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Geometry of Ham(M, w)
Ham(M,w) = {¢|3H such that ¢ = ¢}, }
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Lagrangian intersections

Geometry of Ham(M, w; Lg) (for a given Lg)
Ham(M,w; Ly) = {L|3p € Ham(M,w) s.t. ¢(Lo) = L}

Hofer's distance : V(Lo, L) = min{||H||| #1,(Lo) = L}
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Background

Introduction

» Settings of generating functions : Viterbo (R2").
» Hamiltonian Floer homology,

» Schwarz (symplectically aspherical case)
» Oh (general case)

» and for cotangent bundles : Oh and Milinkovi¢.

Extensions
» to the Lagrangian intersection settings,
using the PSS morphism (Schwarz' approach)

» using spectral sequences due to Barraud—Cornea,
definition of spectral invariants of higher order
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L" smooth manifold, (f,g) Morse-Smale pair

Homology

Chain complex (CM.(L; f, g),0)
» generators : critical points of f,
» graduation : Morse index,

» differential : counts the flow lines between critical
points.
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L" smooth manifold, (f,g) Morse-Smale pair

Homology

Chain complex (CM.(L; f, g),0)
» generators : critical points of f,
» graduation : Morse index,

» differential : counts the flow lines between critical
points.

Compactification and gluing : 009 =0

HM.(L; f,g) := H(CM,(L; f,g),0) ~ H.(L)
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Spectral sequence

A spectral sequence is a book
» each page is a bi-graded chain complex
» the differential at page r has bi-degree (—r,r — 1)
» page r + 1 is the homology of page r

r=2 r=3
ker(d™)/im(d")

C RN
q q
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Classical constructions

Theorem
Any filtered chain complex induces a spectral sequence. Spectral sequence
Moreover, if the filtration is bounded, this spectral sequence
converges to the homology of the initial complex.

Theorem (Leray—Serre)

Any fibration (with connected fiber) over an arcwise,
connected CW-complex induces a first quadrant spectral
sequence such that

> it converges to the homology of the total space,

> its second page is the homology of the base with local
coefficients in the homology of the fiber.
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Construction

L smooth manifold and (7, g) Morse-Smale pair

Flow lines seen as loops

Spectral sequence

» w embedded path whose image contains Crit(f)
> we consider L = L/im(w)
Now a flow line can be seen as an element of Q’{*}Z
Connecting manifolds seen as cubical chains
> representing chain system for M(f,g) :

dpq < Mp,q(fag)

» cubical complex R, := S,(Q'L)

R. is a differential module endowed with a product
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Spectral sequence
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Construction

The usual chain complex is enriched by the ring
(C«(L; f,g),d) = (R« ®@ CM,(L; f,g),d)

d(a®p):8a®p+2[(a-apq)®q]

Spectral sequence

There is an obvious filtration (by the degree)

FiCe = R ® (Crity(f) | j < K)z, = PR, ® CM(Li f, g)
J<k

Definition

The spectral sequence of Barraud—Cornea associated to L
and to the Morse-Smale pair (f, g) is the spectral sequence
induced by this filtration : EM(L; f,g).
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1. If the differential at page r is not trivial, there exist
critical points p and g such that

> ir(p) —ir(q) <1,
» their connecting manifold is not empty.
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Properties

Let L be simply-connected.

Spectral sequence

1. If the differential at page r is not trivial, there exist
critical points p and g such that

> ir(p) —ir(q) <1,
» their connecting manifold is not empty.

2. EM"(L; f,g) is isomorphic to E"(L) (r > 2). Thus
» its second page is isomorphic to the tensor product
EM§7q(L; f,g) ~ Hqe(QL) ® Hp(L),
» pages r > 2 do not depend on the Morse-Smale pair

(f,g),

> it converges to a trivial page.
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Higher order spectral numbers

(Morse case)

homological / order 2 higher order

Filtration of the usual Filtration of the enriched
complex by f: CMY complex by f: CY

Zy(p € Critf|f(p) < v) R.®Zy(p € Critf| f(p) < v)
v H(CMY — CM,) iV E(CY — C,)

Homology H.(L). Spectral sequence E(L).

Definition (homological spectral numbers)
For 0 # a € HM,(L; f, g),

o(a) = min{v|a € im(i})}.
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(Morse case)

homological / order 2 higher order

Filtration of the usual Filtration of the enriched
complex by f: CMY complex by f: CY

Zy(p € Critf|f(p) < v) R.®Zy(p € Critf| f(p) < v)
v H(CMY — CM,) iV E(CY — C,)

Homology H.(L). Spectral sequence E(L).

Definition (higher order spectral numbers)
For0# a € EM(L;f,g),

o"(a) = min{v|a € im(i})}.
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Example : 5% x §* with f, sum of “height” functions

P6 = (max(fg), max(ﬁl))v LO‘/ Pe 3
P4 = (mm(f2)7 max(f‘l))v pa
Y

2 = (max(£s), min(£)). PN
o = (min(£), min()). oo
B B
o

po P2 ps  Pe Po pa

The spectral invariant associated to a ® py is
o?(a ® ps) = a(ps) = f(pa).




Higher order spectral numbers
Example : (52 x 54)[1]#(52 X 54)[2], with f = fiy# 1z

[e%1 a2
ﬂ—\ Pe /m
Y
P> PS
[6%] [0%]
81 Po B2

> as before : o2(a; ® pj) = o(p}) = fy(p})
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Example : (5% x S*)#(S% x %)), with f = fiy#fy

Pe
ﬂ—\ /m
1 2
p4 p4 Higher order
Y spectral numbers
2
P> P>
ay as
Po
B1 B2

> as before : o2(a; ® pj) = o(p}) = fy(p})
> moreover 9%(a; @ pi) = 0 et 0?pg = a1 @ pj + a2 @ p?
> thus at page 3 : [a; ® pi] = [a2 ®@ p2] # 0

The spectral invariant associated to a; ® p} is
o(ar ® pg) = min{fy(pz), fiz)(P2)}-
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Basic objects

> (M2 w) compact or convex at infinity

» L and L' compact Lagrangians, such that

Floer theory

Wra(m,L) = Wlmy(m,ry = 0

» 7 fixed path from L to L'
» (H,J) is a pair
» which is regular
» and such that LN (¢},)72(L') is transverse

Po(L, L") ={y € C(I,M)[7(0) € L, v(1) € L', [v] = [n]}




Lagrangian intersection Floer theory =

. B invariants
Precise settings

Basic objects

> (M2 w) compact or convex at infinity

» L and L' compact Lagrangians, such that

Floer theory

Wra(m,L) = Wlmy(m,ry = 0

» 7 fixed path from L to L'
» (H,J) is a pair
» which is regular
» and such that LN (¢},)72(L') is transverse

Py(L. L) = [y € C¥(1 M) 1(0) € L A(1) € L', [1] = [i]}
Apin(7) = — / Tt /, H(tA(t)) dt

/




Lagrangian Floer homology =

invariants

Homology




Lagrangian

Lagrangian Floer homology zrectral

invariants

Chain complex (CF.(L,L";n, H,J),0)

> generators : orbits of the Hamiltonian vector field (in
the homotopy class of 1)
Crit(A) or Z(L,L";n, H) or Z(n, H),

» graduation : Maslov index (,u\ﬂz(,\/,,L) =0),

Homology

» differential : counts Floer trajectories between orbits.
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Chain complex (CF.(L,L";n, H,J),0)

> generators : orbits of the Hamiltonian vector field (in
the homotopy class of 1)
Crit(A) or Z(L,L";n, H) or Z(n, H),

» graduation : Maslov index (,u\ﬂz(,\/,,L) =0),

Homology

» differential : counts Floer trajectories between orbits.

Compactification and gluing : 909 =0

HF.(L,L";n,H,J) : = H(CF.(L,L";n, H, J),0)
~ HM,(L; f, g) (L=1L"
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Morse theory
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Zo(p € Critf|f(p) < v)
i H(CMY — CM,)

Floer theory

Filtration by A: CF/
Zo(x € Z(n, H)| A(x) < v)
i+ H(CFY — CF,)
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Definition

Morse theory

Filtration by f: CMY
Zo(p € Critf|f(p) < v)
i H(CMY — CM,)

Homology H.(L).

Floer theory

Filtration by A: CF/
Zo(x € Z(n, H)| A(x) < v)
i+ H(CFY — CF,)

Homology H.(L)
(via the PSS: ¢#).
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Lagrangian spectral numbers

Definition

Morse theory Floer theory

Filtration by f: CMY Filtration by A: CF/
Zy(p € Critf|f(p) < v) Zy(x € I(n, H)| A(x) < v)
i H(CMY — CM,) iV H(CF? — CF,)
Homology H.(L). Homology H.(L)

(via the PSS: ¢#).

Definition (Morse spectral numbers)
For 0 # a € HM,(L; f, g),

o(a) = min{v|a € im(i})}.
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Lagrangian spectral numbers

Definition

Morse theory Floer theory

Filtration by f: CMY Filtration by A: CF/
Zy(p € Critf|f(p) < v) Zy(x € I(n, H)| A(x) < v)
i H(CMY — CM,) iV H(CF? — CF,)
Homology H.(L). Homology H.(L)

(via the PSS: ¢#).
Definition ((relative) Lagrangian spectral numbers)
For 0 # a € HM,(L; f, g),
o(0) = min{u| ¥ (a) € (%)},

They depend a priori on (f,g), (H,J), n.
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Lagrangian spectral numbers

Definition

Morse theory Floer theory

Filtration by f: CMY Filtration by A: CF/
Zy(p € Critf|f(p) < v) Zy(x € I(n, H)| A(x) < v)
i H(CMY — CM,) iV H(CF? — CF,)
Homology H.(L). Homology H.(L)

(via the PSS: ¢#).

Definition ((absolute) Lagrangian spectral numbers)
For 0 # a € HM,(L; f, g),

c(a) = o(a) — o(1).

They depend a priori on (f,g), (H,J).
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Theorem
Lagrangian spectral numbers only depend on L and
() ~L(L). We define

c(o; L, L") := c(a; H,J) with ¢t (L) = L.

Invariance
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Theorem

Lagrangian spectral numbers only depend on L and
() ~L(L). We define

c(a; L, L") == c(a; H,J) with ¢1,(L") = L.
Remark

So this is well-defined for two Hamiltonian isotopic, compact, Invariance
transverse Lagrangians L and L.




Invariance of Lagrangian spectral numbers

Theorem

Lagrangian spectral numbers only depend on L and
() ~L(L). We define

c(a; L, L") == c(a; H,J) with ¢1,(L") = L.

Proof.
Etape 1 — Commutativity of the diagram

i

ot lel
HE(L, L ', J') — == HF.(L, Lo; 0, J)
Hl

Etape 2 — Technical lemma.
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Invariance of Lagrangian spectral numbers

Commutativity of the diagram

Proposition

Let (H,J) and (H',J") regular such that
> o5 = @5, ) = J and
> (6})71(L) = (6%,) (L) = Lo.

Thus the following diagram commutes :

H

HM, (L; f, g) o HF.(L,L; H,J)

¢’#’l lel

HE(L, L' J') ——= HF.(L, Lo; 0,J)

H’

Lagrangian
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Invariance of Lagrangian spectral numbers =

invariants

Commutativity of the diagram

Proposition

Let (H,J) and (H',J') regular such that
> ¢t )=o) = J and
> (01) (L) = (o) ML) = Lo.

Thus the following diagram commutes :

Invariance

i

HM.(L; f, g) HF. (L, L; H,J)

, N -1
¢’EIJ/ T~ J/bH
AL

HE(L, L H', ') ——= HF.(L, Lo; 0, J)

H’

(mo € LN Lo, n:= br(no) et n' := b (mo))




Invariance of Lagrangian spectral numbers

Commutativity of the diagram

7(0) = u(—o0,-)

¢H
HM.(L; f,g) —& HF.(L,L; H, J)
sV Vot
HF.(L, L H', J') = HF.(L, Lo;0, J)

H
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H
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Commutativity of the diagram

7(0) = u(—o00,-)

¢H
HM.(L; f,g) —& HF.(L,L; H, J)
sV Vot —
HF.(L, L H', J') = HF.(L, Lo;0, J)

H
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Invariance of Lagrangian spectral numbers =

invariants

Commutativity of the diagram

P 5

Yo
7(0) = u(—o0, —)

¢H
HM.(L; f,g) —& HF.(L,L; H, J)
sV Vot —
HF.(L, L H', J') = HF.(L, Lo;0, J)

H

Invariance

Proof.
® = (¢f ) o by o by' 0 6 - HM.(L; f,8) — HM.(L: f, g)

Algebraic structures on HM,(L; f,g) and HF.(L,L"; H, J)
® preserve these structures, thus

o(a) = d(a-[L]) =2 O([L]) = a-[] = 2




Invariance of Lagrangian spectral numbers =

invariants

The technical lemma

Let EY(H) := [;sup Hy dt and E~(H) := [, inf H, dt.
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Invariance of Lagrangian spectral numbers =

invariants

The technical lemma
Let EY(H) := [;sup Hy dt and E~(H) := [, inf H, dt.

Lemma
(H,J) and (H',J') regular, 0 # « € H,(L) :

E_(H —H)+ay,y <o(a;H,J. 1) —0o(a; H,J,n)
< Ef(H = H)+ayy

Invariance

with a, s = [ u*w for any map u satisfying

u(0,~) =n. u(l,~) =7 and u(1,0) C L, u(/,1) C L'




Invariance of Lagrangian spectral numbers =

invariants

The technical lemma
Let EY(H) := [;sup Hy dt and E~(H) := [, inf H, dt.
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The technical lemma
Let EY(H) := [;sup Hy dt and E~(H) := [, inf H, dt.
Lemma
(H,J) and (H',J") regular, 0 # o € H,(L) :

E_(H —H)+ay,y <o(a;H,J. 1) —0o(a; H,J,n)
< Ef(H = H)+ayy

Invariance

with a, s = [ u*w for any map u satisfying

u(0,~) =n. u(l,~) =7 and u(1,0) C L, u(/,1) C L'

Corollary

» Independence on J of spectral numbers

» Continuity with respect to Hofer's distance
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Applications

Definition (Hofer's norm and distances)

> [|H]| = E*(H) - E~(H)

> d(id, ) = inf{||H]|| o} = ¢} and
d(¢,) = d(id, o~"9)

> V(Lo, L1) = inf{|[H||| ¢} (Lo) = L1}

Invariance

Corollary (of the invariance property)

> |c(a; L, Lo) — c(a; Ly L1)] < V(Lo, L1)
» Hofer's distance for Lagrangians is non degenerate

» The set of Lagrangians, Hamiltonian isotopic to the
"small" circle of the torus, endowed with Hofer's
distance is of infinite diameter
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> we consider L = L/im(w), M = M /im(w)
> representing chain system for M(L, L’; H, J)
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» the image of w contains x(0) for any x € Z(n, H)
> we consider L = L/im(w), M = M /im(w)
> representing chain system for M(L, L’; H, J)

The usual complex is enriched via the ring R,
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A invariants
Definition : spectral sequence of Barraud—Cornea

Same procedure than in the Morse case

» the image of w contains x(0) for any x € Z(n, H)
> we consider L = L/im(w), M = M /im(w)
> representing chain system for M(L, L’; H, J)

The usual complex is enriched via the ring R,

SFe:tra| invariants
o

e el

Co(L,L';m H, J) = Ry @ CF.(L, L', H, J)

Definition

The spectral sequence of Barraud—Cornea associated to L,
L" and (H,J), EF(L,L";n,H,J), is the spectral sequence
induced by the filtration (by the degree) of the complex
(Cu(L,L";m,H, J), d).




Spectral sequence of Barraud—Cornea

Properties

Let L be simply-connected.

1. If the differential at page r is non trivial, there exist
orbits x and y such that
» the difference of their Maslov indices is at most r,
» their associated moduli space is not empty.
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» their associated moduli space is not empty.
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Spectral sequence of Barraud—Cornea

Properties

Let L be simply-connected.

1. If the differential at page r is non trivial, there exist
orbits x and y such that
» the difference of their Maslov indices is at most r,
» their associated moduli space is not empty.

2. EF"(L,L';n, H,J) is isomorphic to EM"(L; f,g) (r > 2).
At page 2, Floer homology is recovered.
And this isomorphism, restricted to homology classes,
coincides with the PSS morphism.
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Definition

The filtration of the enriched complex by A induces

i EFY(L,L";n, H,J) — EF(L,L';n, H, J)
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Spectral invariants of higher order =

A invariants
Definition

The filtration of the enriched complex by A induces

i EFY(L,L";n, H,J) — EF(L,L';n, H, J)

Definition

Let o # 0 an element of EM[ ,(L; f,g). Its associated
relative and absolute, Lagrangian spectral numbers of higher
order are

SFe:tra| invariants
o

e el

o"(e; L, H, J,n) = inf{v € R|®¥(a) € im(i,)}
c(a; L)L) :=0"(a; L,H, J,m) — o(1; L, H, J,n)

with 1 the generator of HMy(L; f,g) and H any Hamiltonian
such that ¢},(L') = L.




Spectral invariants of higher order

Example

Let L be a compact manifold, endowed with a M.-S. pair
T*L is a symplectic manifold (convex at infinity).
L and Iy are Lagrangians.
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Example

Let L be a compact manifold, endowed with a M.-S. pair
T*L is a symplectic manifold (convex at infinity).
L and Iy are Lagrangians.

Theorem (Floer)

There exists an identification between the complexes
CM.(L; f,g) and CF.(L,T 40, Jg).

SFe:tra| invariants
o

e el

Moreover, the "action" is preserved via this identification.
L= (52 X 54)[1]#(52 X 54)[2], 7([1]#7([2] (perturbed):

a1 ® p1; L,Tgr) < (@@ pr; L, Tgr)
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First properties

» Homological Lagrangian spectral invariants coincide with
those of order 2:

(e L, L") = max{c(aj; L, L")}
i

: ._ _ , 2
with o =37 x ® a; € E (L)
» they are critical values of the action functional

» 0# a € Ho(L), & € Hp—.(L) the Hom—dual class of its  |Kiikasie
Poincaré dual class. For all ¢ € Ham(M,w)

c(as L, ¢(L)) = c([L]; L,¢7H(L)) — c(a/s Lo~ (L))

In particular c([L]; L, #(L)) = c([L]; L, o~ 1(L))
» 0 <c(o L, L") <V(LL)
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Extension of the classical spectral invariants

Hamiltonian case (Schwarz)

(M, w) symplectically aspherical
pla, @) for 0 # a € Hy (M) and ¢ € Ham(M,w).

Moreover,
> (M x M,w @ (—w)) symplectic manifold
» A C M x M and 'y Lagrangians

Proposition
To 0 # a € H,(M) corresponds o € Hy(A)
c(a; A, Ty) = pla; ¢) — p(1; ¢).

In particular, c([A]; A, Tg) = p([M]; ¢) — p(1; ¢).
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Extension of the classical spectral invariants

Improvement of the classical bound

Recall
Lagrangian spectral invariants are bounded above by the
Hofer's distance for Lagrangians.

Lagrangian
spectral
invariants

Extension of the
Hamiltonian case




Extension of the classical spectral invariants

Improvement of the classical bound

Recall
Lagrangian spectral invariants are bounded above by the

Hofer's distance for Lagrangians.

In the Hamiltonian case (Schwarz) :

0 < p([M]; ¢) — p(1,¢) < d(id, ¢).
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Extension of the classical spectral invariants

Improvement of the classical bound

Recall
Lagrangian spectral invariants are bounded above by the
Hofer's distance for Lagrangians.

In the Hamiltonian case (Schwarz) :

There exists (Ostrover) : {¢:}, t € [0,00) such that

d(id, pt) — oo for t = oo and V(lig,Ty,) = c for all t.
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Extension of the classical spectral invariants =
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Improvement of the classical bound

Recall
Lagrangian spectral invariants are bounded above by the
Hofer's distance for Lagrangians.

In the Hamiltonian case (Schwarz) :
0 < p([M]; ¢) — p(1,¢) < d(id, ¢).
There exists (Ostrover) : {¢:}, t € [0,00) such that
d(id, pt) — oo for t = oo and V(lig,Ty,) = c for all t.
Thus we get

p(IM]; ¢e) — p(Lipr) = c([A]: A, Ty,) < V(A,Ty,) =c.
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L and L' two compact, transverse Lagrangians and x € LN L.
There exist ¢ > 0 and an embedding e : B(0,e) — M such
that
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that
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Main property Lagrangian

invariants

The geometric quantity r(L, L")

L and L' two compact, transverse Lagrangians and x € LN L.
There exist ¢ > 0 and an embedding e : B(0,e) — M such
that

i ()" (w) =wo and €X(0) = x,

ii. (eX)"HL) =R"N B(0,¢) and (eX)7}(L) =iR"N B(0,¢)

€ €

Definition
L and L' two such Lagrangians. r(L,L") is defined as

Vx € LN L', e satisfying i. and ii.,
0

e>0 . .
SUP{ ‘ such that x #y = imeXNimel =

Remark
0 < #(LNL') < oo implies r(L, L") > 0.
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Theorem
Ifd"(a) = 5 #0in E(L), then

mr(L, L')?

c(a; L, L")y —c"(B; L, L") > 5

for all Lagrangian L' transverse, Hamiltonian isotopic to L.
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Theorem
Ifd"(a) = 5 #0in E(L), then

mr(L, L')?

c(a; L, L")y —c"(B; L, L") > 5

for all Lagrangian L' transverse, Hamiltonian isotopic to L.

Corollary (order 2)

L (r — 1)—connected, {x;} a base of H,_1(Q2L).
If there exists oc € Hp(L) such that Mo meomerty
d'(1®a)=>x ®p;i #0, then

mr(L, L')?

Vi, c(a; L, L") — c(Bi; L, L) > 5

for all Lagrangian L' Hamiltonian isotopic, transverse to L.
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Corollary
> a € Hi(L), B € Ho(L), withl < k <n—1 and
a-f#0:

mr(L, L')?

cla- 3L L)<c(BL L) - >
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Corollary

> a € Hi(L), B € Ho(L), withl < k <n—1 and
a-f#0:

2
oL L) < c(p L) - EES
» 0#a€ H(L) withl< k<n—1:
mr(L, L')? mr(L, L')?

<c(o; L L) <c([L); L, L") —
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Corollary

> a € Hi(L), B € Ho(L), withl < k <n—1 and
a-f#0:

L LI 2
C(a : ﬁ; La L,) S C(ﬂ; L’ L/) - %
» 0#a€ H(L) withl< k<n—1:
mr(L, L")? mr(L, L")?

<c(o; L L) <c([L); L, L") —

2 2

Corollaries

Corollary
L and L’ transverse, Hamiltonian isotopic Lagrangians :

0<7r(L, L')? < c([L]; L, L") < V(L L.
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Definition
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Definition
The cup-length of L : the length of the "longest chain" of
homology classes of L with non zero intersection product, i.e.

cl(L) is defined as

Jaj € Hy. (L), 1 < i < k such that }

max{k+1'0<d;<n and ai-...-a#0
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Definition

The cup-length of L : the length of the "longest chain" of
homology classes of L with non zero intersection product, i.e.
cl(L) is defined as

Jaj € Hy. (L), 1 < i < k such that }

max{k+1'0<d;<n and ai-...-a#0

Corollary
Let cl(L) the cup-length of L, we get e

mr(L, L')?

V(L L)z (L) =

for all Lagrangian L' transverse, Hamiltonian isotopic to L.
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