Mathématiques Devoir 5

À remettre dans la semaine du 24 mai 2004.

Exercice 1 Soit $E = \mathbb{R}_3[X]$ le \mathbb{R} -espace vectoriel des polynômes de degré ≤ 3 , à coefficients réels.

- (a) Donner une base de E. Que vaut $\dim_{\mathbb{R}}(E)$?
- (b) Si $a \in \mathbb{R}$, on pose $\delta_a : E \to \mathbb{R}$; $P \mapsto P(a)$. Montrer que δ_a est une application linéaire.
- (c) Soient a_0, a_1, a_2, a_3 des réels distincts. On pose

$$\varphi \colon E \longrightarrow \mathbb{R}^4$$

$$P \longmapsto (\delta_{a_0}(P), \delta_{a_1}(P), \delta_{a_2}(P), \delta_{a_3}(P)).$$

Montrer que φ est une application linéaire. Déterminer son noyau. En déduire que φ est un isomorphisme.

(d) Pour $i \in \{0, ..., 3\}$, on pose

$$L_i = \frac{\prod\limits_{j \neq i} (X - a_j)}{\prod\limits_{j \neq i} (a_i - a_j)}.$$

Calculer $\varphi(L_i)$. En déduire que $\mathfrak{B} = \{L_i\}_{0 \leq i \leq n}$ est une base de E (les polynômes L_i s'appellent les polynômes d'interpolation de Lagrange en $a_0, ..., a_3$). Soit $P \in E$, en utilisant l'isomorphisme φ , montrer que

$$P = \sum_{i=0}^{3} P(a_i) L_i$$

(formule d'interpolation de Lagrange).

Exercice 2 Soient $u_1 = (1, 1, 1), u_2 = (1, 1, 0)$ et $u_3 = (1, 0, 2)$.

- (a) Vérifier que $\mathfrak{B} = \{u_1, u_2, u_3\}$ est une base de \mathbb{R}^3 .
- (b) Soit $g: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire dont la matrice dans la base \mathfrak{B} est

$$\begin{bmatrix} 2 & 3 & -1 \\ 1 & -1 & 4 \\ 0 & 1 & 2 \end{bmatrix}.$$

Écrire la matrice de g dans la base canonique.