Feuille 1

Exercice 1. Soit $f: \mathbf{R} \to \mathbf{R}$ la fonction définie par : $f(x) = e^{-x^2}$.

a) Etudier la fonction f. En particulier, montrer que f est décroissante sur l'intervalle I = [0;1]. Tracer la courbe représentative de f sur l'intervalle I. (on prendra un repère orthonormé d'unité 5 cm). On note A l'aire limitée par les axes de coordonnées, la droite d'équation x=1 et la courbe représentative de f. On se propose de calculer une valeur approchée de A à $\pm 0,05$ près.

Pour $n \in \mathbf{N}^*$, on définit :

$$S_n(f) = \frac{1}{n} \sum_{k=0}^{n-1} f(\frac{k}{n})$$
 et $S'_n(f) = \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n})$.

- b) Interpréter géométriquement S_n et S'_n et représenter S_{10}, S'_{10} et \mathcal{A} sur le graphique de la question (a). En déduire un encadrement de A.
- c) Pour tout $n \in \mathbb{N}^*$, calculer en fonction de n et de f la quantité $|S_n(f) S'_n(f)|$. Déterminer la plus petite valeur de n pour que $|S_n(f) - S'_n(f)|$ soit strictement inférieure à 0,1. Donner une valeur approchée de $\mathcal{A} \ \text{à} \ \pm 0.05 \ \text{près}.$
- d) Pour quelle valeur minimale de n obtient-on une valeur approchée de \mathcal{A} à $\pm 5 \cdot 10^{-3}$ près ? Remarque : Il n'existe pas de primitive de la fonction $f(x) = e^{-x^2}$ donnée par des fonctions connues.

Exercice 2. Calculer les intégrales suivantes :
(a)
$$\int_{0}^{2} (t^{4}+3t^{2}-t)dt$$
; (b) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin t dt$; (c) $\int_{-1}^{1} (t+1)(t+2)(t+3)dt$; (d) $\int_{-1}^{5} |t-3|dt$; (e) $\int_{1}^{3} (t^{\frac{3}{2}}+t^{-\frac{3}{2}})dt$; (f) $\int_{1}^{2} \frac{e^{t}}{e^{t}-1}dt$; (g) $\int_{-\frac{\pi}{4}}^{0} (\sin t + \cos t)^{2}dt$; (h) $\int_{0}^{1} \frac{3t}{\sqrt{1+t^{2}}}dt$; (i) $\int_{0}^{\frac{\pi}{4}} \sin 2t \cos^{2} 2t dt$; (j) $\int_{1}^{2} t \ln t dt$.

Exercice 3. Linéariser $\cos^4 x$ et calculer $\int_{a}^{\frac{\pi}{4}} \cos^4 t dt$.

Exercice 4. Quelle est l'aire limitée par les droites d'équations $y = \frac{x}{4}$ et y = 2x respectivement, et la courbe d'équation $y = \frac{2}{r^2}$?

Exercice 5.

- a. Calculer une primitive de la fonction $x \mapsto \frac{8x^2 4x + 5}{x^4}$ en précisant son domaine de définition.
- b. Calculer les primitives de la fonction $x \mapsto \sqrt{2x+7}$ et préciser leurs domaines de définition.
- c. Calculer la primitive de la fonction $x \mapsto \tan x$ qui est nulle en $x = \pi$. Préciser son domaine de définition.
- d. Calculer $\int_{3\pi}^{\frac{3\pi}{4}} \tan x dx$.

Exercice 6. Calculer les primitives des fonctions suivantes en précisant leurs domaines de définition.

(a)
$$x \mapsto x^2 e^x$$
; (b) $x \mapsto \ln x$; (c) $x \mapsto x \ln(x+1)$; (d) $x \mapsto \sqrt{x} \ln x$;

- (e) $x \mapsto \arctan x$; (f) $x \mapsto x \arctan x$; (g) $x \mapsto \ln^2 x$; (h) $x \mapsto e^x \cos x$; (i) $x \mapsto \cos^2 x \sin^3 x$; (j) $x \mapsto \cos^2 x$; (k) $x \mapsto \cos^2 x \sin^2 x$.

Exercice 7. Dans cet exercice, a désigne un réel strictement positif. Calculer les primitives des fonctions suivantes en précisant leurs domaines de définition.

(a)
$$x \mapsto \frac{x-3}{2x^2+2x+1}$$
; (b) $x \mapsto \frac{1}{x^2-2x-3}$; (c) $x \mapsto \frac{x^2+1}{(x-1)(2x^2+2x+1)}$; (d) $x \mapsto \frac{1}{x^2+5}$; (e) $x \mapsto \frac{1}{\sqrt{6-x^2}}$; (f) $x \mapsto \frac{1}{\sqrt{x^2+a^2}}$; (g) $x \mapsto \frac{1}{\sqrt{x^2-a^2}}$; (h) $x \mapsto \frac{1}{\sqrt{x^2+x+1}}$; (i) $x \mapsto \frac{1}{\sqrt{2x-x^2}}$.

(d)
$$x \mapsto \frac{1}{x^2 + 5}$$
; (e) $x \mapsto \frac{1}{\sqrt{6 - x^2}}$; (f) $x \mapsto \frac{1}{\sqrt{x^2 + a^2}}$; (g) $x \mapsto \frac{1}{\sqrt{x^2 - a^2}}$

(h)
$$x \mapsto \frac{1}{\sqrt{x^2 + x + 1}}$$
; (i) $x \mapsto \frac{1}{\sqrt{2x - x^2}}$

Exercice 8. Calculer les intégrales suivantes à l'aide

- 1. d'un changement de variable d'intégration :
 - (a) $\int_{e}^{e^2} \frac{dt}{t \ln^2 t}$; (b) $\int_{-1}^{\frac{1}{2}} \frac{t^2}{1 t^3} dt$; (c) $\int_{1/2}^{2} \frac{\ln t}{1 + t^2} dt$ (on prend pour nouvelle variable x = 1/t);
 - (d) $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{dt}{\sin t + \tan t}$ (on prend pour nouvelle variable $x = \tan(t/2)$). Even ou plusieurs changements de variables d'intégration :
- - (a) $\int_{-1}^{1} t^2 \sqrt{1-t^2} dt$ (on prend pour nouvelle variable u telle que $t = \sin u$);
 - (b) $\int_{-\infty}^{R} \sqrt{R^2 t^2} dt$ où R est un réel positif. Interpréter géométriquement le résultat.

Exercice 9. Sans calcul et avec justifications, donner la valeur de l'intégrale $\int_{-1}^{1} \frac{\sin(t^{2005})}{2+\sqrt{1+t^4}} dt$.