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ABSTRACT

For a continuous map on a topological graph containing a unique loop

S it is possible to define the degree and, for a map of degree 1, rotation

numbers. It is known that the set of rotation numbers of points in S is

a compact interval and for every rational r in this interval there exists

a periodic point of rotation number r. The whole rotation set (i.e., the

set of all rotation numbers) may not be connected and it is not known in

general whether it is closed.

The graph sigma is the space consisting in an interval attached by one

of its endpoints to a circle. We show that, for a map of degree 1 on the

graph sigma, the rotation set is closed and has finitely many connected

components. Moreover, for all rational numbers r in the rotation set, there

exists a periodic point of rotation number r.

1. Introduction

In [2] a rotation theory is developed for continuous self maps of degree 1 of

topological graphs having a unique loop, using the ideas and techniques of

[4, 3]. A rotation theory is usually developed in the universal covering space by

using the liftings of the maps under consideration. The universal covering of

a graph containing a unique loop is an “infinite tree invariant by translation”

(see Figure 1). It turns out that the rotation theory on the universal covering
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of a graph with a unique loop can be easily extended to the setting of infinite

graphs that look like the space Ĝ from Figure 2. These spaces are defined in

detail in Section 2.1 and called lifted graphs. Each lifted graph T has a subset

T̂ homeomorphic to the real line R that corresponds to an “unwinding” of a

distinguished loop of the original graph. In the sequel, we identify T̂ with R.

T

... ...

G

Figure 1. G is the graph σ, its universal covering is T .

G

... ...

G

Figure 2. The graph G is unwound with respect to the bold

loop to obtain Ĝ, which is a lifted graph.

Given a lifted graph T and a map F from T to itself of degree one, there is

no difficulty to extend the definition of rotation number to this setting in such

a way that every periodic point still has a rational rotation number as in the

circle case. However, the obtained rotation set Rot(F ) may not be connected.

Despite this fact, it is proven in [2] that the set RotR(F ) corresponding to the

rotation numbers of all points belonging to R has properties which are similar

to (although weaker than) those of the rotation interval for a circle map of

degree one. Indeed, this set is a compact non-empty interval; if p/q ∈ RotR(F )

then there exists a periodic point of rotation number p/q, and if in addition
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p/q ∈ Int (RotR(F )) then for all large enough positive integers n there exists a

periodic point of period nq of rotation number p/q.

We conjecture that the whole rotation set Rot(F ) is closed. In this paper, we

prove that, when the space T is the universal covering of the graph σ consisting

in an interval attached by one of its endpoint to a circle (see Figure 1), then

the rotation set is the union of finitely many compact intervals. Moreover, all

rational points r in Rot(F ) are rotation numbers of periodic points. It turns

out that the proofs extend to a class of maps on graphs that we call σ-like maps,

which are defined in Section 2.3.

The paper is organised as follows. In Section 2, we give the definitions of

the objects we deal with: lifted graphs, maps of degree 1, σ-like maps, rotation

numbers and rotation sets. In Section 3, we recall the notion of positive covering

and state some of its properties, which are key tools to find periodic points. In

Section 4, we first partition the space T according to some dynamical properties,

then we prove the main result, which is done is several steps.

2. Definitions and elementary properties

2.1. Lifted graphs. A (topological) finite graph is a compact connected

set G containing a finite subset V such that each connected component of G\V
is homeomorphic to an open interval.

The aim of this section is to define in detail the class of lifted graphs where

we develop the rotation theory. They are obtained from a topological graph

by unwinding one of its loops. This gives a new space that contains a subset

homeomorphic to the real line and that is “invariant by a translation” (see

Figures 1 and 2). In [2], a larger class of spaces called lifted spaces is defined.

Definition 2.1: Let T be a connected closed topological space. We say that

T is a lifted graph if there exist a homeomorphism h from R into T , and a

homeomorphism τ : T → T such that

(i) τ(h(x)) = h(x+ 1) for all x ∈ R,

(ii) the closure of each connected component of T \ h(R) is a finite graph

that intersects h(R) at a single point,

(iii) the number of connected components C of T \ h(R) such that

C ∩ h([0, 1]) �= ∅ is finite.

The class of all lifted graphs is denoted by T◦.
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To simplify the notation, in the rest of the paper we identify h(R) with R

itself. In this setting, the map τ can be interpreted as a translation by 1. So,

for all x ∈ T we write x+ 1 to denote τ(x). Since τ is a homeomorphism, this

notation can be extended by denoting τm(x) by x+m for all m ∈ Z.

Because of (ii), not all infinite graphs obtained by unwinding a finite graph

with a distinguished loop are lifted graphs. The essential property of this class

is the existence of a natural retraction from T to R.

Definition 2.2: Let T ∈ T◦. The retraction r : T → R is the continuous map

defined as follows. When x ∈ R, then r(x) = x. When x /∈ R, there exists a

connected component C of T \R such that x ∈ C and C intersects R at a single

point z, and we let r(x) = z.

It can be easily shown that the retraction r is a continuous map.

2.2. Maps of degree 1 and rotation numbers. A standard approach to

study the periodic points and orbits of a graph map is to work at lifting level

with the periodic (mod 1) points. The results on the lifted graph can obviously

be pulled back to the original graph. Moreover, the rotation numbers have a

signification only for maps of degree 1, as in the case of circle maps. In this

paper, we deal only with maps of degree 1 on lifted graphs.

Definition 2.3: Let T ∈ T◦. A continuous map F : T → T is of degree 1 if

F (x+ 1) = F (x) + 1 for all x ∈ T .

A point x ∈ T is called periodic (mod 1) for F if there exists a positive

integer n such that Fn(x) ∈ x + Z. The period of x is the least integer n

satisfying this property, that is, Fn(x) ∈ x + Z and F i(x) �∈ x + Z for all

1 ≤ i ≤ n− 1.

The next easy lemma summarises the basic properties of maps of degree 1

(see, for instance, [1, Section 3.1]).

Lemma 2.4: Let T ∈ T◦ and F : T → T be a continuous map of degree 1. The

following statements hold for n ∈ N, k ∈ Z and x ∈ T :

(i) Fn(x+ k) = Fn(x) + k.

(ii) (F + k)n(x) = Fn(x) + kn.

(iii) If G : T → T is another continuous map of degree 1, then F ◦ G is a

map of degree 1. In particular, Fn is of degree 1 for all n ≥ 1.
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We define three types of rotation numbers.

Definition 2.5: Let T ∈ T◦, F : T → T be a continuous map of degree 1 and

x ∈ T . We set

ρ
F
(x) = lim inf

n→+∞
r ◦ Fn(x) − r(x)

n
and

ρ
F
(x) = lim sup

n→+∞
r ◦ Fn(x)− r(x)

n
.

When ρ
F
(x) = ρ

F
(x), then this number is denoted by ρ

F
F (x) and called the

rotation number of x.

We now give some elementary properties of rotation numbers (see [2, Lemma

1.10]).

Lemma 2.6: Let T ∈ T◦, F : T → T be a continuous map of degree 1, x ∈ T ,

k ∈ Z and n ∈ N.

(i) ρ
F
(x+ k) = ρ

F
(x).

(ii) ρ
(F+k)

(x) = ρ
F
(x) + k.

(iii) ρ
Fn (x) = nρ

F
(x).

The same statements hold with ρ instead of ρ.

An important object that synthesises all the information about rotation num-

bers is the rotation set (i.e., the set of all rotation numbers). Since we have

three types of rotation numbers, we have several kinds of rotation sets.

Definition 2.7: Let T ∈ T◦ and F : T → T be a continuous map of degree 1.

For S ⊂ T we define the following rotation sets:

Rot+S (F ) = {ρ
F
(x) | x ∈ S},

Rot−S (F ) = {ρ
F
(x) | x ∈ S},

RotS(F ) = {ρ
F
(x) | x ∈ S and ρ

F
(x) exists}.

When S = T , we omit the subscript and we write Rot+(F ), Rot−(F ) and

Rot(F ) instead of Rot+T (F ), Rot−T (F ) and RotT (F ), respectively.

2.3. Sigma-like maps. Let T ∈ T◦ and F : T → T be a continuous map of

degree 1. Define

TR =
⋃
n≥0

Fn(R)
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and XF = T \ TR ∩ r−1([0, 1)) (see Figure 3). Then TR ∈ T◦ (by Lemma 5.2 in

[2]), XF is composed of finitely many finite graphs and T = TR ∪ (XF + Z).

If T is the lifting of the graph σ (see Figure 1), then XF is either empty, or

an interval with an endpoint in TR. Maps with the same property will be called

σ-like maps.

XF

0 1

Figure 3. Illustration of the sets TR (in bold) and XF (thin

line). This is a σ-like map.

Definition 2.8: Let T ∈ T◦ and F : T → T be a continuous map of degree 1. If

XF is either empty, or an interval such that XF ∩ TR is reduced to an endpoint

of XF , we say that F is a σ-like map and we write F ∈ Cσ
1 (T ).

Remark 2.9: If F is a σ-like map, then so is Fn, because XFn ⊂ XF .

This paper is devoted to the study of the rotation set of σ-like maps when

XF �= ∅. The study of the rotation set RotTR
(F ) has already been done in [2].

3. Positive covering

Let F ∈ Cσ
1 (T ). The interval XF , when it is not empty, may be endowed with

two opposite orders. We choose the one such that minXF is the one-point

intersection XF ∩ TR. The retraction map rX : T → XF can be defined in a

natural way by rX(x) = x if x ∈ XF and rX(x) = minXF if x ∈ TR.

The notion of positive covering for subintervals of R has been introduced in [2].

It can be extended for subintervals of any subset of T on which a retraction can

be defined. In this paper, we shall use positive covering on XF . All properties of

positive covering remain valid in this context. In particular, if a compact interval

I positively F -covers itself, then F has a fixed point in I (Proposition 3.5).
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Definition 3.1: Let T ∈ T◦, F ∈ Cσ
1 (T ), I, J be two non-empty compact subin-

tervals of XF , n a positive integer and p ∈ Z. We say that I positively

Fn-covers J + p and we write I
+−→
Fn

J + p if there exist x ≤ y in I such that

rX(Fn(x) − p) ≤ min J and rX(Fn(y) − p) ≥ max J . In this situation, I + q

positively Fn-covers J + p+ q for all q ∈ Z.

Remark 3.2: If Fn(x) ∈ TR and J ⊂ XF , then the inequality rX(Fn(x) − p) ≤
min J is automatically satisfied. We shall often use this remark to prove that

an interval positively covers another.

We introduce some definitions in order to handle sequences of positive cover-

ings.

Definition 3.3: Let T ∈ T◦ and F ∈ Cσ
1 (T ). If we have the following sequence

of positive coverings:

C : I0 + p0
+−→

Fn1
I1 + p1

+−→
Fn2

I2 + p2 · · · · · · Ik−1 + pk−1
+−→

Fnk
Ik + pk

(where I0, . . . , Ik are non-empty compact subintervals of XF , n1, . . . , nk are

positive integers and p0, . . . , pk ∈ Z), then C is called a chain of intervals for F .

Its length is LF (C) = n1+ · · ·+nk, and its weight is WF (C) = pk − p0 (notice

that a weight can be negative). A point x follows the chain C if Fn1+···+ni(x) ∈
Ii + pi for all 0 ≤ i ≤ k.

If i ∈ Z, the chain C + i is the translation of C, that is

C + i : I0 + p0 + i
+−→

Fn1
I1 + p1 + i

+−→
Fn2

· · ·

· · · Ik−1 + pk−1 + i
+−→

Fnk
Ik + pk + i.

If C′ is another chain of intervals beginning with Ik + p for some p ∈ Z, then

CC′ is the concatenation of C and (C′−p+pk). If Ik = I0, then Cn is the n-times

concatenation C · · · C if n ≥ 1 and C0 is the empty chain.

The next properties are straightforward.

Lemma 3.4: Let T ∈ T◦ and F ∈ Cσ
1 (T ).

• If C is a chain of intervals for Fn, then it is also a chain of intervals for

F and LF (C) = nLFn(C) and WF (C) = WFn(C). Since the weight is

independent of the power of the map, we shall denote it by W (C).
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• If C, C′ are two chains of intervals for F that can be concatenated, then

LF (CC) = LF (C) + LF (C′) and W (CC) = W (C) +W (C′).

The next proposition is [2, Proposition 2.3] (rewritten in some less general

form).

Proposition 3.5: Let T ∈ T◦, F ∈ Cσ
1 (T ) and C be a chain of subintervals of

XF such that C starts with some interval I0 and ends with a translation of I0

(i.e., I0 + p for some p ∈ Z). Then there exists a point x0 following the chain C
such that FLF (C)(x0) = x0 +W (C).
The next lemma says that if two intervals I, J both positively cover trans-

lations of I and J , then every rational number in the rotation interval corre-

sponding to this “horseshoe” can be obtained as a rotation number of a periodic

(mod 1) point. This will be a key tool.

Lemma 3.6: Let T ∈ T◦, G ∈ Cσ
1 (T ), I, J be two non-empty compact subin-

tervals of XG and m1,m2 ∈ Z such that

I
+−→
G

I +m1 and I
+−→
G

J +m1,

J
+−→
G

I +m2 and J
+−→
G

J +m2.

Suppose that m1 ≤ m2. For every p/q ∈ [m1,m2], there exists C a chain

of intervals for G in which all the intervals are translations of I and J , and

p/q = W (C)/LG(C). Moreover, there exists a periodic (mod 1) point x ∈ I ∪ J

such that ρG(x) = p/q.

If p/q �= m2, then C can be chosen such that the first interval is I and the last

interval is a translation of I, and the periodic (mod 1) point x can be chosen in

I.

Proof. By considering G−m1 instead of G, we may suppose that m1 = 0 (use

Lemma 2.6). Since p/q ∈ [0,m2], we have 0 ≤ p ≤ m2q. If p/q = m2, we

take C : J +−→
G

J +m2. By Proposition 3.5, there exists a point x ∈ J such that

F (x) = x+m2, and hence ρG(x) = m2.

If p = 0, we take C : I +−→
G

I. If 1 ≤ p ≤ m2q − 1, we take

C : (I +−→
G

I)m2q−1−p(I
+−→
G

J)(J
+−→
G

J +m2)
p−1(J

+−→
G

I +m2).
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In these two cases, it is straightforward that W (C)/LG(C) = p/q. By Proposi-

tion 3.5, there exists a point x ∈ I such that GLG(C)(x) = x +W (C), and so x

is periodic (mod 1) and ρ
G
(x) = W (C)/LG(C) = p/q.

4. Study of the rotation set of F

Let T ∈ T◦ and F ∈ Cσ
1 (T ). Since T = TR ∪ (XF + Z), it is clear that

Rot(F ) = RotTR
(F ) ∪ RotXF (F ), and the same holds with Rot+ and Rot−.

The rotation set RotTR
(F ) has been studied in [2]. Consequently, it remains to

study RotXF (F ). The next theorem summarises the main properties of RotR(F )

(see Theorems 3.1, 3.11, 5.7 and 5.18 in [2]).

Theorem 4.1: Let T ∈ T◦ and F : T → T be a continuous map of degree 1.

Then RotR(F ) is a non-empty compact interval and, if TR is defined as above,

RotTR
(F ) = Rot+TR

(F ) = Rot−TR
(F ) = RotR(F ). Moreover, if r ∈ RotR(F ) ∩ Q,

then there exists a periodic (mod 1) point x ∈ TR such that ρ
F
(x) = r.

4.1. Partition of XF . If Fn(x) ∈ TR for some n, then ρF (x) ∈ RotTR
(F ).

Therefore, it is sufficient to consider the points x ∈ XF whose orbit does not fall

in TR, or equivalently the points in X∞ = {x ∈ XF | ∀n ≥ 1, Fn(x) ∈ XF +Z}.
Our first step consists in dividing XF according to the translations of the

images with respect to XF + Z. If F (x) ∈ XF + p and F (y) ∈ XF + p′ with
p �= p′, then necessarily there is a gap between x and y by continuity. Thus we

can include the points {x ∈ XF | F (x) ∈ XF + Z} in a finite union of disjoint

compact intervals such that, for each I among these intervals, there is a unique

integer p satisfying F (I) ∩ (XF + p) �= ∅.
Lemma 4.2: Let T ∈ T◦ and F ∈ Cσ

1 (T ). There exist an integer N ≥ 0, disjoint

non-empty compact subintervals X1, . . . , XN of XF and integers p1, . . . , pN in

Z such that

(i) X1 < X2 < · · · < XN (for the order on XF ),

(ii) F (Xi) ⊂ (XF + pi) ∪ TR for all 1 ≤ i ≤ N ,

(iii) F (minXi) = minXF + pi for all 1 ≤ i ≤ N ,

(iv) pi+1 �= pi for all 1 ≤ i ≤ N − 1,

(v) F (XF \ (X1 ∪ · · · ∪XN )) ∩ (XF + Z) = ∅.
Proof. If F (XF ) ∩ (XF + Z) = ∅, we take N = 0 and there is nothing to do.

Otherwise, we can define a1 = min{x ∈ XF | F (x) ∈ XF + Z} and p1 ∈ Z such
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that F (a1) ∈ XF + p1. We define

b1 = max{x ∈ [a1,maxXF ] | F (x) ∈ XF +p1 and F ([a1, x]) ⊂ (XF +p1)∪TR},
and X1 = [a1, b1]. Then X1 satisfies (ii). Moreover, F (minXF ) ∈ TR because

minXF ∈ TR, which implies that F ([minXF , a1]) contains minXF + p1. Thus

F (a1) = minXF + p1 by minimality of a1, which is (iii) for X1.

We define X2, . . . , XN inductively. Suppose that Xi = [ai, bi] and pi are

already defined and that bi verifies

bi = max{x ∈ [ai,maxXF ] | F (x) ∈ X + pi and F ([ai, x]) ⊂ (XF + pi) ∪ TR}.
If F ((bi,maxXF ]) ∩ (XF + Z) = ∅, then we take N = i and the construction is

over. Otherwise, we define

(1) ai+1 = inf{x ∈ (bi,maxXF ] | F (x) ∈ XF + Z}.
We first show that ai+1 is actually defined by a minimum in (1). By definition,

there exists a sequence of points xn ∈ (bi,maxXF ] tending to ai+1 and such

that F (xn) ∈ XF +Z. Let mn ∈ Z such that F (xn) ∈ XF +mn. By continuity

of r ◦F , limn→+∞ r ◦F (xn) = r ◦F (ai+1). Since r ◦F (xn) = r(minXF ) +mn,

this implies that the sequence of integers (mn)n≥0 is ultimately constant, and

equal to some integer pi+1. Then F (ai+1) = limn→+∞ F (xn) ∈ XF + pi+1. By

continuity, F ([ai+1, xn]) ⊂ (XF + pi+1) ∪ TR for all n large enough. Moreover,

F ((bi, ai+1))∩ (XF +Z) = ∅ by definition of ai+1. If pi+1 = pi, then, for n large

enough, we would have

F (xn) ∈ XF + pi and F ([bi, xn]) ∈ (X + pi) ∪ TR,

which would contradict the definition of bi because xn > bi. Hence pi+1 �= pi.

This implies that ai+1 > bi. Since F ((bi, ai+1)) is non-empty and included in

TR, necessarily F (ai+1) is equal to minXF + pi+1 by minimality of ai+1.

Finally, we define

bi+1=max{x∈[ai+1,maxXF ]:F (x)∈XF+pi+1 andF ([ai+1, x])⊂(XF+pi+1)∪TR},
and Xi+1 = [ai+1, bi+1]. Then Xi+1 > Xi and (ii), (iii) and (iv) are satisfied.

By uniform continuity of r◦F on the compact set XF , there exists δ > 0 such

that, if x, y ∈ XF with |x− y| < δ, then |r ◦ F (x)− r ◦ F (y)| < 1. This implies

that |ai+1− bi| ≥ δ, which ensures that the number of intervals Xi is finite, and

the construction ultimately stops. By construction, (v) is satisfied.
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Remark 4.3: • The fact that the sets X1, . . . , XN are intervals is very im-

portant because it will allow us to use positive coverings. Notice that

we cannot ask that F (Xi) ⊂ (XF + pi), even if we do not require that

pi+1 �= pi. Indeed, if minXF is a fixed point, the map F may oscil-

late infinitely many times between XF and TR in any neighbourhood

of minXF , and in this case the number of connected components of

F (XF ) ∩XF is infinite.

• In the partition of XF into X1, . . . , XN , XF \ (X1 ∪ · · · ∪XN ), the set

XF \ (X1 ∪ · · · ∪XN ) plays the role of “dustbin”, and we can code the

itinerary of every point in X∞ with respect to X1, . . . , XN . More pre-

cisely, if Fn(x) ∈ XF \(X1∪· · ·∪XN )+Z, then x �∈ X∞. Therefore, for

every x ∈ X∞, ∀n ≥ 0, ∃!ωn ∈ {1, . . . , N} such that Fn(x) ∈ Xωn + Z.

The rotation number of x can be deduced from this coding sequence

because ∀n ≥ 0, Fn(x) ∈ Xωn + pω0 + · · ·+ pωn−1.

• It can additionally be shown that F (maxXi) = minXF + pi for all

1 ≤ i ≤ N − 1 and, for i = N , either F (maxXN ) = minXF + pN , or

maxXN = maxXF .

4.2. Periodic (mod 1) points associated to the endpoints of rotation

sets. When proving that every rational number in the rotation set is the rota-

tion number of a periodic (mod 1) point, we shall make a distinction between

the interior and the boundary of the rotation sets (the same distinction is nec-

essary to deal with RotR(F ) [2]). For rational numbers in the boundary, harder

to handle, we shall need Lemma 4.5, which is analogous to [2, Lemma 5.16] in

our context. We first prove a technical but key lemma.

Lemma 4.4: Let T ∈ T◦ and F ∈ Cσ
1 (T ). Let Y be a compact interval included

in XF and Y∞ = {x ∈ Y | ∀i ≥ 1, F i(x) ∈ Y +Z}. Suppose that for all integers
i ≥ 1,

(2) if x ∈ Y∞ and F i(x) ∈ Y + k with k ≤ 0, then F i(x)− k < x.

Then there exists an integer M1 such that, if x ∈ Y∞ verifies ∀ 0 ≤ i ≤ M ,

∃ki ≤ 0, F i(x) ∈ X + ki, then M ≤ M1.

Proof. Let X1, . . . , XN and p1, . . . , pN be the intervals and integers given by

Lemma 4.2, and let d denote a distance on T . We are going to prove by

induction on n decreasing from N to 1 that there exists an integer Mn such
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that

(3) if x ∈ Y∞ verifies ∀ 0 ≤ i ≤ M, ∃ki ≤ 0, F i(x) ∈
N⋃

j=n

Xj + ki,

then M ≤ Mn. This property for n = 1 is the statement of the lemma (notice

that F i(x) ∈ Y +ki implies that F i(x) ∈ ⋃N
j=1 Xj +ki because x ∈ Y∞ ⊂ X∞).

First, let us prove the induction property for n = N . Let x ∈ Y∞ such that

∀ 0 ≤ i ≤ M , F i(x) ∈ XN + ki with ki ≤ 0. According to the definition of XN

and pN , this implies that for all 0 ≤ i ≤ M , ki = ipN and pN ≤ 0. Because

of (2), (F i(x) − ki)0≤i≤M is a decreasing sequence in Y . Then the induction

property for N is given by the following fact.

Fact: There exists an integerMN such that, if (F i(x)−ki)0≤i≤M is a decreasing

sequence in Y with x ∈ Y∞ and ki+1 ≤ ki for all 0 ≤ i ≤ M −1, then M ≤ MN .

Proof of the Fact. For all integers k ≤ 0, we define

δk = inf{d(x, F (x) − k) | x ∈ Y∞, F (x) ∈ Y + k}.

According to (2), for all x ∈ Y∞, F (x) − k �= x. Since F is continuous and Y∞
is compact, this implies that ∀k ≤ 0, δk > 0. Moreover, the set of integers k

such that F (Y ) ∩ (Y + k) �= ∅ is finite, and thus

δ = inf{δk | k ≤ 0, F (Y ) ∩ (Y + k) �= ∅} > 0.

Consequently, (F i(x) − ki)0≤i≤M is a decreasing sequence in Y and, for all

0 ≤ i ≤ M − 1, d(F i(x) − ki, F
i+1(x) − ki+1) ≥ δ. Since

d(x − k0, F
M (x)− kM ) =

M−1∑
i=0

d(F i(x)− ki, F
i+1(x) − ki+1),

this implies that diam (Y ) ≥ Mδ. This proves the fact if we take

MN ≥ diam(Y ) /δ.

Now, suppose that the induction property holds for n+1 with 2 ≤ n+1 ≤ N ,

and let x satisfy (3) for n. We can assume that there exists i ∈ {0, . . . ,M} such

that F i(x) ∈ Xn + ki (otherwise x already satisfies (3) for n+ 1). Let

i0 = min{i ∈ {0, . . . ,M} | F i(x)− ki ∈ Xn}.
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By choice of i0, F
i0 − ki0 ∈ Xn and ∀0 ≤ i ≤ i0 − 1, F i(x) ∈ ⋃N

j=n+1 Xj + ki.

Thus i0 − 1 ≤ Mn+1 by the induction property for n + 1. We split the proof

into two cases depending on pn.

Case 1: pn ≤ 0. If F i(x) ∈ Xn + ki, then F i+1(x) ∈ X + ki+1 with

ki+1 = ki + pn ≤ ki. According to (2), F i+1(x) − ki+1 < F i(x) − ki, and thus

F i+1(x) − ki+1 ∈ Xn because Xj > Xn if j > n. This implies that, for all

i0 ≤ i ≤ M , F i(x) − ki belongs to Xn, and (F i(x) − ki)i0≤i≤M is a decreasing

sequence in Y with ki+1 ≤ ki for all i0 ≤ i ≤ M − 1. Then the fact above says

thatM−i0 is bounded byMN . HenceM = i0+(M−i0) ≤ Mn+1+MN+1. This

proves the induction property for n in this case if we take Mn ≥ Mn+1+MN+1.

Case 2: pn ≥ 1. Let K = max{k ≥ 0 | F (Y ) ∩ (Y − k) �= ∅}. First we show

by induction on i that for all i ∈ {i0, . . . ,M},

(4) ki ≥ ki0 −K.

This is trivially true for i = i0. Suppose that (4) is true for i. If ki ≥ ki0 , then

ki+1 ≥ ki−K ≥ ki0 −K. If ki < ki0 , then F i(x)−ki < F i0(x)−ki0 by (2), and

thus F i(x)− ki ∈ Xn by definition of n. Hence ki+1 = ki + pn > ki ≥ ki0 −K.

Therefore, (4) is true for all i0 ≤ i ≤ M .

Let A be the number of integers k ≤ 0 such that Y + k contains some point

of (F i(x))i0≤i≤M . Equation (4) implies that A ≤ −ki0 + K + 1. Moreover,

−ki0 ≤ (i0 − 1)K and i0 − 1 ≤ Mn+1. Thus, if we set A0 = (Mn+1 + 1)K + 1,

we have A ≤ A0, with A0 a constant independent of x, i0,M . By Dirichlet’s

drawer principle, there exists an integer k such that Y + k contains q points

points among (F i(x))i0≤i≤M with q ≥ (M − i0)/A0.

We are going to show that this implies that M − i0 is bounded, using an

argument taken from the proof of [2, Lemma 5.17]. Let i1 < i2 < · · · < iq be

the integers among {i0, . . . ,M} such that F ij (x) ∈ Y + k for all 1 ≤ j ≤ q.

According to (2), (F ij (x))1≤j≤q is a decreasing sequence in Y +k. This implies

that

(5) d(F iq (x), F i1(x)) =

q−1∑
j=1

d(F ij (x), F ij+1 (x)).

For j = 1, . . . , q − 1, we set Δj = ij+1 − ij. We also set

c = #{j ∈ {1, . . . , q − 1} | Δj ≤ 2A0}.
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There are q− 1− c integers j such that Δj ≥ 2A0 +1, and for the rest we have

Δj ≥ 1. Thus we have

M − i0 ≥ iq − i1 = Δ1 + · · ·+Δq−1 ≥ c+ (2A0 + 1)(q − 1− c).

Hence

c ≥ (2A0 + 1)(q − 1)− (M − i0)

2A0
≥ q − 1− M − i0

2A0
.

Since q ≥ M−i0
A0

, we get that

(6) c ≥ M − i0
2A0

− 1.

Let d(i) = min{d(F i(x), x) | x ∈ Y∞, F i(x) ∈ Y }. For every i ≥ 1, d(i) > 0

because ∀x ∈ Y∞, F i(x) �= x by (2). We have d(F ij+1 (x), F ij (x)) ≥ d(Δj). In

Equation (5), there are c integers j such that Δj ≤ 2A0. Thus we get that

d(F iq (x), F i1 (x)) ≥ cD, where D = min{d(1), . . . , d(2A0)} > 0. It follows that

diam (X) ≥ cD and thus, by (6),

M − i0 ≤ 2A0

(
diam (X)

D
+ 1

)
.

Finally,

M = i0 + (M − i0) ≤ MN + 2A0

(
diam (X)

D
+ 1

)
+ 1.

This proves the induction property for n in case 2, and this concludes the proof

of the lemma.

The next lemma is aimed to be applied first with T ′ = TR, Y = XF and

Z = X1, whereX1 is defined in Lemma 4.2. After dealing with X1, an induction

will be done to deal with X2, . . . , XN , that is why the lemma is stated with

general notations.

Lemma 4.5: Let T ∈ T◦ and F ∈ Cσ
1 (T ). Let T

′ be a closed connected subset

of T such that TR ⊂ T ′, T ′+1 = T ′ and F (T ′) ⊂ T ′. Let Y denote the compact

subinterval of XF equal to T \ T ′ ∩ r−1([0, 1)) and define

Y∞ = {x ∈ Y | ∀n ≥ 1, Fn(x) ∈ Y + Z}.
Let Zbe a compact subinterval of Y such that F (minZ)∈T ′ and F (Z)∩(Z+Z)�=∅.
Assume that inf RotZ∩Y∞(F ) ≥ p/q with p ∈ Z and q ∈ N, and

∀x ∈
⋃
n≥0

(Fn(Z) + Z) ∩ Y∞, ∀n ≥ 1, Fnq(x) �= x+ np.
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Then inf RotZ∩Y∞(F ) > p/q.

Proof. We note x0 = minY and Y ′ =
⋃

n≥0(F
n(Z) + Z) ∩ Y. For all n ≥ 1,

Fn(minZ) ∈ T ′ (because T ′ is F -invariant), which implies that (Fn(Z)+Z)∩Y
is either empty, or an interval containing x0. In addition, Z ∩ (F (Z) + Z) is

non-empty by assumption, and thus Y ′ is a non-empty compact subinterval of

Y containing x0. Moreover, (F (Y ′) + Z) ∩ Y ⊂ Y ′, and thus

Y ′ ∩ Y∞ = {x ∈ Y ′ | ∀n ≥ 1, Fn(x) ∈ Y ′ + Z}.
Let Y ′′ =

⋃
n≥0(F

n(Z)+Z)∩Y . Since ρ
F
(x) = ρ

F
(Fn(x)+k) for all n ≥ 0 and

k ∈ Z, it is clear that RotZ∩Y∞(F ) = RotY ′′∩Y∞(F ). The set Y ′′ is an interval

and Y ′ \Y ′′ is either empty, or reduced to {maxY ′}. If Y ′ \Y ′′ is non-empty, it

can be shown that maxY ′ is a fixed (mod 1) point and that there exists a point

z ∈ Z whose orbit is attracted by maxY ′, and hence ρ
F
(z) = ρ

F
(maxY ′). The

proof is not straightforward, but it is identical to the proofs of Lemma 5.3 and

Theorem 5.5 in [2], and thus we do not repeat it. As a consequence, we get that

RotZ∩Y∞(F ) = RotY ′∩Y∞(F ).

Let x ∈ Y ′ ∩ Y∞, and for all i ≥ 1 let ki ∈ Z such that F i(x) ∈ Y + ki.

Suppose that Fnq(x) − knq ≥ x. Then, using that F i(x0) ∈ T ′ and F i(x) ∈ Y

for all i ≥ 0, we get

[x0, x]
+−→
F

[x0, F (x)] + k1
+−→
F

· · · +−→
F

[x0, F
nq−1(x)] + knq−1

+−→
F

[x0, x] + knq.

According to Proposition 3.5, there exists y ∈ [x0, x] ⊂ Y ′ such that Fnq(y) =

y + knq and ∀ 0 ≤ i ≤ nq, F i(y) ∈ Y + Z. Hence y ∈ Y ′ ∩ Y∞. By assumption,

knq cannot be equal to np. Moreover, ρ
F
(y) = knq/nq ∈ RotZ∩Y∞(F ), thus

knq > np. Therefore, if we set G = F q − p, we have, for all n ≥ 1,

if x ∈ Y ′ ∩ Y∞ and Gn(x) ∈ Y + k with k ≤ 0 then Gn(x) − k < x.

We can apply Lemma 4.4 to the map G and the interval Y ′, and we get that

there exists an integer M1 such that

(7)

if x ∈ Y ′∩Y∞ verifies ∀ 1 ≤ n ≤ M, ∃ kn ≤ 0, Gn(x) ∈ Y +kn, then M < M1.

Now let x ∈ Z ∩ Y∞. For all n ≥ 0, Gn(x) ∈ Y ′ + Z. According to (7), there

exist an increasing sequence of positive integers (ni)i≥1 and integers (ki)i≥1

such that

∀i ≥ 1, Gni(x) ∈ Y ′ + ki, ni+1 − ni ≤ M1 and ki+1 ≥ ki + 1.
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This implies that ρ
G
(x) = qρ

F
(x)− p ≥ 1/M1 > 0. This concludes the proof of

the lemma.

Let us restate Lemma 4.5 when T ′ = TR, Y = XF and Z = X1: if

inf RotX1∩X∞(F ) = p/q and F (X1) ∩ (X1 + Z) �= ∅, then there exist a point

x ∈ ⋃
n≥0(F

n(X1) + Z)∩X∞ such that x is periodic (mod 1) and ρF (x) = p/q.

Notice that the assumption F (X1) ∩ (X1 + Z) �= ∅ is fulfilled as soon as

RotX1∩X∞(F ) �= ∅. Indeed, if F (X1)∩ (X1+Z) = ∅, then F (X1)∩ (XF +Z) ⊂
[minXF ,minX1), and thus X1 ∩X∞ = ∅.

4.3. Rotation set of X1. In the sequel, we shall heavily use the fact that XF

is an interval with an endpoint in TR. By definition, minXF belongs to TR and

TR is invariant by F . Hence F (minXF ) ∈ TR. Therefore, if I is a subinterval of

XF such that min I = minXF and F (I) ∩XF �= ∅, then necessarily F (I) ∩XF

is an interval containing minXF . This simple observation allows us to study

the rotation set of the interval X1 defined in Lemma 4.2. This is done in

Proposition 4.7, by considering T ′ = TR and Y1, . . . , YM = X1, . . . , XN . When

this is done for X1, the idea is to proceed by induction for the rotation sets of

X2, . . . , XN , which is why the proposition is stated with more general notations.

In the proof of Proposition 4.7, we shall need the next, technical lemma.

Lemma 4.6: Let (nk)k≥0 be a sequence of real numbers bounded from above

by some constant C. Let ε > 0,

L = lim sup
k→+∞

n0 + · · ·+ nk−1

k

and l < L− ε. Then there exists an integer k ≥ 1 such that n0+···+nk−1

k ≥ L− ε

and nk �= l.

Proof. Let K be an integer such that C/K < ε/2. Let

E =

{
k ∈ Z+

∣∣ n0 + · · ·+ nk

k + 1
≥ L− ε/2

}
.

The set E is infinite by definition of L. We are going to do a proof by contra-

diction. We assume that

(8) nk = l for all k ∈ E such that k > K.
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If E contains all integers n ≥ N for some N , then L = l, which is absurd. Thus

there exists an integer k > K such that k ∈ E and k − 1 �∈ E. We have

n0 + · · ·+ nk

k + 1
=

k

k + 1
· n0 + · · ·+ nk−1

k
+

1

k + 1
nk.

By definition of E,

n0 + · · ·+ nk

k + 1
≥ L− ε/2 and

n0 + · · ·+ nk−1

k
< L− ε/2.

Moreover, nk = l < L− ε/2 by (8). Thus

n0 + · · ·+ nk

k + 1
<

k

k + 1
(L− ε/2) +

1

k + 1
(L− ε/2) = L− ε/2,

which is a contradiction. Therefore, (8) does not hold, and there exists k ∈ E

such that k > K and nk �= l. Moreover,

n0 + · · ·+ nk−1

k
=
k + 1

k
· n0 + · · ·+ nk

k + 1
− nk

k

>
n0 + · · ·+ nk

k + 1
− C

K

>L− ε/2− ε/2 = L− ε.

Such an integer k is suitable.

Proposition 4.7: Let T ∈ T◦ and F ∈ Cσ
1 (T ). Let T ′ be a connected sub-

set of T such that TR ⊂ T ′, T ′ + 1 = T ′ and F (T ′) ⊂ T ′. Let Y denote

the compact subinterval of XF equal to T \ T ′ ∩ r−1([0, 1)) and define Y∞ =

{x ∈ Y | ∀n ≥ 1, Fn(x) ∈ Y + Z}. Let Y1, . . . , YM be disjoint compact subin-

tervals of Y and q1, . . . , qM ∈ Z such that:

(a) Y1 < · · · < YM ,

(b) F (Yi) ⊂ (Y + qi) ∪ T ′ for all 1 ≤ i ≤ M ,

(c) F (minY1) = minY (mod 1),

(d) F (Y \ (Y1 ∪ · · · ∪ YM )) ∩ (Y + Z) = ∅.
Assume that Y1 ∩ Y∞ �= ∅. Then there exists a compact interval I ⊂ R such

that:

(i) RotY1∩Y∞(F ) = Rot+Y1∩Y∞(F ) = Rot−Y1∩Y∞(F ) = I,

(ii) I contains q1,

(iii) there exists a ∈ Y1∩Y∞ such that F (a) = a+q1 and [minY1, a)∩Y∞ = ∅,
(iv) if r ∈ Int (I)∩Q then there exists a periodic (mod 1) point x ∈ Y1∩Y∞

with ρF (x) = r.
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(v) if r ∈ ∂I ∩ Q then there exists a periodic (mod 1) point

x ∈ ⋃
n≥0(F

n(Y1) + Z) ∩ Y∞ with ρF (x) = r.

Proof. We first prove (iii) under an additional assumption:

(9) If ∃y0 ∈ Y1 such that ∀n ≥ 1, Fn(y0) ∈ Y1 + Z, then (iii) holds.

Let y0 satisfy (9), G = F − q1 and a0 = minY1. Then G(Y1) ⊂ Y ∪ T ′.
For all n ≥ 0, Gn(y0) ∈ Y1, and in particular Gn(y0) ≥ a0. We define induc-

tively a sequence of points (ai)i≥1 such that ai ∈ [ai−1, y0], G
i(ai) = a0 and

[a0, ai) ∩ Y∞ = ∅ for all i ≥ 1.

• Since G(a0) = minY (by assumption (c)) and G(y0) ≥ a0, we have

a0 ∈ G([a0, y0]) by continuity. Thus there exists a1 ∈ [a0, y0] such that

G(a1) = a0. We choose a1 minimum with this property, which implies

that G([a0, a1)) ∩ Y1 = ∅. Hence [a0, a1) ∩ Y∞ = ∅.
• Assume that a0, . . . , ai are already defined. Since Gi+1(ai) = G(a0) =

minY and Gi+1(y0) ≥ a0, the point a0 belongs to Gi+1([ai, y0]) by

continuity. Thus there exists ai+1 ∈ [ai, y0] such that Gi+1(ai+1) =

a0. We choose ai+1 minimum with this property, which implies that

Gi+1([ai, ai+1)) ∩ Y1 = ∅. Hence [ai, ai+1) ∩ Y∞ = ∅. This concludes

the construction of ai+1.

The sequence (ai)i≥0 is non-decreasing and contained in the compact interval

Y1. Therefore, a = limi→+∞ ai exists and belongs to Y1. Since G(ai+1) = ai,

we get that G(a) = a. In other words, F (a) = a+q1. This implies that a ∈ Y∞.

Moreover, [a0, a) =
⋃

i≥0[ai, ai+1), and thus [a0, a) ∩ Y∞ = ∅. This proves (9).
We split the rest of the proof into two cases.

Case 1: F (Y1) ∩ (Yi + Z) = ∅ for all i ≥ 2 (this includes the case M = 1).

Then F (Y1 ∩ Y∞) ⊂ Y1 + q1 and Fn(Y1 ∩ Y∞) ⊂ Y1 + nq1. Thus, for all

x ∈ Y1 ∩ Y∞, the rotation number ρ
F
(x) exists and is equal to q1. We take

I = {q1} and we get (i) and (ii).

Since Y1 ∩ Y∞ is not empty, there exists a point y such that ∀n ≥ 0, Fn(y) ∈
Y1 + Z. Then (9) gives (iii), which implies (v) in the present case, and (iv) is

empty.

Case 2: there exists i ≥ 2 such that F (Y1) ∩ (Yi + Z) �= ∅.
Since F (Y1) ⊂ (Y + q1) ∪ T ′, this implies that there exists x ∈ Y1 such that

F (x) ∈ Yi + q1, and thus F (x) ≥ max(Y1 + q1) because Y1 < Yi. Moreover,
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F (min Y1) = minY + q1 by assumption. Hence

(10) Y1
+−→
F

Y1 + q1.

By Proposition 3.5, there exists y ∈ Y1 such that F (y) = y + q1. Thus we can

use (9) to get (iii).

Let x ∈ Y∞. By assumption (d), for all n ≥ 0, there exists ωn ∈ {1, . . . ,M}
such that Fn(x) ∈ Yωn +Z. The sequence (ωn)n≥0 is called the itinerary of x.

The next two results are straightforward.

(11) ∀n ≥ 0, Fn(x) ∈ Yωn + qω0 + qω1 + · · ·+ qωn−1 .

ρ
F
(x) = lim sup

n→+∞

qω0 + qω1 + · · ·+ qωn−1

n
and

ρ
F
(x) = lim inf

n→+∞
qω0 + qω1 + · · ·+ qωn−1

n
;

if the limit exists, it is ρF (x).

(12)

Let S = supRot+Y1∩Y∞(F ). Necessarily, S ≥ q1 because q1 ∈ RotY1∩Y∞(F )

by (iii). We are going to show that [q1, S] ⊂ RotY1∩Y∞(F ). If S = q1 there is

nothing to prove, and so we suppose that S > q1. Let k be an integer such that

S > q1 + 1/k. Let yk be a point in Y1 ∩ Y∞ such that ρ
F
(yk) ≥ S − 1/2k, and

let (ωn)n≥0 denote the itinerary of yk. By (12),

lim sup
n→+∞

qω0 + qω1 + · · ·+ qωn−1

n
= ρ

F
(yk).

Applying Lemma 4.6 with L = ρ
F
(yk), l = q1 and ε = 1/2k, we get that there

exists an integer n such that

(13)
qω0 + qω1 + · · ·+ qωn−1

n
≥ ρ

F
(yk)− 1/2k ≥ S − 1/k > q1 and ωn �= 1.

By (11), Fn(yk) ∈ Yωn + qω0 + qω1 + · · · + qωn−1 . Since ωn �= 1, we have

Yωn > Y1, and thus Fn(yk) − (qω0 + qω1 + · · · + qωn−1) > maxY1. Moreover,

Fn(min Y1) ∈ Fn−1(T ′) ⊂ T ′ by assumption (c) and invariance of T ′. If we let

Ik = [min Y1, yk], Nk = qω0 + · · ·+ qωn−1 and nk = n, we have then

(14) Ik
+−→

Fnk
Y1 +Nk.

Since Ik ⊂ Y1, Equations (10) and (14) give

(15)
Ik

+−→
Fnk

Ik +Nk and Ik
+−→

Fnk
Y1 +Nk,

Y1
+−→

Fnk
Ik + nkq1 and Y1

+−→
Fnk

Y1 + nkq1.
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Let r ∈ [q1, S) ∩ Q. By (13), there exists an integer k such that Nk/nk > r.

We apply Lemma 3.6 with I = Y1, J = Ik, G = Fnk , m1 = nkq1, m2 = Nk and

p/q = rnk ∈ [q1nk, Nk):

∃ Cr a chain of intervals for F whose first and last intervals are

translations of Y1, such that r = W (Cr)/LF (Cr),
(16)

and

there exists a periodic (mod 1) point x ∈ Y1 with

ρF (x) =
1

nk
ρFnk (x) = r.

(17)

We need to show that x ∈ Y∞. This is a consequence of the following fact.

Fact: Let x ∈ Y1 such that Fn(x) ∈ Y1 + Z for infinitely many n. Then

either x ∈ Y∞, or there exists n such that Fn(x) is a fixed (mod 1) point in

Y1 ∩ Y∞ ∩ T ′.

Proof of the Fact. If ∀n ≥ 0, Fn(x) �∈ T ′, then x ∈ Y∞ by assumption (d) of the

proposition. Suppose on the contrary that there exists n0 such that Fn0(x) ∈ T ′.
Hence Fn(x) ∈ T ′ for all n ≥ n0. Let e = minY . By definition of Y , the set

Y ∩T ′ is included in {e} (we have not supposed that T ′ is closed, and thus Y ∩T ′

may be empty). Notice that Y1 ∩ T ′ is empty if minY1 > e. By assumption,

there exists n1 ≥ n0 such that Fn1(x) ∈ Y1 +Z. Hence Fn1(x) ∈ (Y1 +Z)∩ T ′.
This implies that Fn1(x) is equal to e (mod 1), minY1 = e, and e ∈ T ′. By

assumption (c) of the proposition, F (minY1) = e (mod 1). Thus, e is a fixed

(mod 1) point in Y1, and so e ∈ Y∞. This ends the proof of the fact.

Now, let α ∈ [q1, S]. To show that there exists x ∈ Y1 ∩ Y∞ with ρ
F
(y) = α,

we use the same method as in the proof of [2, Theorem 3.7]. We choose a

sequence of rational numbers ri in [q1, S) ∩ Q such that limi→+∞ ri = α. For

all i ≥ 1, let Cri be the chain of intervals given by (16). We define

Dn = (Cr1)i1(Cr2)i2 · · · (Crn)in .
Let An be the set of points that follow the chain Dn. This set is compact by

definition, and it is not empty because it contains at least a periodic (mod 1)

point by Proposition 3.5. Moreover, An+1 ⊂ An. Therefore, A =
⋂

n≥1 An �= ∅.
In the proof of [2, Theorem 3.7], it is shown that if the sequence (in)n≥1 in-

creases sufficiently fast and (|rin −α|)n≥1 is non-decreasing, then for all x ∈ A,

ρF (x) = α.
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Moreover, the fact above implies that for every x ∈ A there exists n

such that Fn(x) ∈ Y1 ∩ Y∞. Obviously, ρF (x) = ρF (F
n(x)). This proves

that [q1, supRot
+
Y1∩Y∞(F )] is included in RotY1∩Y∞(F ); in addition, (iv) holds

for all rational numbers r ∈ [q1, supRot
+
Y1∩Y∞(F )) by (17). We can apply

the same method to [inf Rot− Y1 ∩ Y∞(F ), q1]. Finally, if we define I =

[inf Rot−Y1∩Y∞(F ), supRot+Y1∩Y∞(F )], we get that I ⊂ RotY1∩Y∞(F ), q1 ∈ I

(which is (ii)) and (iv) holds for all r ∈ Int (I) ∩ Q. Since Rot+Y1∩Y∞(F ) and

Rot−Y1∩Y∞(F ) both contain RotY1∩Y∞(F ) and are included in I, this gives (i).

Now we prove (v) for min I (the case with the maximum is symmetric,

and ∂I is reduced to two points). Suppose that minRotY1∩Y∞(F ) = p/q.

We apply Lemma 4.5 with Z = Y1 and T ′. Since (iii) is fulfilled, the set

F (Z) ∩ (Z + Z) is not empty. By refutation of Lemma 4.5, we get that there

exists x ∈ ⋃
n≥0(F

n(Y1) + Z) ∩ Y∞ such that x is periodic (mod 1) for F and

ρ
F
(x) = p/q. This gives (v) and concludes the proof of the proposition.

Example 4.8: The periodic (mod 1) point x given by Proposition 4.7(v) may

not be in Y1.

Let T be the universal covering of the graph σ, and let F : T → T be the

continuous map of degree 1 such that F |R = Id and F is defined on the branch

of T by:

• F (a) = F (c) = a, F (b) = e, F (d) = a+ 1, F (e) = e+ 1,

• F is affine on each of the intervals [a, b], [b, c], [c, d], [d, e],

where [a, e] is a branch of T with a ∈ R and a < b < c < d < e. See Figure 4

for the picture of the map F . This entirely determines F because it is of degree

1.

XF is equal to [a, e] and the intervals given by Lemma 4.2 are X1 = [a, c]

(with p1 = 0) and X2 = [d, e] (with p2 = 1). F is an affine Markov map and the

restriction of its Markov graph to X1, X2 is given in Figure 5. See [2, Section

6.1] for general results on Markov maps in this context, and in particular how

it is possible to deduce periodic (mod 1) points and rotation numbers from the

Markov graph.

It can easily be deduced from the Markov graph of F that RotX1∩X∞(F ) =

[0, 1] and the unique periodic (mod 1) point x ∈ XF such that ρF (x) = 1 is

x = e, which does not belong to X1.

In addition, we notice that RotR(F ) = {0}. Thus Rot(F ) = [0, 1] and

RotR(F ) is not a connected component of Rot(F ).
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F
FX

a+1

d

a+1a
b
c

e

a

e=F(b) e+1=F(e)

X2

1X

Figure 4. The action of F on the branch XF .

. .
0

0

1
1

1X X2

Figure 5. The Markov graph of F restricted to the vertices

X1 and X2 (actually, X1 represents the two vertices [a, b] and

[b, c]). An arrow A
i−→ B means than F (A) ⊃ B + i.

4.4. Rotation set of F . Now, we are ready to prove that the set Rot(F )

is closed and has finitely many connected components, and that every rational

number in Rot(F ) is the rotation number of some periodic (mod 1) point. Notice

that in the following theorem, the intervals I0, . . . , Ik may be not disjoint; in

particular, I0 = RotR(F ) may not be a connected component of Rot(F ) (see

Example 4.8).

Theorem 4.9: Let T ∈ T◦, F ∈ Cσ
1 (T ) and

X∞ = {x ∈ XF | ∀n ≥ 1, Fn(x) ∈ XF + Z}.
Then there exist an integer k ≥ 0 and compact non empty intervals I0, . . . , Ik

in R such that:

• Rot(F ) = Rot+(F ) = Rot−(F ) = I0 ∪ · · · ∪ Ik,

• I0 = RotR(F ) = RotTR
(F ),

• ∀ 1 ≤ i ≤ k, ∀r ∈ Ii ∩ Q, there exists a periodic (mod 1) point x ∈ X∞
with ρF (x) = r,
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• ∀ 1 ≤ i ≤ k, Ii ∩ Z �= ∅.
Moreover, if N is the integer given by Lemma 4.2, then k ≤ N .

Proof. Consider X1, . . . , XN and p1, . . . , pN given by Lemma 4.2. We define

inductively T1, . . . , TN ⊂ T and I1, . . . , IN ⊂ R such that:

(a) Ti is a connected subset of T such that Ti+1 = Ti, F (Ti) ⊂ Ti and, for

all 2 ≤ i ≤ N , Ti−1 ∪Xi−1 ⊂ Ti;

(b) either Ii is empty, or Ii is a compact interval containing pi such that,

for all r ∈ Ii ∩ Q, there exists a periodic (mod 1) point x ∈ X∞ with

ρ
F
(x) = r;

(c) RotTi∪Xi(F ) = RotTi(F )∪ Ii, and the same equality is valid with Rot+

and Rot−;
(d) if i ≥ 2, RotTi(F ) = RotTi−1∪Xi−1(F ), and the same equality is valid

with Rot+ and Rot−.

Let T1 = TR. It satisfies (a). If X1 ∩ X∞ = ∅, we take I1 = ∅. Otherwise,

we apply Proposition 4.7 with T ′ = T1, Y = XF and X1, . . . , XN in place of

Y1, . . . , YM . It provides a compact interval I1 = I = RotX1∩X∞ that satis-

fies (b). Moreover, RotT1∪X1(F ) = RotT1(F ) ∪ RotX1∩X∞(F ), and the same

equality is valid with Rot+ and Rot−. Hence (c) is satisfied for i = 1.

Let i ≥ 2. Suppose that Tj and Ij are already defined for all 1 ≤ j ≤ i − 1,

and satisfy (a)–(d). Define

Ai = [minXF ,minXi−1) ∪Xi−1 ∪
(( ⋃

n≥1

Fn(Xi−1) + Z

)
∩XF

)
.

For all n ≥ 1, Fn(minXi−1) ∈ TR, and thus (Fn(Xi−1) + Z) ∩ XF is either

empty, or a compact subinterval of XF containing minXF . Therefore, Ai is a

subinterval of XF containing minXF and Xi−1. Let Ti = Ti−1 ∪ (Ai +Z). It is

a connected subset of T , Ti + 1 = Ti and Ti−1 ∪Xi−1 ⊂ Ti. Let us show that

F (Ti) ⊂ Ti. Let x ∈ Ti−1 ∪ Ai. We distinguish 3 cases.

• If x ∈ Ti−1 then F (x) ∈ Ti−1 by invariance of Ti−1.

• If x ∈ [minXF ,minXi−1), then either x ∈ X1 ∪ · · · ∪Xi−2 ⊂ Ti−1 and

F (x) ∈ Ti−1, or x ∈ XF \ (X1 ∪ · · · ∪XN ) and F (x) ∈ TR.

• If x ∈ (⋃
n≥0F

n(Xi−1) + Z
) ∩XF , then either

F (x) ∈ ( ⋃
n≥0

Fn(Xi−1) + Z
) ∩ (XF + Z) ⊂ Ai + Z, or F (x) ∈ TR.
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Consequently, F (Ti) ⊂ Ti, and (a) is satisfied. Moreover, what precedes also

shows that

RotTi(F ) = RotTi−1(F ) ∪RotXi−1(F ) = RotTi−1∪Xi−1(F ),

and the same equality holds with Rot+ and Rot−, which is (d) for i.

If F (Xi) ⊂ Ti, we take Ii = ∅ and (b)–(c) are clearly satisfied. Otherwise,

let b ∈ Xi such that F (b) �∈ Ti. Let Y = T \ Ti ∩ XF and

Y∞ = {x ∈ Y | ∀n ≥ 1, Fn(x) ∈ Y + Z}. The set Y is a compact subin-

terval of XF and Y ∩ Ti = {minY }. Since F (b) �∈ Ti, we have b ∈ Y by

invariance of Ti, and F (b) ∈ Y + pi because F (Xi) ⊂ (XF + pi) ∪ TR.

Let a = max(minXi,minY ). We can define c = min{x ∈ [a, b] | F (x)∈Y+Z}
because b ≥ a. Moreover, F (a) ∈ Ti because F (minXi) ∈ TR and F (minY ) ∈
F (Ti) ⊂ Ti. Therefore, F (c) = min Y (mod 1) by minimality. Let X ′

i =

[c,maxXi] ⊂ Xi. We apply Proposition 4.7 with T ′ = Ti and X ′
i, Xi+1, . . . , XN

in place of Y1, . . . , YM . We obtain a compact interval Ii = I = RotX′
i∩Y∞(F )

that satisfies (b) for i.

We have

X ′
i ∩ Y∞ = {x ∈ Xi | ∀n ≥ 0, Fn(x) �∈ Int (Ti)}.

Therefore, RotTi∪Xi(F ) = RotTi(F ) ∪ RotX′
i∩Y∞(F ) = RotTi(F ) ∪ Ii, and the

same equality holds with Rot+ and Rot−. Hence (c) is satisfied for i. This

concludes the construction of Ti and Ii.

Now, we end the proof of the theorem. SinceX1∪· · ·∪XN ⊂ TN∪XN , we have

F (T \(TN∪XN )) ⊂ TR ⊂ TN , and thus it is clear that Rot(F ) = RotTN∪XN (F ).

Combining this with (c) and (d), we get that

Rot(F ) =RotTN∪XN (F )

=RotTN (F ) ∪ IN

=RotTN−1∪XN−1(F ) ∪ IN

=RotTN−1(F ) ∪ IN−1 ∪ IN

= · · ·
=RotT1(F ) ∪ I1 ∪ · · · ∪ IN

and the same equalities hold with Rot+ and Rot−. Let I0 = RotR(F ). By

Theorem 4.1, I0 is a non-empty compact interval and I0 = RotTR
(F ) =

Rot+TR
(F ) = Rot−

R
(F ). To conclude, it remains to remove the empty intervals

among I1, . . . , IN .
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If the empty rotation intervals are not removed in the proof of Theorem 4.9,

then the theorem can be stated as follows:

Theorem 4.9
′
: Let T ∈ T◦ and F ∈ Cσ

1 (T ). Let X1, . . . , XN , p1, . . . , pN be

given by Lemma 4.2 and X∞ = {x ∈ XF | ∀n ≥ 1, Fn(x) ∈ XF + Z}. Then

there exist compact intervals I0, . . . , IN in R such that:

• Rot(F ) = Rot+(F ) = Rot−(F ) = I0 ∪ · · · ∪ Ik,

• I0 = RotR(F ) = RotTR
(F ),

• for all 1 ≤ i ≤ N , either Ii = ∅ or pi ∈ Ii,

• ∀ 1 ≤ i ≤ N, ∀r ∈ Ii ∩ Q, there exists a periodic (mod 1) point x ∈⋃
n≥0(F

n(Xi) + Z) ∩ X∞ with ρ
F
(x) = r; if, in addition, r ∈ Int (Ii),

then x can be chosen in Xi ∩X∞.
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