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Abstract. We prove a Hölder-type inequality (in the spirit of Joksimović
and Seyfaddini in Int Math Res Not IMRN 8:6303–6324, 2024) for the
Hausdorff distance between Lagrangians with respect to the Lagrangian
spectral distance or the Hofer–Chekanov distance. This inequality is es-
tablished via methods developed by the first author (Chassé in Int J
Math 34(5):2350024, 2023; Chassé in Differ Geom Appl 94:Paper No.
102123, 22, 2024) to understand the symplectic geometry of certain col-
lections of Lagrangians under metric constraints.
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1. Introduction

Let (M,ω) be a symplectic manifold with an ω-compatible almost complex
structure J . If M is noncompact, we assume that J is convex at infinity. We
equip M with the Riemannian metric g = gJ = ω(·, J ·)—we may assume it
is complete and geometrically bounded (cf. [5]).

1.1. Main result

On one hand, Joksimović and Seyfaddini [8] proved a Hölder-type inequal-
ity for the C0 distance on Hamiltonian diffeomorphism groups and deduced
interesting applications to Anosov–Katok pseudo-rotations.

Namely, the inequality is the following:

dC0(1, ϕ) ≤ C
√

γ(ϕ) ‖dϕ‖, (1.1)

where ‖dϕ‖ := sup{|dϕx|op |x ∈ M} and | · |op is the operator norm TxM →
TxM induced by the Riemannian metric. This inequality holds for any Hamil-
tonian diffeomorphism ϕ of a closed symplectic manifold for which one can
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define Floer spectral invariants. These invariants and their properties are re-
viewed in Sect. 2. They induce, on the Hamiltonian diffeomorphism group,
the spectral pseudonorm γ which appears in the inequality. The constant C
only depends on the choice of a Riemannian metric on the ambient manifold.

On the other hand, the first author [2,3] initiated the study of the sym-
plectic geometry of certain sets of Lagrangians under (Riemannian) metric
constraints, such as the Hofer geometry of Hamiltonian isotopic Lagrangians
with uniformly bounded curvature. Hölder inequalities on such sets between
the Hausdorff distance and a large class of metrics were also obtained. This
class of metrics contains, in particular, the Lagrangian spectral distance, also
defined via spectral invariants and denoted γ as well. This version of the
spectral distance was defined for weakly exact Lagrangians in [11] and for
monotone Lagrangians with nonvanishing fundamental class in [10].

The upshot of this note is a Hölder-type inequality for the Hausdorff
distance δH between Lagrangians in the spirit of Joksimović and Seyfaddini’s
inequality, whose proof is based on the methods of [2].

Theorem 1.1. Let L and L′ be Hamiltonian isotopic, closed, connected La-
grangian submanifolds of M . Suppose that L—and thus L′—is either weakly
exact or monotone with NL ≥ 2 and has nonvanishing quantum homology.
Let ψ be a symplectomorphism of M such that ψ(L) = L′. There exist con-
stants δ = δ(M,J,L) > 0 and C = C(M,J,L) > 0 such that whenever
γ(L,L′) < δ, then

δH(L,L′) ≤ C
√

γ(L,L′) ‖dψ‖. (1.2)

Furthermore, when M is compact, we may take δ = +∞.

This obviously yields the nondegeneracy of γ.

Corollary 1.2. Let L be a Lagrangian as in Theorem 1.1. Then, the La-
grangian pseudodistance γ is nondegenerate on the set of Lagrangians which
are Hamiltonian isotopic to L.

Thus, this provides a third proof of this result, after Kawasaki’s proof
[9] via Poisson bracket invariants à la Polterovich and Rosen [14] and Kislev
and Shelukhin’s proof [10] via energy-capacity inequalities. However, through
the use of the methods of [2] in Sect. 3 or with the more direct approach of
the alternative proof in Sect. 4.1, the proof does ultimately relies on the same
existence result for certain J-holomorphic curves as Kislev and Shelukhin [10].
The innovation here is how we estimate the area of those J-holomorphic
curves.

Remark 1.3. Ultimately, the proof of Theorem 1.1 relies on [3, Lemma 5],
which is stated for Chekanov-type metrics. However, the only requirement
there is that the associated families have a nice enough intersection, which is
automatically satisfied for the spectral pseudo-metric because, in that case,
said families are empty. Hence, we do not require a priori γ to be non-
degenerate.
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Before describing in more detail how this result relates to the aforemen-
tioned previous works, let us make several quick remarks.

Remark 1.4. (Hofer’s geometry) It is well known that γ is bounded from
above by the Hofer–Chekanov distance—see the properties of the spectral
distance in Sect. 2. Hence, Theorem 1.1 also holds when γ is replaced by the
Hofer–Chekanov distance.

Remark 1.5. (Symplectomorphisms) Let us emphasize the fact that Theo-
rem 1.1 holds for any—even noncompactly-supported—symplectomorphism
ψ; L and L′ are required to be Hamiltonian diffeomorphic only for γ(L,L′)
to be defined.

This is a nontrivial improvement, as one can see with a simple exam-
ple. For example, take f(x) = sin(2πx) and consider L = graph(f ′) and
L′ = graph(−f ′) in T ∗S1. If we equip T ∗S1 with the flat metric, then the
symplectomorphism ψ(x, y) = (−x,−y) sends L to L′ and is also an isometry,
i.e. ‖dψ‖ = 1. However, the only nontrivial isometries of the flat cylinder that
are in the connected component of the identity (in Diff(T ∗S1)) are trans-
lations, none of which are Hamiltonian diffeomorphisms. Therefore, every
Hamiltonian diffeomorphism ϕ sending L to L′ must have ‖dϕ‖ > 1.

Remark 1.6. (Variant with the norm of the inverse diffeomorphism) When
M is compact, there is also an inequality involving ‖dψ−1‖:

δH(L,L′) ≤ C
√

γ(L,L′) ‖dψ−1‖2. (1.3)

This variant of inequality (1.2) will be proved in Sect. 4.2.

1.2. Main techniques and relations to previous work

Theorem 1.1 is a specialization of the first author’s inequality from [2], which
we now recall. For any metric D in a large class of metrics, said of Chekanov
type and which includes γ, if D(L,L′) < δ = δ(g, g|L, g|L′), then

δH(L,L′) ≤ C(g, g|L, g|L′)
√

D(L,L′). (1.4)

By the above notation, we mean that δ and C depend only on Riemannian
bounds of M , L, and L′, e.g. the sectional curvature of the first and the L∞-
norm of the second fundamental form of the two latter. The improvement in
this note is that we get rid of the dependance of C on metric invariants of L′

at the price of an extra ‖dψ‖ term.
Note that the first author (Lemma 5 in [3]) partially improved (1.4) to

s(L;L′) ≤ C(g, g|L)
√

γ(L,L′) (1.5)

whenever γ(L,L′) < δ = δ(g, g|L), where

s(L;L′):= sup
x∈L

dM (x,L′) = sup
x∈L

inf
y∈L′

dM (x, y). (1.6)

Since δH(L,L′) = max{s(L;L′), s(L′;L)}, the left-hand side in (1.5) is in
general smaller than the one in (1.4). It is through this inequality that The-
orem 1.1 is proved (see Sect. 3).
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1.3. Relations to Joksimović and Seyfaddini’s inequality

Theorem 1.1 is a Lagrangian generalization of Joksimović and Seyfaddini’s
aforementioned inequality (1.1) for Hamiltonian diffeomorphisms ϕ on closed
symplectic manifolds.

Note that their inequality directly implies

δH(L,L′) ≤ inf
ϕ(L)=L′

dC0(1, ϕ) ≤ C inf
ϕ(L)=L′

(√
γ(ϕ) ‖dϕ‖

)
.

However, in general, the inequality

inf
ϕ(L)=L′

√
γ(ϕ) ‖dϕ‖ ≥ inf

ϕ(L)=L′

√
γ(ϕ) · inf

ϕ(L)=L′
‖dϕ‖

=
√

γ(L,L′) · inf
ϕ(L)=L′

‖dϕ‖

is strict. Therefore, our inequality gives a better bound in the Lagrangian
case, even when ϕ is a Hamiltonian diffeomorphism1.

One notable exception to this is when L is the diagonal in M × M , and
L′ is the graph of ϕ. Then, by work of the second author and Zapolsky [11,12],
we know that γ(L,L′) = γ(ϕ), so that equality follows. The constant we get
here is, however, hard to compare to theirs.

On the other hand, we present below a different proof of a variant of
(1.2), based on the method from [8] which gives a less natural, but more
easily comparable, constant; see Sect. 4.1.

Organization

After reviewing necessary preliminaries in Sect. 2, we prove Theorem 1.1 in
Sect. 3. Finally, Sect. 4 presents the proofs of two inequalities similar to (1.2),
the first one based on Joksimović and Seyfaddini’s method in Sect. 4.1, the
second one involving the inverse norm of ψ as mentioned in Remark 1.6; see
Sect. 4.2.

2. Preliminaries

We fix a symplectic manifold (M,ω) and consider different types of La-
grangian submanifolds. There are two well-known functions defined on the
second homotopy group of M relative to a Lagrangian submanifold L, i.e.
the symplectic area and the Maslov class of disks in M with boundary in L:

ωL : π2(M,L) → R and μL : π2(M,L) → Z.

A Lagrangian submanifold L is called weakly exact if ωL and μL vanish
identically. Otherwise, L is called (positively) monotone whenever there exists
a positive constant κL > 0 such that ωL = κL · μL. In that case, κL is called
the monotonicity constant of L.

When L is monotone, we define its minimal Maslov number NL to be
the positive generator of 〈μL, π2(M,L)〉 = NL Z, and we require NL ≥ 2.

1Recall indeed that the symplectomorphism ϕ needs not be Hamiltonian for Inequality
(1.2) to hold.
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In what follows, we fix a Lagrangian as above and consider the set
LHam(L) of all Lagrangian submanifolds which are Hamiltonian isotopic to
L. We now recall how the two metrics on LHam(L) of interest in this note are
defined.

2.1. The Hofer–Chekanov distance

The Hofer norm was introduced by Hofer [7] on Hamiltonian diffeomor-
phism groups and extended as a distance to sets of the type LHam(L) by
Chekanov [4].

First define the energy of a Hamiltonian function H : [0, 1] × M → R

as its L(1,∞)-norm:

E(H) =
∫ 1

0

(
max

M
Ht − min

M
Ht

)
dt, (2.1)

where Ht := H(t, ·). Then, define the Hofer norm of a Hamiltonian diffeo-
morphism as

‖ϕ‖Hof = inf
{
E(H)

∣∣ ϕ1
H = ϕ

}
.

Here, {ϕt
H}t∈[0,1] is the Hamiltonian flow of H, i.e. ϕ0

H = 1M and d
dtϕ

t
H =

Xt
H ◦ϕt

H , where Xt
H is the unique time-dependent vector field of M such that

ι(Xt
H)ω = −dHt.

Hofer’s norm then yields a distance on LHam(L) by setting

dHof(L,L′) = inf
{‖ϕ‖Hof

∣∣ ϕ(L) = L′} = inf
{
E(H)

∣∣ ϕ1
H(L) = L′}

for any L′ ∈ LHam(L).

Remark 2.1. As noted by Usher [16], replacing the Hofer energy E(H) in the
above expression by the smaller quantity EL(H), defined as in (2.1) but with
oscillations taken only on L rather than on the whole ambient manifold M ,
yields the same distance.

2.2. The Lagrangian spectral distance

This distance is based on the theory of spectral invariants initiated by Vite-
rbo [17] via generating functions and adapted to Floer homology theories by
Schwarz [15] and Oh [13] in the case of Hamiltonian diffeomorphism groups.
The Lagrangian version which is of interest to us here was developed by the
second author [11] in the weakly exact setting and by Zapolsky and the second
author [12] in the monotone case—see also work by Fukaya et al. [6], which is
based on more advanced techniques such as virtual fundamental cycles and
Kuranishi structures.

Lagrangian spectral invariants. The Lagrangian spectral invariants

(α;H) associated to L are defined for any nonzero quantum homology class
α ∈ QH∗(L)—see [1] for the construction of this homology. Since the La-
grangian spectral distance only relies on spectral invariants corresponding
to the quantum fundamental class of L, we do not review the construction
of the quantum homology of a Lagrangian, nor define spectral invariants in
full generality. Instead, we assume that the quantum fundamental class of L,
denoted [L], is nontrivial and only present the properties of 
+ := 
([L], · ).

The function 
+ : C0([0, 1] × M) → R satisfies the following properties.
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1. Continuity. For any Hamiltonians H and K, we have that
∫ 1

0

min
M

(Kt − Ht) dt ≤ 
+(K) − 
+(H) ≤
∫ 1

0

max
M

(Kt − Ht) dt.

2. Triangle inequality. For all H and K, 
+(H�K) ≤ 
+(H)+ 
+(K).
3. Lagrangian control. If Ht|L = c(t) ∈ R (resp. ≤, ≥) for all t, then


+(H) =
∫ 1

0

c(t) dt (resp. ≤, ≥).

4. Non-negativity. For all H, 
+(H) + 
+(H) ≥ 0.
5. Homotopy invariance. If H is normalized, 
+(H) only depends on

the homotopy class relative to endpoints of the isotopy {ϕt
H}t∈[0,1], i.e.

the class [{ϕt
H}t∈[0,1]] ∈ H̃am(M,ω).

6. Symplectic invariance. For all H and all ψ ∈ Symp(M,ω), 
+(H) =

′
+(H ◦ ψ−1).

Let us make a few comments about these properties and the notation
used above.

• In Properties 2 and 4 respectively, H�K denotes the Hamiltonian func-
tion Ht(x)+K

(
(ϕt

H)−1(x)
)

which generates the isotopy {ϕt
Hϕt

K}t∈[0,1],
and H is the Hamiltonian function Ht(x) = −Ht

(
(ϕt

H)−1(x)
)

which
generates

{
(ϕt

H)−1
}

t∈[0,1]
. Properties 1 to 4 are part of Theorem 3 in

[12].
• Property 3 directly implies that for all H,

∫ 1

0

min
L

Ht dt ≤ 
+(H) ≤
∫ 1

0

max
L

Ht dt.

• In Property 5, the normalization refers to the fact that for all t ∈ [0, 1],∫ 1

0
Ht ωn = 0. This property appears as Proposition 4 in [12].

• Finally, concerning Property 6, note that any symplectomorphism ψ
induces an isomorphism ψ∗ : QH∗(L) → QH∗(L′) with L′ = ψ(L). The
fundamental class of L is mapped to that of L′ through this action (up
to possible multiplication by a unit of the coefficient field). The notation

′
+ denotes the Lagrangian spectral invariant associated with L′ (and its

fundamental class). Now, Symplectic invariance only expresses the
fact that spectral invariants agree with the action of ψ by conjugation
on the Hamiltonian diffeomorphism group: for any Hamiltonian function
H, ϕt

H◦ψ = ψ−1ϕt
Hψ. This result is part of Theorem 35 in [12].

The Lagrangian spectral distance. The properties of 
+ above show that not
only 
+ defines a function on H̃am(M,ω) with similar properties (see Theo-
rem 41 in [12]), but also a pseudodistance on LHam(L).

Indeed, following [10], first define the length of a Hamiltonian isotopy
{ϕt

H}t∈[0,1] by γL(H) = 
+(H) + 
+(H), then take the infimum over all
Hamiltonian isotopies which map L to L′:

γ(L,L′) = inf{γL(H) |ϕ1
H(L) = L′}.
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The Non-negativity property of 
+ ensures that γ(L, ·) takes non-
negative values. Symplectic invariance ensures that for any symplecto-
morphism ψ and any Lagrangian L′ ∈ LHam(L), γ(L,L′) = γ(ψ(L), ψ(L′)).
Combined with Triangle inequality, this shows that for all L′ and L′′ in
LHam(L),

γ(L,L′′) ≤ γ(L,L′) + γ(L′, L′′).

Finally, note that if L′ = ϕ1
H(L), then L = ϕ1

H
(L′) and

γL′(H) = 
′
+(H) + 
′

+(H)

= 
+(H ◦ ϕ1
H) + 
+(H ◦ ϕ1

H)

= 
+(H ◦ ϕ1
H) + 
+(H ◦ ϕ1

H)

= γL(H ◦ ϕ1
H),

where the second line follows from Symplectic invariance, whilst the third
one is a direct computation using the fact that ϕ1

H◦ϕ1
H

= (ϕ1
H)−1ϕ1

Hϕ1
H = ϕ1

H .
Since γ(L′, L) is defined by taking the infimum over all possible Hamiltoni-
ans whose diffeomorphism sends L′ to L, this implies symmetry for γ. This
justifies the following definition.

Definition 2.2. Let L be a weakly exact Lagrangian or a monotone Lagrangian
with NL ≥ 2 and nonzero quantum fundamental class. The Lagrangian spec-
tral distance between L0 and L1 ∈ LHam(L) is γ(L0, L1).

The fact that this actually defines a nondegenerate distance is, as usual,
the “hard” part. This was proven fairly simultaneously in [9] (via Poisson
bracket invariants) and [10] (via energy-capacity inequality). This is also a
consequence of the main result of the present note.

Finally, let us emphasize the fact that the Continuity property of 
+
obviously yields the well-known fact that

for all L′ ∈ LHam(L), γ(L,L′) ≤ dHof(L,L′).

3. Proof of Theorem 1.1

Fix a Lagrangian submanifold L which satisfies the assumptions of Theo-
rem 1.1. Let L′ = ϕ1

H(L) ∈ LHam(L) for some Hamiltonian function H, and
let ψ ∈ Symp(M,ω) be such that L′ = ψ(L). Notice that ψ−1(L) ∈ LHam(L)
since the Hamiltonian function H ◦ψ generates the isotopy {ψ−1ϕt

Hψ} which
maps ψ−1(L) to L at time 1.

The Hausdorff distance between L and L′ is defined as δH(L,L′) =
max{s(L;L′), s(L′;L)}, where s(A;B) is the supremum of the distance to B
of a point in A; see formula (1.6).

From (1.5), i.e. Lemma 5 of [3], we get some constants δ = δ(g, g|L) > 0
and C = C(g, g|L) > 0 such that

s(L;ψ(L)) ≤ C
√

γ(L,ψ(L)) and s(L;ψ−1(L)) ≤ C
√

γ(L,ψ−1(L))

whenever γ(L,ψ(L)) and γ(L,ψ−1(L)) are smaller than δ.
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Let 
(c) denote the length of a smooth path c : [0, 1] → M . Then,

s(ψ(L);L) = max
y∈ψ(L)

min
c(0)=y
c(1)∈L


(c)

= max
x∈L

min
c(0)=x

c(1)∈ψ−1(L)


(ψ ◦ c)

≤ ‖dψ‖max
x∈L

min
c(0)=x

c(1)∈ψ−1(L)


(c)

= ‖dψ‖ s(L;ψ−1(L)).

From this, we immediately get that

δH(L,L′) ≤ max
{
s(L;ψ(L)), ‖dψ‖ s(L;ψ−1(L))

}

≤ C‖dψ‖max
{√

γ(L,ψ(L)),
√

γ(L,ψ−1(L))
}

(3.1)

since ‖dψ‖ ≥ 1 for any symplectomorphism ψ. Indeed, a symplectic matrix
must always have an eigenvalue with absolute value at least 1.

By Symplectic invariance, we know that γ(L,ψ−1(L)) = γ(ψ(L), L),
and (3.1) gives us the expected inequality (1.2):

δH(L,L′) ≤ C‖dψ‖
√

γ(L,L′)

under the condition γ(L,L′) < δ.
To get rid of this condition when M is compact, we use Joksimović and

Seyfaddini’s trick [8]: take C large enough so that

C ≥ Diam(M)√
δ

.

Then, if γ(L,L′) ≥ δ, we trivially get

C
√

γ(L,L′) ‖dψ‖ ≥ Diam(M) ≥ δH(L,L′),

since ‖dψ‖ ≥ 1. Here, we have made use of the fact that the distance between
two closed subsets of M is at most the diameter of M .

This ends the proof of Theorem 1.1. �

4. Alternative versions of inequality (1.2)

We conclude with two alternative versions of inequality (1.2): the first one
is established by adapting to the Lagrangian setting Joksimović and Seyfad-
dini’s proof from [8], and the other one by using methods explored by Chassé
and leading to inequality (1.4) from [2], rather than using directly inequality
(1.5) from [3].
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4.1. Joksimović and Seyfaddini’s approach

We could have adapted Joksimović and Seyfaddini’s [8] proof of (1.1) to the
Lagrangian context to get an analogous inequality. We give here the broad
idea on how such an inequality is proven.

For each x ∈ L, take a Darboux chart ψx : Ux → R2n sending L∩Ux to
Rn ×{0}. Take also compact neighborhoods Kx and K ′

x of x in M such that

Kx ⊆ int(K ′
x) ⊆ K ′

x ⊆ Ux.

By compactness of L, we may take a finite subset {ψi}1≤i≤k of these charts,
so that {int(Ki)}1≤i≤k still covers L. Then, setting

ε := min
1≤i≤k

min
x∈∂Ki

x′∈∂K′
i

d(x, x′) and A := max
1≤i≤k

∥∥∥dψ−1
i

∣∣
ψi(K′

i)

∥∥∥ ,

we get the inclusion

ψ−1
i (B2n

r (ψi(x))) ⊆ BAr(x)

for x ∈ Ki and r = 2
√

γ(L,L′)
π if γ(L,L′) < δ = πε2

4A2 . Here, B2n denotes the
Euclidean ball in R2n, whilst B is the metric ball in M . Note that B2n

r (ψi(x))
is contained in the image of ψi, since r < ε

A . Indeed, K ′
i contains the metric

ball Bε(x) by construction. But if B2n
R (ψi(x)) is the largest Euclidean ball

centered at ψi(x) contained in ψi(Bε(x)), then ∂B2n
R (ψi(x)) ∩ ∂ψi(Bε(x))

must contain some point y so that

R = |ψi(x) − y| ≥ ‖ dψ−1
i

∣∣
ψi(K′

i)
‖−1d(x, ψ−1

i (y)) ≥ ε

A

since the straight line from ψi(x) to y is contained in ψi(K ′
i) by hypothesis.

Thus, we have that B2n
ε/A(ψi(x)) ⊆ ψi(Bε(x)) ⊆ ψi(K ′

i).

If Ar < d(x,L′), the map ψ−1
i |B2n

r (ψi(x)) would be a symplectic embed-
ding of a ball of radius r with real part along L not crossing L′, so that

γ(L,L′) ≥ π

2
r2 = 2γ(L,L′)

by the proof of Theorem E of [10], which is of course a contradiction. There-
fore, we must have

d(x,L′) ≤ 2A

√
γ(L,L′)

π
.

By taking the maximum overall x ∈ L, this gives an inequality analogous
to (1.5)—but with a constant depending on local charts on top of metric
invariants of M . By applying this inequality to the case L′ = ψ(L) and
L′ = ψ−1(L) for some symplectomorphism ψ of M , we get (1.2) as in Sect. 3;
the constant is now C = 2A√

π
.
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4.2. An inequality with the inverse norm

When M is compact, there is also an inequality with ‖dψ−1‖:

δH(L,L′) ≤ C
√

γ(L,L′) ‖dψ−1‖2. (4.1)

The proof of (4.1) follows the scheme of the proof of (1.4) appearing in
[2]. We thus recall the idea of said proof.
(1) From the proof of Theorem E of [10], we know that there exist, for any

x ∈ L and any x′ ∈ L′, J-holomorphic strips ux and ux′ with boundary
along L and L′—modulo arbitrarily small Hamiltonian perturbations—
and passing through x and x′, respectively. Furthermore, their area is
bounded from above by 2γ(L,L′).

(2) Using a version of the monotonicity lemma (see Proposition 2.1 in [2]),
we get that

ω(ux) ≥ A(g, g|L)r2

if the closed metric ball Br(x) does not intersect L′ and r is smaller
than some δ = δ(g, g|L) > 0. There is an analogous result for ux′ and
L′. In particular, if γ(L,L′) is small enough, the inequality holds for all
r < dM (x,L′). Therefore, it holds for r = dM (x,L′).

(3) Taking the supremum over all x ∈ L of the inequalities for L, we essen-
tially get (1.5). Taking the supremum over all x′ ∈ L′ of the inequalities
for L′ gives an analogous inequality for the pair (L′, L). Taking the
maximum of these two inequalities, we get (1.4).

We thus see that the dependence of C in (1.4) on metric invariants of L′ comes
from the constant A in Step 2. Therefore, proving Theorem 1.1 reduces to
proving the following proposition.

Proposition 4.1. There exist constants δ and A depending only on metric
invariants of M and L with the following property.

Let L′ ∈ LHam(L) and let ψ be a symplectomorphism such that ψ(L) =
L′. Let Σ be a compact Riemann surface with boundary ∂Σ with corners. Con-
sider a nonconstant J-holomorphic curve u′ : (Σ, ∂Σ) → (Br(x′), ∂Br(x′) ∪
L′) for some x′ ∈ L′ and r ≤ δ

‖dψ−1‖ such that x′ ∈ u′(Σ). Suppose that u′

sends the corners of Σ to ∂Br(x′) ∩ L′. Then,

ω(u′) ≥ A

‖dψ−1‖2 r2.

Indeed, Proposition 2.1 of [2], Proposition 4.1, and Step (1) above yield

min {δ, dM (x,L′)} ≤ C
√

γ(L,L′)

for all x ∈ L and

min
{

δ

‖dψ−1‖ , dM (x′, L)
}

≤ C
√

γ(L,L′)‖dψ−1‖

for all x′ ∈ L′ (with C = 1√
2A

). In particular, if we suppose that γ(L,L′) <

C−2δ2‖dψ−1‖−4 ≤ C−2δ2, we get that

dM (x,L′) ≤ C
√

γ(L,L′)
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for all x ∈ L and

dM (x′, L) ≤ C
√

γ(L,L′)‖dψ−1‖
for all x′ ∈ L′. Taking the maximum over all x and all x′, we get δH(L,L′) ≤
C

√
γ(L,L′) max{1, ‖dψ−1‖} as long as γ(L,L′) < C−2δ2‖dψ−1‖−4. This

yields (4.1)—with the additional γ-smallness assumption—since ‖dψ−1‖ ≥ 1.
If γ(L,L′) ≥ C−2δ2‖dψ−1‖−4, take C ′ ≥ Cδ−1 Diam(M), so that

C ′√γ(L,L′)‖dψ−1‖2 ≥ C ′C−1δ ≥ Diam(M) ≥ δH(L,L′),

which gives the desired result.
Only Proposition 4.1 is thus now left to prove. To do so, we first need a

new version of the isoperimetric inequality. Given an arc γ′ : ([0, π], {0, π}) →
(M,L′) whose image is contained in the metric ball Bδ/‖dψ−1‖(x′) for some
x′ ∈ L′, set a(γ′) to be the symplectic area ω(u′) of any map u′ : D∩{Im z ≥
0} → M such that u′(eiθ) = γ′(θ) and u′(D ∩ R) ⊆ L′. Here, D is the unit
disk in C.

First note that this definition is independent of the choice of extension
u′. To see this, take

δ = min
{

ε,
ε

2
rinj(L),

ε

2
r0,

π

4
√

K0

}
(4.2)

if L is ε-tame (see [2] for the definition) and M has injectivity radius bounded
away from zero by r0 and sectional curvature with values in [−K0,K0]. Here,
rinj(L) is the injectivity radius of L with the Riemannian metric induced by
M . Then, for all z ∈ D ∩ {Im z ≥ 0}, we have that

dM

(
ψ−1(u(z)), ψ−1(x′)

) ≤ ‖dψ−1‖ dM (u(z), x′) ≤ δ,

i.e. u := ψ−1 ◦ u′ has image in the metric ball Bδ(x) with x := ψ−1(x′) ∈ L.
Take two extensions u′

0 and u′
1 of an arc γ′ as above, and denote α′

i := u′
i|R

and αi := ψ−1 ◦ α′
i. Then, u0#u1 is a disk whose boundary α0#α1 lies in L.

Here, f(a+ib) := f(−a+ib) for any map f : U ⊆ C → M . But by ε-tameness
of L, α0#α1 must be a loop in a metric ball of L (in the intrinsic metric)
of radius 2δ

ε ≤ rinj(L), and must thus be contractible in the same ball. This
nullhomotopy extends to a homotopy in a metric ball of M of radius 2δ

ε of
u0#u1 to a topological sphere. Since 2δ

ε ≤ r0, this topological sphere must
be itself contractible, so that

0 = ω(u0#u1) = ω(u0) − ω(u1) = ω(u′
0) − ω(u′

1),

where the last inequality follows from the fact that ψ is a symplectomorphism.
In other words, a(γ′) is indeed well defined.

We can now prove the following isoperimetric inequality.

Lemma 4.2. There exist constants δ and B depending only on metric invari-
ants of M and L such that, for all arcs γ′ : ([0, π], {0, π}) → (M,L′) with
image in Bδ/‖dψ−1‖(x′) for some x′ ∈ L′, we have that

a(γ′) ≤ B‖dψ−1‖2
(γ′)2.
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Proof. As noted above, we know that ψ−1 ◦ γ has image in the metric ball
Bδ(ψ−1(x′)). Therefore, by said Lemma 2.1 of [2], we know that

a(ψ−1 ◦ γ) ≤ B(g, g|L) 
(ψ−1 ◦ γ)2.

However, a(ψ−1◦γ) = a(γ), since ψ is a symplectomorphism, and 
(ψ−1◦γ) ≤
‖dψ−1‖
(γ), which give the desired inequality. �

The proof of Proposition 4.1 then follows the same scheme as the proof
of Proposition 2.1 of [2], except that we use Lemma 4.2 above—instead of
Lemma 2.1 of [2]—to estimate the local action a(γ′) for arcs γ′ with boundary
on L′.
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[14] Polterovich, L., Rosen, D.: Function Theory on Symplectic Manifolds. CRM
Monograph Series, vol. 34. American Mathematical Society, Providence (2014)

[15] Schwarz, M.: On the action spectrum for closed symplectically aspherical man-
ifolds. Pac. J. Math. 193(2), 419–461 (2000)

[16] Usher, M.: Observations on the Hofer distance between closed subsets. Math.
Res. Lett. 22(6), 1805–1820 (2015)

[17] Viterbo, C.: Symplectic topology as the geometry of generating functions.
Math. Ann. 292(4), 685–710 (1992)

Jean-Philippe Chassé
D-MATH
ETH Zürich
Rämistrasse 101
8092 Zurich
Switzerland

e-mail: jeanphilippe.chasse@math.ethz.ch

http://arxiv.org/abs/1811.00527


   28 Page 14 of 14 J.-P. Chassé and R. Leclercq
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