III. Équations différentielles linéaires du second ordre à coefficients constants

Il s'agit des équations différentielles de la forme

(E)
$$ay'' + by' + cy = f(x)$$

avec $a, b, c \in \mathbb{R}$, $a \neq 0$ et $f: I \to \mathbb{R}$ une fonction définie sur un intervalle ouvert I. f(x) est appelé le second membre de l'équation (E).

Une solution à valeurs réelles est une fonction $\varphi: I \to \mathbb{R}$ deux fois dérivable telle que

$$\forall x \in I, \ a\varphi''(x) + b\varphi'(x) + c\varphi(x) = f(x).$$

Résoudre (E) (on dit parfois aussi "intégrer (E)"), c'est chercher toutes les solutions de (E).

On associe à (E) l'équation homogène (ou équation sans second membre) suivante :

$$(H) \qquad ay'' + by' + cy = 0.$$

Comme pour les équations linéaires du premier ordre, on a le théorème suivant :

Théorème. Si y_0 est une solution particulière de (E), l'ensemble des solutions de (E) est l'ensemble des fonctions $y = y_H + y_0$, où y_H décrit l'ensemble des solutions de (H).

Interprétation dynamique:

Si y(t) est la position d'un mobile à l'instant t, y'(t) est sa vitesse et y''(t) est son accélération. Dans l'équation

$$y'' + by' + cy = 0,$$

le terme cy représente une force attractive (si c > 0) ou répulsive (si c < 0) et le terme by' représente une force de frottement (si b > 0).

Il est intéressant pour les calculs de considérer des fonctions φ à valeurs dans \mathbb{C} . On écrit

$$\varphi(x) = \varphi_1(x) + i\varphi_2(x)$$

avec $\varphi_1(x) = \text{Re}(\varphi(x))$ et $\varphi_2(x) = \text{Im}(\varphi(x))$.

Si $\varphi_1: I \to \mathbb{R}$ et $\varphi_2: I \to \mathbb{R}$ sont des fonctions deux fois dérivables, on pose $\varphi'(x) = \varphi'_1(x) + i\varphi'_2(x)$ et $\varphi''(x) = \varphi''_1(x) + i\varphi''_2(x)$.

Pour les fonctions à valeurs dans \mathbb{C} , les règles de dérivation (somme, produit, composition) restent les mêmes.

Cas particulier important: $\varphi(x) = e^{sx}$ avec $s \in \mathbb{C}$. La dérivée est $\varphi'(x) = se^{sx}$.

Ce résultat se montre de la façon suivante : on écrit s = a + ib et

$$\varphi(x) = e^{(a+ib)x} = e^{ax}e^{ibx} = e^{ax}(\cos(bx) + i\sin(bx)) = \underbrace{e^{ax}\cos(bx)}_{Re(\varphi(x))} + i\underbrace{e^{ax}\sin(bx)}_{Im(\varphi(x))}.$$

On dérive les parties réelle et imaginaire et on obtient :

$$\varphi'(x) = [ae^{ax}\cos(bx) - e^{ax}\sin(bx)] + i[ae^{ax}\sin(bx) + e^{ax}\cos(bx)]$$

= $e^{ax}(a+ib)(\cos(bx) + i\sin(bx))$
= $(a+ib)e^{(a+ib)x} = se^{sx}$

1. Solutions de l'équation homogène

Théorème. Soit (H): ay'' + by' + cy = 0. L'équation caractéristique de (H) est : $ar^2 + br + c = 0$. On calcule $\Delta = b^2 - 4ac$ et les racines α, β .

- Si $\Delta > 0$, les racines α, β sont réelles avec $\alpha \neq \beta$ et la solution générale de (H) s'écrit $y = \lambda e^{\alpha x} + \mu e^{\beta x}$ avec $\lambda, \mu \in \mathbb{R}$ (régime apériodique).
- Si $\Delta = 0$, il y a une racine double $\alpha = \beta = -\frac{b}{2a}$ et la solution générale de (H) s'écrit $y = \lambda e^{\alpha x} + \mu x e^{\alpha x} = (\lambda + \mu x) e^{\alpha x}$ avec $\lambda, \mu \in \mathbb{R}$ (régime critique).
- Si $\Delta < 0$, on écrit $\alpha = \gamma + i\omega$, $\beta = \gamma i\omega$ (où γ, ω sont des réels) et la solution générale de (H) s'écrit $y = e^{\gamma x} (\lambda \cos(\omega x) + \mu \sin(\omega x))$ avec $\lambda, \mu \in \mathbb{R}$ (régime pseudo-périodique).

Dans les 3 cas, les solutions sont définies sur \mathbb{R} .

Remarque. Ce qu'on appelle la solution générale est une famille de fonctions dépendant des paramètres λ , μ . Il y a donc une infinité de solutions.

Formes alternatives de la solution générale dans le cas $\Delta < 0$:

- $y = \lambda e^{\gamma x} \cos(\omega x + \phi)$ avec $\lambda, \phi \in \mathbb{R}$.
- $y = \lambda e^{\alpha x} + \mu e^{\beta x}$ avec $\underline{\lambda}, \mu \in \mathbb{C}$. On rappelle que les racines α, β sont complexes. Ceci donne l'ensemble des solutions à valeurs complexes (pour les solutions réelles on préfère la forme du théorème).

Cas particulier: $y'' + \omega^2 y = 0$. Les racines sont $\alpha = i\omega$ et $\beta = -i\omega$, les solutions sont $y = \lambda \cos(\omega x) + \mu \sin(\omega x)$ (régime périodique).

Preuve du théorème.

Soit $\varphi(x) = e^{rx}$ avec $r \in \mathbb{C}$. Alors $\varphi'(x) = re^{rx}$, $\varphi''(x) = r^2 e^{rx}$ et

$$a\varphi''(x) + b\varphi'(x) + c\varphi(x) = (ar^2 + br + c)e^{rx}.$$

Donc si r est solution de l'équation caractéristique alors φ est solution de (H).

- Si $\alpha \neq \beta$, on a trouvé deux solutions $\varphi_1(x) = e^{\alpha x}$ et $\varphi_2(x) = e^{\beta x}$.
- Si $\alpha = \beta = -\frac{b}{2a}$, on a trouvé une solution $\varphi_1(x) = e^{\alpha x}$. On pose $\varphi_2(x) = xe^{\alpha x}$. On a $\varphi_2'(x) = (\alpha x + 1)e^{\alpha x}$ et $\varphi_2''(x) = (\alpha^2 x + 2\alpha)e^{\alpha x}$ donc

$$a\varphi_2''(x) + b\varphi_2'(x) + c\varphi_2(x) = [(a\alpha^2 + b\alpha + c)x + (2a\alpha + b)]e^{\alpha x}.$$

Comme α est racine de l'équation caractéristique on a $a\alpha^2 + b\alpha + c = 0$. Et comme $\alpha = -\frac{b}{2a}$ on a $2a\alpha + b = 0$. Donc $a\varphi_2''(x) + b\varphi_2'(x) + c\varphi_2(x) = 0$ et φ_2 est une solution de (H).

Dans les deux cas, on a trouvé deux solutions de (H) qui sont φ_1 et φ_2 . Soit $\lambda, \mu \in \mathbb{C}$. On vérifie que $\lambda \varphi_1 + \mu \varphi_2$ est solution de (H) en sommant les deux égalités :

$$\lambda(a\varphi_1''(x) + b\varphi_1'(x) + c\varphi_1(x)) = \lambda.0 = 0$$

$$\mu(a\varphi_2''(x) + b\varphi_2'(x) + c\varphi_2(x)) = \mu.0 = 0$$

On a montré que la fonction $\lambda \varphi_1 + \mu \varphi_2$ est solution de (H) pour tous $\lambda, \mu \in \mathbb{C}$. On va montrer qu'il n'y a pas d'autres solutions.

Soit y une solution quelconque de (H). On pose $u(x) = y(x)e^{-\alpha x}$. C'est une fonction deux fois dérivable, comme y. On a :

$$y(x) = u(x)e^{\alpha x}, \ y'(x) = [u'(x) + \alpha u(x)]e^{\alpha x}, \ y''(x) = [u''(x) + 2\alpha u'(x) + \alpha^2 u(x)]e^{\alpha x}. \text{ Donc}$$

$$ay''(x) + by'(x) + cy(x) = [au''(x) + (2a\alpha + b)u'(x) + (a\alpha^2 + b\alpha + c)u(x)]e^{\alpha x}$$

$$0 = [au''(x) + (2a\alpha + b)u'(x)]e^{\alpha x}$$

$$car \ a\alpha^2 + b\alpha + c = 0$$

Comme $e^{\alpha x} \neq 0$ on a $au''(x) + (2a\alpha + b)u'(x) = 0$, autrement dit la fonction u' est solution de $az' + (2a\alpha + b)z = 0$ (équation différentielle d'ordre 1). On résout cette équation différentielle.

• Si $\Delta \neq 0$ alors $\alpha \neq \frac{-b}{2a}$ et $2a\alpha + b \neq 0$. Donc il existe $A \in \mathbb{C}$ tel que $u'(x) = Ae^{-(2\alpha + \frac{b}{a})x}$. En intégrant, on trouve $u(x) = \mu e^{-(2\alpha + \frac{b}{a})x} + \lambda$ avec $\mu = \frac{A}{-(2\alpha + \frac{b}{a})}$ et $\lambda \in \mathbb{C}$.

On sait que $ar^2 + br + c = a(r - \alpha)(r - \beta) = a(r^2 - (\alpha + \beta)r + \alpha\beta)$ donc $-(\alpha + \beta) = \frac{b}{a}$. Ceci implique que $-(2\alpha + \frac{b}{a}) = \beta - \alpha$. Donc $u(x) = \mu e^{(\beta - \alpha)x} + \lambda$ et $y(x) = \mu e^{\beta x} + \lambda e^{\alpha x}$.

• Si $\Delta = 0$ alors $\alpha = -\frac{b}{2a}$ et l'équation différentielle devient au''(x) = 0. On en déduit qu'il existe μ et λ tels que $u'(x) = \mu$ et $u(x) = \lambda + \mu x$. Donc $y(x) = (\lambda + \mu x)e^{\alpha x}$.

Dans les 2 cas, on a montré que l'ensemble des solutions de (H) à valeurs complexes est égal à l'ensemble des fonctions $\lambda \varphi_1 + \mu \varphi_2$ avec $\lambda, \mu \in \mathbb{C}$, autrement dit:

- $\operatorname{si} \Delta \neq 0, \ y(x) = \lambda e^{\alpha x} + \mu e^{\beta x},$
- $-\operatorname{si} \Delta = 0, \ y(x) = (\lambda + \mu x)e^{\alpha x}.$

Passage des solutions complexes aux solutions réelles

On va maintenant chercher l'ensemble des solutions à valeurs réelles. Par ce qui précède, ces solutions s'écrivent $y = \lambda \varphi_1 + \mu \varphi_2$. De plus, y est une fonction à valeurs réelles si $y(x) = \overline{y(x)}$ pour tout $x \in \mathbb{R}$.

On admet que si $\forall x \in \mathbb{R}$, $Ae^{rx} + Be^{sx} = A'e^{rx} + B'e^{sx}$ avec $r, s \in \mathbb{C}$, $r \neq s$, alors on a nécessairement A = A' et B = B'.

- Si $\Delta > 0$ alors $\alpha, \beta \in \mathbb{R}$ et $y(x) = \lambda e^{\alpha x} + \mu e^{\beta x}$, donc $\overline{y(x)} = \overline{\lambda e^{\alpha x} + \mu e^{\beta x}} = \overline{\lambda} e^{\alpha x} + \overline{\mu} e^{\beta x}$. Comme $y(x) = \overline{y(x)}$, on a donc $\lambda = \overline{\lambda}$ et $\mu = \overline{\mu}$, autrement dit $\lambda, \mu \in \mathbb{R}$. Les solutions de (H) à valeurs réelles sont donc $y(x) = \lambda e^{\alpha x} + \mu e^{\beta x}$ avec $\lambda, \mu \in \mathbb{R}$.
- Si $\Delta = 0$ alors $\alpha \in \mathbb{R}$ et $y(x) = (\lambda + \mu x)e^{\alpha x}$, donc $\overline{y(x)} = (\overline{\lambda} + \overline{\mu}x)e^{\alpha x}$. Comme précédemment on obtient $\lambda, \mu \in \mathbb{R}$. Les solutions de (H) à valeurs réelles sont donc $y(x) = (\lambda + \mu x)e^{\alpha x}$ avec $\lambda, \mu \in \mathbb{R}$.

• Si $\Delta < 0$ on écrit $\alpha = \gamma + i\omega$ et $\beta = \gamma - i\omega$ (avec $\gamma, \omega \in \mathbb{R}$). Alors $y(x) = e^{\gamma x} (\lambda e^{i\omega x} + \mu e^{-i\omega x})$ et $\overline{y(x)} = e^{\gamma x} (\overline{\lambda} e^{-i\omega} + \overline{\mu} e^{i\omega x})$. Comme $y(x) = \overline{y(x)}$ on trouve $\lambda = \overline{\mu}$ et $\mu = \overline{\lambda}$. Si on écrit $\lambda = A + iB$ (avec $A, B \in \mathbb{R}$) on a $\mu = A - iB$ et

$$y(x) = e^{\gamma x} [A(e^{i\omega x} + e^{-i\omega x}) + iB(e^{i\omega x} - e^{-i\omega x})] = e^{\gamma x} [2A\cos(\omega x) - 2B\sin(\omega x)].$$

Si A, B décrivent \mathbb{R} alors $\lambda' = 2A$ et $\mu' = -2B$ décrivent également \mathbb{R} . Les solutions réelles de (H) sont donc $y(x) = e^{\gamma x} [\lambda' \cos(\omega x) + \mu' \sin(\omega x)]$ avec $\lambda', \mu' \in \mathbb{R}$.

2. Recherche d'une solution particulière

Il existe une méthode de variation des constantes mais nous ne l'étudierons pas.

Quand le second membre a une certaine forme (polynôme, exponentielle,...), il existe une solution particulière de la même forme.

Exemple. (E) $y'' + y' - 2y = e^{2x}$.

On cherche une solution particulière de la forme $y_0(x) = Ae^{2x}$.

 $y_0'(x) = 2Ae^{2x}, y_0''(x) = 4Ae^{2x}.$ Donc $y_0''(x) + y_0'(x) - 2y_0(x) = 4Ae^{2x}.$

En identifiant le coefficient devant e^{2x} , on trouve 4A=1 donc $A=\frac{1}{4}$ et $y_0(x)=\frac{1}{4}e^{2x}$.

Produit d'un polynôme par une exponentielle

Si l'équation différentielle est

(E)
$$ay'' + by' + cy = P(x)e^{sx}$$

où P(x) est un polynôme de degré n et $s \in \mathbb{C}$, on cherche une solution particulière de (E) de la forme:

- $y_0(x) = Q(x)e^{sx}$ si s n'est pas racine de l'équation caractéristique,
- $y_0(x) = xQ(x)e^{sx}$ si s est une racine simple de l'équation caractéristique,
- $y_0(x) = x^2 Q(x) e^{sx}$ si s est racine double de l'équation caractéristique.

Dans les 3 cas, Q(x) est un polynôme de degré n (même degré que P(x)).

Cas particuliers:

- Si s = 0 alors f(x) = P(x) est un polynôme.
- Si P(x) = 1 alors $f(x) = e^{sx}$ et Q(x) = A est une constante.

Exemples.

(H)
$$y'' - 2y' + y = 0$$
.

 $r^2 - 2r + 1$ a une racine double $\alpha = 1$. Solution générale de (H): $y_H = (\lambda + \mu x)e^x$.

(E1)
$$y'' - 2y' + y = x^2$$
.

On cherche une solution particulière sous la forme $y_0(x) = Ax^2 + Bx + C$.

 $y_0'(x) = 2Ax + B$, $y_0''(x) = 2A$. Donc $y_0''(x) - 2y_0'(x) + y_0(x) = Ax^2 + (B - 4A)x + (C - 2B + 2A)$.

Identification des coefficients:
$$A = 1$$

$$B - 4A = 0 \quad \text{donc}$$

$$C - 2B + 2A = 0$$

entification des coemcients:
$$A = 1$$
 $B - 4A = 0$ donc $\begin{cases} A = 1 \\ B = 4 \\ C - 2B + 2A = 0 \end{cases}$ et $y_0(x) = x^2 + 4x + 6$. $C = 6$

La solution générale de (E1) est $y = (\lambda + \mu x)e^x + x^2 + 4x + 6$.

(E2)
$$y'' - 2y' + y = (x+1)e^x$$
.

 $\alpha = 1$ est racine double donc on cherche y_0 sous la forme $y_0(x) = x^2(Ax + B)e^x$.

$$y_0(x) = (Ax^3 + Bx^2)e^x,$$

$$y_0'(x) = (Ax^3 + Bx^2)e^x + (3Ax^2 + 2Bx)e^x = [Ax^3 + (3A + B)x^2 + 2Bx]e^x,$$

$$y_0''(x) = [Ax^3 + (3A + B)x^2 + 2Bx]e^x + [3Ax^2 + (6A + 2B)x + 2B]e^x,$$

$$y_0''(x) = [Ax^3 + (6A + B)x^2 + (6A + 4B)x + 2B]e^x.$$

Donc $y_0''(x) - 2y_0'(x) + y_0(x) = (6Ax + 2B)e^x$. Par identification des coefficients, on a 6A = 1et 2B = 1, donc $y_0(x) = x^2 \left(\frac{1}{6}x + \frac{1}{2}\right) e^x$.

La solution générale de (E2) est $y = (\lambda + \mu x + \frac{1}{2}x^2 + \frac{1}{6}x^3) e^x$.

Théorème.

Si y(x) est une solution de l'équation ay'' + by' + cy = f(x), alors Re(y(x)) est une solution de ay'' + by' + cy = Re(f(x)) et Im(y(x)) est une solution de ay'' + by' + cy = Im(f(x)).

Preuve.

Soit
$$y_1(x) = \text{Re}(y(x))$$
 et $y_2(x) = \text{Im}(y(x))$. Alors $y(x) = y_1(x) + iy_2(x)$ et

$$f(x) = ay''(x) + by'(x) + cy(x)$$

$$= \underbrace{[ay_1''(x) + by_1'(x) + cy_1(x)]}_{\text{partie réelle}} + i\underbrace{[ay_2''(x) + by_2'(x) + cy_2(x)]}_{\text{partie imaginaire}}$$

d'où $ay_1''(x) + by_1'(x) + cy_1(x) = \operatorname{Re}(f(x))$ et $ay_2''(x) + by_2'(x) + cy_2(x) = \operatorname{Im}(f(x))$.

Exemple. (E) $y'' + y' - 2y = \cos x$.

Équation homogène : (H) y'' + y' - 2y = 0. Équation caractéristique : $r^2 + r - 2$. $\Delta = 9$, $\alpha = 1$, $\beta = -2$.

La solution générale de (H) est $y_H = \lambda e^x + \mu e^{-2x}$ avec $\lambda, \mu \in \mathbb{R}$.

On sait que $\cos x = \text{Re}(e^{ix})$. On cherche d'abord une solution particulière de $y'' + y' - 2y = e^{ix}$ à l'aide de la méthode vue précédemment : $y_0(x) = Ae^{ix}, y_0'(x) = Aie^{ix}, y_0''(x) = -Ae^{ix} \text{ donc } y_0''(x) + y_0'(x) - 2y_0(x) = (-3+i)Ae^{ix}.$ Par identification on trouve $A = \frac{1}{-3+i} = \frac{-3-i}{3^2+1^2} = \frac{-3-i}{10}$.

Par le théorème précédent, la fonction $Re(y_0(x))$ est une solution de (E). On a $y_0(x) = \frac{-3-i}{10}e^{ix} = \frac{-3-i}{10}(\cos x + i\sin x)$ donc $\text{Re}(y_0(x)) = \frac{-3}{10}\cos x + \frac{1}{10}\sin x$.

Conclusion: la solution générale de (E) est: $y = \lambda e^x + \mu e^{-2x} - \frac{3}{10}\cos x + \frac{1}{10}\sin x$.

Remarque. Quand le second membre est de la forme $\cos(\Omega x)$ ou $\sin(\Omega x)$, on peut chercher une solution particulière de la forme $y_0(x) = A\cos(\Omega x) + B\sin(\Omega x)$ si $i\Omega$ n'est pas une racine de l'équation caractéristique, ou de la forme $y_0(x) = x[A\cos(\Omega x) + B\sin(\Omega x)]$ si $i\Omega$ est une racine de l'équation caractéristique.

Théorème (principe de superposition).

Si $y_1(x)$ est une solution de $ay'' + by' + cy = f_1(x)$ et si $y_2(x)$ est une solution de $ay'' + by' + cy = f_2(x)$, alors $y_1(x) + y_2(x)$ est une solution de $ay'' + by' + cy = f_1(x) + f_2(x)$.

Preuve.

(E1)
$$ay_1''(x) + by_1'(x) + cy_1(x) = f_1(x)$$

(E2)
$$ay_2''(x) + by_2'(x) + cy_2(x) = f_2(x)$$

Soit $y(x) = y_1(x) + y_2(x)$. On a $y'(x) = y_1'(x) + y_2'(x)$ et $y''(x) = y_1''(x) + y_2''(x)$, donc si on additionne (E1) et (E2) on obtient:

$$ay''(x) + by'(x) + cy(x) = f_1(x) + f_2(x).$$

Exemple. (E) $y'' - y' + y = x^2 + (x+1)e^x$.

On a vu que $y_1(x) = x^2 + 4x + 6$ est une solution de $y'' - 2y' + y = x^2$ et $y_2(x) = \left(\frac{1}{2}x^2 + \frac{1}{6}x^3\right)e^x$ est une solution de $y'' - 2y' + y = (x+1)e^x$, donc $y_0(x) = x^2 + 4x + 6 + \left(\frac{1}{2}x^2 + \frac{1}{6}x^3\right)e^x$ est une solution particulière de (E).

La solution générale de (E) est $y = \left(\lambda + \mu x + \frac{1}{2}x^2 + \frac{1}{6}x^3\right)e^x + x^2 + 4x + 6$.

3. Solution vérifiant des conditions initiales

Comme il y a deux paramètres (λ et μ) il faut deux conditions pour déterminer entièrement une solution.

Théorème. Soit (E): ay'' + by' + cy = f(x).

Il existe une unique solution de (E) vérifiant $y(x_0) = C$ et $y'(x_0) = C'$.

On ne démontre pas ce théorème dans le cas général, on le démontrera au cas par cas.

Méthode:

- chercher la solution générale de l'équation (E) sans s'occuper des conditions initiales,
- déterminer λ et μ à l'aide des deux équations $y(x_0) = C$ et $y'(x_0) = C'$.

Autres types de conditions initiales possibles:

- $-y(x_0) = C_0 \text{ et } y(x_1) = C_1,$
- $-y(x_0) = C \text{ et } y'(x_1) = C'.$

En général il y a une unique solution, mais dans certains cas il y en a plusieurs, ou aucune.

Exemple. (E): y'' + y = 0

L'équation caractéristique est $r^2+1=0$, les racines sont i et -i. La solution générale de (E) est $y=\lambda\cos x+\mu\sin x$.

- Conditions initiales y(0) = 0 et y'(0) = 1:
- $y(0) = \lambda \operatorname{donc} \lambda = 0$. $y'(x) = -\lambda \sin x + \mu \cos x$, $y'(0) = \mu \operatorname{donc} \mu = 1$. If y a une unique solution, qui est $y(x) = \sin x$.
- Conditions initiales y(0) = 0 et $y(2\pi) = 0$:
- $y(0) = \lambda$ donc $\lambda = 0$. $y(2\pi) = \lambda = 0$. Pas de condition sur μ , donc toutes les solutions $y(x) = \mu \sin x$ conviennent.
- Conditions initiales y(0) = 0 et $y(2\pi) = 1$:
- $y(0) = \lambda \text{ donc } \lambda = 0.$ $y(2\pi) = \lambda.$ Or $\lambda = 0 \neq 1$ donc il n'y a pas de solution.