Interval maps of given topological entropy and Sharkovskii's type

Sylvie Ruette

June 9, 2019

Abstract

It is known that the topological entropy of a continuous interval map f is positive if and only if the type of f for Sharkovskii's order is $2^d p$ for some odd integer $p \geq 3$ and some $d \geq 0$; and in this case the topological entropy of f is greater than or equal to $\frac{\log \lambda_p}{2^d}$, where λ_p is the unique positive root of $X^p - 2X^{p-2} - 1$. For every odd $p \geq 3$, every $d \geq 0$ and every $\lambda \geq \lambda_p$, we build a piecewise monotone continuous interval map that is of type $2^d p$ for Sharkovskii's order and whose topological entropy is $\frac{\log \lambda}{2^d}$. This shows that, for a given type, every possible finite entropy above the minimum can be reached provided the type allows the map to have positive entropy. Moreover, if d = 0 the map we build is topologically mixing.

1 Introduction

In this paper, an interval map is a continuous map $f: I \to I$ where I is a compact nondegenerate interval. A point $x \in I$ is periodic of period n if $f^n(x) = x$ and n is the least positive integer with this property, i.e. $f^k(x) \neq x$ for all $k \in [1, n-1]$.

Let us recall Sharkovskii's theorem and the definitions of Sharkovskii's order and type [6] (see e.g. [5, Section 3.3]).

Definition 1.1 Sharkovskii's order is the total ordering on \mathbb{N} defined by:

$$3 \triangleleft 5 \triangleleft 7 \triangleleft 9 \triangleleft \cdots \triangleleft 2 \cdot 3 \triangleleft 2 \cdot 5 \triangleleft \cdots \triangleleft 2^2 \cdot 3 \triangleleft 2^2 \cdot 5 \triangleleft \cdots \triangleleft 2^3 \triangleleft 2^2 \triangleleft 2 \triangleleft 1$$

(first, all odd integers n > 1, then 2 times the odd integers n > 1, then successively $2^2 \times$, $2^3 \times$, ..., $2^k \times$... the odd integers n > 1, and finally all the powers of 2 by decreasing order). $a \triangleright b$ means $b \triangleleft a$. The notation \trianglelefteq , \trianglerighteq will denote the order with possible equality.

Theorem 1.2 (Sharkovskii) If an interval map f has a periodic point of period n then, for all integers m > n, f has periodic points of period m.

Definition 1.3 Let $n \in \mathbb{N} \cup \{2^{\infty}\}$. An interval map f is of type n (for Sharkovskii's order) if the periods of the periodic points of f form exactly the set $\{m \in \mathbb{N} \mid m \geq n\}$, where the notation $\{m \in \mathbb{N} \mid m \geq 2^{\infty}\}$ stands for $\{2^k \mid k \geq 0\}$.

It is well known that an interval map f has positive topological entropy if and only if its type is $2^d p$ for some odd integer $p \ge 3$ and some $d \ge 0$ (see e.g. [5, Theorem 4.58]). The entropy of such a map is bounded from below (see theorem 4.57 in [5]).

Theorem 1.4 (Štefan, Block-Guckenheimer-Misiurewicz-Young) Let f be an interval map of type $2^d p$ for some odd integer $p \geq 3$ and some $d \geq 0$. Let λ_p be the unique positive root of $X^p - 2X^{p-2} - 1$. Then $\lambda_p > \sqrt{2}$ and $h_{top}(f) \geq \frac{\log \lambda_p}{2^d}$.

This bound is sharp: for every p, d, there exists a interval map of type $2^d p$ and topological entropy $\frac{\log \lambda_p}{2^d}$. These examples were first introduced by Štefan, although the entropy of these maps was computed later [7, 2].

Moreover, it is known that the type of a topological mixing interval map is p for some odd integer $p \geq 3$ (see e.g. [5, Proposition 3.36]). The Štefan maps of type p are topologically mixing [5, Example 3.21].

We want to show that the topological entropy of a piecewise monotone map can be equal to any real number, the lower bound of Theorem 1.4 being the only restriction. First, for every odd integer $p \geq 3$ and every real number $\lambda \geq \lambda_p$, we are going to build a piecewise monotone map $f_{p,\lambda} \colon [0,1] \to [0,1]$ such that its type is p for Sharkovskii's order, its topological entropy is $\log \lambda$, and the map is topologically mixing. Then we will show that for every odd integer $p \geq 3$, every integer $d \geq 0$ and every real number $\lambda \geq \lambda_p$, there exists a piecewise monotone interval map f such that its type is $2^d p$ for Sharkovskii's order and its topological entropy is $\frac{\log \lambda}{2^d}$.

1.1 Notations

We say that an interval is degenerate if it is either empty or reduced to one point, and nondegenerate otherwise. When we consider an interval map $f: I \to I$, every interval is implicitly a subinterval of I.

Let J be a nonempty interval. Then $\partial J := \{\inf J, \sup J\}$ are the endpoints of J (they may be equal if J is reduced to one point) and |J| denotes the length of J (i.e. $|J| := \sup J - \inf J$). Let $\min(J)$ denote the middle point of J, that is, $\min(J) := \frac{\inf J + \sup J}{2}$.

An interval map $f: I \to I$ is *piecewise monotone* if there exists a finite partition of I into intervals such that f is monotone on each element of this partition.

An interval map f has a constant slope λ if f is piecewise monotone and if on each of its pieces of monotonicity f is linear and the absolute value of the slope coefficient is λ .

2 Štefan maps

We recall the definition of the Stefan maps of odd type $p \geq 3$.

Let $n \ge 1$ and p := 2n + 1. The Štefan map $f_p : [0, 2n] \to [0, 2n]$, represented in Figure 1, is defined as follows: it is linear on [0, n - 1], [n - 1, n], [n, 2n - 1] and [2n - 1, 2n], and

$$f_p(0) := 2n, \ f_p(n-1) := n+1, \ f_p(n) := n-1, \ f_p(2n-1) := 0, \ f_p(2n) := n.$$

Note that n = 1 is a particular case because 0 = n - 1 and n = 2n - 1.

Next proposition summarises the properties of f_p , see [5, Example 3.21] for the proof.

Proposition 2.1 The map f_p is topologically mixing, its type for Sharkovskii's order is p and $h_{top}(f) = \log \lambda_p$. Moreover, the point n is periodic of period p, and $f_p^{2k-1}(n) = n - k$ and $f_p^{2k}(n) = n + k$ for all $k \in [1, n]$.

3 Mixing map of given entropy and odd type

For every odd integer $p \geq 3$ and every real number $\lambda \geq \lambda_p$, we are going to build a piecewise monotone continuous map $f_{p,\lambda} \colon [0,1] \to [0,1]$ such that its type is p for Sharkovskii's order, its topological entropy is $\log \lambda$, and the map is topologically mixing. We will write f instead of $f_{p,\lambda}$ when there is no ambiguity on p,λ .

Figure 1: On the left: the map f_3 . On the right: the map f_p with p = 2n + 1 > 3.

The idea is the following: we start with the Stefan map f_p , we blow up the minimum into an interval and we define the map of this interval in such a way that the added dynamics increases the entropy without changing the type. At the same time, we make the slope constant and equal to λ , so that the entropy is $\log \lambda$ according to the following theorem [1, Corollary 4.3.13], which is due to Misiurewicz-Szlenk [4], Young [8] and Milnor-Thurston [3].

Theorem 3.1 Let f be a piecewise monotone interval map. Suppose that f has a constant slope $\lambda \geq 1$. Then $h_{top}(f) = \log \lambda$.

We will also need the next result (see the proof of Lemma 4.56 in [5]).

Lemma 3.2 Let $p \geq 3$ be an odd integer and $P_p(X) := X^p - 2X^{p-2} - 1$. Then $P_p(X)$ has a unique positive root, denoted by λ_p . Moreover, $P_p(x) < 0$ if $x \in [0, \lambda_p[$ and $P_p(x) > 0$ if $x > \lambda_p$. Let $\chi_p(X) := X^{p-1} - X^{p-2} - \sum_{i=0}^{p-2} (-X)^i$. Then $P_p(X) = (X+1)\chi_p(X)$, and thus $\chi_p(x) < 0$ if $x \in [0, \lambda_p[$ and $\chi_p(x) > 0$ if $x > \lambda_p$.

3.1 Definition of the map

We fix an odd integer $p \geq 3$ and a real $\lambda \geq \lambda_p$. Recall that $\lambda_p > \sqrt{2} > 1$ (Theorem 1.4).

We are going to define points ordered as follows:

$$x_{p-2} < x_{p-4} < \dots < x_1 < x_0 < x_2 < x_4 < \dots < x_{p-3} \le t < x_{p-1},$$

with $x_{p-2} = 0$, $x_{p-3} = \frac{1}{\lambda}$ and $x_{p-1} = 1$.

The points x_0, \ldots, x_{p-1} will form a periodic orbit of period p, that is, $f(x_i) = x_{i+1 \mod p}$ for all $i \in [0, p-1]$.

Remark 3.3 In the following construction, the case p=3 is degenerate. The periodic orbit is reduced to $x_1 < x_0 < x_2$ with $x_1 = 0, x_0 = \frac{1}{\lambda}, x_2 = 1$. We only have to determine the value of t.

The map $f: [0,1] \to [0,1]$ is defined as follows (see Figure 2):

• $f(x) := 1 - \lambda x$ for all $x \in [0, \frac{1}{\lambda}] = [x_{p-2}, x_{p-3}]$ (so that f(0) = 1 and $f(\frac{1}{\lambda}) = 0$),

- $f(x) := \lambda(x-t)$ for all $x \in [t,1]$ (so that f(t) = 0 and $f(1) = \lambda(1-t)$),
- definition on $\left[\frac{1}{\lambda}, t\right]$: we want to have $f(\left[\frac{1}{\lambda}, t\right]) \subset [0, x_{p-4}]$ (note that x_{p-4} is the least positive point among x_0, \ldots, x_{p-1}), with f of constant slope λ , in such a way that all the critical points except at most one are sent by f on either 0 or x_{p-4} . If $t = \frac{1}{\lambda}$, there is nothing to do. If $t > \frac{1}{\lambda}$, we set $\ell := t \frac{1}{\lambda}$ (length of the interval), $k := \left|\frac{\lambda \ell}{2x_{p-4}}\right|$,

$$J_i := \left[\frac{1}{\lambda} + (i-1) \frac{2x_{p-4}}{\lambda}, \frac{1}{\lambda} + i \frac{2x_{p-4}}{\lambda} \right] \quad \text{for all } i \in [1, k],$$

$$K := \left[\frac{1}{\lambda} + k \frac{2x_{p-4}}{\lambda}, t \right]. \tag{2}$$

If p = 3, we replace x_{p-4} (not defined) by 1 in the above definitions.

It is possible that there is no interval J_1,\ldots,J_k (if k=0) or that K is reduced to the point $\{t\}$. On each interval $J_1,\ldots J_k$, f is defined as the tent map of summit x_{p-4} : $f(\min J_i)=0$, f is increasing of slope λ on $[\min J_i, \min(J_i)]$ (thus $f(\min(J_i))=x_{p-4}$ because of the length of J_i), then f is decreasing of slope $-\lambda$ on $[\min(J_i), \max J_i]$ and $f(\max J_i)=0$. On K, f is defined as a tent map with a summit $< x_{p-4}$: $f(\min K)=0$, f is increasing of slope λ on $[\min K, \min(K)]$, then f is decreasing of slope $-\lambda$ on $[\min(K), \max K]$ and $f(\max K)=0$.

In this way, we get a map f that is continuous on [0,1], piecewise monotone, of constant slope λ . It remains to define t and the points $\{x_i\}_{0 \le i \le p-4}$ (recall that $x_{p-3} = \frac{1}{\lambda}$, $x_{p-2} = 0$ and $x_{p-1} = 1$).

We want these points to satisfy:

$$x_0 = \lambda(1-t) \tag{3}$$

and

$$\begin{cases} x_1 &= 1 - \lambda x_0 \\ x_2 &= 1 - \lambda x_1 \\ &\vdots \\ x_{p-3} &= 1 - \lambda x_{p-4} \end{cases}$$
(4)

and to be ordered as follows:

$$x_{p-2} < x_{p-4} < \dots < x_1 < x_0 < x_2 < x_4 < \dots < x_{p-3}$$
 (5)

$$\frac{1}{\lambda} \le t < x_{p-1}. \tag{6}$$

If p = 3, the system (4) is empty, and equation (5) is satisfied because it reduces to $0 = x_1 < x_0 = \frac{1}{\lambda}$.

According to the definition of f, the equations (3), (4), (5), (6) imply that $f(x_i) = x_{i+1}$ for all $i \in [0, p-2]$ and $f(x_{p-1}) = x_0$.

We are going to show that the system (4) is equivalent to:

$$\forall i \in [0, p-4], \quad x_i = \frac{(-1)^i}{\lambda^{p-i-2}} \sum_{j=0}^{p-i-3} (-\lambda)^j.$$
 (7)

We use a descending induction on i.

• According to the last line of (4), $x_{p-4} = \frac{1}{\lambda}(1-x_{p-3}) = \frac{1}{\lambda^2}(\lambda-1)$. This is (7) for i=p-4.

Figure 2: The map f for p = 5 and $\lambda = 2$.

• Suppose that (7) holds for i with $i \in [1, p-4]$. By (4), $x_i = 1 - \lambda x_{i-1}$, thus

$$x_{i-1} = -\frac{1}{\lambda}(x_i - 1)$$

$$= -\frac{(-1)^i}{\lambda^{p-i-1}} \left(\sum_{j=0}^{p-i-3} (-\lambda)^j - (-1)^i \lambda^{p-i-2} \right)$$

Since p is odd, $-(-1)^i \lambda^{p-i-2} = (-\lambda)^{p-i-2}$. Hence

$$x_{i-1} = \frac{(-1)^{i-1}}{\lambda^{p-i-1}} \sum_{j=0}^{p-i-2} (-\lambda)^j,$$

which gives (7) for i-1. This ends the proof of (7).

Equation (3) is equivalent to $t = 1 - \frac{1}{\lambda}x_0$. Thus, using (7), we get

$$t = \frac{1}{\lambda^{p-1}} \left(\lambda^{p-1} - \sum_{j=0}^{p-3} (-\lambda)^j \right).$$
 (8)

Conclusion: with the values of x_0, \ldots, x_{p-4} and t given by (7) and (8), the system of equations (3)-(4) is satisfied (and there is a unique solution). It remains to show that these points are ordered as stated in (5) and (6).

Let i be in [0, p-6]. By (7), we have

$$x_{i+2} - x_i = \frac{(-1)^i}{\lambda^{p-i-2}} \left(\lambda^2 \sum_{j=0}^{p-i-5} (-\lambda)^j - \sum_{j=0}^{p-i-3} (-\lambda)^j \right)$$
$$= \frac{(-1)^i}{\lambda^{p-i-2}} \left(\sum_{j=2}^{p-i-3} (-\lambda)^j - \sum_{j=0}^{p-i-3} (-\lambda)^j \right)$$
$$= \frac{(-1)^i}{\lambda^{p-i-2}} (\lambda - 1)$$

Since $\lambda - 1 > 0$, we have, for all $i \in [0, p - 6]$,

- $x_i < x_{i+2}$ if i is even,
- $x_{i+2} < x_i$ if i is odd.

By (7), $x_{p-4} = \frac{\lambda - 1}{\lambda^2}$. Since $\lambda > 1$, $x_{p-4} > 0 = x_{p-2}$. Again by (7),

$$x_0 - x_1 = \frac{1}{\lambda^{p-2}} \left(\sum_{j=0}^{p-3} (-\lambda)^j + \lambda \sum_{j=0}^{p-4} (-\lambda)^j \right)$$
$$= \frac{1}{\lambda^{p-2}} \left(\sum_{j=0}^{p-3} (-\lambda)^j - \sum_{j=1}^{p-3} (-\lambda)^j \right)$$
$$= \frac{1}{\lambda^{p-2}} > 0$$

thus $x_0 < x_1$. Moreover,

$$x_{p-3} - x_{p-5} = \frac{1}{\lambda} - \frac{\lambda^2 - \lambda + 1}{\lambda^3} = \frac{\lambda - 1}{\lambda^3} > 0$$

thus $x_{p-5} < x_{p-3}$. This several inequalities imply (5).

By (8), we have

$$t - \frac{1}{\lambda} = \frac{1}{\lambda^{p-1}} \left(\lambda^{p-1} - \lambda^{p-2} - \sum_{j=0}^{p-3} (-\lambda)^j \right) = \frac{1}{\lambda^{p-1}} \cdot \chi_p(\lambda),$$

where χ_p is defined in Lemma 3.2. According to this lemma, $\chi_p(\lambda) \geq 0$ (with equality iff $\lambda = \lambda_p$) because $\lambda \geq \lambda_p$. This implies that $t \geq \frac{1}{\lambda}$ (with equality iff $\lambda = \lambda_p$). Moreover, if $t \geq 1$, then $x_0 = \lambda(1-t) \leq 0$, which is impossible by (5); thus t < 1. Therefore, the inequalities (6) hold.

Finally, we have shown that the map $f_{p,\lambda} = f$ is defined as wanted.

3.2 Entropy

Corollary 3.4 $h_{top}(f_{p,\lambda}) = \log \lambda$.

Proof. This result is given by Theorem 3.1 because, by definition, $f_{p,\lambda}$ is piecewise monotone of constant slope λ with $\lambda > 1$.

3.3 Type

Lemma 3.5 Let $g: [0,1] \to [0,1]$ be a continuous map. Let \mathcal{A} be a finite family of closed intervals that form a pseudo-partition of [0,1], that is,

$$\bigcup_{A\in\mathcal{A}}A=\left[0,1\right]\quad and\quad \forall A,B\in\mathcal{A},\ A\neq B\Rightarrow\operatorname{Int}\left(A\right)\cap\operatorname{Int}\left(B\right)=\emptyset.$$

We set $\partial \mathcal{A} = \bigcup_{A \in \mathcal{A}} \partial A$. Let \mathcal{G} be the oriented graph whose vertices are the elements of \mathcal{A} and in which there is an arrow $A \dashrightarrow B$ iff $g(A) \cap \operatorname{Int}(B) \neq \emptyset$. Let x be a periodic point of period q for g such that $\{g^n(x) \mid n \geq 0\} \cap \partial \mathcal{A} = \emptyset$. Then there exist $A_0, \ldots, A_{q-1} \in \mathcal{A}$ such that $A_0 \dashrightarrow A_1 \dashrightarrow A_1 \dashrightarrow A_{q-1} \dashrightarrow A_0$ is a cycle in the graph \mathcal{G} .

Proof. For every $n \geq 0$, there exists a unique element $A_n \in \mathcal{G}$ such that $g^n(x) \in \operatorname{Int}(A_n)$ because $\{g^n(x) \mid n \geq 0\} \cap \partial \mathcal{A} = \emptyset$. We have $g^n(x) \in A_n$ and $g^{n+1}(x) \in \operatorname{Int}(A_{n+1})$, thus $g(A_n) \cap \operatorname{Int}(A_{n+1}) \neq \emptyset$; in other words, there is an arrow $A_n \dashrightarrow A_{n+1}$ in \mathcal{G} . Finally, $A_q = A_0$ because $g^q(x) = x$.

Proposition 3.6 The map $f_{p,\lambda}$ is of type p for Sharkovskii's order.

Proof. According to the definition of $f = f_{p,\lambda}$, x_0 is a periodic point of period p. It remains to show that f has no periodic point of period q with q odd and $3 \le q < p$.

We set $I_1 := \langle x_0, x_1 \rangle$, $I_i := \langle x_{i-2}, x_i \rangle$ for all $i \in [2, p-2]$ and $I_{p-1} := [t, 1]$, where $\langle a, b \rangle$ denotes the convex hull of $\{a, b\}$ (i.e. $\langle a, b \rangle = [a, b]$ or [b, a]). The intervals J_i, K have been defined in (1) and (2). The family $\mathcal{A} := \{I_1, \dots, I_{p-1}, J_1, \dots, J_k, K\}$ is a pseudo-partition of [0, 1]. Let \mathcal{G} be the oriented graph associated to \mathcal{A} for the map g = f as defined in Lemma 3.5. If $f(A) \supset B$, the arrow $A \dashrightarrow B$ is replaced by $A \to B$ (full covering). The graph \mathcal{G} is represented in Figure 3; a dotted arrow $A \dashrightarrow B$ means that $f(A) \cap \text{Int}(B) \neq \emptyset$ but $f(A) \not\supset B$ (partial covering).

Figure 3: Covering graph \mathcal{G} associated to f.

The subgraph associated to the intervals I_1, \ldots, I_{p-1} is the graph associated to a Štefan cycle of period p (see [5, Lemma 3.16]). The only additional arrows with respect to the Štefan graph are between the intervals J_1, \ldots, J_k, K on the one hand and I_{p-2} on the other hand. There is only one partial covering, which is $K \dashrightarrow I_{p-2}$.

Let q be an odd integer with $3 \leq q < p$. We easily see that, in this graph, there is no primitive cycle of length q (a cycle is primitive if it is not the repetition of a shorter cycle): the cycles not passing through I_1 have an even length, whereas the cycles passing through I_1 have

a length either equal to 1, or greater than or equal to p-1. Moreover, if x is a periodic point of period q, then $\{f^n(x) \mid n \geq 0\} \cap \partial \mathcal{A} = \emptyset$ (because the periodic points in $\partial \mathcal{A}$ are of period p). According to Lemma 3.5, f has no periodic point of period q. Conclusion: f is of type p for Sharkovskii's order.

3.4 Mixing

Proposition 3.7 The map $f_{p,\lambda}$ is topologically mixing.

Proof. This proof is inspired by [5, Lemmas 2.10, 2.11] and their use in [5, Example 2.13].

We will use several times that the image by $f = f_{p,\lambda}$ of a nondegenerate interval is a nondegenerate interval (and thus all its iterates are nondegenerate).

Let A be a nondegenerate closed interval included in [0,1]. We are going to show that there exists an integer $n \ge 0$ such that $f^n(A) = [0,1]$.

We set

$$C_0 := \bigcup_{i=1}^k \partial J_i \cup \{t\}, \quad C_1 := \{ \operatorname{mid}(J_i) \mid i \in [\![1,k]\!] \}, \quad c_K := \operatorname{mid}(K).$$

The set of critical points of f is $C_0 \cup C_1 \cup \{c_K\}$.

Step 1: there exists $i_0 \geq 0$ such that $f^{i_0}(A) \cap (\mathcal{C}_0 \cup \mathcal{C}_1) \neq \emptyset$ and there exists $n_0 \geq 0$ such that $0 \in f^{n_0}(A)$.

Let

$$J_i' := [\min J_i, \operatorname{mid}(J_i)] \text{ and } J_i'' := [\operatorname{mid}(J_i), \operatorname{max} J_i] \text{ for all } i \in [1, k],$$
$$\mathcal{F} := \left\{ \left[0, \frac{1}{\lambda}\right], [t, 1], K \right\} \cup \{J_i', J_i'' \mid i \in [1, k]\}.$$

If $A \subset B$ for some $B \in \mathcal{F}$ and $B \neq K$, then $|f(A)| = \lambda |A|$. If $A \subset K$, then $|f(A)| \geq \frac{\lambda |A|}{2}$ and $f(A) \subset I_{p-2}$, thus $|f^2(A)| = \lambda |f(A)| \geq \frac{\lambda^2}{2} |A|$. We have $\lambda > 1$ and $\frac{\lambda^2}{2} > 1$ because $\lambda > \sqrt{2}$ (Theorem 1.4). If for all $i \geq 0$, there exists $A_i \in \mathcal{F}$ such that $f^i(A) \subset A_i$, then what precedes implies that $\lim_{i \to +\infty} |f^i(A)| = +\infty$. This is impossible because $f^i(A) \subset [0,1]$. Thus there exist $i_0 \geq 0$ and $c \in \mathcal{C}_0 \cup \mathcal{C}_1$ such that $c \in f^{i_0}(A)$. If $c \in \mathcal{C}_0$, then f(c) = 0, and hence $0 \in f^{i_0+1}(A)$. If $c \in \mathcal{C}_1$, then $f(c) = x_{p-4}$ and hence $0 \in f^{i_0+3}(A)$. This ends step 1.

Step 2: there exist $n_1 \ge n_0$ and $j \in [1, p-1]$ such that $f^{n_1}(A) \supset I_j$.

Recall that $I_1 = [x_1, x_0]$, $I_i = \langle x_{i-2}, x_i \rangle$ for all $2 \le i \le p-2$ and $I_{p-1} = [t, 1] = [t, x_{p-1}]$. We set $I_0 := I_1$. By definition, for all $0 \le i \le p-1$, there exists $\delta_i > 0$ such that $I_i = \langle x_i, x_i + (-1)^{i+1} \delta_i \rangle$. Moreover, f is linear of slope $-\lambda$ on each of the intervals I_0, \ldots, I_{p-2} and of slope $+\lambda$ on I_{p-1} .

We set $B_{-2} := f^{n_0}(A)$. This is a nondegenerate closed interval containing 0, thus there exists b > 0 such that $B_{-2} = [0, b]$ with $0 = x_{p-2}$. We set $B_i := f^{i+2}(B_{-2})$ for all $i \ge -2$, and we define $m \ge -2$ as the least integer such that B_m is not included in a interval of the form I_j (such an integer m exists by step 1).

If $b > x_{p-4}$, then $B_{-2} \supset I_{p-2}$ and m = -2. Otherwise, $B_{-2} \subset I_{p-2}$ and $B_{-1} = [1 - \lambda b, 1] = [x_{p-1} - \lambda b, x_{p-1}]$ because $f|_{I_{p-2}}$ is of slope $-\lambda$. If $1 - \lambda b < t$, then $B_{-1} \supset I_{p-1}$ and m = -1. Otherwise, $B_{-1} \subset I_{p-1}$ and $B_0 = [x_0 - \lambda^2 b, x_0]$ because $f|_{I_{p-1}}$ is of slope $+\lambda$. We go on in a similar way.

• If m > 0, then $B_0 \subset I_0$ and $B_1 = [x_1, x_1 + \lambda^3 b]$.

• If m > 1, then $B_1 \subset I_1$ and $B_2 = [x_2 - \lambda^4 b, x_2]$.

:

• If m > p-3, then $B_{p-3} \subset I_{p-3}$ and $B_{p-2} = \langle x_{p-2}, x_{p-2} + (-1)^{p+1} \lambda^p b \rangle = [0, \lambda^p b]$.

Notice that B_{p-2} is of the same form as B_{-2} . What precedes implies that

$$\forall i \in \llbracket -2, m \rrbracket, \ B_i = \left\langle x_{i \bmod p}, x_{i \bmod p} + (-1)^{r+1} \lambda^{i+2} b \right\rangle, \text{ where } i = qp + r, \ r \in \llbracket 0, p - 1 \rrbracket,$$
$$\forall i \in \llbracket -2, m - 1 \rrbracket, \ B_i \subset I_{i \bmod p},$$
$$B_m \supset I_{m \bmod p}.$$

This ends step 2 with $n_1 := n_0 + m + 2$ and j := m.

Step 3: there exists $n_2 \ge n_1$ such that $f^{n_2}(A) = [0,1]$.

Let $n_1 \geq 0$ and let $j \in [1, p-1]$ be such that $f^{n_1}(A) \supset I_j$ (step 2). In the covering graph of Figure 3, we see that there exists an integer $q \geq 0$ such that, for every vertex C of the graph, there exists a path of length q, with only arrows of type \rightarrow , starting from I_j and ending at C. This implies that $f^q(I_j) = [0, 1]$, that is, $f^{n_1+q}(A) = [0, 1]$.

We have shown that, for every nondegenerate closed interval $A \subset [0,1]$, there exists n such that $f^n(A) = [0,1]$. We conclude that f is topologically mixing.

4 General case

4.1 Square root of a map

We first recall the definition of the so-called *square root* of an interval map. If $f: [0, b] \to [0, b]$ is an interval map, the square root of f is the continuous map $g: [0, 3b] \to [0, 3b]$ defined by

- $\forall x \in [0, b], g(x) := f(x) + 2b,$
- $\forall x \in [2b, 3b], \ q(x) := x 2b,$
- q is linear on [b, 2b].

The graphs of g and g^2 are represented in Figure 4.

The square root map has the following properties, see e.g. [5, Examples 3.22 and 4.62].

Proposition 4.1 Let f be an interval map of type n, and let g be the square root of f. Then g is of type 2n and $h_{top}(g) = \frac{h_{top}(f)}{2}$. If f is piecewise monotone, then g is piecewise monotone too.

4.2 Piecewise monotone map of given entropy and type

Theorem 4.2 Let $p \geq 3$ be an odd integer, let d be a non negative integer and λ a real number such that $\lambda \geq \lambda_p$. Then there exists a piecewise monotone map f whose type is $2^d p$ for Sharkovskii's order and such that $h_{top}(f) = \frac{\log \lambda}{2^d}$. If d = 0, the map f can be built in such a way that it is topologically mixing.

Proof. If d = 0, we take $f = f_{p,\lambda}$ defined in Section 3.

If d > 0, we start with the map $f_{p,\lambda}$, then we build the square root of $f_{p,\lambda}$, then the square root of the square root, etc. According to Proposition 4.1, after d steps we get a piecewise monotone interval map f of type $2^d p$ and such that $h_{top}(f) = \frac{h_{top}(f_{p,\lambda})}{2^d} = \frac{\log \lambda}{2^d}$.

Figure 4: The left side represents the map g, which is the square root of f. The right side represents the map g^2 .

Corollary 4.3 For every positive real number h, there exists a piecewise monotone interval map f such that $h_{top}(f) = h$.

Proof. Let $d \geq 0$ be an integer such that $\frac{\log \lambda_3}{2^d} \leq h$ and set $\lambda := \exp(2^d h)$. Then $\lambda \geq \lambda_3$ and, according to Theorem 4.2, there exists a piecewise monotone interval map f of type $2^d 3$ such that $h_{top}(f) = \frac{\log \lambda}{2^d} = h$.

References

- [1] Ll. Alsedà, J. Llibre, and M. Misiurewicz. Combinatorial dynamics and entropy in dimension one, volume 5 of Advanced Series in Nonlinear Dynamics. World Scientific Publishing Co. Inc., River Edge, NJ, second edition, 2000.
- [2] L. Block, J. Guckenheimer, M. Misiurewicz, and L. S. Young. Periodic points and topological entropy of one dimensional maps. In *Global Theory of Dynamical Systems*, Lecture Notes in Mathematics, no. 819, pages 18–34. Springer-Verlag, 1980.
- [3] J. Milnor and W. Thurston. On iterated maps of the interval. In *Dynamical systems (College Park, MD, 1986–87)*, volume 1342 of *Lecture Notes in Math.*, pages 465–563. Springer, Berlin, 1988.
- [4] M. Misiurewicz and W. Szlenk. Entropy of piecewise monotone mappings. $Studia\ Math.,\ 67(1):45-63,\ 1980.$
- [5] S. Ruette. Chaos on the interval. University Lectures series, No. 67. AMS, 2017.
- [6] A. N. Sharkovsky. Co-existence of cycles of a continuous mapping of the line into itself (Russian). Ukrain. Mat. Ž., 16:61–71, 1964. English translation, J. Bifur. Chaos Appl. Sci. Engrg., 5:1263–1273, 1995.
- [7] P. Štefan. A theorem of Šarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line. *Comm. Math. Phys.*, 54(3):237–248, 1977.
- [8] L. S. Young. On the prevalence of horseshoes. Trans. Amer. Math. Soc., 263(1):75–88, 1981.