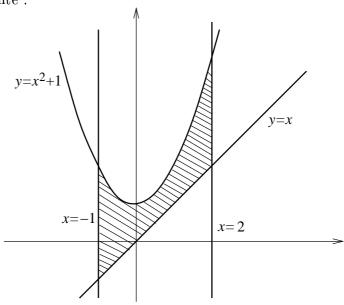
Examen du 6 septembre 2005

Durée: 3 heures

Les documents et calculatrices sont interdits.

Exercice 1.

Calculer l'aire suivante :



Exercice 2.

- a) Calculer les primitives de la fonction $x \mapsto \frac{-2}{x(x^2-1)}$ en précisant sur quels intervalles elles sont définies.
- b) On considère l'équation différentielle

(E)
$$x(x^2 - 1)y' + 2y = x$$

Déterminer les solutions de (E) définies sur $]1, +\infty[$.

Exercice 3.

Résoudre l'équation différentielle suivante :

$$y'' - y' - 6y = \cos(2x)$$

Exercice 4.

Soit E le sous-ensemble de $M_2(\mathbb{R})$ formé des matrices $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ telles que a+b+c+d=0.

- a) Montrer que E est un sous-espace vectoriel de $M_2(\mathbb{R})$
- b) Donner une base et la dimension de E.
- c) Soit F le sous-espace vectoriel des matrices M de $M_2(\mathbb{R})$ de la forme :

$$M = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}, \quad a \in \mathbb{R}.$$

Montrer que E et F sont supplémentaires dans $M_2(\mathbb{R})$.

Exercice 5.

Dans l'espace vectoriel \mathbb{R}^3 , on considère les trois vecteurs $u_1=(1,1,1),\ u_2=(1,-1,2)$ et $u_3=(1,-5,4).$

a) Soit F le sous-espace vectoriel de \mathbb{R}^3 engendré par ces trois vecteurs : $F = \text{Vect}(u_1, u_2, u_3)$. Donner une base de F, sa dimension et un système d'équations de F.

b) Soit $G = \{(x, y, z) \in \mathbb{R}^3 \mid x + y - z = 0\}$. Calculer une base et la dimension de $F \cap G$. Déterminer la dimension de F + G.

Exercice 6.

On considère l'application linéaire f de \mathbb{R}^3 dans \mathbb{R}^3 définie par :

$$f(x, y, z) = (x - y, x + y + 2z, y + z).$$

- a) Donner une base de Ker(f).
- b) Quelle est la dimension de Im(f)? Donner une base de Im(f).
- c) L'application f est-elle injective? surjective? bijective?
- d) Ecrire la matrice de f dans la base canonique de $\mathbb{R}^3.$

Barème approximatif : 2 - 3.5 - 3.5 - 3 - 4 - 4