Persistence modules and barcodes in symplectic geometry

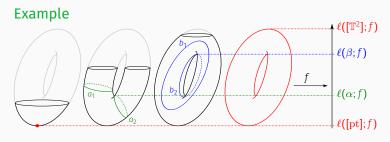
Rémi Leclercq DataShape annual seminar, may 2023

Laboratoire de Mathématiques d'Orsay

Spectral invariants

Definition (Morse / finite dimension case)

Let $f: M \to \mathbb{R}$ be Morse and $\alpha \in H_*(M)$, $\ell(\alpha, f)$ is defined by: $\{x \in M \mid f(x) \le \ell(\alpha, f)\}$ = smallest sublevel set containing a representative of α



Remark

$$\begin{array}{ll} \ell \colon \ H_*(M) \times C^\infty_{\operatorname{Morse}}(M) \longrightarrow \mathbb{R} \cup \{-\infty\} \ \text{+ C^0 continuity} \\ &= \quad \ell \colon \ H_*(M) \times {}^{C^0}(M) \longrightarrow \mathbb{R} \cup \{-\infty\} \end{array}$$

Persistence modules and barcodes

Definition

 $\mathbb{V}=(V^t)_{t\in\mathbb{R}}\subset\mathbb{Z}/2\mathbb{Z}$ is a persistence module if

- for all $s \le t$ in \mathbb{R} , there exists a morphism $\iota_{t,s} : V^s \to V^t$,
- for all $r \leq s \leq t$ in \mathbb{R} , $\iota_{t,r} = \iota_{t,s} \circ \iota_{s,r}$,
- $\iota_{t,s}$ isomorphism up to finite spectrum $F \subset \mathbb{R}$.

Definition

 $\mathbb{V}=(V^t)_{t\in\mathbb{R}}\subset\mathbb{Z}/2\mathbb{Z}$ is a persistence module if

- for all $s \le t$ in \mathbb{R} , there exists a morphism $\iota_{t,s} : V^s \to V^t$,
- for all $r \leq s \leq t$ in \mathbb{R} , $\iota_{t,r} = \iota_{t,s} \circ \iota_{s,r}$,
- $\iota_{t,s}$ isomorphism up to finite spectrum $F \subset \mathbb{R}$.

Example

A chain complex (C, ∂) is \mathbb{R} -filtered if

- for all t, C^t is a vector subspace of C s.t. $\partial(C^t) \subset C^t$,
- for all $s \leq t$, we have natural inclusions $\hat{\iota}_{t,s} : C^s \to C^t$.

Definition

 $\mathbb{V}=(\mathsf{V}^t)_{t\in\mathbb{R}}\subset\mathbb{Z}/2\mathbb{Z}$ is a persistence module if

- for all $s \le t$ in \mathbb{R} , there exists a morphism $\iota_{t,s} : V^s \to V^t$,
- for all $r \leq s \leq t$ in \mathbb{R} , $\iota_{t,r} = \iota_{t,s} \circ \iota_{s,r}$,
- $\iota_{t,s}$ isomorphism up to finite spectrum $F \subset \mathbb{R}$.

Example

A chain complex (C, ∂) is \mathbb{R} -filtered if

- for all t, C^t is a vector subspace of C s.t. $\partial(C^t) \subset C^t$,
- for all $s \leq t$, we have natural inclusions $\hat{\iota}_{t,s} : C^s \to C^t$.

A filtered complex induces a persistence module \mathbb{V} with $V^t = H_*(C^t, \partial)$ and $\iota_{t,s} = H_*(\hat{\iota}_{t,s})$.

$$\rightsquigarrow$$
 MV(f , g), FV(H , J)

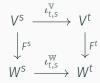
finite dim M	loop space $\mathcal{P}_0(M)$
$f \in C^0(M)$	$H \in C^0(\mathbb{S}^1 \times M)$
sublevel set M ^t	
$M^t = f^{-1}(-\infty, t)$??
$V^t = H(M^t)$	

finite dim M	loop space $\mathcal{P}_0(M)$
$f \in C^0(M)$	$H \in C^0(\mathbb{S}^1 \times M)$
sublevel set M ^t	
$M^{t} = f^{-1}(-\infty, t)$??
$V^t = H(M^t)$	
f Morse	
Morse subcomplex $MC^{t}(f)$	
$MC^t(f) = \mathrm{Crit}(f) \cap f^{-1}(-\infty, t)$	
$\partial(MC^t(f))\subsetMC^t(f)$	
$\leadsto \mathrm{M} V^t = H(MC^t(f), \partial)$	

finite dim M	loop space $\mathcal{P}_0(M)$
$f \in C^0(M)$	$H \in C^0(\mathbb{S}^1 \times M)$
sublevel set M ^t	
$M^t = f^{-1}(-\infty, t)$??
$V^t = H(M^t)$	
f Morse	H generic
Morse subcomplex $MC^{t}(f)$	Floer subcomplex FC ^t (H)
$MC^t(f) = \mathrm{Crit}(f) \cap f^{-1}(-\infty, t)$	$FC^{t}(H) = \mathrm{Crit}(\mathcal{A}_H) \cap \mathcal{A}_H^{-1}(-\infty, t)$
$\partial(MC^t(f))\subsetMC^t(f)$	$\partial(FC^{t}(H))\subsetFC^{t}(H)$
$\leadsto \mathrm{M} V^t = H(MC^t(f),\partial)$	$\leadsto \mathrm{F} V^{\mathrm{t}} = H(FC^{\mathrm{t}}(H), \partial)$

Definition

A morphism of persistence modules $F: \mathbb{V} \to \mathbb{W}$ is a family of morphisms $F^t: V^t \to W^t$ s.t. for all s < t in \mathbb{R} :



Definition

A morphism of persistence modules $F: \mathbb{V} \to \mathbb{W}$ is a family of morphisms $F^t: V^t \to W^t$ s.t. for all s < t in \mathbb{R} :

$$\begin{array}{ccc} V^s & \xrightarrow{\iota_{t,s}^{\mathbb{V}}} & V^t \\ \downarrow^{F^s} & & \downarrow^{F^t} \\ W^s & \xrightarrow{\iota_{t,s}^{\mathbb{W}}} & W^t \end{array}$$

Definition

The interleaving distance between $\mathbb V$ and $\mathbb W$ is the infimum of ε s.t. there exist $\varphi: \mathbb V \to \mathbb W^{+\varepsilon}$ and $\psi: \mathbb W \to \mathbb V^{+\varepsilon}$ s.t.

$$V^{S-\varepsilon} \xrightarrow{\varphi^{S-\varepsilon}} W^{S} \xrightarrow{\psi^{S}} V^{S+\varepsilon} \xrightarrow{\varphi^{S+\varepsilon}} W^{S+2\varepsilon}$$

$$\downarrow \iota^{\mathbb{V}} \qquad \qquad \downarrow \iota^{\mathbb{W}} \qquad \qquad \downarrow \iota^{\mathbb{W}}$$

$$V^{S-\varepsilon} \xrightarrow{\varphi^{S-\varepsilon}} W^{S} \xrightarrow{\psi^{S}} V^{S+\varepsilon} \xrightarrow{\varphi^{S+\varepsilon}} W^{S+2\varepsilon}$$

Definition

A morphism of persistence modules $F: \mathbb{V} \to \mathbb{W}$ is a family of morphisms $F^t: V^t \to W^t$ s.t. for all s < t in \mathbb{R} :

$$V^{s} \xrightarrow{\iota_{t,s}^{\mathbb{V}}} V^{t}$$

$$\downarrow^{F^{s}} \qquad \downarrow^{\mathbb{W}}$$

$$W^{s} \xrightarrow{\iota_{t,s}^{\mathbb{W}}} W^{t}$$

Definition

The interleaving distance between $\mathbb V$ and $\mathbb W$ is the infimum of ε s.t. there exist $\varphi: \mathbb V \to \mathbb W^{+\varepsilon}$ and $\psi: \mathbb W \to \mathbb V^{+\varepsilon}$ s.t.

$$V^{S-\varepsilon} \xrightarrow{\varphi^{S-\varepsilon}} W^{S} \xrightarrow{\iota_{S,s+2\varepsilon}^{\mathbb{W}}} V^{S+\varepsilon} \xrightarrow{\varphi^{S+\varepsilon}} W^{S+2\varepsilon}$$

$$\downarrow^{\iota^{\mathbb{W}}} \qquad \downarrow^{\iota^{\mathbb{W}}} \qquad \downarrow^{\iota^{\mathbb{W}}} \qquad \downarrow^{\iota^{\mathbb{W}}}$$

$$V^{S-\varepsilon} \xrightarrow{\varphi^{S-\varepsilon}} W^{S} \xrightarrow{\psi^{S}} V^{S+\varepsilon} \xrightarrow{\varphi^{S+\varepsilon}} W^{S+2\varepsilon}$$

Theorem (Chazal-Cohen-Steiner-Glisse-Guibas-Oudot, 09) Pseudo-distance to $[0,+\infty]$ s.t. $d_{\mathrm{int}}(\mathbb{V},\mathbb{W})=0\Rightarrow\mathbb{V}\simeq\mathbb{W}$

Barcodes

Definition

A barcode B is an unordered, finite family of intervals of the type (a,b] w/ $-\infty \le a \le b \le +\infty$.

Barcodes

Definition

A barcode B is an unordered, finite family of intervals of the type (a,b] w/ $-\infty \le a \le b \le +\infty$.

Definition

- $(a_1, b_1]$ and $(a_2, b_2]$ are at distance $\max\{|a_1 a_2|, |b_1 b_2|\}$.
- B_1 and B_2 are ε -matched if there exists a bijection $\varphi: B_1 \to B_2$, s.t. $d(I, \phi(I)) < \varepsilon$ for all I in B_1 w/ bijection ε = bijection up to intervals of length $\leq 2\varepsilon$.
- The bottleneck distance between B_1 and B_2 is the infimum of such ε 's.

Barcodes

Definition

A barcode B is an unordered, finite family of intervals of the type (a,b] w/ $-\infty \le a \le b \le +\infty$.

Definition

- $(a_1, b_1]$ and $(a_2, b_2]$ are at distance $\max\{|a_1 a_2|, |b_1 b_2|\}$.
- B_1 and B_2 are ε -matched if there exists a bijection ε $\phi: B_1 \to B_2$, s.t. $d(I, \phi(I)) < \varepsilon$ for all I in B_1 w/ bijection ε = bijection up to intervals of length $\leq 2\varepsilon$.
- The bottleneck distance between B_1 and B_2 is the infimum of such ε 's.

Theorem (Structure Theorem, Zomorodian–Carlson, 05) There is a bijection: Persistence modules \longleftrightarrow Barcodes.

Barcodes'

Definition

A barcode B is an unordered, finite family of intervals of the type (a,b] w/ $-\infty \le a \le b \le +\infty$.

Definition

- $(a_1, b_1]$ and $(a_2, b_2]$ are at distance $\max\{|a_1 a_2|, |b_1 b_2|\}$.
- B₁ and B₂ are ε-matched if there exists a bijection φ: B₁ → B₂, s.t. d(I, φ(I)) < ε for all I in B₁
 w/ bijection = bijection up to intervals of length ≤ 2ε.
- The bottleneck distance between B_1 and B_2 is the infimum of such ε 's.

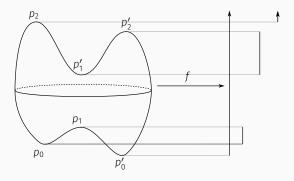
Theorem (Isometry Theorem, *)

There is an isometry: Persistence modules \longleftrightarrow Barcodes.

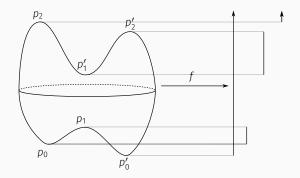
*(Cohen-Steiner–Edelsbrunner–Harer 07,

Chazal-daSilva-Glisse-Oudot, 16)

Example: the Morse case



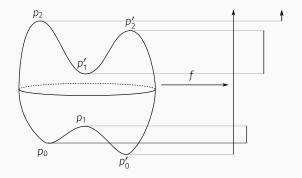
Example: the Morse case



To symplectic geometry

- Polterovich–Shelukhin (Morse \rightarrow aspherical) 2014
- Fraser (contact geometry) 2015

Example: the Morse case



To symplectic geometry

- Polterovich–Shelukhin (Morse \rightarrow aspherical) 2014
- Fraser (contact geometry) 2015
- Usher–Zhang (Morse → monotone) 2016
- · Polterovich-Shelukhin-Stojisavljević 2017

The Barannikov complex

Definition (Simple Morse complex, Barannikov 1994)

A filtered complex (C, ∂) endowed with a basis $\mathcal B$ is simple if

- decomposition $C=C_-\oplus C_0\oplus C_+$ which agrees with the filtration,
- partition $\mathcal{B}=\mathcal{B}_-\cup\mathcal{B}_0\cup\mathcal{B}_+$ which agrees with decomposition and filtration,
- $\partial|_{\mathcal{B}_+}:\mathcal{B}_+\to\mathcal{B}_-$ is bijection, and $\partial(\mathcal{B}_-)=\partial(\mathcal{B}_0)=0$.

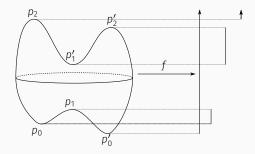
The Barannikov complex

Definition (Simple Morse complex, Barannikov 1994)

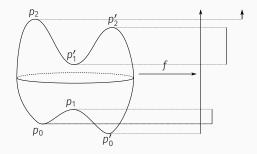
A filtered complex (C, ∂) endowed with a basis $\mathcal B$ is simple if

- decomposition $C = C_- \oplus C_0 \oplus C_+$ which agrees with the filtration,
- partition $\mathcal{B}=\mathcal{B}_-\cup\mathcal{B}_0\cup\mathcal{B}_+$ which agrees with decomposition and filtration,
- $\partial|_{\mathcal{B}_+}:\mathcal{B}_+\to\mathcal{B}_-$ is bijection, and $\partial(\mathcal{B}_-)=\partial(\mathcal{B}_0)=0$.

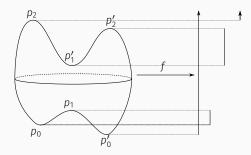
Popularized to the symplectic community (Chekanov–Pushkar, 2005), first used as such (Le Peutrec–Nier–Viterbo, 2013). Shown to be equivalent to persistence modules and barcodes (LeRoux–Seyfaddini–Viterbo, 2018).



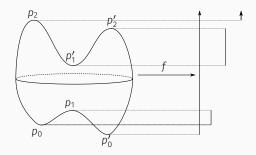
 \cdot f Morse $\leadsto \mathsf{MC}^\mathsf{t}(f) \leadsto \mathsf{MV}(f) \leadsto \mathsf{B}(f)$



- f Morse $\rightsquigarrow MC^t(f) \rightsquigarrow MV(f) \rightsquigarrow B(f)$
- C^0 continuity: $d_{\text{bot}}(\mathsf{B}(f_1),\mathsf{B}(f_2)) \leq \|f_1-f_2\|_{\infty}$ (CS-E-H07, C-dS-G-O16)



- f Morse $\rightsquigarrow MC^t(f) \rightsquigarrow MV(f) \rightsquigarrow B(f)$
- C^0 continuity: $d_{\mathrm{bot}}(\mathsf{B}(f_1),\mathsf{B}(f_2)) \leq \|f_1-f_2\|_{\infty}$ (CS-E-H07, C-dS-G-O16)
- $f \in C^0(M)$ define $B(f) = \lim B(f_n)$ for Morse $f_n \to f$



- f Morse $\rightsquigarrow MC^t(f) \rightsquigarrow MV(f) \rightsquigarrow B(f)$
- C^0 continuity: $d_{\text{bot}}(\mathsf{B}(f_1),\mathsf{B}(f_2)) \leq \|f_1-f_2\|_{\infty}$ (CS-E-H07, C-dS-G-O16)
- $f \in C^0(M)$ define $B(f) = \lim B(f_n)$ for Morse $f_n \to f$
- B(f) $\in \overline{\mathcal{B}}$: bottleneck-completion of (finite) barcodes Finiteness condition: for all ε , $\#\{I \in \mathsf{B}(f) | \ell(I) > \varepsilon\} < \infty$ (cf. also Chazal–Cohen-Steiner–Glisse–Guibas–Oudot, 09)

Polterovich-Shelukhin 14:

$$H \in C^{\infty}([0,1] \times M)$$
 generic $\leadsto FC^{t}(H) \leadsto FV(H) \leadsto B(H)$

Motivation (Arnold+):

$$\#\mathrm{Fix}(\phi_H^1) \geq \#\mathrm{Endpts}(\mathsf{B}(H)) \geq \mathrm{rank}(\mathsf{H}_*(M))$$

Polterovich-Shelukhin 14:

$$H \in C^{\infty}([0,1] \times M)$$
 generic $\leadsto FC^{t}(H) \leadsto FV(H) \leadsto B(H)$

Motivation (Arnold+):

$$\#\operatorname{Fix}(\phi_H^1) \ge \#\operatorname{Endpts}(\mathsf{B}(H)) \ge \operatorname{rank}(\mathsf{H}_*(M))$$

$$\phi_H^1 = \phi_G^1 \Rightarrow G = H + \text{cst} \leadsto B : \text{Ham}(M) \to \mathcal{B}' = \mathcal{B}/\text{global shift}$$

Polterovich-Shelukhin 14:

$$H \in C^{\infty}([0,1] \times M)$$
 generic $\leadsto FC^{t}(H) \leadsto FV(H) \leadsto B(H)$

Motivation (Arnold+):

$$\#\operatorname{Fix}(\phi_H^1) \ge \#\operatorname{Endpts}(\mathsf{B}(H)) \ge \operatorname{rank}(\mathsf{H}_*(M))$$

$$\phi_H^1 = \phi_G^1 \Rightarrow G = H + \text{cst} \leadsto B : \text{Ham}(M) \to \mathcal{B}' = \mathcal{B}/\text{global shift}$$

Theorem

 $\mathsf{B}: \mathrm{Ham}(\mathsf{M}) o \overline{\mathcal{B}}'$ is continuous and extends to $\overline{\mathrm{Ham}}(\mathsf{M})$.

(Le Roux–Seyfaddini–Viterbo for dim = 2;

Buhovsky–Seyfaddini–Humilière dim ≥ 4 aspherical; Kawamoto, Shelukhin, Jannaud ...)

Kawamoto, Shetukiin, Jannaud ...,

 \rightsquigarrow C^0 Floer homology

Polterovich–Shelukhin 14:

$$H \in C^{\infty}([0,1] \times M)$$
 generic $\leadsto FC^{t}(H) \leadsto FV(H) \leadsto B(H)$

Motivation (Arnold+):

$$\#\operatorname{Fix}(\phi_H^1) \ge \#\operatorname{Endpts}(\mathsf{B}(H)) \ge \operatorname{rank}(\mathsf{H}_*(M))$$

$$\phi_H^1 = \phi_G^1 \Rightarrow G = H + \text{cst} \leadsto B : \text{Ham}(M) \to \mathcal{B}' = \mathcal{B}/\text{global shift}$$

Theorem

 $\mathsf{B}: \mathrm{Ham}(\mathsf{M}) o \overline{\mathcal{B}}'$ is continuous and extends to $\overline{\mathrm{Ham}}(\mathsf{M})$.

(Le Roux–Seyfaddini–Viterbo for dim
$$= 2$$
;

Buhovsky–Seyfaddini–Humilière dim ≥ 4 aspherical ; Kawamoto. Shelukhin, Jannaud ...)

$$\rightsquigarrow$$
 C^0 Floer homology

<u>Question.</u> Why should we care?

Once upon a time ...

Theorem (Gromov's alternative)

 $\operatorname{Ham}(M,\omega)$ is either C^0 dense or C^0 closed in $\operatorname{Diff}(M)$.

Once upon a time ...

Theorem (Gromov's alternative + Eliashberg) $\operatorname{Ham}(M, \omega)$ is either C^0 dense or C^0 closed in $\operatorname{Diff}(M)$.

 \sim Notion of symplectic homeomorphism: birth of C^0 symplectic geometry

Once upon a time ...

Theorem (Gromov's alternative + Eliashberg)

 $\operatorname{Ham}(M,\omega)$ is either C^0 dense or C^0 closed in $\operatorname{Diff}(M)$.

 \sim Notion of symplectic homeomorphism: birth of C^0 symplectic geometry

Definition (Oh-Müller)

If $H_k \to H \in C^0$ and $\phi_{H_k} \to \phi$ (C^0 , uniformly), then $\{\phi^t\}$ is an hameotopy generated by H.

Motivated by

- C^0 flux conjecture: is Ham C^0 -closed in Symp?
- Fathi's question: is $\operatorname{Homeo}_{\mathcal{C}}^{\omega}(\mathbb{D})$ simple?

Study of flexi-rigidity prop of C⁰ analogs of smooth objects

 Uniqueness of continuous generator (Viterbo 06, Buhovsky–Seyfaddini 12, Humilière–L.–Seyfaddini 14)

Study of flexi-rigidity prop of C⁰ analogs of smooth objects

- Uniqueness of continuous generator (Viterbo 06, Buhovsky–Seyfaddini 12, Humilière–L.–Seyfaddini 14)
- Squeezing of symplectic s/mflds by symplectic homeomorphisms in dim ≥ 6 (Buhovsky-Opshtein)

Study of flexi-rigidity prop of C⁰ analogs of smooth objects

- Uniqueness of continuous generator (Viterbo 06, Buhovsky–Seyfaddini 12, Humilière–L.–Seyfaddini 14)
- Squeezing of symplectic s/mflds by symplectic homeomorphisms in dim \geq 6 (Buhovsky–Opshtein)
- C⁰ Rigidity of coisotropic s/mfds and their foliations (Humilière–L.–Seyfaddini 15)

Study of flexi-rigidity prop of C^0 analogs of smooth objects

- Uniqueness of continuous generator (Viterbo 06, Buhovsky–Seyfaddini 12, Humilière–L.–Seyfaddini 14)
- Squeezing of symplectic s/mflds by symplectic homeomorphisms in dim ≥ 6 (Buhovsky-Opshtein)
- C⁰ Rigidity of coisotropic s/mfds and their foliations (Humilière–L.–Seyfaddini 15)
- C⁰ Arnold conjecture holds in dim = 2 (Matsumoto), but not in dim ≥ 4 (Humilière-Buhovsky-Seyfaddini)
- C^0 Arnold conjecture "saved" in dim \geq 4 (ibid.)

• ...

Study of flexi-rigidity prop of C^0 analogs of smooth objects

- Uniqueness of continuous generator (Viterbo 06, Buhovsky–Seyfaddini 12, Humilière–L.–Seyfaddini 14)
- Squeezing of symplectic s/mflds by symplectic homeomorphisms in dim ≥ 6 (Buhovsky-Opshtein)
- C⁰ Rigidity of coisotropic s/mfds and their foliations (Humilière-L.-Seyfaddini 15)
- C⁰ Arnold conjecture holds in dim = 2 (Matsumoto), but not in dim ≥ 4 (Humilière-Buhovsky-Seyfaddini)
- C^0 Arnold conjecture "saved" in dim ≥ 4 (ibid.)
 - ...

Remark

Thus far: spectral invariants, γ distance, no persistence.

Theorem (Fathi 70's)

 $\operatorname{Homeo}^{\operatorname{vol}}_{\operatorname{\mathcal{C}}}(\mathbb{D}^n)$ is simple for $n \geq 3$.

Question

n = 2? (conjectured it is not)

Theorem (Fathi 70's)

Homeo $_c^{\mathrm{vol}}(\mathbb{D}^n)$ is simple for $n \geq 3$.

Question

n = 2? (conjectured it is not)

Theorem (Cristofaro-Gardiner-Humilière-Seyfaddini)

 $\operatorname{Homeo}^{\operatorname{vol}}_{c}(\mathbb{D}^{2})$ is not simple.

Proof.

Filtered *Periodic Floer homology* \leadsto persistence modules and barcodes. Map $(\operatorname{Ham}_c(\mathbb{D}), d_{C^0}) \to (\overline{\mathcal{B}}, d_{\operatorname{bot}})$ is continuous and extends to $\overline{\operatorname{Ham}}(\mathbb{D}) = \operatorname{Homeo}_c^{\operatorname{vol}}(\mathbb{D}^2)$.