there is such a regular homotopy of Floer data, consider the
special homotopy of Hamiltonians given by

Ks
t (x) = H0

t (x) + β(s)
(
H1
t (x)−H0

t (x)
)
,

where β: R→ [0, 1] is a smooth nondecreasing function which satisfies β(s) =
0 for s ≤ 0 and β(s) = 1 for s ≥ 1. There is a regular homotopy of Floer
data (Hs, Js)s, stationary for s /∈ (0, 1), such that

max
(x,t)∈M×[0,1]

(
∂Hs

t

∂s
(x)− ∂Ks

t

∂s
(x)

)
≤ ε .

Let γ̃i ∈ CritAHi:L have the same index and let v ∈ M
(
(Hs, Js)s; γ̃0, γ̃1

)
.

Recall that v satisfies the parametrized Floer equation ∂(Hs,Js)su = 0, see
(4). There is a natural lift of v to a path in Ω̃L running from γ̃0 to γ̃1; by
abuse of notation we denote this path by v: R → Ω̃L. The parametrized
Floer equation can equivalently be written as v′(s) = −∇AHs:L

(
v(s)

)
. We

therefore have

AH1:L(γ̃1)−AH0:L(γ̃0) =

∫ ∞
−∞

d

ds
AHs:L

(
v(s)

)
ds

=

∫ ∞
−∞

(
dv(s)AHs:L

(
v′(s)

)
+
∂AHs:L

∂s

(
v(s)

))
ds

= −
∫ ∞
−∞
‖∇v(s)AHs:L‖2 ds

+

∫
R×[0,1]

∂Hs
t

∂s

(
v(s, t)

)
ds dt

≤
∫
R×[0,1]

∂Hs
t

∂s

(
v(s, t)

)
ds dt .
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The last term equals∫
R×[0,1]

∂Ks
t

∂s

(
v(s, t)

)
ds dt+

∫
R×[0,1]

(
∂Hs

t

∂s

(
v(s, t)

)
− ∂Ks

t

∂s

(
v(s, t)

))
ds dt .

Here in the first integral we have∫
R×[0,1]

∂Ks
t

∂s

(
v(s, t)

)
ds dt =

∫
R×[0,1]

β′(s)(H1
t −H0

t ) ◦ v ds dt

≤
∫ 1

0
max
M

(H1
t −H0

t ) dt

∫ ∞
−∞

β′(s) ds

=

∫ 1

0
max
M

(H1
t −H0

t ) dt .

By the choice of Hs we have∫
R×[0,1]

(
∂Hs

t

∂s
− ∂Ks

t

∂s

)
◦ v ds dt =

∫
[0,1]×[0,1]

(
∂Hs

t

∂s
− ∂Ks

t

∂s

)
◦ v ds dt ≤ ε .

All these estimates together imply

AH1:L(γ̃1)−AH0:L(γ̃0) ≤
∫ 1

0
max
M

(H1
t −H0

t ) dt+ ε ,

which means that the homotopy of Floer data (Hs, Js)s has the property
claimed above.

3.3. Invariance of ` (part 1) and arbitrary Hamiltonians. First, by
putting H0 = H1 in (13), we immediately deduce that `(α;H,J) does not
depend on the choice of the almost complex structure J . We will therefore
denote the resulting common value by `(α;H) from now on. Similarly, we
use the notation `+(H) for `+(H,J).

Again, by (13), we can define the spectral numbers for an arbitrary con-
tinuous function H : M × [0, 1]→ R, as follows. Pick a sequence of smooth
nondegenerate Hamiltonians {Hn}n satisfying

lim
n→∞

‖Hn −H‖C0(M×[0,1]) = 0

and define `(α;H) as the limit limn→∞ `(α;Hn). Equation (13) ensures that
this limit exists and does not depend on the choice of the sequence {Hn}n.

3.4. Invariance of ` (part 2). We now show that ` only depends on homo-
topy classes of Hamiltonian isotopies with fixed endpoints, thereby proving
Proposition 4. Recall that we call a Hamiltonian H normalized if for all
t ∈ [0, 1],

∫
M Ht ω

n = 0.

Definition 29. Two normalized Hamiltonians H0 and H1 are called equiv-
alent if there is a homotopy (Hs)s∈[0,1] between them so that for all s, Hs is
normalized and φ1

Hs
= φ.
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The universal cover of Ham(M,ω) coincides with the set of equivalence
classes of normalized Hamiltonians.
Remark 30. Before proving the invariance property of `, recall that when
dealing with spectral invariants of the Hamiltonian Ht in question, we may
assume that it vanishes for t near 0, 1, see for instance [Pol01, MVZ12]. From
now on all Hamiltonians are assumed to have this property.

For a smooth HamiltonianH we let Spec(H : L) = AH:L(CritAH:L) be its
action spectrum. The following can be proved similarly to the Hamiltonian
case (see [Oh05a]):

Lemma 31. The action spectrum Spec(H : L) ⊂ R is a closed nowhere
dense subset. �

The proof of the fact that ` only depends on the equivalence class of a
normalized Hamiltonian boils down to the following lemma.

Lemma 32. Let H be normalized. Then Spec(H : L) only depends on the
equivalence class of H.

We denote Spec(φ̃ : L) = Spec(H : L) for any normalized representative H
of φ̃ ∈ H̃am(M,ω) and call it the action spectrum of φ̃.

First let us show that the lemma implies the desired invariance property
of `. Indeed, if (Hs)s is a normalized homotopy so that for all s ∈ [0, 1],
φ1
Hs = φ, by Lemma 32 the spectrum of AHs:L does not depend on s. This,

combined with the fact that the spectrum is nowhere dense (Lemma 31)
and with the Spectrality and Continuity properties of spectral invari-
ants (see Theorem 36 below), shows that for every non-zero α ∈ QH∗(L),
`(α;H0) = `(α;H1).

Proof of Lemma 32. Let (Hs)s∈[0,1] be a normalized homotopy so that φ1
Hs =

φ for all s. We need to show that Spec(H0 : L) = Spec(H1 : L). Let us
define a map

CritAH0:L → CritAH1:L

as follows. Let γ̃0 = [γ0, γ̂0] ∈ CritAH0:L and let u(s, t) = φtHs

(
γ0(0)

)
for

(s, t) ∈ [0, 1]2. Define the glued map γ̂1 = γ̂0]u, which we view as a capping
of the Hamiltonian arc γ1 = u(1, ·) of H1. The above bijection then maps
γ̃0 to γ̃1 = [γ1, γ̂1] by definition.

The proof will be complete once we show that AH0:L(γ̃0) = AH1:L(γ̃1).
This is done in two steps.

Step 1. First we show that

AH1:L(γ̃1)−AH0:L(γ̃0) =

∫
I2

(∂sH
s
t ) ◦ u ds dt(17)
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with I = [0, 1]. Let γs = u(s, ·), γ̂s = γ̂0]u|[0,s]×[0,1], and γ̃s = [γs, γ̂s]. We
have

AH1:L(γ̃1)−AH0:L(γ̃0) =

∫ 1

0

d

ds
AHs:L(γ̃s) ds

=

∫ 1

0
dγ̃sAHs:L(∂sγ̃s) ds+

∫
I2

(∂sH
s
t ) ◦ u ds dt .

Since by construction γ̃s is a critical point of AHs:L, the first summand in
the last expression vanishes, and we have proved (17).

Step 2. We prove that

(18)
∫
I2

(∂sH
s
t )
(
φtHs(p)

)
ds dt

does not depend on p.
Consider the time-periodic Hamiltonian Ks = Hs]H0. For p ∈ M let

up(s, t) = φtHs(p). Define δps = up(s, ·)]up(0, ·). Then δps is a periodic orbit
of Ks and the map δ̂ps = up|[0,s]×[0,1] can be viewed as a capping of δps . We
let δ̃ps = [δps , δ̂

p
s ] and observe that this is a critical point of AKs . Noting that

AK0(δ̃p0) = 0, we have:

AK1(δ̃p1) =

∫ 1

0

d

ds
AKs(δ̃ps) ds

=

∫ 1

0
d
δ̃ps
AKs(∂sδ̃

p
s) ds+

∫
I2

(∂sH
s
t ) ◦ up ds dt .

Since δ̃ps is a critical point of AKs , this first summand in the last expression
vanishes, and so we obtain that the sought-for integral (18) in fact equals
the value of the action functional AK1 at the critical point δ̃p1 .

Note thatM 3 p 7→ δ̃p1 is a smooth embedding ofM into the set of critical
points of AK1 . Since a functional is constant on a connected submanifold
of the set of its critical points, we conclude that our integral (18) is indeed
independent of p.
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End of the proof. Using the normalization condition, the fact that φtHs is a
symplectomorphism for all s, t, and Steps 1, 2, we obtain finally:

0 =

∫ 1

0
dt

∫
M

(
H1
t (p)−H0

t (p)
)
ωnp

=

∫
I2

(∫
M
∂sH

s
t (p)ωnp

)
ds dt

=

∫
I2

(∫
M
∂sH

s
t

(
φtHs(p)

)
ωnp

)
ds dt

=

∫
I2

∂sH
s
t

(
φtHs(p)

)
ds dt ·

∫
M
ωn

=
(
AH1:L(γ̃1)−AH0:L(γ̃0)

) ∫
M
ωn ,

thereby finishing the proof of Lemma 32. �

This concludes the proof of invariance. In view of this property, we have
actually defined

` : QH∗(L)× H̃am(M,ω)→ R ∪ {−∞}

with `(α; φ̃) = `(α;H) for any normalized Hamiltonian H representing φ̃.
We denote `+(φ̃) = `([L]; φ̃).

4. Spectral invariants: main properties

We maintain the choices made at the beginning of §3.

4.1. Quantum valuation. Here we introduce the valuation in Lagrangian
quantum homology. It is analogous to the valuation introduced in [EP03],
and serves a similar purpose.

Fix a regular quantum datum D for L. The quantum valuation

ν: QH∗(D : L)→ Z ∪ {−∞}
is defined as follows. If α ∈ QH∗(D : L) is non-zero, let C ∈ QC∗(D : L) be
a chain representing it. We define the valuation of C to be

ν(C) = 1
A max

{
− ω(A) | the component of C in C(q, A) is not 0

}
.

Then we define
ν(α) = inf{ν(C) | [C] = α}

and we put ν(0) = −∞. Proposition 35 below will show that ν · A equals
the spectral invariant of the zero Hamiltonian, which implies that ν in fact
descends to a well-defined function

ν: QH∗(L)→ Z ∪ {−∞} .
Remark 33. When NL = ∞, it follows from the definitions that ν(α) = 0
for any nonzero α.

Lemma 34. If α 6= 0, then ν(α) ∈ Z.



50 RÉMI LECLERCQ, FROL ZAPOLSKY

Proof. Just like in [EP03], we can show that ν(α) is the maximum of ν(αk)
where αk ∈ QHk(D : L) is the degree-k component of α. Therefore it
suffices to show that ν(α) is finite for homogeneous α. In this case, due to
the monotonicity of L, the direct summands C(q, A) of QCk(D : L) have the
property that there are only finitely many values that −ω(A)/A can attain.
Therefore any nonzero cycle C ∈ QCk(D : L) has valuation ν(C) which is
at least the minimal such value. It follows that ν(α) is also at least this
minimal value. �

There is a more natural way to define ν in the context of this paper. Define
the function

A0:
{

(q, A) | q ∈ Crit f ,A ∈ π2(M,L, q)
}
→ R by A0(q, A) = −ω(A) .

Morally speaking, since quantum homology is the Morse–Bott Floer homol-
ogy of the zero Hamiltonian, this is the corresponding action functional,
evaluated on the set of critical points of the auxiliary Morse function on the
critical manifold.

Using A0 we can now define a subcomplex QCa∗ (D : L) spanned by those
generators of QC∗(D : L) with A0 < a. This is indeed a subcomplex since
it follows from the definition of the quantum boundary operator that if its
matrix element C(q, A) → C(q′, A′) is non-zero, then necessarily ω(A′) ≥
ω(A). We let QHa

∗ (D : L) be the homology of this subcomplex and let

iaQ: QHa
∗ (D : L)→ QH∗(D : L)

be the map induced by the inclusion QCa∗ (D : L) ↪→ QC∗(D : L). It is then
obvious from the definitions that

ν(α) = 1
A inf

{
a ∈ R |α ∈ im(iaQ)

}
.

Intuitively, this means that ν(α)A is the spectral invariant of the zero Hamil-
tonian. We now show that this analogy is in fact precise.

Proposition 35. We have∫ 1

0
min
M

Ht dt ≤ `(α;H)− ν(α)A ≤
∫ 1

0
max
M

Ht dt .

In particular ν(α)A = `(α; 0) and therefore ν is independent of the quantum
datum D used to define it.

Proof. Fix a regular Floer datum (H,J). We claim that for any given ε > 0
we can choose a suitable perturbation datum needed in the defintion of the
PSS morphism

QC∗(D : L)→ CF∗(H : L)

so that for any a ∈ R it restricts to a map

QCa∗ (D : L)→ CF a+b
∗ (H : L)
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where b =
∫ 1

0 maxM Ht dt + ε. Let us first show how this implies the right
inequality of the proposition. It follows that there is a commutative diagram

QHa
∗ (D : L) //

iaQ
��

HF a+b
∗ (H,J : L)

ia+b
∗

��
QH∗(D : L)

PSSH,JD // HF∗(H,J : L)

The definition of spectral invariants and the valuation then imply that

`(α;H) ≤ A · ν(α) +

∫ 1

0
max
M

Ht dt+ ε .

Since this holds for any ε, we obtain the right inequality above. The other
inequality is similarly proved using the inverse PSS morphism.

To prove the assertion, we need to use the definition of the PSS isomor-
phism described in [Zap15, Section 5]. We do not need the full-detail version
of the definition, but rather enough of it in order to prove action estimates.
We fix ε > 0.

Let q ∈ Crit f , A ∈ π2(M,L, q), γ̃ ∈ CritAH:L, and assume that the
matrix element C(q,A)→ C(γ̃) of the PSS morphism does not vanish. This
means that there are maps

ui: (D2, S1)→ (M,L) , i = 1, . . . , k , and u0: (Ḋ2, ∂Ḋ2)→ (M,L) ,

with the following properties. Each ui for i > 0 is I-holomorphic, there is a
gradient trajectory of f running from q to u1(−1), and gradient trajectories
of f running from ui(1) to ui+1(−1) for i < k, and from uk(1) to u0(−1).
The map u0 satisfies the Floer PDE on Ḋ2 where the perturbation datum is
chosen as follows. There is a conformal identification R× [0, 1] ' Ḋ2 \ {−1}
given by the same formula as (2) and with respect to the coordinates (s, t)

induced on Ḋ2 \ {−1} via this identification, the perturbation datum takes
the form of a homotopy of Floer data (Hs, Js)s∈R, which is stationary for
s /∈ (0, 1), and such that (Hs, Js) = (0, I) for s ≤ 0, (Hs, Js) = (H,J) for
s ≥ 1, and where moreover there exists a nondecreasing smooth function
β: R→ [0, 1] with β(s) = 0 for s ≤ 0 and β(s) = 1 for s ≥ 1 such that

(19) max
(x,t)∈M×[0,1]

(
∂sH

s
t

∂s
(x)− β′(s)Ht(x)

)
≤ ε .

Moreover, by definition the capping γ̂ in γ̃ has the property that γ̂ ∼
A]u1] . . . ]uk]u0 (∼ being the equivalence relation on the set of cappings,



52 RÉMI LECLERCQ, FROL ZAPOLSKY

see §2.2.1), where the concatenation is performed along the pieces of gradi-
ent trajectories of f mentioned above. We have

AH:L(γ̃) =

∫ 1

0
Ht

(
γ(t)

)
dt−

∫
γ̂∗ω

=

∫ 1

0
Ht

(
γ(t)

)
dt− ω(A)−

k∑
i=1

∫
u∗iω −

∫
u∗0ω

≤ −ω(A) +

∫ 1

0
Ht

(
γ(t)

)
dt−

∫
u∗0ω ,

since the ui are holomorphic. We claim that∫ 1

0
Ht

(
γ(t)

)
dt−

∫
u∗0ω ≤

∫ 1

0
max
M

Ht dt+ ε .

This follows formally using the same argument as in §3.2, as we will now
demonstrate. Observe that u0, written in the coordinates (s, t) on Ḋ2\{−1},
satisfies the parametrized Floer equation for the homotopy of Floer data
(Hs, Js)s. The point u0(−1) can be considered as a Hamiltonian arc of the
zero Hamiltonian, and we can cap it using the constant map at the same
point. Since the homotopy (Hs)s satisfies the condition (19), we have, using
the argument in §3.2:∫ 1

0
Ht

(
γ(t)

)
dt−

∫
u∗0ω = AH:L

(
[γ, u0]

)
−A0:L

(
[u0(−1), u0(−1)]

)
≤
∫ 1

0
max
M

(Ht − 0) + ε ,

which is precisely what we wanted to show. �

4.2. Spectral invariants of continuous Hamiltonians. In this section
we prove the following theorem, which generalizes Theorem 3 of the intro-
duction and includes Proposition 5.

Theorem 36. Let L be a closed monotone Lagrangian of (M,ω) with min-
imal Maslov number NL ≥ 2. The function

`: QH∗(L)× C0
(
M × [0, 1]

)
→ R ∪ {−∞}

constructed in §3 satisfies the following properties.

Finiteness: `(α;H) = −∞ if and only if α = 0.
Spectrality: For H ∈ C∞

(
M × [0, 1]

)
and α 6= 0, `(α;H) ∈ Spec(H : L).

Ground ring action: For r ∈ R, `(r ·α;H) ≤ `(α;H). In particular, if r
is invertible, then `(r · α;H) = `(α;H).
Symplectic invariance: Let ψ ∈ Symp(M,ω) and L′ = ψ(L). Let

`′: QH∗(L
′)× C0

(
M × [0, 1]

)
→ R ∪ {−∞}

be the corresponding spectral invariant. Then `(α;H) = `′(ψ∗(α);H ◦ ψ−1).
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Normalization: If c is a function of time then

`(α;H + c) = `(α;H) +

∫ 1

0
c(t) dt .

We have `(α; 0) = ν(α)A and `+(0) = 0.
Continuity: For any H and K, and α 6= 0:∫ 1

0
min
M

(Kt −Ht) dt ≤ `(α;K)− `(α;H) ≤
∫ 1

0
max
M

(Kt −Ht) dt .

Monotonicity: If H ≤ K, then `(α;H) ≤ `(α;K).
Triangle inequality: For all α and β, `(α?β;H]K) ≤ `(β;H)+`(α;K).
Module structure: Assume that H2 is 1-periodic. For all a ∈ QH∗(M)
and α ∈ QH∗(L), `(a • α;H1]H2) ≤ c(a;H2) + `(α;H1).
Duality: For α ∈ QH∗(L) let α∨ ∈ QHn−∗(L;L) be the element corre-
sponding to α under the duality isomorphism (9). Then we have

−`(α;H) = `(α∨;H) ≤ inf
{
`(β;H) |β ∈ QHn−∗(L;L) : 〈α∨, β〉 6= 0

}
.

In case the ground ring R is a field and the Floer complexes of nondegenerate
Hamiltonians are finite-dimensional in every degree, the last inequality is an
equality.

Recall from §2.5.3 that if G is the kernel of a surjective local system morphism
kerw1 → F , where F is a group, then QHG

∗ (L) is a module over the group
ring R[F ]. We have

Novikov action: For A ∈ F , we have `(A · α;H) = `(α;H)− ω(A).
Lagrangian control: If for all t, Ht|L = c(t) ∈ R (respectively ≤, ≥),
then

`(α;H) =

∫ 1

0
c(t) dt+ ν(α)A (respectively ≤,≥) .

So that, for all H:∫ 1

0
min
L
Ht dt ≤ `(α;H)− ν(α)A ≤

∫ 1

0
max
L

Ht dt .

Recall that `([L];H) is denoted `+(H) and that we assume [L] 6= 0.

Non-negativity: `+(H) + `+(H) ≥ 0.
Maximum: `(α;H) ≤ `+(H) + ν(α)A.

4.2.1. Proof of Theorem 36. First, notice that the fact that `(α;H) ∈ R for
any α 6= 0 and any H easily comes from Normalization and Continu-
ity.15 Moreover, we set `(0;H) = −∞ for all H so that Finiteness is

15Alternatively, the finiteness of `(α;H) for nondegenerate H can be seen as follows.
Just like in the proof of Proposition 35, it is enough to consider the case of homogeneous
α. The set of actions of critical points of AH:L of given Conley–Zehnder index is finite
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proven. Notice also that Continuity was proven above for generic smooth
Hamiltonians, see §3.2. It obviously extends to continuous functions, and
immediately implies Monotonicity. Finally, notice that Ground ring
action is obvious by definition.

We now prove the remaining properties, where we only deal with the
nontrivial case of non-zero quantum classes.

• Spectrality: The proof is similar to the Hamiltonian case, for instance
see [Oh05a]. Recall that ω

(
π2(M,L)

)
= ZA is a discrete subset of R. Since

we work in a slightly more general situation where we distinguish between
homotopy classes of cappings, we include a proof for the sake of completeness.

When H is smooth and nondegenerate, this property follows from the fact
that the complement of the spectrum of H is open and dense, since we work
in monotone manifolds, and from the fact that the image of the map ia∗ is
unchanged as long as a stays in the complement of the spectrum.

When H is degenerate, choose a sequence of nondegenerate Hamilto-
nians {Hn}n C2-converging to H. By our definition of spectral invari-
ants, `(α;H) = limn→+∞ `(α;Hn). By the nondegenerate case, we can
choose a sequence {(γn, γ̂n)}n so that for all n, γ̃n = [γn, γ̂n] ∈ CritAHn:L

and `(α;Hn) = AHn(γ̃n). By C2-convergence and compactness of M , the
Arzela–Ascoli Theorem ensures the existence of a subsequence of {γn}n C1-
converging to a Hamiltonian chord γ of H.

Fix a Riemannian metric onM with respect to which L is totally geodesic
and choose a number ε less than its injectivity radius. For n large enough
define a strip un: [0, 1]2 → M such that for fixed t, s 7→ un(s, t) is the
geodesic arc of length at most ε running from γn(t) to γ(t). Similarly we
define the strip un,n′ connecting γn to γn′ for large enough n, n′. Now fix n0

large enough and define γ̂ = γ̂n0]un0 . We claim that

AH:L

(
γ̃ = [γ, γ̂]

)
= `(α;H) .

Note that
∫
u∗nω =

∫
u∗n′ω +

∫
u∗n,n′ω. Indeed, by the Stokes formula and

due to the fact that L is Lagrangian, we see that the difference between
the two terms equals the integral of dω = 0 over the set realizing a homo-
topy between the three strips, and therefore it vanishes. Next, we see that∫
u∗nω → 0 as n → ∞, as well as

∫
u∗n,n′ω → 0 when n, n′ → ∞. Also

note that
∫
γ̂∗nω +

∫
u∗n,n′ω =

∫
γ̂∗n′ω. Indeed, by construction the difference

between the two sides must be the area of an element of π2(M,L), but on
the other hand since

{ ∫
γ̂∗nω

}
n
is Cauchy and by the previous observation,

this difference tends to zero, therefore it must be identically zero, owing to
the fact that the group of periods of ω is discrete.

due to the monotonicity of L, in particular `(α;H) is at least the minimum such action.
The assertion follows.
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We have

AH:L(γ̃)−AHn:L(γ̃n) =

∫ 1

0

(
Ht

(
γ(t)

)
−Hn,t

(
γn(t)

))
dt−

∫
(γ̂∗ω − γ̂∗nω) .

By construction, the first integral tends to zero when n→∞. In the second
integral we have∫

(γ̂∗ω − γ̂∗nω) =

∫
(γ̂∗n0

ω − γ̂∗nω) +

∫
u∗n0

ω =

∫
u∗n,n0

ω +

∫
u∗n0

ω =

∫
u∗nω

which tends to zero when n→∞. Thus we see that

AH:L(γ̃) = lim
n→∞

AHn:L(γ̃n) = lim
n→∞

`(α;Hn) = `(α;H) .

• Symplectic invariance First notice that, for ψ ∈ Symp(M,ω), L′ =
ψ(L) shares the same properties as L so that `′ is well-defined. It is enough
to prove the assertion for nondegenerate H. Let therefore (H,J) be a reg-
ular Floer datum. In §2.10 it is shown that there exists a canonical chain
isomorphism

ψ∗:
(
CF∗(H : L), ∂H,J

)
→
(
CF∗(H

ψ, Jψ : L′), ∂Hψ ,Jψ
)
,

where Hψ = H ◦ ψ−1 and Jψ = ψ∗J . Since ψ∗ preserves the actions of the
critical points of the respective action functionals, we obtain, for each a ∈ R,
the commutative diagram, where the vertical arrows are inclusions:

CF a∗ (H : L)
ψ∗ //

��

CF a∗ (Hψ : L′)

��
CF∗(H : L)

ψ∗ // CF∗(H
ψ : L′)

It is also shown in §2.10 that ψ∗ induces an isomorphism on homology and an
isomorphism ψ∗: QH∗(L) → QH∗(L

′). These are featured in the following
diagram:

HF a∗ (H,J : L)
ia∗ //

ψ∗
��

HF∗(H,J : L)

ψ∗
��

QH∗(L)

ψ∗
��

PSSH,Joo

HF a∗ (Hψ, Jψ : L′)
ia∗ // HF∗(H

ψ, Jψ : L′) QH∗(L
′)

PSSH
ψ,Jψ

oo

from which it is clear that `(α;H) = `′(ψ∗(α);Hψ), as claimed.

• Triangle inequality: The proof of this fact is rather standard and has
been carried out in several context, see [AS10, MVZ12]. By Continuity it
suffices to prove this for smooth nondegenerate H1, H2. Recall from §2.2.1
that we denote by Σ? the closed disk with three boundary punctures. Pick
almost complex structures J1, J2 so that (H i, J i), i = 1, 2 are regular Floer
data for L, and associate them to the negative punctures of Σ?, so that H2

comes before H1 in the cyclic order on ∂D2. Pick ε > 0. By Remark 30 we
can assume that H1

t , H2
t vanish for t close to 0, 1. Let H3 be a nondegenerate
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Hamiltonian which satisfies ‖H3 −H1]H2‖C0 ≤ ε, and let J3 be such that
(H3, J3) is a regular Floer datum for L, and associate it to the positive
puncture of Σ?. We will now choose a suitable perturbation datum (K, I)
on Σ?. We note that the open set

Υ? = R× (0, 2) \ (−∞, 0]× {1}

with the conformal structure induced from its inclusion into R2 = C maps
biholomorphically onto the interior of Σ?, and we can choose this biholomor-
phism so that the negative (positive) ends of Υ? correspond to the negative
(positive) punctures of Σ? (see Figure 1 below).

On Υ? we put the following perturbation datum (K, I). The form K is
characterized by K(∂s) = 0 and

K(s, t, x)(∂t) =

 H1(t, x) if s ≤ 1, t ∈ (0, 1),
H2(t− 1, x) if s ≤ 1, t ∈ (1, 2),
H3(t, x) if s ≥ 2, t ∈ (0, 2)

and |∂sK(∂t)| ≤ ε for all t ∈ (0, 2) and all s ∈ R. The family of almost
complex structures I(s,t) on M for s ∈ R and t ∈ (0, 2) is chosen so that
(K, I) is regular and

I(s, t, x) =

 J1(t, x) if s ≤ 1, t ∈ (0, 1),
J2(t− 1, x) if s ≤ 1, t ∈ (1, 2),
J3(t, x) if s ≥ 2, t ∈ (0, 2).

Now we push this perturbation datum on Υ? to Σ? via the aforementioned
biholomorphism, and extend the resulting datum on the interior of Σ? to the
whole surface by continuity. Abusing notation we denote this perturbation
datum on Σ? also by (K, I).

Now assume that the matrix element C(γ̃2) ⊗ C(γ̃1) → C(γ̃3) of ?K,I
does not vanish, where γ̃i ∈ CritAHi:L. Then there is u ∈ M(K, I; {γ̃i}i).
Computing the energy of u in the coordinates (s, t) on Υ? in a manner similar
to the computation in §3.2 above leads to

AH1:L(γ̃1) +AH2:L(γ̃2)−AH3:L(γ̃3) ≥ −2ε .

This indicates that the restriction of ?K,I to the filtered Floer complexes
satisfies:

?K,I : CF a1
∗ (H1 : L)⊗ CF a2

∗ (H2 : L)→ CF a1+a2+2ε
∗ (H3 : L)

for any a1, a2. We can deduce the following inequality on spectral invariants:

`(α ? β;H3) ≤ `(β;H1) + `(α;H2) + 2ε .

Since ε is arbitrary, we get the expected result

`(α ? β;H1]H2) ≤ `(β;H1) + `(α;H2) .

• Normalization: For the first assertion, consider the homotopy Hs de-
fined by Hs = H + sc for s ∈ [0, 1]. For fixed s, Spec(Hs : L) is Spec(H : L)
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s ∈ R

t ∈ (0, 2)

1 2 3

2a 2b

0

Υ? = Υ•

P Q

1

2

3

P

Q

Σ?

1

P = Q

2a

2b

Σ•
3a

3b
3a

3b

Boundary conditions are
Lagrangian, punctures are
asymptotic to Hamiltonian chords

Same situation except that
2b ∼ 3a, and the interior puncture
is asymptotic to a periodic orbit.

Figure 1. Main object yielding the definition of product
(left) and module (right) structures

translated by s
∫ 1

0 c(t) dt. Thus the result holds for smooth H by Spec-
trality and Continuity. By C0-limit, it also holds for any continuous
function. The second assertion follows from Proposition 35.

Finally, let us consider the case α = [L]. The maximum of a Morse
function on L with a single maximum is always a cycle representing [L]
(see §2.3.1); this cycle has valuation 0. It follows from the definition of ν
that ν([L]) ≤ 0, that is `+(0) = ν([L])A ≤ 0. On the other hand, since
[L] ? [L] = [L], Triangle inequality yields

`([L]; 0) ≤ `([L]; 0) + `([L]; 0) ,

which means `([L]; 0) ≥ 0, and thus `([L]; 0) = 0.

• Module structure: The proof of this inequality is formally similar to
that of Triangle inequality. The only difference is that H2 is time-
periodic, and that we map the surface Υ• = Υ? to the surface Σ• so that the
complement is the boundary together with a segment connecting the interior
puncture to the boundary (see Figure 1).

The perturbation datum (K, I) on Υ• is still given by the same formulas
as in the proof of Triangle inequality above, and we push it to Σ•
and extend the result by continuity. Computing the energy of a solution
of the Floer PDE with respect to this perturbation datum implies that the
restriction of •K,I to the filtered Floer complexes satisfies

•K,I : CF a2
∗ (H2)⊗ CF a1

∗ (H1 : L)→ CF a1+a2+ε
∗ (H3 : L) ,

for arbitrary ε > 0, from which the desired inequality readily follows.

• Duality: The first equality is obvious from the definition of homological
(see (14)) and cohomological (see (16)) spectral invariants, together with
the fact that the duality isomorphism (8) flips the sign of the action of the
generators.

To prove the inequality we need a general result on filtered based chain
complexes and their duals. We present a self-contained account here for the
sake of completeness.
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Definition 37. Let R be a ring. A based filtered chain complex over R is a
quadruple V = (V,B,A, ∂) where V is a free R-module, B is a basis for V ,
that is

V =
⊕
v∈B

R · v ,

A: B → R is a function, and ∂: V → V is a boundary operator, that is
∂2 = 0, such that 〈∂u, v〉 6= 0 implies A(u) > A(v) for u, v ∈ B.

Given such a based filtered chain complex, we can define the associated
spectral invariants, as follows. For a ∈ R define

V a =
⊕
v∈B
A(v)<a

R · v .

It follows that ∂ preserves V a, that is V a ⊂ V is a subcomplex. We let
ia: H(V a)→ H(V ) be the induced map on homology. The spectral invariant
of α ∈ H(V ) is

(20) `(α,V) = inf{a ∈ R |α ∈ im ia} .
A priori `(α,V) may be infinite even if α 6= 0, therefore we make the as-
sumption that V is such that this does not happen. The above Floer complex
of a regular Floer datum is an example.

We define the dual based filtered cochain complex of V to be V∨ =
(V ∨,B∨,A∨, ∂∨). Here B∨ = {v∨ | v ∈ B}, where v∨ is the functional on
V having value 1 on v and 0 on the other elements of B, V ∨ is the subspace
of the dual module HomR(V,R) spanned by B∨, A∨(v∨) = A(v) for v ∈ B
and ∂∨ is the restriction to V ∨ of the coboundary operator dual to ∂.

We can similiraly define spectral invariants of V∨, as follows. For a ∈ R
let

(21) V ∨a = V ∨
/ ⊕

v∨∈B∨
A∨(v∨)>a

R · v∨ .

Then, since by assumption 〈∂∨v∨, u∨〉 6= 0 implies A∨(u∨) > A∨(v∨), we see
that V ∨a is a quotient cochain complex of V . We let ia: H∨(V ∨)→ H∨(V ∨a )
be the induced map on cohomology. The spectral invariant of α∨ ∈ H∨(V ∨)
is

`∨(α∨,V∨) = sup{a ∈ R |α∨ ∈ ker ia} .
Again, we make the assumption that this is a finite number for α∨ 6= 0.

We have the duality pairings

〈·, ·〉: H∨(V ∨)×H(V )→ R and 〈·, ·〉: H∨(V ∨a )×H(V a)→ R

induced from the duality pairing between V ∨ and V . The main result here
is the following lemma.

Lemma 38. We have, for α∨ ∈ H∨(V ∨):

`∨(α∨,V∨) ≤ inf
{
`(α,V) |α ∈ H(V ) : 〈α∨, α〉 6= 0

}
.
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Proof. We have the following commutative diagram

H∨(V ∨)

ia

��

//
(
H(V )

)∨
(ia)∨

��
H∨(V ∨a ) //

(
H(V a)

)∨
where the horizontal arrows are induced from the duality pairings whereas
(ia)∨ is the dual map of ia.

Assume α ∈ H(V ) is such that 〈α∨, α〉 6= 0 and `(α,V) ≤ a ∈ R. Then
there is α′ ∈ H(V a) with ia(α′) = α. We then have, using the above diagram:

〈ia(α∨), α′〉 = 〈α∨, ia(α′)〉 = 〈α∨, α〉 6= 0 ,

meaning ia(α∨) 6= 0, that is α∨ /∈ ker ia, which implies a ≥ `∨(α∨,V∨). This
proves the desired inequality. �

The inequality in Duality property now follows by noting that CF∗(H :
L;L) is a based filtered chain complex in the sense of Definition 37, while the
cochain complex CF ∗(H : L;L) is its dual (up to the sign in the differential,
which of course does not matter), and the definitions of spectral invariants
(14), (16) are particular cases of (20), (21).

In order to prove the last assertion of this item, namely the one about the
equality

`(α∨;H) = inf
{
`(β;H) | 〈α∨, β〉 6= 0

}
,

assume that the ground ring R is a field and that the Floer complex CF∗(H :
L) is finite-dimensional in every degree. This is then a particular case of a
general statement about filtered graded chain complexes. We say that a
filtered chain complex V is graded if there is a function | · |: B → Z, called
the grading, and we have the decomposition

V =
⊕
k∈Z

Vk where Vk =
⊕

v∈B,|v|=k

R · v ,

and the boundary operator ∂ maps Vk into Vk−1. Note that in this case the
dual filtered cochain complex V∨ is also graded, in the sense that there is an
analogous decomposition by degree and the differential ∂∨ raises the degree
by 1.

Lemma 39. Let V = (V,B, | · |,A, ∂) be a filtered graded chain complex over
a field R and assume it is finite-dimensional in every degree. Then

`∨(α∨,V∨) = inf
{
`(α,V) | 〈α∨, α〉 6= 0

}
.

Proof. Note that it is enough to prove this for homogeneous α∨ ∈ V ∨k .
Next, it suffices to show that for any a ∈ R with a > `∨(α∨,V∨) there
is α ∈ H(V ) with 〈α∨, α〉 6= 0 such that `(α,V) ≤ a. Assume therefore
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a > `∨(α∨,V∨), that is ia(α∨) 6= 0. The assumptions on R and the degree-
wise finite-dimensionality of V , and therefore of V ∨, imply that the natural
map

H∨k (V ∨a )→
(
Hk(V

a)
)∨

is an isomorphism.16 Thus there is α′ ∈ Hk(V
a) such that 〈ia(α∨), α′〉 6= 0.

Put α = ia(α′) and then we see that

〈α∨, α〉 = 〈ia(α∨), α′〉 6= 0 ,

and by construction `(α,V) ≤ a. �

• Novikov action: By the definition of the action of the Novikov ring
R[F ] on the Lagrangian Floer complex CF∗(H : L), the multiplication by
the element A ∈ F induces a chain isomorphism

CF∗(H : L)→ CF∗−µ(A)(H : L) ,

which restricts to a chain isomorphism

CF a∗ (H : L)→ CF
a−ω(A)
∗−µ(A) (H : L)

for any a ∈ R. These chain maps induce the two left vertical arrows in the
following commutative diagram:

HF a∗ (H,J : L)
ia∗ //

A
��

HF∗(H : L)

A

��

QH∗(L)
PSSH,Joo

A

��
HF

a−ω(A)
∗−µ(A) (H,J : L)

i
a−ω(A)
∗ // HF∗−µ(A)(H,J : L) QH∗−µ(A)(L)PSSH,Joo

where the right arrow is the action of the Novikov ring on quantum homology.
The equality now follows from the definition of spectral invariants.

• Lagrangian control: Notice that it is sufficient to prove this property
for smooth Hamiltonians. Assume that H restricted to L is a function of
time, Ht|L = c(t). Then for any s ∈ R we see that Hs = sH satisfies
Hs
t |L = sc(t). Since L is Lagrangian, for any fixed s, the chords of Hs

are contained in L. Each of these comes with a natural capping (itself),
contained in L so that it has area 0. This shows that for all s ∈ R

Spec(Hs) =
{
s ·
∫ 1

0
c(t) dt+ kA

∣∣ k ∈ Z
}
.

Now, by Spectrality and Continuity, `(α;Hs) = s
∫ 1

0 c(t) dt + k0A for
some k0 ∈ Z, independent of s. Since H0 = 0, k0 = ν(α) by Normaliza-
tion. We get for s = 1 that `(α;H) = ν(α)A +

∫ 1
0 c(t) dt.

16In fact, we only use the injectivity of this map.



SPECTRAL INVARIANTS FOR MONOTONE LAGRANGIANS 61

In case H satisfies Ht|L ≤ c(t) for all t, pick any function K such that
K ≥ H and Kt|L = c(t). By Monotonicity, `(α;H) ≤ `(α;K) = ν(α)A+∫ 1

0 c(t) dt. The last case is similar and the bounds on `(α;H) follow.

• Non-negativity: By Triangle inequality with α = β = [L], we have
`+(H) + `+(H) ≥ `+(H]H). By Normalization and the definition of H
and ], it suffices to prove the result when H is normalized. In that case,
H]H is also normalized and is equivalent to 0, in the sense of Definition
29. By invariance of spectral invariants, see §3.4, `+(H]H) = `+(0) which
vanishes by Normalization.

• Maximum: First, assume that H is normalized. Since α = [L]?α and H]0
is equivalent to H in the sense of Definition 29, by §3.4 and Triangle in-
equality we obtain `(α;H) ≤ `+(H) + `(α; 0). When H is not normalized,
the result follows from the first case and Normalization.

Theorem 36, and consequently Theorem 3 and Proposition 5, are now
proved.

4.2.2. The equivalence of Hamiltonian spectral invariants and Lagrangian
spectral invariants of the diagonal. In this subsection we prove Theorem 6
of the introduction.

Recall from §2.8 that there is a canonical isomorphism

QH∗(∆) = QH∗(M) .

It is enough to show this for a nondegenerate smooth H. Let us therefore
assume that (H,J) is a regular time-periodic Floer datum on M . In view of
Remark 30, we can assume that Ht ≡ 0 for t ∈ [1

2 , 1].
In §2.8 it is shown that there is a regular Floer datum (Ĥ, Ĵ) for ∆, for

which there is a canonical chain isomorphism(
CF∗(H), ∂H,J

)
=
(
CF∗(Ĥ : ∆), ∂

Ĥ,Ĵ

)
,

preserving the grading and the action of the generators. Moreover, for any
a ∈ R we have the following commutative diagram, where the left two vertical
arrows are induced by this isomorphism and the right vertical arrow is an
analogous isomorphism on quantum homology, described ibid.:

HF a∗ (H,J)
ia∗ // HF∗(H,J) QH∗(M)

PSSH,Joo

HF a∗ (Ĥ, Ĵ : ∆)
ia∗ // HF∗(Ĥ, Ĵ : ∆) QH∗(∆)

PSSĤ,Ĵoo

From this we have the equality of spectral invariants

`(α; Ĥ) = c(α;H) .



62 RÉMI LECLERCQ, FROL ZAPOLSKY

Recall how Ĥ is defined: it is the direct sum Ĥt = Ht ⊕ 0 for t ∈ [0, 1
2 ].

The Hamiltonian Ĥ therefore differs from H ⊕ 0 by time reparametrization,
which means that `(α;H ⊕ 0) = `(α; Ĥ), thereby completing the proof of
the theorem.

4.2.3. Spectral invariants of products of Lagrangians. Here we formulate pre-
cisely and prove the property of the spectral invariants mentioned at the end
of §1.1.

In §2.9 we introduced, for monotone Lagrangians Li ⊂ (Mi, ωi), i = 1, 2,
the canonical map

QH∗(L1)⊗QH∗(L2)→ QH∗(L1 × L2) .

Theorem 40. For Hamiltonians Hi on Mi and classes αi ∈ QH∗(Li) we
have

`(α1 ⊗ α2;H1 ⊕H2) ≤ `(α1;H1) + `(α2;H2)

with equality if R is a field.

Remark 41. We cannot omit the assumption that R is a field in order
to obtain an equality in Theorem 40. The reason for this is that even if
both classes α1, α2 are nonzero, their tensor product α1 ⊗α2 in QH∗(L1)⊗
QH∗(L2) may vanish.

Proof. We have the following commutative diagram
HF a1

∗ (H1, J1 : L1)×HF a2
∗ (H2, J2 : L2) //

i
a1
∗ ×i

a2
∗

��

HF a1+a2
∗ (H1 ⊕H2, J1 ⊕ J2 : L1 × L2)

i
a1+a2
∗

��
HF∗(H1, J1 : L)×HF∗(H2, J2 : L) // HF∗(H1 ⊕H2, J1 ⊕ J2 : L1 × L2)

QH∗(L1)×QH∗(L2) //

PSS×PSS

OO

QH∗(L1 × L2)

PSS

OO

which implies the inequality.
In case R is a field, the equality can be proved using the method developed

in [EP09, Section 5]. �

4.3. Spectral invariants of isotopies.

Theorem 42. Let L be a closed monotone Lagrangian of (M,ω) with min-
imal Maslov number NL ≥ 2. The function

`: QH∗(L)× H̃am(M,ω) −→ R ∪ {−∞}
constructed in §3.4 above satisfies the following properties.

Finiteness: `(α; φ̃) = −∞ if and only if α = 0.

Spectrality: For all α 6= 0, `(α; φ̃) ∈ Spec(φ̃ : L).

Ground ring action: For all r ∈ R, `(r · α; φ̃) ≤ `(α; φ̃), with equality if
r is a unit.
Normalization: We have `(α; id) = ν(α)A and `+(id) = 0.
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Continuity: Assume H and K are normalized, then∫ 1

0
min
M

(Ht −Kt)dt ≤ `(α; φ̃H)− `(α; φ̃K) ≤
∫ 1

0
max
M

(Ht −Kt)dt .

Monotonicity: If M is noncompact, H and K have compact support, and
H ≤ K, then `(α; φ̃H) ≤ `(α; φ̃K).
Triangle inequality: For all α and β, 17

`(α ? β; φ̃ψ̃) ≤ `(α; φ̃) + `(β; ψ̃) .

Module structure: For all a ∈ QH∗(M) and α ∈ QH∗(L), `(a•α; φ̃ψ̃) ≤
c(a; ψ̃) + `(α; φ̃).
Lagrangian control: If for all t, Ht|L = c(t) ∈ R (respectively ≤, ≥),
then

`(α; φ̃H) = ν(α)A +

∫ 1

0

(
c(t)−

∫
M
Ht ω

n

)
dt (respectively ≤,≥ ) .

Thus, for all H:∫ 1

0
min
L
Ht dt ≤ `(α; φ̃H)− ν(α)A +

∫ 1

0

∫
M
Ht ω

n dt ≤
∫ 1

0
max
L

Ht dt .

Non-negativity: `+(φ̃) + `+(φ̃−1) ≥ 0.

Maximum: `(α; φ̃) ≤ `+(φ̃) + `(α; id) = `+(φ̃) + ν(α)A.
Duality: For α ∈ QH∗(L) and α∨ ∈ QHn−∗(L;L) corresponding to it via
the duality isomorphism (9) we have

−`(α; φ̃−1) = `(α∨; φ̃) ≤ inf
{
`(β; φ̃) | 〈α∨, β〉 6= 0

}
with equality if the ground ring R is a field and the Floer complexes of non-
degenerate Hamiltonians are finite-dimensional in each degree.
Novikov action: In case there is an action of the Novikov ring R[F ] as
above, we have, for A ∈ F : `(A · α; φ̃) = `(α; φ̃)− ω(A).
Symplectic invariance: Let ψ ∈ Symp(M,ω), L′ = ψ(L) and let `′ be the
associated spectral invariant function. Then18 `(α; φ̃) = `′(ψ∗(α);ψφ̃ψ−1).

First notice that we assume M to be noncompact for Monotonicity.
This comes from the facts that isotopies naturally correspond to normalized
Hamiltonians, and that there are no normalized Hamiltonians H and K sat-
isfying H ≤ K on a compact manifold except if they coincide everywhere.
On noncompact manifolds, isotopies also correspond to normalized Hamilto-
nians and the natural normalization condition is requiring the Hamiltonian
to have compact support.

17Note that the order of α and β here is different from the one in Triangle inequality
property in Theorem 36; this is because φ̃H]K = φ̃K φ̃H .

18Here we use the natural action of the group Symp(M,ω) on H̃am(M,ω) by
conjugation.
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This theorem follows in a straightforward manner from Theorem 36, with
the exception of Lagrangian control and Symplectic invariance.
To prove Lagrangian control as stated here it suffices to note that the
Hamiltonian Ht−

∫
M Ht ω

n is normalized and generates the same Hamilton-
ian flow as Ht, therefore

`(α; φ̃H) = `
(
α;Ht −

∫
M Ht ω

n
)

= `(α;H)−
∫ 1

0

∫
M Ht ω

n dt ,

and the property now follows from Lagrangian control for Hamiltonian
functions (Theorem 36).

For Symplectic invariance it suffices to use Theorem 36 together with
the observation that if φ̃ = φ̃H then ψφ̃Hψ−1 = φ̃H◦ψ−1 .

5. Proof of the Hofer bounds

We now prove Propositions 7, 10, assuming Theorem 8, whose proof fol-
lows immediately after.

Proof of Proposition 7. The bounds for χ̃ follow from the bounds for H if
we set χ̃ = φ̃H , therefore we establish the latter.

Let L and L′ be Hamiltonian isotopic Lagrangians. Choose any ϕ ∈
Ham(M,ω) such that ϕ(L) = L′ and fix a class α ∈ QH∗(L).

First, by Symplectic invariance, `′(α′;H) = `(α;H ◦ ϕ) with α =
ϕ−1
∗ (α′) so that we are interested in |`(α;H)− `(α;H ◦ϕ)|. Since adding the

same function of time to both H and H ◦ ϕ does not affect their difference,
by Normalization we get

|`(α;H)− `(α;H ◦ ϕ)| = |`(α; φ̃H)− `(α;ϕ−1φ̃Hϕ)| .

Now, it is useful to notice that for any Hamiltonian K : M × [0, 1] →
R such that φK = ϕ, the Hamiltonian19 isotopies t 7→ ϕ−1φtHϕ and t 7→
(φtK)−1φtHφ

t
K are homotopic with fixed endpoints and thus define the same

element in H̃am(M,ω), that is ϕ−1φ̃Hϕ = φ̃−1
K φ̃H φ̃K .

Using this, the fact that the fundamental class [L] is the unit of the quan-
tum homology ring, and Triangle inequality, we get

`(α;ϕ−1φ̃Hϕ) = `([L] ? α ? [L]; φ̃−1
K φ̃H φ̃K) ≤ `+(φ̃−1

K ) + `(α; φ̃H) + `+(φ̃K)

from which we deduce that

`(α; φ̃H)− `(α;ϕ−1φ̃Hϕ) ≥ −`+(φ̃−1
K )− `+(φ̃K) .

In a similar way, by writing `(α; φ̃H) = `(α; φ̃K(φ̃−1
K φ̃H φ̃K)φ̃−1

K ), we get that

`(α; φ̃H)− `(α;ϕ−1φ̃Hϕ) ≤ `+(φ̃−1
K ) + `+(φ̃K)

and thus conclude that

|`(α;H)− `(α;H ◦ ϕ)| ≤ `+(φ̃−1
K ) + `+(φ̃K) .

19It is well-known that a smooth one-parameter family of Hamiltonian diffeomorphisms
is a Hamiltonian isotopy.
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By Continuity of spectral invariants, since `+(φ̃K) ≤
∫ 1

0 maxM Kt dt and
`+(φ̃−1

K ) ≤
∫ 1

0 maxM Kt dt = −
∫ 1

0 minM Kt dt, we deduce

|`(α;H)− `(α;H ◦ ϕ)| ≤
∫ 1

0
oscM Kt dt .

Taking infimum over all K with ϕ = φK concludes the proof. �

Proposition 10 also follows from the same estimate, since in order to obtain
it we need to take infimum over those K generating the given homotopy class
of paths L̃. Theorem 8 implies that the left-hand side is independent of K.
By definition, the infimum on the right-hand side equals ‖L̃‖.

Before passing to the proof of Theorem 8, we formulate two lemmas. We
let L be the space of Lagrangians Hamiltonian isotopic to L.

Lemma 43. Endow Ham(M) and L with the C∞-topologies. Then the map

Π: Ham(M)→ L , φ 7→ φ(L)

is a fiber bundle with fiber Π−1(L′) = HamL′(M). In particular it is a
fibration.

Lemma 44. For s ∈ [0, 1] let χs ∈ Ham(M) be such that χ0 = idM and
χs(L) = L for all s. Then χ1

∗ = id on QH∗(L).

We now prove the theorem, assuming the lemmas.

Proof of Theorem 8. Let {Ls,t}(s,t)∈[0,1]2 be a two-parameter family of La-
grangians in the space L, such that for all s we have Ls,0 = L and Ls,1 = L′.
We wish to show that if φt, ψt ∈ Ham(M) are such that φ0 = ψ0 = idM and
φt(L) = L0,t, ψt(L) = L1,t, then φ1

∗ = ψ1
∗: QH∗(L)→ QH∗(L

′).
By Lemma 43, there exists a two-parameter family φs,t ∈ Ham(M) such

that φs,0 = idM , φ0,t = φt, φ1,t = ψt, φs,1(L) = L′, and finally φs,t(L) = Ls,t.
Define χs = (φ1)−1φs,1. Then χs(L) = L, χ0 = idM , and χ1 = (φ1)−1ψ1.
Observe that for two symplectomorphisms σ1, σ2 ∈ Symp(M,ω) we have

(σ2 ◦ σ1)∗ = (σ2)∗ ◦ (σ1)∗: QH∗(L)→ QH∗(σ2(σ1(L))) .

Therefore χ1
∗ = (φ1

∗)
−1 ◦ ψ1

∗, and since by Lemma 44 we have χ1
∗ = id, the

proof of the theorem is complete. �

Proof of Lemma 43. Given L′ ∈ L, we must trivialize Π over a neighborhood
of L′. Note that the C∞-topology is stronger than the C1-topology. Using
the Weinstein neighborhood theorem, a tubular neighborhood of L′ inside
M can be identified with a tubular neighborhood of the zero section in T ∗L′.
Consequently a C1-neighborhood of L′ in L is given by a C0-neighborhood
of zero in the space of exact 1-forms on L′. Let us denote the corresponding
neighborhood of L′ ∈ L by U . Since elements of U are given by graphs of
exact 1-forms, we can use the corresponding functions on L′, pull them back
by the projection T ∗L′ → L′ and cut off to obtain Hamiltonian functions on
M such that the time-1 map of the function corresponding to L′′ ∈ U maps
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L′ to L′′. This yields a local section of Π over U , and since Ham(M) is a
group, we obtain a trivialization

Ham(M) ⊃ Π−1(U)→ U ×HamL′(M) .

This shows that Π is indeed the projection of a fiber bundle. �

Proof of Lemma 44. From the construction in Section 2.10 it follows that if
(H,J) is a regular Floer datum for L, then we have the following commuta-
tive diagram

HF∗(H,J : L)
χ1
∗ // HF∗(H

χ1
, Jχ

1
: L)

QH∗(L)
χ1
∗ //

PSS

OO

QH∗(L)

PSS

OO

From our definition of the PSS isomorphisms we have the following commu-
tative diagram, where Φ stands for the continuation isomorphism:

HF∗(H,J : L)
Φ // HF∗(H

χ1
, Jχ

1
: L)

QH∗(L)
id //

PSS

OO

QH∗(L)

PSS

OO

It follows that the lemma will be proved if we can show that

χ1
∗ = Φ: HF∗(H,J : L)→ HF∗(H

χ1
, Jχ

1
: L) .

In fact, we will show that this holds on the chain level, provided the per-
turbation datum in the definition of the continuation morphism is suitably
chosen.

The main point of the proof is as follows. Recall that given two regular
Floer data for L, (H i, J i), i = 0, 1, in the definition of the continuation
morphism

Φ: HF∗(H
0, J0 : L)→ HF∗(H

1, J1 : L)

we used a (generically chosen) homotopy of Floer data (Hs, Js)s∈R, sta-
tionary for s outside (0, 1). This is shown to be independent of the chosen
homotopy by considering homotopies of homotopies and the resulting homo-
topy operators. In fact, we will still obtain the same continuation morphism
on homology level if we use any perturbation datum on R× [0, 1], compatible
with (H i, J i), the reason being that the set of compatible perturbation data
is contractible, and therefore one can similarly construct homotopy opera-
tors between any two continuation morphisms, including the case of more
general perturbation data. The perturbation datum corresponding to an
s-dependent homotopy is (K(s, t) = Hs

t ⊗ dt, I(s, t) = Jst ), and the only
technical novelty here is that we can use perturbation data of the form

(K(s, t) = F (s, t)⊗ ds+G(s, t)⊗ dt, I(s, t) = Jst ) ,
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where F (s, t) vanishes for s outside (0, 1), and (as follows from the definition
of a perturbation datum) F (i, t) is a function on M whose restriction to L
is a time-dependent constant, for i = 0, 1. The Floer equation on R × [0, 1]
corresponding to this more general perturbation datum is

∂su−XF (u) + I(∂tu−XG(u)) = 0 .

This equation is obtained from

(du−XK)0,1 = 0

upon substituting the vector ∂s ∈ T (R× [0, 1]).
Assume we have a solution u ∈ M̃(H,J ; γ̃−, γ̃+). Without loss of gen-

erality we can assume that χs is independent of s for s near 0, 1, and we
extend the definition of χs to all s ∈ R in an obvious way. Let us define
v: R × [0, 1] → M by v(s, t) = χs(u(s, t)), that is u(s, t) = (χs)−1(v(s, t)).
Since u solves

∂su+ J(∂tu−XH) = 0 ,

it follows that

(χs∗)
−1∂sv +

∂(χs)−1

∂s
(v) + J((χs∗)

−1∂tv −XH((χs)−1(v)) = 0 ,

and precomposing with χs∗ we obtain

∂sv + χs∗
∂(χs∗)

−1

∂s
(v) + I(∂tv −XH◦χs(v)) = 0 ,

where I = χs∗ ◦ J ◦ (χs∗)
−1. Note that the vector field

−χs∗
∂(χs∗)

−1

∂s
is Hamiltonian, since χs is a Hamiltonian path. Therefore it is generated by
a unique normalized Hamiltonian F (s, t). If we also let G(s, t) = Ht ◦χs, we
see that the equation we obtained is

∂sv −XF (v) + I(∂tv −XG(v)) = 0 ,

that is v solves the Floer equation corresponding to the perturbation datum
(K = F ds+Gdt, I). We have therefore constructed a map

M̃(H,J ; γ̃−, γ̃+)→M(K, I; γ̃−, γ̃
χ1

+ ) ,

and it is easy to see that it is a diffeomorphism.
Abbreviate χ ≡ χ1. Recall the definition of χ∗ from Section 2.10. The

upshot is that it is induced by a chain isomorphism

χ∗: CF∗(H : L)→ CF∗(H
χ : L) ,

whose only nonzero matrix elements are the isomorphisms

C(γ̃)→ C(γ̃χ)

induced from the isomorphism of Fredholm operators

Dγ̂ → Dγ̂χ .
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Now, the continuation map

Φ: CF∗(H : L)→ CF∗(H
χ : L)

is defined as follows (see Section 2.2). For γ̃ ∈ CritAH:L and δ̃ ∈ CritAHχ:L

the corresponding matrix element

C(γ̃)→ C(δ̃)

is the sum of isomorphisms C(v) where v runs over the spaceM(K, I; γ̃, δ̃),
where we use the perturbation datum defined above from χs. It follows from
the definitions that in order for v to contribute to the matrix element the
moduli space to which it belongs must be zero-dimensional. We have just
seen that there is a natural diffeomorphism

M(K, I; γ̃, δ̃) ' M̃(H,J ; γ̃, δ̃χ
−1

) .

It follows that the latter space is also zero-dimensional, which is only possible
if δ̃χ−1

= γ̃, that is δ̃ = γ̃χ, in which case it consists of the map (s, t) 7→ γ(t).
Thus the only nonzero matrix elements of Φ are the isomorphisms

C(v): C(γ̃)→ C(γ̃χ) ,

where v(s, t) = χs(γ(t)). It remains to show that C(v) coincides with the
above isomorphism C(γ̃)→ C(γ̃χ) coming from χ.

This is done as follows. Pick a smooth function h: R × [0, 1] → R with
the following properties: h(s, σ) = 0 for s ≤ 0, h(s, σ) = σ for s ≥ 1, and
∂sh ≥ 0. Define ρσ: R → Ham(M) by ρσ(s) = χh(s,σ). It then follows that
ρ0 ≡ id, ρσ(s) = χσ for s ≥ 1. That is, ρσ is a Hamiltonian path from id to
χσ in HamL(M), stationary for s outside (0, 1).

Now we can run the above procedure with the path ρσ instead of the
original path (χs)s. As a result we obtain isomorphisms

Φ, χσ∗ : C(γ̃)→ C(γ̃χ
σ
) ,

and we will be done if we can show that they coincide, since the desired
result is obtained for σ = 1. Note that for every σ these isomorphisms in
fact come from isomorphisms of determinant bundles

d(Dγ̃) ' d(Dγ̃χσ ) .

Fix an orientation o of d(Dγ̃) and let oχσ and oΦ
σ be the orientations of d(Dγ̃χσ )

obtained using the isomorphisms χσ∗ , Φ, respectively. We have oχ0 = o = oΦ
0 ,

since for σ = 0 we have χ0
∗ = id = Φ. On the other hand, these orientations

depend continuously on σ, and therefore oχσ = oΦ
σ for all σ. It follows that

the isomorphisms χσ∗ ,Φ: C(γ̃) → C(γ̃χ
σ
) map the generator o to the same

generator for all σ, meaning that they coincide, which concludes the proof
of the lemma. �
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6. Proofs concerning symplectic rigidity

Proof of Proposition 15. Let F ∈ C∞(M) and let c = minL F . By Module
Structure, Normalization, and Lagrangian Control we have for
k ∈ N:

c(e; kF ) + `([L]; 0) ≥ `(e • [L]; kF ) ≥ kc+ ν(e • [L])A ,

which yields
lim
k→∞

c(e; kF )/k ≥ c = min
L
F ,

meaning L is e-heavy. �

Proof of Theorem 17. The proof is an application of Proposition 15, com-
bined with results appearing in §2.6. See also [Zap15, Section 8]. In both
cases we take C as the ground ring.

• LetM = CP 2 and L = LCP 2 . In §2.6 we saw that there is a choice of
twisted coefficients for which the homology of the quotient complex
corresponding to π0

2(M,L) does not vanish. Since [M ] = [CP 2] is
the unit of QH∗(CP 2), it follows that [M ] • [L] = [L] 6= 0.
• Abbreviate M = S2×S2 and L = LS2×S2 . Again in §2.6 it is shown
that there is a choice of twisted coefficients on the quotient complex
corresponding to π0

2(M,L), for which QH∗(L) 6= 0. It is known that
the Lagrangian antidiagonal ∆ ⊂ M is e−-superheavy. Since L is
disjoint from the antidiagonal, it follows that it is not e−-superheavy
(see [EP09]), therefore Proposition 15 implies e−•[L] = 0. Therefore,
since [M ] = e+ + e−, we have

e+ • [L] = e− • [L] + e+ • [L] = (e− + e+) • [L] = [M ] • [L] = [L] ,

and the result follows from another use of Proposition 15.
�
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