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ROTATION SETS FOR GRAPH MAPS OF DEGREE 1

by Lluís ALSEDÀ & Sylvie RUETTE (*)

Abstract. — For a continuous map on a topological graph containing a loop
S it is possible to define the degree (with respect to the loop S) and, for a map
of degree 1, rotation numbers. We study the rotation set of these maps and the
periods of periodic points having a given rotation number. We show that, if the
graph has a single loop S then the set of rotation numbers of points in S has some
properties similar to the rotation set of a circle map; in particular it is a compact
interval and for every rational α in this interval there exists a periodic point of
rotation number α.

For a special class of maps called combed maps, the rotation set displays the
same nice properties as the continuous degree one circle maps.

Résumé. — Pour une transformation continue sur un graphe topologique conte-
nant une boucle S, il est possible de définir le degré (par rapport à la boucle S) et,
quand la transformation est de degré 1, des nombres de rotation. Nous étudions
l’ensemble de rotation de ces transformations et les périodes des points périodiques
ayant un nombre de rotation donné. Nous montrons que, si le graphe a une unique
boucle S, alors l’ensemble des nombres de rotation des points de S a des proprié-
tés similaires à celles de l’ensemble de rotation d’une transformation du cercle ; en
particulier, c’est un intervalle compact et pour tout rationnel α dans cet intervalle
il existe un point périodique de nombre de rotation α.

Pour une classe particulière de transformations appelées transformations pei-
gnées, l’ensemble de rotation possède les mêmes bonnes propriétés que celui des
transformations continues de degré 1 sur le cercle.

Introduction

One of the basic problems in combinatorial and topological dynamics is
the characterisation of the sets of periods in dimension one. This problem
has its roots and motivation in the striking Sharkovskii Theorem [18, 19].

Keywords: Rotation numbers, graph maps, sets of periods.
Math. classification: 37E45, 37E25, 54H20, 37E15.
(*) Partially supported by the by MEC grant number MTM2005-021329.
Partially supported by the Marie Curie Fellowship number HPMF-CT-2002-02026 of the
European Community programme Human Potential.



1234 Lluís ALSEDÀ & Sylvie RUETTE

Since then, a lot of effort has been spent in finding characterisations of the
set of periods for more general one dimensional spaces.

One of the lines of generalisation of Sharkovskii Theorem consists on
characterising the possible sets of periods of continuous self maps on trees.
The first remarkable results in this line after [18] are due to Alsedà, Llibre
and Misiurewicz [5] and Baldwin [8]. In [5] it is obtained the characteri-
sation of the set of periods of the continuous self maps of a 3-star with
the branching point fixed in terms of three linear orderings, whereas in
[8] the characterisation of the set of periods of all continuous self maps of
n-stars is given (an n-star is a tree composed of n intervals with a common
endpoint). Further extensions of Sharkovskii Theorem are due to:

• Baldwin and Llibre [9] to continuous maps on trees such that all the
branching points are fixed,

• Bernhardt [10] to continuous maps on trees such that all the branching
points are periodic,

• Alsedà, Juher and Mumbrú [1, 3, 2, 4] to the general case of continuous
tree maps.

Another line of generalisation of Sharkovskii Theorem is to consider
spaces that are not contractile to a point. In particular topological graphs
which are not trees, the circle being the simplest one. This case displays a
new feature: While the sets of periods of continuous maps on trees can be
characterised using only a finite number of orderings, the sets of periods of
continuous circle maps of degree one contain the set of all denominators of
all rationals (not necessarily written in irreducible form) in the interior of
an interval of the real line. As a consequence, these sets of periods cannot
be expressed in terms of a finite collection of orderings. The result which
characterises the sets of periods of continuous circle maps of degree one is
due to Misiurewicz [16] and uses as a key tool the rotation theory. Indeed,
the sets of periods are obtained from the rotation interval of the map.

The characterisation of the sets of periods for circle maps of degree dif-
ferent from one is simpler than the one for the case of degree one. It is due
to Block, Guckenheimer, Misiurewicz and Young [12].

Finding a generalisation of the Sharkovskii Theorem for self maps of a
topological graph which is not the circle is a big challenge and in general
it is not known what the sets of periods may look like. However, in this
setting, one expects to find at least sets of periods of all possible types
appearing for tree and circle maps.

Two motivating results that give some insight on the kind of sets of
periods that one can find in this setting are [14] and [15]. The first of them
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deals with continuous self maps on a graph σ consisting on a circuit and an
interval attached at a unique branching point b such that the maps fix b.
The second one studies the continuous self maps of the 2-foil (that is, the
graph consisting on two circles attached at a single point).

Our aim is to go forward in the generalisation of [14] by using the ideas
and techniques of [16, 12]. To this end we need to develop a rotation theory
for continuous self maps of degree one of topological graphs having a unique
circuit and, afterwards, we need to apply this theory to the characterisation
of the sets of periods of such maps.

In this paper we propose a rotation theory for the above class of maps
and we study the relation between the rotation numbers and the periodic
orbits. The use of this theory in the characterisation of the sets of periods
of such maps will be the goal of a future project.

A rotation theory is usually developed in the universal covering space
by using the liftings of the maps under consideration. It turns out that
the rotation theory on the universal covering of a graph with a unique
circuit can be easily extended to a wider family of spaces. These spaces
are defined in detail in Subsection 1.1 and called lifted spaces. Each lifted
space T has a subset T̂ homeomorphic to the real line R that corresponds
to an “unwinding” of a distinguished circuit of the original space.

In the rest of this section (and in fact in the whole paper) we will abuse
notation and denote the set T̂ by R for simplicity.

Given a lifted space T and a map F from T to itself of degree one, there
is no difficulty to extend the definition of rotation number to this setting
in such a way that every periodic point still has a rational rotation number
as in the circle case. However, the obtained rotation set Rot(F ) may not
be connected and we do not know yet whether it is closed. Despite of this
fact, the set RotR(F ) corresponding to the rotation numbers of all points
belonging to R, has properties which are similar to (although weaker than)
those of the rotation interval for a circle map of degree one.

Also, there is a special class of degree one continuous maps on lifted
spaces that we call combed maps, whose rotation set displays the same
nice properties as the continuous degree one circle maps.

The paper is organised as follows. Section 1 is devoted to fixing the
notation, to defining the notion of rotation number and rotation set in this
setting, and to studying the basic properties of this set. In Section 2 we
introduce the technical notion of positive covering and, by means of its use,
we prove a result that will be used throughout the paper.

TOME 58 (2008), FASCICULE 4



1236 Lluís ALSEDÀ & Sylvie RUETTE

Section 3 is devoted to studying the basic properties of the rotation
set. It is divided into two subsections. In the first one (Subsection 3.1) we
study the connectedness and compactness of the rotation set whereas in the
second one (Subsection 3.2) we describe the information on the periodic
orbits of the map which is carried out by the rotation set.

In Section 4 we define the combed maps and, for this class of maps, we
study the special features of the rotation set and its relation with the set
of periods.

Section 5 specialises the results obtained previously in the particular case
when the lifted space is a graph. Finally, Section 6 is devoted to showing
some examples and counterexamples to illustrate some previous comments
and results.

We thank an anonymous referee for detailed and clever comments that
helped us improving the writing of a previous version of the paper, and Bill
Allombert for Lemma 3.13.

1. Definitions and elementary properties

1.1. Lifted spaces and retractions

The aim of this subsection is to define in detail the class of lifted spaces
where we will develop the rotation theory. They are obtained from a metric
space by unwinding one of its loops. This gives a new space that contains
a subset homeomorphic to the real line and that is “invariant by a trans-
lation”. This construction mimics the process of considering the universal
covering space of a compact connected topological graph that has a unique
loop.

Before defining lifted spaces we will informally discuss a couple of ex-
amples to fix the ideas. Consider the topological graph G represented in
Figure 1.1. The unwinding of G with respect to the loop S is the infinite
graph Ĝ which is made up of infinitely many subspaces (Ĝn)n∈Z that are all
homeomorphic by a translation τ . Moreover, there is a continuous projec-
tion π : Ĝ −→ G such that π

∣∣
Int(Ĝn)

is a homeomorphism onto G \ {x0} for

each n ∈ Z, and π(τ(y)) = π(y) for all y ∈ Ĝ. The set π−1(S) is homeomor-
phic to the real line. If we imagine that the loop S has length 1 and that x0 is
the origin, then it is natural to consider a homeomorphism h : R −→ π−1(S)
such that π−1(x0) = h(Z). In this setting, τ(h(x)) = h(x+1) for all x ∈ R.

Note that, since G has more than one loop, Ĝ is not the universal covering
of G.

ANNALES DE L’INSTITUT FOURIER
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Figure 1.1. The graph G, on the left, is unwound with respect to the
bold loop S, on the right. In Ĝ, the bold line is π−1(S) = h(R) and
h(Z) = π−1(x0). Ĝ in this example will not be considered as a lifted
space since it cannot be retracted to h(R).

In a similar way, we can unwind any connected compact metric X with
a loop, as in Figure 1.2. These two examples have a main difference: the
space X̂ shown in Figure 1.2 can be “retracted” to h(R) because the closure
of any connected component of X̂ \ h(R) meets h(R) at a single point,
whereas this property does not hold for Ĝ in Figure 1.1. Notice that the
unwinding of a graph with a single loop always has this property. In this
paper, we deal with spaces X̂ of the type shown in Figure 1.2.

X

X X

... ...

X

10

h(0) h(1) h(2)

Figure 1.2. The unwinding of a connected compact metric space X

with a loop. In this example X̂ can be retracted to h(R).

Now we formalise the definition of this class of spaces.

Definition 1.1. — Let T be a connected metric space. We say that T

is a lifted space if there exists a homeomorphism h from R into T , and a
homeomorphism τ : T −→ T such that

(i) τ(h(x)) = h(x + 1) for all x ∈ R,
(ii) the closure of each connected component of T \ h(R) is a compact

set that intersects h(R) at a single point, and

TOME 58 (2008), FASCICULE 4



1238 Lluís ALSEDÀ & Sylvie RUETTE

(iii) the number of connected components C of T \ h(R) such that
Clos (C) ∩ h([0, 1]) 6= ∅ is finite.

The class of all lifted spaces will be denoted by T.

Remark 1.2. — By replacing h(x) by h(x + a) for some appropriate a,
if necessary, we may assume that h(Z) does not intersect the closure of any
connected component of T \ h(R). In this situation, for every n ∈ Z, let
Tn denote the closure of the connected component of T \ {h(n), h(n + 1)}
intersecting h((n, n + 1)). Then τ

∣∣
Tn

: Tn −→ Tn+1 is a homeomorphism.

To simplify the notation, in the rest of the paper we will identify h(R)
with R itself. In particular, we are implicitly extending the usual ordering,
the arithmetic and the notion of intervals from R to h(R).

Observe that, in the above setting, Definition 1.1(i) gives τ(x) = x+1 for
all x ∈ R. Taking this and Remark 1.2 into account, it is natural to visualise
the homeomorphism τ as a “translation by 1” in the whole space T (despite
of the fact that such an arithmetic operation need not be defined). Thus,
in what follows, to simplify the formulae we will abuse notation and write
x+1 to denote τ(x) for all x ∈ T . Then the fact that T is homeomorphic to
itself by τ can be rewritten in this notation as: T + 1 = T . Note also that,
since τ is a homeomorphism, this notation can be extended by denoting
τm(x) by x+m for all m ∈ Z. In what follows, if A ⊂ T is a set and m ∈ Z
then A + m will denote {x + m : x ∈ A}.

Example 1.3. — To better understand the simplifications introduced
above consider the following paradigmatic particular case (see Figure 1.3
for an example): The lifted space T is embedded in Rn and the map τ(−→x )
is defined as −→x +−→e1 , where −→e1 = (1, 0, . . . , 0) denotes the first vector in the
canonical base. Then T must contain the line t−→e1 for t ∈ R, and the map h

from Definition 1.1 is defined by h(t) = t−→e1 .

0 1
... ...

Figure 1.3. An example of a lifted tree that can be embedded in R2.

Next we introduce a tool that will play a crucial role in the rest of the
paper. It is the retraction from T to R. It will be used as a measuring tool
of displacements to the left or to the right and also to identify the place
where the image of a point lies in T \ R.
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Definition 1.4. — Given T ∈ T there is a natural retraction from T

to R that in the rest of the paper will be denoted by r. When x ∈ R,
then clearly r(x) = x. When x /∈ R, by definition, there exists a connected
component C of T \R such that x ∈ C and Clos (C) intersects R at a single
point z. Then r(x) is defined to be, precisely, the point z. In particular, r

is constant on Clos (C).
A point x ∈ R such that r−1(x) 6= {x} will be called a branching point

of T . The set of all branching points of T will be denoted by B(T ). It is a
subset of R by definition.

The next lemma recalls the basic properties of the natural retraction. Its
proof is a simple exercise and thus it will be omitted.

Lemma 1.5. — For each T ∈ T the following statements hold:

(a) If x /∈ R, then there exists a neighbourhood U of x such that r is
constant in U .

(b) The map r : T −→ R is continuous and verifies r(x + 1) = r(x) + 1
for all x ∈ T .

1.2. Maps and orbits on lifted spaces

The aim of this subsection is to study which is the object that corre-
sponds to orbits at the level of lifted spaces. We start by generalising the
notion of lifting and degree to this setting.

Suppose that X is a metric space with a loop S and that the unwind-
ing of S gives a lifted space T ∈ T. Then, there exists a continuous
map π : T −→ X, called the standard projection from T to X, such that
π([0, 1]) = S and π(x + 1) = π(x) for all x ∈ T .

Let f : X −→ X be continuous. By using standard techniques (see for
instance [20]) it is possible to construct a (non-unique) continuous map
F : T −→ T such that f ◦ π = π ◦ F . Each of these maps will be called a
lifting of f .

Observe that f ◦ π = π ◦ F implies that F (1) − F (0) ∈ Z and, as the
next lemma states, this number is independent of the choice of the lifting.
It is called indistinctly the degree of f or the degree of F and denoted by
deg(f) and deg(F ).

The next lemma, whose proof is straightforward (see for instance [6,
Section 3.1]), summarises the basic properties of lifting maps.

TOME 58 (2008), FASCICULE 4



1240 Lluís ALSEDÀ & Sylvie RUETTE

Lemma 1.6. — Let f : X −→ X be continuous. If the continuous map
F : T −→ T is a lifting of f then F (x+1) = F (x)+deg(f) for every x ∈ T .
On the other hand, if F ′ : T −→ T is continuous, then F ′ is a lifting of f if
and only if F = F ′ + k for some k ∈ Z. Moreover, the following statements
hold for all x ∈ R, k ∈ Z and n > 0:

(a) Fn(x + k) = Fn(x) + k deg(f)n, and
(b) (F + k)n(x) = Fn(x) + k(1 + d + d2 + · · ·+ dn−1), with d = deg(f).

If g is another continuous map from X into itself, then deg(g◦f) = deg(g) ·
deg(f).

Next, as we have said, we want to describe how periodic points and
periodic orbits of f are seen at the lifting level.

Let F be any lifting of f . A point x ∈ T is called periodic (mod 1) if
there exists n ∈ N such that Fn(x) ∈ x + Z. The period (mod 1) of x is
the least positive integer n satisfying this property; that is, Fn(x) ∈ x + Z
and F i(x) /∈ x+ Z for all 1 6 i 6 n− 1. Observe that x is periodic (mod 1)
for F if and only if π(x) is periodic for f . Moreover, the F -period (mod 1)
of x and the f -period of π(x) coincide.

In a similar way, the set

{Fn(x) + m : n > 0 and m ∈ Z},

will be called the orbit (mod 1) of x, and denoted by Orb1(x, F ). Clearly,

Orb1(x, F ) = π−1({fn(π(x)) : n > 0}) = π−1(Orb(π(x), f)).

When x is periodic (mod 1) then the orbit (mod 1) of x, Orb1(x, F ),
is also called periodic (mod 1). In this case it is not difficult to see that
Card

(
Orb1(x, F ) ∩ r−1([n, n + 1))

)
coincides with the f -period of x for all

n ∈ Z.
A standard approach to study the periodic points and orbits of f is to

work at the lifting level with the periodic (mod 1) points and orbits instead
of the original map and space. This is the approach we will follow in this
paper. The results on F can obviously be pulled back to f and X.

As it has been said in the introduction, the aim of this paper is to de-
velop the rotation theory for liftings in lifted spaces and study the relation
between rotation numbers and periodic (mod 1) orbits. As it is usual, this
theory can only be developed for maps of degree one, that is, for maps
verifying F (x+1) = F (x)+1 for all x ∈ T . So, in the rest of the paper, we
will only consider the class C1(T ) of all continuous maps of degree 1 from
T ∈ T into itself.

ANNALES DE L’INSTITUT FOURIER
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The following lemma is a specialisation of Lemma 1.6 to maps of C1(T ).
Its last statement follows from the previous one and Lemma 1.5(b).

Lemma 1.7. — The following statements hold for T ∈ T, F ∈ C1(T ),
n ∈ N, k ∈ Z and x ∈ T :

(a) Fn(x + k) = Fn(x) + k,
(b) (F + k)n(x) = Fn(x) + kn.
(c) If G is another map from C1(T ) then F ◦ G ∈ C1(T ). In particular

Fn ∈ C1(T ).
(d) The map r ◦ Fn : T −→ R is continuous and verifies

r(Fn(x + 1)) = r(Fn(x)) + 1

for all x ∈ T .

1.3. Maps of degree 1 and rotation numbers

The aim of this subsection is to introduce the notion of rotation number
for our setting and to study its basic properties. We define three types of
rotation numbers.

Definition 1.8. — Let T ∈ T, F ∈ C1(T ) and x ∈ T . We set

ρ
F
(x) := lim inf

n→+∞

r ◦ Fn(x)− r(x)
n

and ρ
F
(x) := lim sup

n→+∞

r ◦ Fn(x)− r(x)
n

.

When ρ
F
(x) = ρ

F
(x) then this number will be denoted by ρ

F
(x) and called

the rotation number of x. The numbers ρ
F
(x) and ρ

F
(x) are called the lower

rotation number of x and upper rotation number of x, respectively.

Remark 1.9. — If T is embedded in a normed vector field (e.g. T ⊂ Rn),
then one can easily see that the composition with the retraction r can
be removed from the above formula without any change and the rotation
numbers can be defined simply by using

Fn(x)− x

n
.

The only reason to consider r ◦ Fn instead of Fn in the general case is to
“project” the point Fn(x) to R where we have arithmetic, to be able to
measure the distance between Fn(x) and x.

We now give some elementary properties of rotation numbers.

Lemma 1.10. — Let T ∈ T, F ∈ C1(T ), x ∈ T , k ∈ Z and n ∈ N.

TOME 58 (2008), FASCICULE 4



1242 Lluís ALSEDÀ & Sylvie RUETTE

(a) ρ
F
(x + k) = ρ

F
(x).

(b) ρ
(F+k)

(x) = ρ
F
(x) + k.

(c) ρ
F n (x) = nρ

F
(x).

The same statements hold with ρ instead of ρ.

Proof. — The Statements (a) and (b) follow from Lemma 1.7(a) and (b)
respectively. The proof of (c) is similar to [6, Lemma 3.7.1(b)]. �

An important object that synthesises all the information about rotation
numbers is the rotation set (i.e., the set of all rotation numbers). Since we
have three types of rotation numbers, we have three kinds of rotation sets.

Definition 1.11. — For T ∈ T and F ∈ C1(T ) we define the following
rotation sets:

Rot+(F ) = {ρ
F
(x) : x ∈ T},

Rot−(F ) = {ρ
F
(x) : x ∈ T},

Rot(F ) = {ρ
F
(x) : x ∈ T and ρ

F
(x) exists},

Similarly we define Rot+
R
(F ), Rot−

R
(F ) and RotR(F ) by replacing x ∈ T

by x ∈ R in the above three definitions.

The next simple example helps in better understanding the basic features
of rotation numbers and sets. In particular it will show that the rotation
set in this framework does not display the nice properties of the rotation
sets for continuous degree one circle maps and will justify the study of the
sets Rot+

R
, Rot−

R
and RotR .

Example 1.12. — Let T be the lifted space shown in Figure 1.4. This
lifted space has two branches A, B between 0 and 1 outside R, joined at
a common branching point e. We denote by a and b the endpoints of A

and B, respectively.
Observe that T is uniquely arcwise connected. So, given two points x

and y, the convex hull of {x, y} in T which is by definition the smallest
closed connected subset of T containing x and y coincides with the image
of any injective path in T joining x and y. It will be denoted by 〈x, y〉.

Let F : T −→ T be the continuous map of degree 1 defined by

(i) F |R = Id,
(ii) F (A) = 〈e, a− 1〉 and F |A is injective,
(iii) F (B) = 〈e, b + 1〉 and F |B is injective.

Obviously, RotR(F ) = {0}, ρ
F
(a) = −1 and ρ

F
(b) = 1. Let x ∈ A. If

there exists k > 1 such that F k(x) ∈ R, then Fn(x) = F k(x) for all n > k

ANNALES DE L’INSTITUT FOURIER
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0 1
... ...

!1e e +1e

. . . ...F(a) F(b)
A B
a b

Figure 1.4. The set Rot(F ) = {−1, 0, 1} is not connected and is not
equal to RotR(F ) = {0}.

and ρ
F
(x) = 0. Otherwise, Fn(x) ∈ A − n for all n > 1, and ρ

F
(x) = −1.

Similarly, if x ∈ B then ρ
F
(x) equals 0 or 1. Hence Rot(F ) = {−1, 0, 1},

which is not a connected set. Consequently, Rot(F ) 6= RotR(F ) despite of
the fact that the set

⋃
n>0 F−n(R) coincides with T \ ({a, b}+ Z), which is

dense in T .
In a similar way one can construct examples of lifted spaces and maps F

such that Rot(F ) has n connected components for any finite, arbitrarily
large n, even when there is a single branch outside R. Or connected com-
ponents outside RotR(F ) which are non degenerate intervals (e.g., F |R = Id
and F (A) ⊃ (A + 1) ∪ (A + 2) in the above example). Generally, when the
dynamics of parts of the branches has no relation with the dynamics of R,
disconnectedness of the rotation set is likely to occur.

To study the sets Rot(F ) and RotR(F ) and their relation with the pe-
riodic (mod 1) points and orbits of the map F we introduce the following
notation. For a continuous map F ∈ C1(T ) and n ∈ N we set

F r
n := r ◦ Fn

∣∣
R : R −→ R.

From Lemma 1.7(d) it follows that the map F r
n is a lifting of a circle map

of degree 1, and thus the results on rotation sets for circle maps apply to
it straightforwardly.

We also generalise the notion of a twist orbit from the context of degree
one circle maps to this setting.

Definition 1.13. — Let T ∈ T and F ∈ C1(T ). An orbit (mod 1)
P ⊂ R of F will be called twist if F

∣∣
P

is strictly increasing.

Remark 1.14. — The following statements are easy to check.

(i) Two points in the same orbit (mod 1) have the same rotation num-
ber.

(ii) If F q(x) = x+p with q ∈ N and p ∈ Z, then ρ
F
(x) = p/q. Therefore

all periodic (mod 1) points have rational rotation numbers.

TOME 58 (2008), FASCICULE 4
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(iii) Let x be a periodic (mod 1) point of period q and p ∈ Z such that
F q(x) = x + p. If Orb1(x, F ) is a twist orbit, then it follows from
[6, Corollary 3.7.6] that (p, q) = 1.

The following theorem describes the relation between the sets Rot(Fn)
and Rot(F r

n).

Theorem 1.15. — Let F ∈ C1(T ) and let n > 1. Assume that x ∈ R is
such that Orb1(x, Fn) ⊂ R. Then, ρ

F r
n
(x) = ρ

F n (x) = nρ
F
(x). Conversely,

for each α ∈ Rot(F r
n) there exists x ∈ R such that α = ρ

F r
n
(x) = ρ

F n (x) =
nρ

F
(x), Orb1(x, Fn) = Orb1(x, F r

n) ⊂ R and Orb1(x, Fn) is twist. More-
over, if α ∈ Q then x can be chosen to be periodic (mod 1) for F . In
particular, for each n ∈ N, 1

n Rot(F r
n) ⊂ RotR(F ).

To prove Theorem 1.15 we introduce the notion of Const(F ) and study
its basic properties.

Given a continuous map g : X −→ Y , we will denote by Const(g) the set
of points x ∈ X such that g is constant in a neighbourhood of x. Clearly,
Const(g) is open and g|Clos(C) is constant for each connected component C

of Const(g).

Lemma 1.16. — Let T ∈ T and let F ∈ C1(T ). If x /∈ Const(r ◦F ) then
r ◦ F (x) = F (x). Consequently, for each n ∈ N, x /∈ Const(F r

n) implies
F r

n(x) = Fn(x).

Proof. — Suppose that r ◦ F (x) 6= F (x). Then, F (x) /∈ R. By the conti-
nuity of F and Lemma 1.5(a), there exists an open neighbourhood U of x

in T such that r(F (U)) = r(F (x)). This shows that x ∈ Const(r◦F ), which
is a contradiction. The second statement of the lemma follows trivially from
the first one. �

Now we are ready to prove Theorem 1.15.
Proof of Theorem 1.15. — The first statement of the theorem follows

from Lemma 1.10(c). If α ∈ Rot(F r
n), then by [6, Theorem 3.7.20] there

exists a point x ∈ R such that ρ
F r

n
(x) = α, Orb1(x, F r

n) ⊂ R \ Const(F r
n)

and Orb1(x, F r
n) is twist. Moreover, if α ∈ Q then x can be chosen to be a

periodic (mod 1) point of F r
n . Then the theorem follows from Lemma 1.16.

�

From Theorem 1.15 we can derive the following consequences.

Corollary 1.17. — Let F ∈ C1(T ) and let n ∈ N. Then, Rot(F r
1 ) ⊂

1
n Rot(F r

n). Moreover, for each n ∈ N, Rot(F r
n) is a nonempty compact in-

terval. Consequently, the set
⋃

n>1
1
n Rot(F r

n) is a nonempty interval con-
tained in RotR(F ).
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Proof. — For each α ∈ Rot(F r
1 ) let x be the point given by the sec-

ond statement of Theorem 1.15 for F r
1 . In particular, ρ

F
(x) = α and

Orb1(x, F ) = Orb1(x, F r
1 ) ⊂ R. Consequently, for all n ∈ N, Orb1(x, Fn)

⊂ R and, by the first statement of Theorem 1.15,

ρ
F r

n
(x) = ρ

F n (x) = nρ
F
(x) = nα.

This ends the proof of the first statement of the corollary. The fact that, for
each n ∈ N, Rot(F r

n) is a nonempty compact interval follows for instance
from [6, Theorem 3.7.20]. Then, the last statement of the corollary follows
immediately. �

Remark 1.18. — In general, the interval
⋃

n>1
1
n Rot(F r

n) need not be
closed: see Example 6.6.

2. Positive covering

To find periodic points in one-dimensional spaces, the notion of cover-
ing (introduced in [11]) is often used. If I, J are two compact intervals, I

F -covers J if there exists a subinterval I0 ⊂ I such that F (I0) = J . It is
well known that if I F -covers I then there exists a point x ∈ I such that
F (x) = x. If I F -covers I then F (I) ⊃ I but the latter condition does not
ensure the existence of a fixed point (see e.g. [21]).

In this section we are going to introduce a variant of the notion of cover-
ing, that we call positive covering. Roughly speaking, I positively F -covers
J if F (I) ⊃ J and this inclusion is “globally increasing”. Positive cover-
ing does not imply covering but we will see that if I positively F -covers I

then F has a fixed point in I (Proposition 2.3). This will be a main tool in
the rest of the paper.

Definition 2.1. — Let T ∈ T, let F : T −→ T be a continuous map
and let I, J be two compact subintervals of R. We say that I positively
F -covers J and we write I

+−−→
F

J if there exist x, y ∈ I such that x 6 y,

r ◦ F (x) 6 minJ and r ◦ F (y) > max J . We remark that I positively
F -covers J if and only if I positively r ◦F -covers J . So, we will indistinctly
write I

+−−→
F

J or I
+−−→

r◦F
J .

In the next lemma we state some basic properties of positive covering.
We say that an interval I ⊂ R is non degenerate if it is neither empty nor
reduced to a point.
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Lemma 2.2. — Let T ∈ T, let F,G : T −→ T be two continuous maps
and let I, J and K be three compact non degenerate subintervals of R.

(a) Suppose that I
+−−→
F

J . If K ⊂ J then I
+−−→
F

K. If K ⊃ I then

K
+−−→
F

J .

(b) If I
+−−→
F

J and a, b ∈ J with a < b, then there exist x0, y0 ∈ I such

that x0 6 y0, F (x0) = a, F (y0) = b and r ◦ F (t) ∈ (a, b) for all
t ∈ (x0, y0).

(c) If I
+−−→
F

J and J
+−−→
G

K then I
+−−−→

G◦F
K.

(d) Suppose that F is of degree 1. If I
+−−→
F

J then (I+n) +−−−→
F−k

(J+n−k)

for all n, k ∈ Z.

Proof. — Statements (a) and (d) follow easily from the definitions.
To prove (b), suppose that I

+−−→
F

J , that is, there exist x1 6 y1 in I such

that r ◦ F (x1) 6 minJ and r ◦ F (y1) > max J . Since r ◦ F is continuous,
r ◦ F (I) ⊃ J . Let a, b ∈ J with a < b and set x0 = max{t ∈ [x1, y1] : r ◦
F (t) = a}. Then, x0 < y1 because a < max J . Lemma 1.5(a) implies then
that F (x0) ∈ R, and thus F (x0) = a. Similarly, let

y0 = min{t ∈ [x0, y1] : r ◦ F (t) = b}.

The point F (y0) is in R, and thus F (y0) = b. The choice of x0, y0 implies
that if t ∈ (x0, y0), then r ◦ F (t) ∈ (a, b). This proves (b).

Now we prove (c). Suppose that I
+−−→
F

J
+−−→
G

K. Let a, b ∈ J such

that a < b, r ◦ G(a) 6 minK and r ◦ G(b) > max K. According to (b)
there exist x0, y0 ∈ I such that x0 6 y0, F (x0) = a and F (y0) = b. Then
r ◦G ◦F (x0) 6 minK and r ◦G ◦F (y0) > max K; that is, I

+−−−→
G◦F

K. This

shows (c). �

The next proposition will be a key tool to find periodic (mod 1) points.

Proposition 2.3. — Let T ∈ T, F ∈ C1(T ) and let I0, . . . , Ik−1 be
compact non degenerate intervals in R such that

I0
+−−−−−−−→

(F r
n1

)q1−p1

I1
+−−−−−−−→

(F r
n2

)q2−p2

· · · Ik−1
+−−−−−−−−→

(F r
nk

)qk−pk

I0,

where the numbers ni and qi are positive integers and pi ∈ Z. For every
i ∈ {1, 2, . . . , k} set mi :=

∑i
j=1 qjnj and p̂i :=

∑i
j=1 pj . Then, there

exists x0 ∈ I0 such that Fmk(x0) = x0 + p̂k and Fmi(x0) ∈ Ii + p̂i for all
i = 1, 2, . . . , k − 1.
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To prove the above proposition we need three technical lemmas.

Lemma 2.4. — Let a, b ∈ R with a < b and let g : [a, b] −→ R be a
continuous map such that g(a) 6 a and g(b) > b. Then there exists x ∈ [a, b]
such that g(x) = x and x /∈ Const(g).

Proof. — Let b0 = min{x ∈ [a, b] : g(x) = b}. Observe that b0 cannot
belong to Const(g), the map g is continuous and g(a) 6 a < b0 6 g(b0) = b.
Thus there exists x ∈ [a, b0] such that g(x) = x. Define

x0 = max{x ∈ [a, b0] : g(x) = x}.

We will show by absurd that x0 /∈ Const(g).
Suppose that x0 ∈ Const(g) and call J the connected component of

Const(g) containing x0 and a0 = sup J . Then, the interval J is relatively
open in [a, b0] and b0 /∈ Const(g). This implies that a0 /∈ J and hence,
x0 < a0. Since g(a0) = g(x0) = x0 < a0 and g(b0) > b0, there exists a
fixed point of g in [a0, b0] which contradicts the choice of x0. Consequently,
x0 /∈ Const(g). �

The next lemma is easy to prove.

Lemma 2.5. — Let F,H be continuous maps from R into itself. Then,
Const(F ) ⊂ Const(H ◦ F ).

Lemma 2.6. — Let T ∈ T, F ∈ C1(T ), x0 ∈ R and let n1, n2, . . . , nk be
positive integers. For every i ∈ {1, 2, . . . , k} set Gi := F r

ni
◦· · ·◦F r

n2
◦F r

n1
and

mi := n1 +n2 + · · ·+ni. Assume that x0 ∈ R is such that x0 /∈ Const(Gk).
Then, Gi(x0) = Fmi(x0) for all i = 1, 2, . . . , k.

Proof. — To prove the lemma assume that on the contrary there exists
i ∈ {1, 2, . . . , k} such that Gi(x0) 6= Fmi(x0) but Gj(x0) = Fmj (x0) ∈ R
for all j = 1, 2, . . . , i−1. To deal with the case i = 1 we set m0 = 0, G0 = Id
and, to simplify the notation, z = Fmi−1(x0) = Gi−i(x0). Then we have

F r
ni

(z) = F r
ni

(
Gi−1(x0)

)
= Gi(x0) 6= Fmi(x0) = Fni(z).

Therefore, from Lemma 1.16, it follows that z ∈ Const(F r
ni

). Since z =
Gi−i(x0), by the continuity of Gi−i it follows that x0 ∈ Const(F r

ni
◦Gi−i) =

Const(Gi). When i < k we obtain that x0 ∈ Const(Gk) by Lemma 2.5.
Thus, in all cases we have shown that x0 ∈ Const(Gk); a contradiction. �

Proof of Proposition 2.3. — For every i ∈ {1, 2, . . . , k} set

Gi := (F r
ni

)qi ◦ · · · ◦ (F r
n1

)q1 .

Then, in view of Lemma 2.2(c,d), we have I0
+−−−−→

Gk−p̂k

I0. Moreover, apply-

ing inductively Lemma 2.2(b), we get that there exist x, y ∈ I0 such that
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x < y, Gi([x, y]) ⊂ Ii + p̂i for i = 1, 2, . . . , k − 1, (Gk − p̂k)(x) = min I0

and (Gk − p̂k)(y) = max I0. Moreover, by Lemma 2.4 applied to the
map (Gk − p̂k)

∣∣
[x,y]

: [x, y] −→ R there exists a point x0 ∈ [x, y] such that
Gk(x0) = x0 + p̂k and x0 /∈ Const(Gk). By Lemma 2.6, Gi(x0) = Fmi(x0)
for all i = 1, 2, . . . , k. Therefore, by the definition of [x, y], the point
Fmi(x0) belongs to Ii + p̂i for all i = 1, 2, . . . , k − 1, and Fmk(x0) =
Gk(x0) = x0 + p̂k. �

To be able to use Proposition 2.3 in an easy way we introduce the fol-
lowing notation. Let

P : I0
+−−−−−→

F n1−p1
I1 · · ·

+−−−−−→
F nk−pk

Ik, and

P ′ : Ik
+−−−−−→

F m1−q1
J1 · · ·

+−−−−−→
F ml−ql

Jl

be two sequences of positive coverings. Then we will denote by PP ′ the
concatenation of P and P ′. That is, PP ′ denotes the sequence:

I0
+−−−−−→

F n1−p1
I1 · · ·

+−−−−−→
F nk−pk

Ik
+−−−−−→

F m1−q1
J1 · · ·

+−−−−−→
F ml−ql

Jl.

In the particular case when P is a loop, that is I0 = Ik, then we will denote
by Pn the sequence P concatenated with itself n− 1 times:

n times︷ ︸︸ ︷
P · · · P · · · P .

Finally, Fol(P) will denote the set of points that “follow” P. That is,

Fol(P) := {x ∈ I0 :
(
Fn1+...+ni − (p1 + . . .+ pi)

)
(x) ∈ Ii for all 1 6 i 6 k}.

Clearly, Fol(P) is a compact set and, in view of Proposition 2.3, it is non-
empty.

3. The rotation set

In this section we deepen the study about the rotation set of the maps
from F ∈ C1(T ), with T ∈ T. It is divided into two subsections. In the
first one we study the connectedness and compactness of the rotation set
together with its relation with periodic (mod 1) orbits. In Subsection 3.2 we
describe the information on the periodic (mod 1) orbits of the map which
is carried out by the rotation set.
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3.1. On the connectedness and compactness of the rotation set

The rotation set Rot(F ) may not be connected (see Example 1.12) and
in general we do not know whether it is closed. However, the main result
of this subsection (Theorem 3.1) shows that the set of rotation numbers
of points x ∈ R is a non empty compact interval which coincides with
Rot+

R
(F ) and Rot−

R
(F ). Its proof is inspired by [13, Lemma 3].

Theorem 3.1. — Let T ∈ T and F ∈ C1(T ). Then RotR(F ) is a
non empty compact interval and RotR(F ) = Rot+

R
(F ) = Rot−

R
(F ) =

Clos
(⋃

n>1
1
n Rot(F r

n)
)

. Moreover, if α ∈ RotR(F ), then there exists a
point x ∈ R such that ρ

F
(x) = α and Fn(x) ∈ R for infinitely many n. If

p/q ∈ Int(RotR(F )), then there exists a periodic (mod 1) point x ∈ R with
ρ

F
(x) = p/q.

To prove Theorem 3.1 we will use the next lemma which is not difficult
to prove.

Lemma 3.2. — Let T ∈ T, F ∈ C1(T ), x ∈ R and A a constant. If
ρ

F
(x) < α, then there exists a positive integer N such that, for all n > N ,

r ◦ Fn(x) 6 x + nα − A. If ρ
F
(x) > α, then there exists an increasing

sequence of positive integers {nk}k>0 such that, for all k > 0, r ◦Fnk(x) >
x + nkα + A.

Similar statements with the inequalities reversed hold for ρ
F
(x).

Proof of Theorem 3.1. — We are going to show that Rot+
R
(F ) is a non

empty compact interval equal to RotR(F ), the case with Rot−
R

(F ) being
similar.

By definition, Rot+
R
(F ) ⊃ RotR(F ) and by Corollary 1.17 RotR(F ) con-

tains the non empty interval
⋃

n>1
1
n Rot(F r

n). If Rot+
R
(F ) is reduced to a

single point, then

Rot+
R
(F ) = RotR(F ) =

⋃
n>1

1
n

Rot(F r
n) = Clos

⋃
n>1

1
n

Rot(F r
n)

 .

Moreover, again by Corollary 1.17, Rot(F r
1 ) = RotR(F ). So, the theorem

follows in this case by Theorem 1.15.
In the rest of the proof we assume that Rot+

R
(F ) contains at least two

points. This set is bounded by max{|r ◦ F (x) − r(x)| : x ∈ T} and hence
there exist a = inf Rot+

R
(F ) and b = supRot+

R
(F ). Fix α ∈ [a, b]. Since
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a < b, there exist sequences of integers pn ∈ Z, qn ∈ N, such that, for every
n ∈ N, we have pn

qn
∈ (a, b),∣∣∣∣pn

qn
− α

∣∣∣∣ 6 ∣∣∣∣p1

q1
− α

∣∣∣∣ and lim
n→+∞

pn

qn
= α.

By the choice of a, b and pn

qn
, for all n > 1, there exist xn, yn ∈ R such that

ρ
F
(xn) < pn

qn
and ρ

F
(yn) > pn

qn
. Moreover, by Lemma 1.10(a), the points xn

and yn can be chosen so that xn ∈ [0, 1] and yn ∈ [xn, xn+1]. Set I = [0, 2].
By the choice of xn and yn we have [xn, yn] ⊂ I ⊂ [xn − 1, yn + 2].

Applying Lemma 3.2 to F qn we see that there exist two positive integers
N and kn > N such that r ◦ F kqn(xn) 6 xn + kpn − 1 for all k > N , and
r ◦ F knqn(yn) > yn + knpn + 2. Then [xn, yn] +−−−−−−−−→

F knqn−knpn

[xn − 1, yn + 2]

and, hence, I
+−−−−−−−−→

F knqn−knpn

I by Lemma 2.2(a).

Let {in}n>1 be a sequence of positive integers that will be specified later
and let Pn := I

+−−−−−−−−→
F knqn−knpn

I. We set

Xn = Fol
(
(P1)i1(P2)i2 · · · (Pn)in

)
and X =

⋂
n>1

Xn.

As it has been noticed before, Xn is a non empty compact set and, clearly,
Xn+1 ⊂ Xn. Hence X is not empty. Moreover, if x ∈ X, then Fn(x) ∈ R
for infinitely many n.

We will show that if the sequence {in}n>1 increases sufficiently fast then,
ρ

F
(x) = α for all x ∈ X. To do it write Nn = inknqn. Now we set i1 = 1

and, if i1, . . . , in−1 are already fixed, we choose in such that

(i) N1+···+Nn−1
inknqn

6 1
n ,

(ii) kn+1qn+1
inknqn

6 1
n .

For any k ∈ N there exists an integer n such that

N1 + · · ·+ Nn−1 6 k < N1 + · · ·+ Nn−1 + Nn.

Therefore, there exist 0 6 i < in and 0 6 s < knqn so that k can be written
as k = Ñ +s where for simplicity we have set Ñ := N1+ · · ·+Nn−1+iknqn.
On the other hand, recall that the map y 7→ r ◦ F (y) − r(y) is 1-periodic
on T . Thus, L = max{|r ◦ F (z) − r(z)| : z ∈ T} exists. Consequently, for
x ∈ X and k large enough we have,

|r ◦ F k(x)− r ◦ F Ñ (x)| 6 sL.
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Thus,

(3.1)
∣∣∣∣r ◦ F k(x)− x− kα

k

∣∣∣∣ 6 s

k
L +

s

k
|α|+

∣∣∣∣∣F Ñ (x)− x− Ñα

k

∣∣∣∣∣ .
Since x ∈ X we have that x ∈ I, and F Ñ (x) = z + m with z ∈ I and

m =
n−1∑
j=1

ijkjpj + iknpn =
n−1∑
j=1

Nj
pj

qj
+ iknqn

pn

qn
.

Therefore, since I has length 2,∣∣∣F Ñ (x)− x− Ñα
∣∣∣ 6 ∣∣∣z − x|+ |m− Ñα

∣∣∣
6 2 +

n−1∑
j=1

Nj

∣∣∣∣pj

qj
− α

∣∣∣∣+ iknqn

∣∣∣∣pn

qn
− α

∣∣∣∣
6 2 +

n−2∑
j=1

Nj

∣∣∣∣p1

q1
− α

∣∣∣∣+ Nn−1

∣∣∣∣pn−1

qn−1
− α

∣∣∣∣+ iknqn

∣∣∣∣pn

qn
− α

∣∣∣∣
(where in the last inequality we have used that

∣∣∣pj

qj
− α

∣∣∣ 6
∣∣∣p1

q1
− α

∣∣∣ for
all j).

Now, observe that

• from Condition (i) we see that,

1
k

n−2∑
j=1

Nj 6
1

Nn−1

n−2∑
j=1

Nj 6
1

n− 1
,

• Condition (ii) gives s
k < qnkn

Nn−1
6 1

n−1 , and

• Nn−1
k 6 1 and iknqn

k 6 1 because k > Ñ > Nn−1 + iknqn.

Consequently, by replacing all the above in Equation (3.1), we obtain∣∣∣∣r ◦ F k(x)− x

k
− α

∣∣∣∣ < L + |α|
n− 1

+
2
k

+
1

n− 1

∣∣∣∣p1

q1
− α

∣∣∣∣
+
∣∣∣∣pn−1

qn−1
− α

∣∣∣∣+ ∣∣∣∣pn

qn
− α

∣∣∣∣ .
Since n goes to infinity when so does k and limn→+∞

pn

qn
= α, we get that

the right hand side of the above inequality converges to zero. Hence,

ρ
F
(x) = lim

k→+∞

r ◦ F k(x)− x

k
= α.
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This proves that Rot+
R
(F ) ⊂ [a, b] ⊂ RotR(F ); that is,

RotR(F ) = Rot+
R
(F ) = [a, b].

When α = p
q ∈ (a, b), the proof is simpler and gives a periodic (mod 1)

point with rotation number p/q. Indeed, by taking p1 = p and q1 = q, the
sequence P1 gives I

+−−−−−−→
F k1q−kp

I. Thus, by Proposition 2.3, there exists a

point x ∈ I such that F k1q(x) = x + k1p. Hence x is periodic (mod 1) and
ρ

F k1q
(x) = k1p. By Lemma 1.10 ρ

F
(x) = p/q and p/q ∈ 1

k1q Rot(F r
k1q).

Moreover, by Theorem 1.15, 1
k1q Rot(F r

k1q) ⊂ RotR(F ). Thus the density
of the rational numbers in [a, b] implies that

RotR(F ) = Clos

⋃
n>1

1
n Rot(F r

n)

 .

�

Remark 3.3. — The last statement of Theorem 3.1 is weaker than The-
orem 3.11. We nevertheless state it here because it is a byproduct of the
proof.

Generally RotR(F ) is a proper subset of Rot(F ). The next proposition
gives an immediate sufficient condition to have RotR(F ) = Rot(F ). We
will see later other sufficient conditions (which include the transitive case)
when the lifted space T is an infinite graph (Theorem 5.5).

Proposition 3.4. — Let T ∈ T and F ∈ C1(T ). If
⋃
n∈Z

Fn(R) = T then

RotR(F ) = Rot(F ) = Rot+(F ) = Rot−(F ).

Proof. — Let y ∈ T . If y ∈ Fn(R) with n > 0, let x ∈ R such that
y = Fn(x). If y ∈ F−n(R) with n > 0, let x = Fn(y) ∈ R. In both cases,
ρ

F
(y) = ρ

F
(x) and ρ

F
(y) = ρ

F
(x). Thus, Rot+

R
(F ) = Rot+(F ), Rot−

R
(F ) =

Rot−(F ) and RotR(F ) = Rot(F ). On the other hand, by Theorem 3.1, we
get that RotR(F ) = Rot+

R
(F ) = Rot−

R
(F ); which ends the proof of the

proposition. �

3.2. Relation between the rotation set and the set of periods

In this subsection, we study the set of periods of periodic (mod 1) points
with a given (rational) rotation number. To be more precise we need to
introduce the appropriate notation.
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Definition 3.5. — Let T ∈ T and F ∈ C1(T ). The set of periods of all
periodic (mod 1) points of F in T will be denoted by Per(F ). Also, given
α ∈ R, Per(α, F ) will denote the set of periods of all periodic (mod 1) points
of F in T whose F -rotation number is α. Similarly, we denote by PerR(F )
and PerR(α, F ) the same sets as before with the additional restriction that
the periodic (mod 1) points under consideration must belong to R (we do
not require that the whole periodic (mod 1) orbits belong to R).

The main results of this section state that, for every p/q ∈ Int(RotR(F )),
the set Per(p/q, F ) contains {nq : for all n ∈ N large enough}. Moreover, if
RotR(F ) is not reduced to a single point, then N \ Per(F ) is finite.

The next proposition clarifies the relation between Per(F ) and Per(α, F ).
It improves Remark 1.14(ii).

Proposition 3.6. — Assume that F ∈ C1(T ). Then,

Per(F ) =
⋃

α∈Rot(F )∩Q

Per(α, F ).

On the other hand, if p, q are coprime and p/q ∈ Rot(F ), then

Per(p/q, F ) ⊂ qN.

Proof. — The first statement of the proposition follows directly from
Remark 1.14(ii).

Now assume that p ∈ Z and q ∈ N are coprime and let n ∈ Per(p/q, F ).
Assume that x is a periodic (mod 1) point of F of period n such that
ρ

F
(x) = p/q. There exists k ∈ Z such that Fn(x) = x + k. By what

precedes, ρ
F
(x) = k/n = p/q. Then, since p, q are coprime there exists

d > 1 such that k = dp and n = dq. That is, n ∈ qN. �

The next proposition gives a sufficient condition to have periodic points
of all large enough periods. It is a key tool for Theorem 3.11.

Definition 3.7. — Let χ : R+ −→ N be the map defined by

χ(t) =

{
max{dte2, 51dte} if t > 1,
1 when 0 6 t 6 1,

where d·e denotes the ceiling function.

Proposition 3.8. — Let T ∈ T, F ∈ C1(T ), and let I, J be two
disjoint compact non degenerate subintervals of R. Assume that there exists
a constant t > 0 such that for all integers n > t both I and J positively
Fn-cover I and J . Then, for every positive integer m > χ(t), there exists
a point x ∈ I such that Fm(x) = x and F i(x) 6= x for all 1 6 i 6 m− 1.
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The proof of the proposition entirely relies on the following arithmetical
lemma.

Lemma 3.9. — Let N ∈ N. Then, for every m > χ(N), there exist
n1, . . . , nk0 such that

(a) n1 + n2 + · · ·+ nk0 = m,
(b) ni > N for all 1 6 i 6 k0,
(c) if d divides m, d 6= m, then there exists 1 6 i 6 k0 − 1 such that d

divides n1 + · · ·+ ni.

Proof. — If N = 1, then the result is obvious by taking k0 = m and
ni = 1 for all 1 6 i 6 m, because χ(N) = 1.

Let m > N > 1. We write

m = pα1
1 . . . pαk

k

with αi > 1 and p1 > p2 > · · · > pk the prime factors of m. We define
di = m

pi
for all 1 6 i 6 k. If d divides m, d 6= m, then d divides di for some

1 6 i 6 k. Consequently, it is sufficient to prove the lemma for the divisors
d1, . . . , dk instead of for any d dividing m and d 6= m. The numbers di are
ordered as follows:

d1 < d2 < · · · < dk.

The idea of the proof is the following. A small di corresponds to a large
prime factor pi, and thus most of the di’s are “large”. It will be possible to
write these large divisors as a sum n1 + · · ·+ni with nj > N . It will remain
to deal with a small number of small di’s. For computational reasons, we
fix the boundary between “large” and “small” di’s at

√
m√
N

.

Assume that m > N2, which is equivalent to
(√

m√
N

)4

> m. This implies

that m has at most three prime factors pi >
√

m√
N

, which are {pi}16i6ε for
some 0 6 ε 6 3 (ε may be zero).

We first deal with {di}ε+16i6k (the “large” divisors — note that this set
is empty when ε = k). For i ∈ {ε + 1, . . . , k}, we have di >

√
m
√

N > N

because pi 6
√

m√
N

. Moreover, for all i ∈ {ε + 1, . . . , k},

di+1 − di =
m(pi − pi+1)

pipi+1
>

m

p2
i

> N.

We define n1 = dε+1 and ni+1 = dε+i+1 − dε+i for all 1 6 i 6 k− ε− 1. In
this way, ni > N and n1 + · · ·+ ni = dε+i for all 1 6 i 6 k − ε.

Now we deal with {di}16i6ε (the “small” divisors). For all 1 6 i 6 ε, we
define nk−ε+i such that dk+i divides n1 + · · ·+ nk−ε+i and N 6 nk−ε+i 6
N + dk+i.
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Finally, we define k0 = k + 1 and nk0 = m − (n1 + · · · + nk0−1). It
remains to show that nk0 > N when m is large enough. To prove it, observe
that n1 + · · · + nk−ε = m

pk
6 m

2 and, for all 1 6 i 6 ε, pi >
√

m√
N

. Thus
di <

√
m
√

N . This implies that

nk0 >
m

2
− 3

√
m
√

N − 3N.

Suppose that m > α2N , α > 0. Then nk0 >
(

α2

2 − 3α− 3
)

N . To have

nk0 > N , it is sufficient to have α2

2 − 3α − 3 > 1, that is, α > 3 +
√

17.
Since (3 +

√
17)2 < 51, it follows that when N > 1 then it is sufficient to

have m larger than or equal to max{N2, 51N}. This completes the proof
of the lemma. �

Remark 3.10. — The values of the function χ specified in Definition 3.7
are not optimal, but this is not important. We only need that there exist
positive integers χ(N) verifying Lemma 3.9, and that χ(t) = 1 if 0 6 t 6 1.

Proof of Proposition 3.8. — Take m > χ(t) and write m = n1 + · · ·+nk

with n1, . . . , nk satisfying Lemma 3.9 for N = dte. We consider

I
+−−−→

F n1
J

+−−−→
F n2

J
+−−−→

F n3
· · ·J +−−−→

F nk
I.

By Proposition 2.3 (with qi = 1 and pi = 0), there exists x in I such that
Fm(x) = x and Fn1+···+ni(x) ∈ J for all 1 6 i 6 k − 1. We have to prove
that F i(x) 6= x for all 1 6 i 6 m− 1. Let d be the minimal positive integer
such that F d(x) = x. Clearly, d divides m. Suppose that d < m. Then,
in view of Lemma 3.9(c) there exists 1 6 i 6 k − 1 such that d divides
n1 + · · · + ni, which implies that Fn1+···+ni(x) = x. On the other hand,
Fn1+···+ni(x) ∈ J and I ∩ J = ∅, which leads to a contradiction. Thus, the
period of x is d = m. �

In the rest of this subsection we use Proposition 3.8 to study the sets
PerR(p/q, F ) and PerR(F ). Obviously, these sets depend on RotR(F ) which,
by Theorem 3.1 is a non-empty compact interval of the real line. The next
result is the analogue in our setting (although it is somewhat weaker) of
[6, Lemma 3.9.1] that, for circle maps of degree one, says that if p/q ∈
Int(Rot(F )) with p and q coprime, then Per(p/q, F ) = qN.

Theorem 3.11. — Let T ∈ T, F ∈ C1(T ) and α, β ∈ Int(RotR(F )),
α 6 β. There exists a positive integer N (depending on α, β) such that, if
p
q ∈ [α, β] with p, q coprime, then

PerR(p/q, F ) ⊃ {mq : m > χ(N/q)}.

In particular, if q > N then PerR(p/q, F ) = qN.
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Proof. — According to Lemma 3.2, there exist a positive integer N and
two points x0, x1 ∈ R such that ρ

F
(x0) < α, ρ

F
(x1) > β and, for all n > N ,

r◦Fn(x0) 6 x0 +nα−1 and r◦Fn(x1) > x1 +nβ +1 By Lemma 1.7(a) we
may translate x1 by an integer such that x0 < x1 < x0 +1. Set I = [x0, x1].
Clearly, for every n > N and j ∈ {nα− 1, . . . , nβ + 1} ∩ N, we have

I
+−−→

F n
I + j.

In particular, if nq > N and i ∈ {nqα− np− 1, . . . , nqβ − np + 1} ∩ N,

I
+−−−−−→

F nq−np
I + i.

Thus I positively (F q−p)n-covers I−1, I and I+1 (notice that nqα−np 6
0 6 nqβ − np because p/q ∈ [α, β]).

Set J = I+1. Then I∩J = ∅ and both I and J positively (F q−p)n-cover
I and J for all n > N/q. According to Proposition 3.8, we get that, for
all m > χ(N/q), there exists a periodic point x of period m for the map
F q − p. Hence F qm(x) = x + mp and ρ

F
(x) = p

q . To end the proof of the
first statement of the theorem we have to show that F i(x) − x /∈ Z for
i = 1, 2, . . . ,mq−1. Assume that, on the contrary, there exists 1 6 d = mq

l

with l ∈ N, l > 1 such that F d(x) = x + a for some a ∈ Z. Then, in view
of Lemma 1.7(a),

x + mp = Fmq(x) = F ld(x) = x + la = x +
mq

d
a.

Consequently, a = dp
q with dp

q ∈ Z. Thus d must be a multiple of q because
p, q are coprime. Write d = bq. Then F bq(x) = x + bp, which implies that
b = m which, in turn, implies d = mq. In other words, x is periodic (mod 1)
of period mq for F . Therefore, PerR(p/q, F ) ⊃ {mq : m > χ(N/q)}.

The second statement of the theorem follows from the first one and the
fact that χ(t) = 1 whenever t 6 1. �

Remark 3.12. — In view of Example 6.6, the positive integer N of The-
orem 3.11 cannot be taken uniform for the whole interval Int(RotR(F )).

On the other hand, Theorem 3.11 does not imply that PerR(p/q, F ) is
equal to {n ∈ N : n > N} for some positive integer N (see Example 6.5).

In Corollary 3.14 we deduce from Theorem 3.11 that Per(F ) contains all
but finitely integers, provided RotR(F ) is non-degenerate. Its proof relies
on the next arithmetical lemma.

Lemma 3.13. — Let N be a positive integer and α, β ∈ R, α < β. There
exists a positive integer N0 such that, for all n > N0, there exists p

q ∈ [α, β]
with p, q coprime, such that q > N and q divides n.
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Proof. — We fix a rational a
b ∈ [α, β) with a, b coprime and b > 0,

and M a positive integer such that a
b + 1

M ∈ [α, β]. Let n > M . There
exists r ∈ {1, . . . , b} such that b divides na + r. Then a

b + r
bn = na+r

bn

belongs to [α, β] because r
bn 6 1

M . Since (na + r)b − (bn)a = br, Bézout’s
theorem implies that gcd(na + r, bn) divides br 6= 0. Thus we can write
na+r

bn = p
q with p, q coprime and

q =
bn

gcd(na + r, bn)
>

bn

br
>

n

b
.

Moreover, na+r
bn = (na+r)/b

n because b divides na+r, and hence q divides n.
Consequenly, the lemma holds by taking N0 = max(M, bN). �

Corollary 3.14. — Let T ∈ T and F ∈ C1(T ). If RotR(F ) is not
degenerate to a point, then the set N \ PerR(F ) is finite.

Proof. — Let N be the positive integer given by Theorem 3.11 for some
α, β ∈ Int(RotR(F )), α < β. By Lemma 3.13, there exists an integer N0

such that, for all n > N0, there exists p
q ∈ [α, β] with p, q coprime, such that

q > N and q divides n. According to Theorem 3.11, PerR(p/q, F ) = qN 3 n.
Hence PerR(F ) contains all integers n > N0. �

4. Combed maps

The aim of this section is to show that the rotation set of all maps from
a special subclass of C1(T ) (with T ∈ T), called combed maps, has nice
properties analogous to the ones displayed by the continuous circle maps.
To do this we will extend the notions of “lower” and “upper” lifting and
“water functions” in the spirit of [6, Section 3.7] to this setting.

In the rest of this section T will denote a space from T.

4.1. General definitions for combed maps

We start our task with the simple observation that, for each x, y ∈ T ,
the relation r(x) 6 r(y) defines a linear pre-ordering on T which, in what
follows, will be denoted by x 4 y (we recall that a pre-ordering is a re-
flexive, transitive relation). We will also use the notation x ≺ y to denote
r(x) < r(y).

Definition 4.1. — A map F ∈ C1(T ) such that F (x) 4 F (y) whenever
x 4 y will be called non-decreasing. Also, given F,G ∈ C1(T ) we write
F 4 G to denote that F (x) 4 G(x) for each x ∈ T .
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Remark 4.2. — When F is non-decreasing and r(x) = r(y), then it
easily follows that r(F (x)) = r(F (y)). Notice also that the map r ∈ C1(T )
is non-decreasing.

The following simple lemma follows in a similar way to [6, Lemma 3.7.19]
(and hence we omit its proof).

Lemma 4.3. — Assume that F,G ∈ C1(T ), F 4 G and either F or G is
non-decreasing. Then Fn 4 Gn for all n ∈ N.

Next we define the upper and lower maps that, as in the circle case, will
play a key role in the study of the rotation interval of maps from C1(T ).
Given F ∈ C1(T ), we define Fl, Fu : R −→ R by

Fu(x) := sup{r(F (y)) : y 4 x},
Fl(x) := inf{r(F (y)) : y < x}.

Remark 4.4. — The following equivalent definitions for the maps Fu

and Fl hold:

Fu(x) = max{r(F (y)) : x− 1 4 y 4 x},
Fl(x) = min{r(F (y)) : x + 1 < y < x}.

To prove the above equalities we have to show that

sup{r(F (y)) : y 4 x} = M := max{r(F (y)) : x− 1 4 y 4 x}

(we only prove the statement for Fu; the other one follows analogously).
Since the map r ◦ F is continuous,

sup{r(F (y)) : y 4 x} = max
{

sup{r(F (y)) : y 4 x− 1},M
}

.

Thus, it is enough to see that r(F (y)) 6 M for all y 4 x − 1. If, on the
contrary, there exists z 4 x − 1 such that r(F (z)) > M , then there exists
k ∈ N such that x− 1 4 z + k 4 x and, by Lemma 1.7(d)

r(F (z + k)) = r(F (z)) + k > M + k > max{r(F (y)) : x− 1 4 y 4 x};

a contradiction.

Now we introduce the notions of combed maps.

Definition 4.5. — A map F ∈ C1(T ) will be called left-combed (re-
spectively right-combed) at x ∈ R if r◦F ({y ∈ R : y 6 x}) ⊃ r◦F (r−1(x))
(respectively r ◦ F ({y ∈ R : y > x}) ⊃ r ◦ F (r−1(x))). If F is both left-
combed and right-combed at x then it will be simply called combed at x

(see Figure 4.1 for an example). The map F will be called combed if it is
combed at every point x ∈ R.
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Remark 4.6. — If x /∈ B(T ) (recall that B(T ) denotes the set of all
branching points of T ), then r−1(x) = {x}. Therefore, F is combed at x.

e
T

A

F(T)
F(A)

Figure 4.1. The image of the branch A gets “hidden” inside F (R) and
thus F is combed at e (actually, F (R) is in T , and the figure shows
how it folds up). An observer looking at F (T ) from above or below
does not distinguish this map from a “pure circle map”.

4.2. A characterisation of the upper and lower map for combed
maps

The following technical lemma gives a nice characterisation of the maps
Fu and Fl for combed maps.

Lemma 4.7. — For any map F ∈ C1(T ) and x ∈ R the following state-
ments hold:

(a) If F is left-combed at all y ∈ R such that y 6 x, then

Fu(x) = sup{r(F (y)) : y ∈ R and y 6 x}.

(b) If F is right-combed at all y ∈ R such that y > x, then

Fl(x) = inf{r(F (y)) : y ∈ R and y > x}.

Proof. — We will only prove statement (a). The proof of (b) is analogous.
Clearly,

{y ∈ T : y 4 x} = {y ∈ R : y 6 x} ∪

⋃
z∈B(T )
z6x

r−1(z)

 .
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Then, since F is left-combed at all y ∈ R such that y 6 x, we get

r ◦ F (r−1(z)) ⊂ r ◦ F ({y ∈ R : y 6 z}) ⊂ r ◦ F ({y ∈ R : y 6 x})

for all z ∈ B(T ), z 6 x. Consequently,

Fu(x) = sup{r(F (y)) : y 4 x} = sup{r(F (y)) : y ∈ R and y 6 x}.

�

Remark 4.8. — As in Remark 4.4 it follows that if F is left-combed at
all y ∈ R such that y 6 x, then

Fu(x) = max{r(F (y)) : y ∈ R and x− 1 6 y 6 x}

and if F is right-combed at all y ∈ R such that y > x, then

Fl(x) = min{r(F (y)) : y ∈ R and x + 1 > y > x}.

The next result studies the basic properties of the maps Fl and Fu.

Lemma 4.9. — For each F ∈ C1(T ) the maps Fl and Fu are non-
decreasing liftings of (non necessarily continuous) degree one circle maps
that satisfy:

(a) Fl(x) 4 F (y) 4 Fu(x) for each x ∈ R and y ∈ r−1(x).
(b) If G ∈ C1(T ) verifies F 4 G, then Fl 6 Gl and Fu 6 Gu.
(c) If F is non-decreasing, then Fu = Fl = F r

1 = r ◦ F
∣∣
R. Moreover,

{x ∈ R : r(F (x)) 6= F (x)} ⊂ Const(Fu) = Const(Fl).

(d) The map Fu is continuous from the right whereas Fl is continuous
from the left.

(e) If F is left-combed (respectively right-combed) at x ∈ R then Fu

(respectively Fl) is continuous at x. In particular, Fu and Fl are
continuous in R \ B(T ).

(f) If Fu (respectively Fl) is discontinuous at some x ∈ R, then x ∈ B(T )
and there exists ε > 0 such that [x, x+ε] ⊂ Const(Fu) (respectively
[x− ε, x] ⊂ Const(Fl)).

Proof. — As in the previous lemma, we will only consider the map Fu.
The proof for Fl is analogous.

Let x, z ∈ R be such that x 6 z. We have

r ◦ F ({y : y 4 x}) ⊂ r ◦ F ({y : y 4 z}).

So, Fu(x) 6 Fu(z). On the other hand, by Lemma 1.7(d),

Fu(x + 1) = sup{r(F (y)) : y 4 x + 1} = sup{r(F (z + 1)) : z 4 x}
= sup{r(F (z)) + 1 : z 4 x} = Fu(x) + 1.
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Thus, Fu is non-decreasing and has degree one.
To prove (a) observe that F (y) 4 Fu(x) is equivalent to r(F (y)) 6

Fu(x) which, in turn, is equivalent to r(F (y)) ∈ {r(F (z)) : z 4 x}. On the
other hand, y ∈ r−1(x) implies that y 4 x and this last statement implies
r(F (y)) ∈ {r(F (z)) : z 4 x}. So, (a) holds. Statements (b) and (c) follow
immediately from the definitions, Remark 4.2 and Lemma 1.16.

To prove (d) take x ∈ R and δ > 0. We have

Fu(x + δ) = max {Fu(x), sup{r(F (y)) : x 4 y 4 x + δ}} .

Notice that,

lim
δ↘0

(
sup{r(F (y)) : x 4 y 4 x + δ}

)
= sup{r(F (y)) : r(y) = x}

6 sup{r(F (y)) : y 4 x} = Fu(x).

Consequently, limδ↘0 Fu(x + δ) = Fu(x).
To prove (e) and (f) notice that, since r ◦ F is continuous and r−1(x) is

compact,

Fu(x) = sup{r(F (y)) : y 4 x}

= max
{

sup{r(F (y)) : y ≺ x},max
{

r ◦ F
(
r−1(x)

)}}
.

Now observe that since the points from B(T ) are isolated, if δ > 0 is small
enough then [x−δ, x)∩B(T ) 6= ∅, and thus sup{r(F (y)) : y 4 x−δ} varies
continuously with δ. Consequently,

lim
δ↘0

(
sup{r(F (y)) : y 4 x− δ}

)
= lim

δ↘0
Fu(x− δ)

exists and coincides with sup{r(F (y)) : y ≺ x}. In summary,

Fu(x) = max
{

lim
δ↘0

Fu(x− δ),max
{

r ◦ F
(
r−1(x)

)}}
and hence, in view of (d), the continuity of Fu at x is equivalent to

(4.1) max
{

r ◦ F
(
r−1(x)

)}
6 lim

δ↘0
Fu(x− δ) = sup{r(F (y)) : y ≺ x}.

Since F is left-combed at x we have,

r ◦ F (r−1(x)) ⊂ r ◦ F ({y ∈ R : y 6 x}) ⊂ r ◦ F ({y : y ≺ x} ∪ {x}),

which gives (4.1) by the continuity of r ◦ F . This ends the proof of (e).
To prove (f) assume that the map Fu is discontinuous at x ∈ R. Then,

from (4.1) it follows that r−1(x) 6= {x} and there exists z ∈ r−1(x) \ {x}
such that

r(F (z)) > sup{r(F (y)) : y ≺ x} > r(F (x)).
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In particular, x ∈ B(T ) and, by continuity, there exists ε > 0 such that
B(T ) ∩ (x, x + ε] = ∅ and r(F (y)) < r(F (z)) for all y ∈ (x, x + ε]. For all
such points y we have

Fu(y) = sup{r(F (y′)) : y′ 4 y} = sup{r(F (y′)) : y′ 4 x} = Fu(x).

This ends the proof of the lemma �

Remark 4.10. — According to Lemma 4.9(e), if F is left-combed at
x ∈ R then Fu is continuous at x. The converse is not true. From the
proof of statements (e) and (f) of this lemma it easily follows that if Fu

is continuous at some x ∈ R but F is not left-combed at x (and, hence,
x ∈ B(T )), then there exists a point z ∈ B(T ), z < x such that Fu is also
not left-combed at z and

max
{

r ◦ F
(
r−1(x)

)}
6 max

{
r ◦ F

(
r−1(z)

)}
.

Iterating this process if necessary, one can find a point z′ ∈ B(T ), z′ < x,
such that Fu is not continuous at z′. Therefore, Fu is continuous if and
only if F is left-combed at all x ∈ R.

Similar statements with reverse inequalities hold for right-combed and Fl.

Definition 4.11. — The fact that the maps Fl and Fu are non-decreas-
ing implies [17, Theorem 1] that ρ

Fl
(x) and ρ

Fu
(x) exist for each x ∈ R

and are independent of the choice of the point x. These two numbers will
be denoted by ρ(Fl) and ρ(Fu) respectively.

4.3. Rotation sets and water functions for combed maps

The main goal of this subsection (Theorem 4.16) is to show that, as
in the case of circle maps, for combed maps the rotation set is a closed
interval of the real line. This is achieved with the help of the so called water
functions that we extend from the circle maps to the setting of combed
maps from C1(T ).

As a consequence of Definition 4.11 and Lemma 4.9 one obtains:

Corollary 4.12. — For each F ∈ C1(T ) it follows that ρ(Fl) 6 ρ(Fu),
Rot−(F ) ⊂ [ρ(Fl), ρ(Fu)], Rot+(F ) ⊂ [ρ(Fl), ρ(Fu)] and, consequently,
Rot(F ) ⊂ [ρ(Fl), ρ(Fu)].

Proof. — By a rewriting of Lemma 4.9(a) we have Fl ◦ r(y) 4 F (y) 4
Fu ◦ r(y) for each y ∈ T . From Remark 4.2 and Lemma 4.9 it follows that
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Fl ◦ r and Fu ◦ r are non-decreasing. Hence, since Fl and Fu are self maps
of R, by Lemma 4.3,

(Fl)n ◦ r(y) = (Fl ◦ r)n(y) 4 Fn(y) 4 (Fu ◦ r)n(y) = (Fu)n ◦ r(y)

for each n ∈ N. Consequently,

(Fl)n(r(y))− r(y)
n

6
r(Fn(y))− r(y)

n
6

(Fu)n(r(y))− r(y)
n

for each y ∈ T and n ∈ N. Then the corollary follows from the fact that
ρ(Fl) = ρ

Fl
(x) and ρ(Fu) = ρ

Fu
(x) for all x ∈ R. �

In what follows we need to introduce a distance in C1(T ). We will use
the usual one, namely the sup distance, which gives the topology of the
uniform convergence. But to do this we need to specify before the distance
that we will use in T .

Definition 4.13. — Assume that the metric space T is endowed with a
τ -invariant distance δT (that is, for all x, y ∈ T, δT (x+1, y+1) = δT (x, y)).
In this paper, instead of this distance we will use the distance ν defined
as follows in the spirit of the taxicab metric (although such a metric, in
general, cannot be defined in lifted spaces). Given x, y ∈ T we set

ν(x, y) := δT (x, y)
if x and y lie in the same connected component of T \ R, and

ν(x, y) := δT (x, r(x)) + |r(x)− r(y)|+ δT (r(y), y)
otherwise.

Note that ν coincides on R with the natural distance. Observe also that
when T is uniquely arcwise connected (in particular, when T is a lifted tree)
then the distance ν gives the length of the shortest path (in T ) joining x

and y and, thus, it is indeed the taxicab metric.

Now we endow the space C1(T ) with the sup distance with respect to the
distance ν. Given two maps F,G ∈ C1(T ), we set

d(F,G) := sup
x∈T

ν(F (x), G(x)) = sup
x∈r−1([0,1])

ν(F (x), G(x)).

Observe that the space of (not necessarily continuous) maps from R to
itself of degree one is also endowed with the sup distance:

d(F,G) := sup
x∈R

|F (x)−G(x)| = sup
x∈[0,1]

|F (x)−G(x)|.

Lemma 4.14. — The maps r, F 7→ r ◦ F , F 7→ Fl and F 7→ Fu are
Lipschitz continuous with constant 1.
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Proof. — The fact that r is Lipschitz continuous with constant 1 follows
easily from the above definitions. Then, this trivially implies that F 7→ r◦F
is Lipschitz continuous with constant 1. The other two statements follow
in a similar way to [6, Proposition 3.7.7(e)]. �

Now we are ready to extend to this setting the so called “water func-
tions”, that play a key role in the study of the rotation intervals of circle
maps (see [6]). Before defining these maps we notice that, if F ∈ C1(R),
then the definition of Fu is simply given by Fu(x) = sup{F (y) : y 6 x}. We
recall that F r

1 denotes the map r ◦ F
∣∣
R : R −→ R. Given a map F ∈ C1(T )

we define the family Fµ : R −→ R by

(4.2) Fµ = (min{F r
1 , Fl + µ})u for 0 6 µ 6 µ1 = sup

x∈R

{
F r

1 (x)−Fl(x)
}
.

The next lemma studies the basic properties of the family Fµ. Its proof
basically follows that of [6, Proposition 3.7.17] by using Lemma 4.9 in
addition to [6, Proposition 3.7.7]. However, in sake of completeness and
clarity, we will outline the proof.

Proposition 4.15. — Let F ∈ C1(T ) be combed. Then, the maps Fµ

are non-decreasing continuous liftings of degree one circle maps that satisfy:

(a) F0 = Fl and Fµ1 = Fu.
(b) If 0 6 λ 6 µ 6 µ1, then Fλ 6 Fµ.
(c) Const(F r

1 ) ⊂ Const(Fµ) for each µ.
(d) Each Fµ coincides with F r

1 outside Const(Fµ).
(e) The function µ 7→ Fµ is Lipschitz continuous with constant 1.

Proof. — To simplify the notation we denote by Gµ the map

min{F r
1 , Fl + µ} : R −→ R.

Then, Fµ = (Gµ)u.
Since F is combed, Lemma 4.9(e) implies that Fl, and hence Gµ, are

continuous liftings of degree one circle maps for each µ. Then, in view of
[6, Proposition 3.7.7(d)], the maps Fµ are non-decreasing continuous liftings
of degree one circle maps.

Lemma 4.9(a) and Remark 4.2 tell us that Fl 6 F r
1 . So, G0 = Fl and,

since Fl is a self-map of R, F0 = (Fl)u = Fl by [6, Lemma 3.7.7(c)]. On the
other hand, Gµ1 = F r

1 . Consequently, for every x ∈ R,

Fµ1(x) = (F r
1 )u(x) = sup{r(F (y)) : y ∈ R and y 6 x} = Fu(x)

by Lemma 4.7. This ends the proof of (a). Statement (b) follows from [6,
Proposition 3.7.7(b)] and the simple observation that Gλ 6 Gµ.
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Again by Lemma 4.7 we see that

Fl(x) = inf{r(F (y)) : y ∈ R and y > x} = (F r
1 )l(x).

Thus, Const(Fl +µ) = Const(Fl) ⊃ Const(F r
1 ) by [6, Lemma 3.7.9(b)] and,

hence, Const(Gµ) ⊃ Const(F r
1 ). By [6, Lemma 3.7.9(a)] we see that

(4.3) Const(Fµ) ⊃ Const(Gµ) ⊃ Const(F r
1 );

and (c) holds.
To prove (d) suppose that F r

1 (x) 6= Fµ(x) = (Gµ)u(x). If Fl(x) + µ >
F r

1 (x) then
Gµ(x) = F r

1 (x) 6= (Gµ)u(x).

So, x ∈ Const((Gµ)u) = Const(Fµ) by [6, Lemma 3.7.8(a)]. Now suppose
that Fl(x) + µ < F r

1 (x). This implies that (F r
1 )l(x) = Fl(x) < F r

1 (x).
Then, [6, Lemma 3.7.8(b)] implies that x ∈ Const(Fl) = Const(Fl + µ).
Hence, there exists a neighbourhood U ⊂ Const(Fl + µ) of x in R such
that F r

1 (y) > Fl(y) + µ = Gµ(y) for every y ∈ U . Thus, by (4.3), x ∈
Const(Gµ) ⊂ Const(Fµ).

Finally, one can show that µ 7→ Gµ is Lipschitz continuous with con-
stant 1. So, (e) follows from [6, Proposition 3.7.7(e)]. �

The next theorem is the main result of this section. It shows that for
maps which are combed, the rotation set has properties similar to the ones
displayed by the rotation interval of continuous degree one circle maps.

Theorem 4.16. — For each map F ∈ C1(T ) which is combed the fol-
lowing statements hold

(a) Rot(F ) = Rot(F r
1 ) = RotR(F ) = Rot+(F ) = Rot−(F ). Moreover,

Rot(F ) = [ρ(Fl), ρ(Fu)].
(b) For every α ∈ Rot(F ), there exists a twist orbit (mod 1) of F con-

tained in R, disjoint from Const(F
∣∣
R) and having rotation number

α.
(c) For every α ∈ Q ∩ Rot(F ), the orbit (mod 1) given by (b) can be

taken periodic (mod 1).
(d) The endpoints of the rotation interval, ρ(Fl) and ρ(Fu) depend con-

tinuously on F .

Proof. — It follows along the lines of the proof of [6, Theorem 3.7.20]
but using the previous results for combed maps and the family Fµ with
0 6 µ 6 µ1 defined by (4.2). By Proposition 4.15 every Fµ is a continuous
non-decreasing lifting of a degree one circle map. Hence, [6, Lemma 3.7.11]
implies that ρ(Fµ) = ρ(Fµ(x)) exists and is independent on x. Also, from
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Proposition 4.15(a,b) it follows easily that ρ(Fl) 6 ρ(Fµ) 6 ρ(Fλ) 6 ρ(Fu)
whenever 0 6 µ 6 λ 6 µ1. Notice also that the function µ 7→ ρ(Fµ) is
continuous and Statement (d) holds by Proposition 4.15(e), Lemma 4.14
and [6, Lemma 3.7.12].

From Corollary 4.12 and Theorem 1.15 we obtain that the rotation
sets Rot+(F ), Rot−(F ) and Rot(F r

1 ) ⊂ RotR ⊂ Rot(F ) are contained
in [ρ(Fl), ρ(Fu)].

From above we see that for all α ∈ [ρ(Fl), ρ(Fu)] there exists an a ∈ [0, µ1]
such that ρ(Fa) = α. Since Fa is the lifting of a continuous degree one circle
map, by [6, Lemmas 3.7.15 and 3.7.16], Fa has an orbit (mod 1) P ⊂ R,

disjoint from Const(Fa) and whose Fa-rotation number is α. Moreover, if
α ∈ Q, then P can be taken periodic (mod 1). Since Fa is non-decreasing,
P is twist.

Proposition 4.15(c,d) tell us that P is disjoint from

Const(Fa) ⊃ Const(F r
1 ) ⊃ Const(F

∣∣
R)

and Fa

∣∣
P

= r ◦F
∣∣
P

. Then, since P ⊂ R, Fa

∣∣
P

= F
∣∣
P

. Consequently, P is a
twist (mod 1) orbit of F with F -rotation number α and, if α ∈ Q, then P

is periodic (mod 1). This ends the proof of the theorem. �

4.4. The set of periods for combed maps

This subsection is devoted to characterising the set of periods (mod 1)
for combed maps. Its main result (Theorem 4.17) is the analogue of [6,
Theorem 3.9.6] for circle maps. To state it we need to introduce some
notation.

Given two real numbers a 6 b we denote by M(a, b) the set {n ∈ N : a <

k/n < b for some integer k}. Clearly M(a, b) = ∅ whenever a = b and, if
a 6= b, M(a, b) ⊃ {n ∈ N : n > 1

b−a}.

Theorem 4.17. — If F ∈ C1(T ) is combed and Rot(F ) = [a, b], then
the following statements hold:

(a) If p, q are coprime and p/q ∈ (a, b), then Per(p/q, F ) = qN.
(b) Per(F ) = Per(a, F ) ∪M(a, b) ∪ Per(b, F ).

Proof. — If a = b there is nothing to prove. So, in the rest of the proof
we assume that a 6= b.

Assume that p, q are coprime and a < p/q < b, and let n ∈ N. We
have to show that qn ∈ Per(p/q, F ). By Theorem 4.16(a) we see that
p/q ∈ Rot(F r

1 ) and observe that F r
1 is a degree one circle map. To simplify
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the notation, let us denote by G the map (F r
1 )q − p. By [6, Lemma 3.7.1],

Rot(G) = [qa − p, qb − p] which contains 0 in its interior. Then, from
the proof of [6, Lemma 3.9.1], there exist points t′, z, t, z′ ∈ R such that
t′ < z < t < z′, G(t′) < t′, G(z) > (z′), G(t) 6 t′ and G(z′) > z′.

Let us denote the interval [t′, z] by I and the interval [t, z′] by J . Then

I
+−−→
G

I, J and J
+−−→
G

I, J.

For n = 1 take the loop I
+−−→
G

I of length 1 and for n > 2 let us consider
the following loop of length n:(

I
+−−→
G

J
)(

J
+−−→
G

J
)n−2 (

J
+−−→
G

I
)

.

Then, in view of Proposition 2.3, for each n ∈ N, there exists x ∈ I such
that Fnq(x) = x + np and F qi(x) ∈ J + ip for all i = 1, 2, . . . , n − 1. By
setting G̃ := F q − p this can be rewritten as G̃q(x) = x and G̃i(x) ∈ J for
all i = 1, 2, . . . , n− 1. Consequently, x is a periodic point of G̃ of period n

because I ∩J 6= ∅ or, in other words, x is a periodic (mod 1) point of F q of
period n such that ρ

F q (x) = p. Then, from the proof of [6, Lemma 3.9.3]
it follows that x is a periodic (mod 1) point of F of period qn such that
ρ

F
(x) = p/q. Since Per(p/q, F ) ⊂ qN by Proposition 3.6, this ends the

proof of (a).
According to Proposition 3.6,

Per(F ) = Per(a, F ) ∪ Per(b, F ) ∪
⋃

α∈(a,b)∩Q

Per(α, F ).

On the other hand, M(a, b) can be written as the union of qN for all
pairs p, q such that a < p/q < b and (p, q) = 1. Consequently, M(a, b) =⋃

α∈(a,b)∩Q Per(α, F ) by (a), which proves (b). �

Remark 4.18. — In this situation, contrary to the case of circle maps,
the characterisation of the sets Per(a, F ) and Per(b, F ) (where a and b are
the endpoints of Rot(F )) is not possible without completely knowing the
lifted space T .

5. Additional results for infinite graphs

This section is devoted to improving the study of the rotation set and
the set of periods (mod 1) for the subclass of C1(T ) consisting of continuous
maps on infinite graph maps defined as follows.
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We recall that a (topological) finite graph is a compact connected set G

containing a finite subset V such that each connected component of G \ V

is homeomorphic to an open interval. A finite tree is a finite graph with no
loops, i.e. with no subset homeomorphic to a circle.

When we unwind a finite graph G with respect to a loop, we obtain an
infinite graph T that may or may not be in T (see Figure 1.1 for an infinite
graph not in T and Figure 1.3 for an infinite tree that belongs to T). Notice
that if G has exactly one loop, then T is an infinite tree and T ∈ T.

Definition 5.1. — Let T◦ denote the subfamily of spaces T ∈ T such
that

r−1([0, 1]) = {x ∈ T : 0 6 r(x) 6 1}
is a finite graph. The elements of T◦ will be informally called infinite graphs.

A point x ∈ T is called a vertex if there exists a neighbourhood U

of x such that U \ {x} has at least 3 connected components. Note that all
branching points of T are vertices. Also, a point x ∈ T is called an endpoint
if T \ {x} has a unique connected component.

5.1. RotR(F ) = Rot(F ) for transitive (mod 1) infinite graph maps

A map F ∈ C1(T ) is said transitive (mod 1) if it is the lifting of a tran-
sitive map, that is, for every non empty open sets U, V in T , there exists
n > 0 such that (Fn(U) + Z) ∩ V 6= ∅. In other words, for every non
empty open set U ⊂ T ,

(⋃
n>0 Fn(U)

)
+ Z is dense in T . In particular,⋃

n>0 Fn(R) is dense in T if F is transitive (mod 1).
Theorem 5.5 gives a sufficient condition, which includes the case when F

is transitive (mod 1), to have RotR(F ) = Rot(F ) when T ∈ T◦. In this
situation, the study of RotR(F ) done in the rest of the paper gives indeed
information on the whole rotation set. We start with some preliminary
results.

In what follows we will set

TR :=
⋃
n>0

Fn(R).

Lemma 5.2. — Let T ∈ T◦ and F ∈ C1(T ). Then

(a) For all n > 0, Fn(R) is a closed set.
(b) For all n > 0, Fn+1(R) ⊃ Fn(R) and TR is connected. Consequently,

Clos
(
TR
)
∈ T◦.

(c) We have F (TR) = TR and consequently, F (Clos
(
TR
)
) = Clos

(
TR
)
.

ANNALES DE L’INSTITUT FOURIER



ROTATION SETS FOR GRAPH MAPS OF DEGREE 1 1269

Proof. — If G ∈ C1(T ), then G([0, 1]) contains the non empty interval
[r(G(0)), r(G(0))+1] ⊂ R. Thus there is x0 ∈ [0, 1] such that G(x0+Z) ⊂ R.
For k ∈ Z set Rk = G([x0 + k − 1, x0 + k]). By the continuity of G and
Definition 1.1(ii), Rk ∩ R ⊃ [G(x0 + k − 1), G(x0 + k)]. Moreover, Rk is
compact and

G(R) =
⋃
k∈Z

Rk ⊃
⋃
k∈Z

[G(x0 + k − 1), G(x0 + k)].

Since Rk+1 ∩Rk ⊃ {G(x0 + k)}, the set G(R) contains R.
To prove that G(R) is closed, we proceed as follows. Let {xn}n∈N ⊂ G(R)

be a sequence converging to a point x ∈ T . We will prove that x ∈ G(R).
The fact that it is convergent implies that it is bounded. The sets Rk are
also bounded and Rk+1 = Rk + 1 because G has degree one. This implies
that {xn}n∈N ⊂

⋃
k∈E Rk where E ⊂ Z is a finite set. Since

⋃
k∈E Rk is

compact, we see that x ∈
⋃

k∈E Rk ⊂ G(R).
Now, Statement (a) follows from above by taking G = Fn. Also, by

taking G = F above we obtain F (R) ⊃ R. Therefore, Fn+1(R) ⊃ Fn(R)
for all n > 0. Since Fn(R) is connected by continuity this implies that TR
is connected. Hence Clos

(
TR
)
∈ T◦. This proves (b).

To end the proof of the lemma we only have to show that F (TR) = TR .
The inclusion F (TR) ⊂ TR is obvious. Now we prove the other inclusion.
That is, for each x ∈ TR there exists y ∈ TR such that F (y) = x. Since
x ∈ TR there exists l > 0 such that x ∈ F l(R) but x /∈ F j(R) for j =
0, 1, . . . , l − 1. If l > 0 then, clearly, we can take y ∈ F l−1(R) and we
are done. Otherwise, x ∈ R =

⋃
m∈Z[F (x0 − m), F (x0 + m)] for some

x0 ∈ R such that F (x0) ∈ R. Hence, there exists m ∈ Z such that x ∈
[F (x0 −m), F (x0 + m)]. So, F (y) = x for some y ∈ [x0 −m,x0 + m]. �

Lemma 5.3. — Let T ∈ T◦ and F ∈ C1(T ) and assume that Clos
(
TR
)

=
T . Then there exists a finite set A such that T \ TR = A + Z, the sets
{A + n}n∈Z are pairwise disjoint and every point of T \ TR is periodic
(mod 1).

Proof. — By Remark 1.2 we may assume that 0 is not a branching point.
Let X = r−1([0, 1]) = {x ∈ T : r(x) ∈ [0, 1]}. By definition, X is a finite
graph. Set A := X \ TR . Since 0 is not a branching point,

X = r−1((0, 1)) ∪ {0, 1},

and thus the sets {A+n}n∈Z are pairwise disjoint. Clearly, T \TR = A+Z.
By Lemma 5.2(b), the set TR ⊃ R is connected, and by assumption it is
dense in T . Thus A is a finite subset of X.
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By Lemma 5.2(c), we have F (TR) = TR . This implies F (T \TR) = T \TR
and, since T \TR = A+Z with A finite it follows that for each a ∈ A there
exist integers n > 1 and k ∈ Z such that Fn(a) = a + k. This means that
all points in A are periodic (mod 1). �

Remark 5.4. — While Lemma 5.2 holds for any lifted space except for
the statement that Clos

(
TR
)
∈ T◦, Lemma 5.3 is only true for infinite

graphs from T◦. The fact that T \ TR = A + Z being A finite is not true in
general, when we remove the assumption that T ∈ T◦. If T is an infinite
tree, then A is a subset of the endpoints of T , but this may not be the case
for any infinite graph.

Now we are ready to state the main result of this subsection.

Theorem 5.5. — Let T ∈ T◦ and F ∈ C1(T ). If Clos
(
TR
)

= T then
RotR(F ) = Rot(F ) = Rot+(F ) = Rot−(F ).

Proof. — By Lemma 5.3, we can write T \TR as A+Z where A is finite,
the sets {A + n}n∈Z are pairwise disjoint, and there exist k ∈ N which is
common to all elements of A and integers {ia}a∈A such that for all a ∈ A,
F k(a) = a + ia. Hence, the rotation number of every a ∈ A exists and we
have ρ

F
(a) = ia/k.

Clearly,

Rot(F ) = {ρ
F
(x) : x ∈ TR} ∪ {ρF

(x) : x ∈ A},

and the same holds for the upper and lower rotation numbers. If y /∈ A,
then there exist x ∈ R and n > 0 such that Fn(x) = y. Thus ρ

F
(x) = ρ

F
(y)

and ρ
F
(x) = ρ

F
(y). This implies that RotR(F ) = {ρ

F
(x) : x ∈ TR}, and

the same holds for the upper and lower rotation numbers. According to
Theorem 3.1, RotR(F ) = Rot+R (F ) = Rot−R (F ). Hence

Rot(F ) = Rot+(F ) = Rot−(F ) = RotR(F ) ∪ {ρ
F
(x) : x ∈ A}.

Therefore it remains to prove that for every a ∈ A there exists x ∈ R such
that ρ

F
(x) = ρ

F
(a). We are going to find a point x ∈ R whose orbit is

attracted by a.
In the rest of the proof the map F k will be denoted by G so that G(a) =

a + ia for all a ∈ A (in particular ρ
G
(a) = ia). For each a ∈ A choose

neighbourhoods Va ⊂ Wa of a such that (Wa +Z)∩(Wa′ +Z) = ∅ whenever
a 6= a′ (this is possible because the sets {A + n}n∈Z are pairwise disjoint)
and G(Va) ⊂ Wa + ia for all a ∈ A.
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Since TR is an increasing union by Lemma 5.2(b), we also have

Clos

⋃
n>0

Gn(R)

 = T.

Thus, there exists a positive integer N such that T \Gn(R) ⊂
⋃

a∈A(Va+Z)
for all n > N . Let V n

a = Va \Gn(R). Again by Lemma 5.2(b), {V n
a }n>N is

a decreasing sequence of sets containing a and
⋂

n>N V n
a = {a} because a

is in Clos
(⋃

n>0 Gn(R)
)

but not in
⋃

n>0 Gn(R). For all n > N , we have

(5.1) Gn(R) = Gn−1(R)q

(∐
a∈A

(
V n−1

a \ V n
a

)
+ Z

)
,

where q denotes disjoint union. If we apply G once more to Equation (5.1)
we get

(5.2) Gn+1(R) = Gn(R) ∪G

(∐
a∈A

(
V n−1

a \ V n
a

)
+ Z

)
.

From Equation (5.1) for n + 1 and Equation (5.2), we deduce:

G

(⋃
a∈A

(
V n−1

a \ V n
a

)
+ Z

)
⊃
∐
a∈A

(
V n

a \ V n+1
a

)
+ Z.

Since G(Va) ⊂ Wa + ia, the images by G of the sets {V n−1
a \ V n

a }a∈A are
pairwise disjoint and G(V n−1

a \V n
a ) is the only one that intersects Wa + Z.

Moreover V n
a \ V n+1

a ⊂ Wa. Hence G(V n−1
a \ V n

a ) ⊃
(
V n

a \ V n+1
a

)
+ ia for

every a ∈ A. By compactness we have

(5.3) G
(
Clos

(
V n−1

a \ V n
a

))
⊃ Clos

(
V n

a \ V n+1
a

)
+ ia

for all n > N and a ∈ A.
Let a ∈ A. If V k−1

a \ V k
a = ∅ for some k > N , then V n−1

a \ V n
a = ∅

for all n > k, by Equation (5.3). Thus V n
a = V k

a for all n > k and
V k

a =
⋂

n>k V n
a = {a}. This contradicts the fact that Gk(R) is closed

by Lemma 5.2(a). Consequently, V n−1
a \ V n

a 6= ∅ for all n > N and, by
Equation (5.3), there exists x ∈ R such that

(G− ia)n(x) ∈ Clos
(
V n−1

a \ V n
a

)
for all n > N + 1.

This implies that ρ
G
(x) = ia = ρ

G
(a), that is, ρ

F
(x) = ρ

F
(a) in view

of Lemma 1.10(c). This shows that {ρ
F
(a) : a ∈ A} ⊂ RotR(F ) which

concludes the proof. �
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Remark 5.6. — If
⋃

n>1 F−n(R)∪Clos
(
TR
)

= T then the conclusion of
Theorem 5.5 remains valid. However, the theorem does not hold with the
assumption that Clos

(⋃
n∈Z Fn(R)

)
= T (see Example 1.12).

We deduce from Theorem 5.5 that for infinite graphs, RotR(F ) is the
rotation set of an F -invariant infinite graph contained in T .

Corollary 5.7. — Let T ∈ T◦ and F ∈ C1(T ). Then RotR(F ) =
Rot(F |

Clos
(
TR
)).

Proof. — Set T := Clos
(
TR
)
. By Lemma 5.2(c) T ∈ T◦ and the map

F |T : T −→ T belongs to C1(T ). Then, Theorem 5.5 implies that the sets
Rot(F |T ) and RotR(F |T ) coincide. Also, RotR(F |T ) = RotR(F ) and the
corollary follows. �

5.2. Periodic (mod 1) points associated to the endpoints of
RotR(F ) for infinite graph maps

In Subsection 3.2, we dealt with the rational rotation numbers in the
interior of RotR(F ). In this subsection we are going to show that for an
infinite graph map there exist periodic (mod 1) points whose rotation num-
bers are equal to minRotR(F ) (resp. max RotR(F )) provided that it is a
rational number. This will be proved in the main result of this subsection
(Theorem 5.18). However, before stating and proving this result in detail,
we will introduce the necessary machinery. It will consist in the notion of
a direct path to +∞. One of the crucial points of the notation that we
will introduce is the construction of a direct version of a given (non direct)
path going to +∞. Then we will devote to three technical lemmas to study
the properties of this kind of paths and to prepare the proof of the basic
technical result of this subsection (Lemma 5.17) that gives sufficient con-
ditions to assure that all points in the rotation set are positive. This is the
key tool in proving Theorem 5.18.

In the rest of this subsection, we fix an infinite graph T ∈ T◦ and we let

X = Clos ({x ∈ T : 0 6 r(x) < 1} \ R) .

Since X is a finite union of finite graphs, we can write X =
⋃

λ∈Λ Iλ

where Λ is a finite set of indices, Iλ is a set homeomorphic to a closed non
degenerate interval of the real line, Iλ contains no vertex except maybe its
endpoints and the intersection of two different sets Iλ, Iλ′ contains at most
one point. Each interval of the form Iλ + n with λ ∈ Λ and n ∈ Z will be
called a basic interval.
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We first formalise the idea that in T there are only finitely many “direct
ways” to go from a basic interval towards +∞. A direct path is a path
without loops or returns backwards. For technical reasons, a direct path is
allowed to remain constant on an interval.

Definition 5.8. — A path from x0 ∈ T to +∞ is a continuous map
γ : [0,+∞) −→ T such that γ(0) = x0 and limt→+∞ r ◦ γ(t) = +∞. Such a
path is called direct if, in addition, it verifies the following condition

(DP) if γ(t) = γ(t′) for some t ∈ [0, t′], then γ
∣∣
[t,t′]

is constant.

Remark 5.9. — If γ : [0,+∞) −→ T is a direct path to +∞, then there
exists t such that γ(t′) ∈ R for all t′ > t. This is due to the fact that if
a path leaves R at some point z then z ∈ B(T ) and, by Definition 1.1(ii),
the path must return to R through the same point z. Then, clearly, such a
path does not verify Condition (DP) and, hence, it is not direct.

Note also that γ([0,+∞)) is homeomorphic to [0,+∞).

In view of the previous remark, when γ is a direct path we can define an
ordering <γ on the path γ([0,+∞)) such that it coincides with the order
of R on the half-line γ([0,+∞))∩R as follows. If x, x′ ∈ γ([0,+∞)), x 6= x′,
then we write x <γ x′ if and only if x = γ(t) and x′ = γ(t′) with t ∈ [0, t′).
The symbols 6γ , >γ , and >γ are then defined in the obvious way.

Remark 5.10. — If γ is a direct path then γ : [0,+∞) −→ γ([0,+∞))
is a non decreasing map with respect to the ordering 6γ in the image
γ([0,+∞)).

Let x0, x
′
0 ∈ T and let γ and γ′ be two direct paths from x0, x

′
0 to +∞.

We say that γ, γ′ are comparable if, either γ′([0,+∞)) ⊂ γ([0,+∞)), or
γ([0,+∞)) ⊂ γ′([0,+∞)). In the first situation, x0 6γ x′0, that is, x′0 is
“on the way” between x0 and +∞. The second situation is symmetric.

We will be interested in comparing direct paths starting in the same
basic interval.

Lemma 5.11. — The relation of comparability is an equivalence relation
among all direct paths to +∞ starting in the same basic interval. Moreover,
the set of equivalence classes of such paths for the comparability relation
is finite.

Proof. — Let Iλ + n be a basic interval and assume that γ is a direct
path from some x0 ∈ Iλ + n to +∞.

Set λ0(γ) = λ, t0 = 0 and t1 = max{t > t0 : γ([t0, t]) ⊂ Iλ0(γ) + n}.
Clearly, γ(t1) is an endpoint of Iλ +n. Now we define inductively two finite
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sequences {λi(γ)}06i6k and {ti}06i6k+1 in the following way. If γ(ti) =
r(x0) then γ([ti,+∞)) ⊂ R and we stop the construction. Otherwise, there
exists λi(γ) 6= λi−1(γ) and ε > 0 such that γ(ti) ∈ (Iλi−1(γ) ∩ Iλi(γ)) + n

and γ([ti, ti + ε]) ⊂ Iλi(γ) + n. Then we can define

ti+1 = max{t > ti : γ([ti, t]) ⊂ Iλi(γ) + n}.

Since γ is a direct path, each λ ∈ Λ appears at most once in the sequence
of λi(γ)’s. Therefore the construction ends and the number of possible
sequences {λi(γ)}i is finite.

The set γ([0, t1]) is a subinterval of Iλ + n with endpoints x0 and

(Iλ ∩ Iλ1(γ)) + n.

Moreover, for every

i = 1, . . . , k, γ([ti, ti+1]) = Iλi(γ) + n,

and
γ([tk+1,+∞)) = [r(x0),+∞).

If γ′ is another direct path from some point in Iλ + n to +∞, then γ′ is
comparable with γ if and only if

{λi(γ)}16i6k = {λi(γ′)}16i6k′ .

Therefore, comparability is an equivalence relation among the direct paths
starting in Iλ + n, and the number of equivalence classes of direct paths to
+∞ starting at Iλ + n by the comparability relation is finite. �

In the next definition, we associate to a path γ to +∞ a direct path
γ̃ to +∞ by cutting all loops and returns backwards of γ. In some sense,
γ̃ “globally follows” the path γ but goes directly towards +∞. Figure 5.1
illustrates this definition.

Definition 5.12. — Let x0 ∈ X + n, n ∈ Z and let γ be a path from
x0 to +∞. We define a path γ̃ as follows.

First we set

t∗ = min{t ∈ [0,+∞) : r ◦ γ(t) = r(x0)}

and we define

γ̃(t) = max r ◦ γ([t∗, t]) for all t ∈ [t∗,+∞).

Observe that γ̃
∣∣
[t∗,+∞)

is a non decreasing map from the interval [t∗,+∞)
onto [r(x0),+∞) ⊂ R. If x0 ∈ R then t∗ = 0 and γ̃ is already defined. Oth-
erwise, t∗ > 0 and γ([0, t∗]) is a path contained in the connected component
of X + n containing x0. Now we inductively define γ̃

∣∣
[0,t∗]

.
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x0
x1

x2
x3 x4

x0
x1

x2
x3 x4

Figure 5.1. A path γ on the left, and the associated direct path γ̃ on
the right. With the notation of Definition 5.12, one has x0 = γ(t0) =
γ(t′0) = γ̃

∣∣
[t0,t′0]

, x1 = γ(t1) = γ(t′1) = γ̃
∣∣
[t1,t′1]

, x2 = γ(t2) = γ̃(t2),
x3 = r(x0) = γ(t∗) = γ̃(t∗), with 0 = t0 < t′0 < t1 < t′1 < t2 = t′2 <

t3 = t∗.

Step 0. Set t0 = 0 and let λ0 ∈ Λ be such that x0 ∈ Iλ0 + n. We define

t′0 := max{t ∈ [t0, t∗] : γ(t) = γ(t0)}

and
γ̃(t) := γ(t0) = γ(t′0) for all t ∈ [t0, t′0].

Observe that t′0 < t∗ (otherwise x0 = γ(t′0) = r(x0) ∈ R). Let

t1 := max{t ∈ [t′0, t
∗] : γ([t′0, t]) ⊂ Iλ0 + n}.

In this situation γ(t1) is an endpoint of Iλ0 + n. Since γ([t′0, t1]) ⊂ Iλ0 + n

we can define a linear ordering �λ0 in Iλ0 + n such that γ(t′0) �λ0 γ(t1).
Now, for all t ∈ [t′0, t1], we define

γ̃(t) := max γ([t′0, t]),

where the maximum is taken with respect to the ordering �λ0 . The map
γ̃
∣∣
[t′0,t1]

: Iλ0 + n −→ Iλ0 + n is non decreasing for �λ0 . Moreover, by the
choice of t1, γ̃(t1) = γ(t1).

If t1 = t∗ then γ̃ is already defined for all t > 0. Otherwise we proceed
to the step k = 1.
Step k. Suppose that we have already defined t0 6 t′0 6 t1 6 t′1 < t2 6
t′2 6 · · · t′k−1 < tk < t∗ and λ0, λ1, . . . , λk−1 ∈ Λ verifying the following
properties:

(i) t′i = max{t ∈ [ti, t∗] : γ(t) = γ(ti)} for all 0 6 i 6 k − 1,
(ii) γ(ti+1) is an endpoint of Iλi + n for all 0 6 i 6 k − 1,
(iii) γ([t′i, ti+1]) = Iλi + n for all 1 6 i 6 k − 1,

TOME 58 (2008), FASCICULE 4



1276 Lluís ALSEDÀ & Sylvie RUETTE

(iv) λ0, λ1, . . . , λk−1 are all different.

First, let t′k be the real number given by (i) for k. We define

γ̃(t) := γ(tk) = γ(t′k) for all t ∈ [tk, t′k].

The definition of t′k implies that there exists a unique λk ∈ Λ such that
γ([t′k, t′k + ε]) ⊂ Iλk

+ n for ε > 0 small enough. Since γ(tk) is an endpoint
of Iλk−1 + n by (ii), we get in addition that λk 6= λk−1 and γ(t′k) = γ(tk)
is an endpoint of Iλk

+ n. Let

tk+1 := max{t ∈ [t′k, t∗] : γ([t′k, t]) ⊂ Iλk
+ n}.

The choice of λk implies that tk+1 > t′k. This definition implies that γ(tk+1)
is an endpoint of Iλk

+ n, which gives (ii) for k. In addition, γ(tk+1) is not
equal to the other endpoint γ(t′k), and thus we get (iii) for k.

In this situation, we can define, as in step (0), a linear ordering �λk
in

Iλk
+ n such that γ(t′k) �λk

γ(tk+1). Now, for all t ∈ [t′k, tk+1], we define

γ̃(t) := max γ([t′k, t]),

where the maximum is taken with respect to the ordering �λk
. As in Step 0,

γ̃
∣∣
[t′

k
,tk+1]

is non decreasing for �λk
. Also, the the choice of tk+1 implies

that γ̃(tk+1) = γ(tk+1).
Suppose that λk = λi for some 0 6 i 6 k − 2. Since γ(t′k) and γ(tk+1)

are the two endpoints of Iλk
+ n, one of them is equal to γ(ti+1) = γ(t′i+1)

by (i-ii). Then the definition of t′i+1 gives a contradiction because t′i+1 <

t′k 6 tk+1. Since we have shown above that λk 6= λk−1, this gives (iv) for
k and ends the step k. If tk+1 = t∗ then γ̃ is already defined for all t > 0.
Otherwise we proceed to the step k + 1.
According to the property (iv), this construction comes to an end because Λ
is finite.

Remark 5.13. — A construction related with the one performed in Def-
inition 5.12 but in a topological framework can be found in [7].

The next lemma can be easily deduced from the above construction.

Lemma 5.14. — Given a path γ to +∞, it follows that the path γ̃

constructed in Definition 5.12 is a direct path to +∞.

Lemma 5.15. — Let γ be a path to +∞. If γ̃(a) 6= γ(a), then there exist
s1, s2 such that s1 < a < s2 and γ(s1) = γ(s2) = γ̃(a) for all t ∈ [s1, s2].

Proof. — We use the same notation as in the definition of γ̃ above. There
are three cases when γ̃(t) and γ(t) can differ:
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Case 1. ti < a < t′i for some integer i > 0.
Then γ̃(t) = γ(ti) = γ(t′i) for all t ∈ [ti, t′i]. In this case we take s1 = ti and
s2 = t′i.

Case 2. t′i−1 < a < ti for some integer i > 1.

There exists z ∈ [t′i−1, a) such that γ(a) <
γ̃

γ(z) = γ̃(a), and thus γ̃
∣∣
[z,a]

is constant. Recall that, by Definition 5.12, γ(t′i−1) = γ̃(t′i−1), γ(ti) = γ̃(ti)
and γ̃(t) = max�λi

γ([t′i, t]) for all t ∈ [t′i−1, ti]. Taking all this and the
continuity of γ and γ̃ into account, it follows that there exists a maxi-
mal interval [s1, s2] ⊂ [t′i−1, ti] containing a such that γ̃

∣∣
[s1,s2]

is constant,
γ(s1) = γ̃(s1) and γ(s2) = γ̃(s2). Since γ(a) 6= γ̃(a), we have s1 < a < s2.
This ends the proof of the lemma in this case.

Case 3. a > t∗.

By Definition 5.12, γ̃(t∗) = γ(t∗) ∈ R and

γ̃(t) = max r ◦ γ([t∗, t])

for all t > t∗. Since limt→+∞ r ◦ γ(t) = +∞, there exists t′ > a such
that r ◦ γ(t′) > γ̃(a). A similar argument as before shows that there exist
a maximal interval [s1, s2] ⊂ [t∗,+∞) such that s1 < a < s2, γ̃

∣∣
[s1,s2]

is
constant, r ◦ γ(s1) = γ̃(s1) and r ◦ γ(s2) = γ̃(s2). The maximality of the
interval [s1, s2] implies that r◦γ(si) = γ(si) ∈ R for i = 1, 2. This concludes
the proof of the lemma. �

Suppose that γ0 is a direct path such that γ1 = F̃ ◦ γ0 is comparable with
γ0 and γ1(R+) ⊃ γ0(R+). If there exist x ∈ γ0(R+) and y ∈ R, y > r(x),
such that F (x) 6γ1 x and y 6 r ◦F (y), then this looks much like a positive
covering of [x, y] by itself ([x, y] being seen as a subinterval inside the half-
line γ0(R+)). This situation does indeed imply the existence of a fix point:
the next lemma states this result in the more general setting of successive
iterations of F .

Recall that F r
1 denotes the map r ◦ F

∣∣
R.

Lemma 5.16. — Let F ∈ C1(T ) and let γ be a path from x0 to +∞.
Define γ0 = γ̃ and γn+1 = F̃ ◦ γn for all n > 0. Suppose that for some n > 1
the paths γn and γ0 are comparable and Fn(x0) 6γn x0, and suppose that
there exists y ∈ R such that (F r

1 )j(y) > y for all 1 6 j 6 n. Then there
exists z such that Fn(z) = z.

Proof. — Since F has degree one, by taking y +k with k ∈ Z sufficiently
large instead of y, we may assume that r ◦ F j(x0) < y for all 0 6 j 6 n.
There exists t ∈ (0,+∞) such that γ0(t) = y.
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We show by induction that

(5.4) γj(t) > (F r
1 )j(y) for all 0 6 j 6 n.

This is clearly true for j = 0 by the choice of t. Suppose now that γj(t) >
(F r

1 )j(y) for some j ∈ {0, . . . , n − 1} and prove it for j + 1. By assump-
tion, (F r

1 )j(y) > y > r ◦ F j(x0), and thus there exists t′ 6 t such that
γj(t′) = (F r

1 )j(y). Since γj+1 is a direct path, we have γj+1(t) > γj+1(t′) :=
F̃ ◦ γj(t′) by Remark 5.10. Also,

r ◦ F (γj(t′)) = F r
1 ((F r

1 )j(y)) = (F r
1 )j+1(y).

Moreover, observe that F ◦ γj is a path starting at F j+1(x0) and, by the
assumptions,

r ◦ F (γj(t′)) = (F r
1 )j+1(y) > y > r ◦ F j+1(x0).

Thus, we are in the part [t∗,+∞) of Definition 5.12, and hence F̃ ◦ γj(t′) >
r◦F (γj(t′)). Summarising we have shown that γj+1(t) > (F r

1 )j+1(y); which
ends the proof of the induction step.

Set I = γ0([0, t]) and J = γn([0, t]). Clearly both sets are homeomorphic
to closed intervals of the real line, I has endpoints x0 and y while the
endpoints of J are Fn(x0) and γn(t) > (F r

1 )n(y) > y (Equation (5.4) for
i = n). By assumption, Fn(x0) 6γn

x0, and thus I ⊂ J . We define a map
G : I −→ J as follows. Given a point x ∈ I take t ∈ R+ such that γ0(t) = x

and then set G(x) = γn(t). We have to show that the map G is well defined.
Let Ux denote {t ∈ R+ : γ0(t) = x}. If Card(Ux) > 1 then, since γ0 = γ̃

is a direct path, Ux is an interval where it is constant. Consequently, one
can easily prove inductively that γi+1 = F̃ ◦ γi is also constant on Ux for
0 6 i 6 n− 1. In particular γn is constant on Ux.

The map G is continuous. Then, by identifying J with an interval on R
we can use Lemma 2.4 to prove that there exists z ∈ I such that G(z) = z

and z /∈ Const(G).
It remains to show that G(z) = Fn(z). Let a be such that z = γ0(a).

Then, we have to show that γn(a) = Fn ◦ γ0(a). Suppose that, for some
j < n, γj+1(a) 6= F ◦γj(a) and γj(a) = F j ◦γ0(a). Applying Lemma 5.15 to
the path F ◦γj , we find that there exist s1 < a < s2 such that F ◦γj(s1) =
F ◦ γj(s2) = γj+1(s) for all s ∈ [s1, s2]. Then, γ0(s1) 6= γ0(a) because F ◦
γj(s1) = γj+1(a) 6= F ◦γj(a), and for the same reason γ0(a) 6= γ0(s2). Since
the map γ0 is non decreasing, z = γ0(a) is in the interior of [γ0(s1), γ0(s2)].
Moreover, G is constant on this interval, and thus z ∈ Const(G), which is
a contradiction. We conclude that γj+1(a) = F ◦ γj(a) for all 0 6 j < n,
and thus γn(a) = Fn ◦ γ0(a). �
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The next lemma is the key tool in the proof of Theorem 5.18.

Lemma 5.17. — Let F ∈ C1(T ) be such that Clos
(
TR
)

= T and 0 6
minRot(F ). Suppose that there exists y ∈ R such that (F r

1 )n(y) > y for
all n > 1, and Fn(x) 6= x for all x ∈ T and n ∈ N. Then minRot(F ) > 0.

Proof. — By Lemma 5.3, there exists a finite subset A such that T \TR =
A + Z and there exist a s ∈ N which is common to all elements of A and
integers {i′a}a∈A such that for all a ∈ A, F s(a) = a+i′a. Hence, the rotation
number of every a ∈ A exists and we have ρ

F
(a) = i′a/s. Moreover, for each

a ∈ A, i′a > 0 because minRot(F ) > 0. Moreover, i′a > 1 because otherwise
a = F s(a), which contradicts our assumptions.

For every a ∈ A, let Va be a neighbourhood of a such that F s(Va) ⊂ X +
i′a. By Lemma 5.2(b), {Fn(R)}n>0 is an increasing sequence of connected
sets whose union is TR . By assumption, T = Clos

(
TR
)
. Thus, there exists

an integer ` > 0 such that F `s(R) contains X \
⋃

a∈A Va. Set G = F `s. We
have T \ G(R) ⊂

(⋃
a∈A Va

)
+ Z and G(a) = a + ia for all a ∈ A, where

ia = `i′a > 1.
In the rest of the proof we will use the distance ν on T introduced in

Definition 4.13. With this notation we set

δn := min{ν(Gn(x), x) : x ∈ T} = min{ν(Gn(x), x) : 0 6 r(x) 6 1}.

Notice that δn > 0 for all n > 1 because Gn(x) 6= x for all x ∈ T .
Given a point x ∈ T and a path γ from x to +∞ we iteratively define

the following directed paths: γ0 = γ̃ and γi+1 = G̃ ◦ γi for all i > 0. Then,
by Lemma 5.16, the following property holds for each n ∈ N.

(5.5)
Either the paths γ0 and γn are not comparable or
the inequality Gn(x) 6γn

x does not hold.

Suppose in addition that x ∈ R and x > r◦Gn(x) for some n > 1. The path
γn goes from Gn(x) to +∞, and thus its image contains [r(Gn(x)),+∞) ⊃
[x,+∞). Therefore, γn and γ0 are comparable and Gn(x) 6γn x, which
contradicts (5.5). Consequently, we have:

(5.6) ∀x ∈ R, ∀n > 1, x < r ◦Gn(x).

Now we prove the following claim, that means that if the orbit of some
point y remains in X + Z then it cannot go too much to the left and has
to go to the right of y in bounded time.

Claim: There exists Ñ ∈ N such that if y ∈ X verifies that

there exists kn > 0 such that Gn(y) ∈ X − kn,

for all n = 1, . . . , N − 1, then N < Ñ .
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Proof of the claim. We know that G(R) ⊃ X \
⋃

a∈A Va. Hence, since
G ∈ C1(T ), there exists a point x0 ∈ R, x0 < 1, such that G([x0,+∞)) ⊃
X \

⋃
a∈A Va. We denote the number 1−bx0c by p, where bx0c denotes the

integer part of x0. Clearly, p bounds the number of copies of X of the form
X − n fitting between x0 and 1.

Fix a path ξ from y to +∞ and define ξ0 = ξ̃ and ξn+1 = G̃ ◦ ξn for all
n > 0. We are going to show that a large proportion of {Gn(y)}06n<N lie
in the same basic interval and then a large proportion of paths {ξn}06n<N

start in this particular interval and are comparable.
The point y does not belong to

⋃
a∈A Va because G(Va) ⊂ X + ia with

ia > 1. Hence y ∈ G([x0,+∞)). Let x ∈ R, x > x0 be such that G(x) = y.
Equation (5.6) implies that x < r(Gn+1(x)) = r(Gn(y)) for all n > 0, and
thus x0 < r ◦ Gn(y) for all 0 6 n 6 N − 1, and hence 0 6 kn 6 p − 1. In
other words, the number of basic intervals that contain one of the points
(Gn(y))06n<N is at most p Card(Λ). By the drawers principle, there exists
a basic interval Y such that

Card({0 6 n 6 N − 1 : Gn(y) ∈ Y }) >
N

p Card(Λ)
.

By Lemma 5.11, the number of equivalence classes of comparable paths
starting from Y is finite. Let q be this number. Let [σ]Y denote the equiva-
lence class of a path σ starting in Y . Again by the drawers principle, there
exists a path σ such that the number of elements of the set

N = {0 6 n 6 N − 1 : Gn(y) ∈ Y and [ξn]Y = [σ]Y }

is at least N
m , where m denotes pq Card(Λ). Write

N = {n1, n2, . . . , nk} with k >
N

m
and n1 < n2 < · · · < nk.

We will show that there cannot be too many elements in N because of
(5.5). If we choose σ to be maximal with respect to the inclusion relation of
images then, for every n ∈ N , the ordering 6ξn

is a restriction of 6σ. Since
ξn(0) = Gn(y), all the points {Gn(y)}n∈N belong to Y and are ordered by
6σ. If ni, nj ∈ N with ni > nj then Gni(y) 6σ Gnj (y) contradicts (5.5)
applied to the path ξni and initial path ξnj (notice that, by definition of
N , ξni

and ξnj
are equivalent and hence comparable). Therefore

(5.7) Gn1(y) <σ Gn2(y) <σ · · · <σ Gnk(y).

This implies that ν(Gnk(y), Gn1(y)) =
∑k−1

i=1 ν(Gni(y), Gni+1(y)). This ob-
servation will be used to find a lower bound of ν(Gnk(y), Gn1(y)).
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For i = 1, . . . , k − 1 set ji = ni+1 − ni. We have ji > 1 and

j1 + · · ·+ jk−1 = nk − n1 6 N.

Define also M := Card({1 6 i 6 k−1 : ji 6 2m}). Then, there are k−1−M

integers i such that ji > 2m + 1 and for the rest we have ji > 1. Thus,

N > j1 + · · ·+ jk−1 > M + (2m + 1)(k − 1−M).

Hence

M >
(2m + 1)(k − 1)−N

2m
> k − 1− N

2m
.

Since k > N
m it follows that M > N

2m − 1. According to the definition
of δj , we have ν(Gni+1(y), Gni(y)) > δji . There are M integers i such that
ji 6 2m. Thus, in view of Equation (5.7), we get that ν(Gnk(y), Gn1(y)) >
Mκ, where κ = min{δ1, . . . , δ2m} > 0. Let L denote the maximal length
of all the basic intervals. It follows that L > ν(Gnk(y)), Gn1(y)) > Mκ,

and thus N 6 2m
(

L
κ + 1

)
. This concludes the proof of the claim by setting

Ñ > 2m
(

L
δ + 1

)
(recall that m = pq Card(Λ) and that L and κ depend

only on T and G).
To end the proof of the lemma it is enough to show that ρ

G
(x) > 0 for

all x ∈ T . Indeed, by Lemma 1.10 in that case we will have 0 < ρ
G
(x) =

`sρ
F
(x) which implies ρ

F
(x) > 0 for all x ∈ T . Since Rot+(F ) ⊃ Rot(F )

the lemma holds.
To prove that ρ

G
(x) > 0 for all x ∈ T we consider three cases.

Case 1. Gn(x) ∈ R for all n > N .

Then Gn+1(x) > Gn(x) + δ1 for all n > N and ρ
G
(x) > δ1 > 0.

Case 2. Gn(x) ∈ X + Z for all n > N .

By the Claim there exist two sequences {ni}i>0 and (ki)i>0 such that
ni+1 − ni 6 Ñ , ki+1 > ki + 1 and Gni(x) ∈ X + ki for all i > 0. Hence
ρ

G
(x) > 1

Ñ
> 0.

Case 3. Assume that we are not in the first two cases.

Then, there exists an increasing sequence {ni}i>0 such that, for all i > 0,
Gni(x) ∈ R and Gj(x) 6∈ R for all j ∈ {ni + 1, . . . , ni+1 − 1}. For these j,
let qj ∈ Z be such that Gj(x) ∈ X + qj . Let Ñ be the integer given by the
Claim, and define:

C :=max{|r ◦Gn(x)− r(x)| : x ∈ T, n 6 Ñ}

N1 :=d2Ñ(C + 2) + 2e
δ :=min{δ1, . . . , δN1} > 0
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(recall that d·e denotes the ceiling function). Observe that all direct paths
going to +∞ and starting at some point Gni(x) are comparable because
Gni(x) ∈ R for all i. Consequently, by (5.5), Gni+1(x) > Gni(x).

If ni+1 − ni 6 N1 then

(5.8)
Gni+1(x)−Gni(x)

ni+1 − ni
>

δ

N1
.

If ni+1 − ni > N1, by the Claim, there exist ni + 1 = j1 < j2 < · · · <

jk < ni+1 such that ji+1− ji 6 Ñ , ni+1− jk 6 Ñ and qjt+1 − qjt
> 1 for all

1 6 t 6 k−1. Hence k > ni+1−ni−1

Ñ
. Since qjt+1 − qjt > 1, the point Gjk(x)

belongs to X+qj1 +m for some m > k−1, and thus r◦Gjk(x)−r◦Gj1(x) >
k − 2. Moreover, Gni(x) < r ◦Gj1(x) because of (5.6). Therefore,

Gni+1(x)−Gni(x) =(Gni+1(x)− r ◦Gjk(x)) + (r ◦Gjk(x)− r ◦Gj1(x))

+ (r ◦Gj1(x)−Gni(x)) > −C + (k − 2) + 0

>
ni+1 − ni − 1

Ñ
− C − 2

=
ni+1 − ni

Ñ
− (C + 2 + 1/Ñ).

The choice of N1 implies that N1 > 2Ñ(C + 2) + 2 which is equivalent to
N1

2Ñ
> C + 2 + 1/Ñ . Consequently, since ni+1 − ni > N1

Gni+1(x)−Gni(x) >
ni+1 − ni

Ñ
− (C + 2 + 1/Ñ) >

2(ni+1 − ni)

2Ñ
− N1

2Ñ

>
ni+1 − ni

2Ñ
,

which is equivalent to

(5.9)
Gni+1(x)−Gni(x)

ni+1 − ni
>

1

2Ñ
.

Summarising, Equations (5.8) and (5.9) imply that

ρ
G
(x) > min

{
δ

N1
,

1

2Ñ

}
> 0.

This ends the proof of the lemma. �

Now we are ready to prove the main result of this section.

Theorem 5.18. — Let T ∈ T◦ and let F ∈ C1(T ). If minRotR(F ) =
p/q (resp. max RotR(F ) = p/q), then there exists a periodic (mod 1) point
x ∈ T such that ρ

F
(x) = p/q.
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Proof. — We deal only with the case p/q = minRotR(F ). The other one
follows similarly.

If RotR(F ) = {p/q} then Rot(F r
1 ) = {p/q} by Corollary 1.17 and, in

view of Theorem 1.15, there exists a periodic (mod 1) point of rotation
number p/q. In the rest of the proof we suppose that max RotR(F ) > p/q.

Set T = Clos
(
TR
)

and G = (F q − p)
∣∣
T

. By Lemma 5.2(b), T ∈ T◦ and
G ∈ C1(T ). By Lemma 1.10 we have 0 = min Rot(G) and max Rot(G) > 0.
Also, T = Clos

(⋃
n>0 Gn(R)

)
by Lemma 5.2(b). According to Theo-

rem 3.1, there exists a positive integer N such that max 1
N Rot(Gr

N ) > 0,
and, by Theorem 1.15, there exists y ∈ R such that ρ

Gr
N

(y) > 0 and the
orbit of y for GN is twist. In particular, (Gr

N )n(y) > y for all n > 0. Let
H = GN (hence Hr

1 = Gr
N ). If Hn(x) 6= x for all x ∈ T and n ∈ N, then

minRot(H) > 0 by Lemma 5.17, which is a contradiction. Therefore, there
exist x ∈ T and n ∈ N such that Hn(x) = x, and thus x is periodic (mod 1)
for F and ρ

F
(x) = p/q. �

Remark 5.19. — Unfortunately, the periodic (mod 1) point given by
Theorem 5.18 may be in T \R and there may not exist a periodic (mod 1)
point x in R with ρ

F
(x) being an endpoint of the rotation interval (see

Example 6.6).

6. Examples

This section is devoted to showing some examples to help understanding
the theoretical results of the previous sections. Attention is payed to the
differences between this case and the circle one. For easiness the first two
examples will be Markov. To be able to compute the periods (mod 1) and
rotation numbers of these examples we need to develop the appropriate
machinery. So we will divide this section into two subsections. In the first
one we will introduce the theoretical results to make the computations in
the examples whereas in the second one we provide the examples them-
selves. Some of the properties of rotation sets for symbolic systems used
here already appear in [22].

6.1. Preliminary results on Markov lifted graph maps

We say that a subset of T is an interval if it is homeomorphic to an
interval of the real line and does not contain vertices (except maybe at
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its endpoints). In other words, a subset of T is an interval if it is still
homeomorphic to an interval after removing the vertices of T .

An interval of T can be endowed with two opposite linear orderings
compatible with its structure of interval. If I, J are two intervals of T , we
choose arbitrarily one of these two orderings for each interval, and we say
that a map f : I −→ J is monotone if it is monotone with respect to these
orderings. Notice that this is independent of the choice of the orderings.

Let T ∈ T◦ and let ν be the distance on T introduced in Definition 4.13.
When T is an infinite tree (i.e., it is uniquely arcwise connected), then
ν(x, y) coincides with the taxicab metric which gives the length of the
shortest path in T from x to y. We say that f : I −→ J is affine if there
exists λ ∈ R such that for all x, y ∈ I, ν(f(x), f(y)) = λν(x, y). Observe
that if f is affine then it is also monotone.

Now we adapt the well known notion of Markov map to the context of
lifting graphs.

Definition 6.1. — Let T ∈ T◦ and let F ∈ C1(T ). We say that F is a
Markov map if there exist compact intervals P1, . . . , Pk such that

(i) the vertices of T are included in
⋃k

i=1 ∂Pi + Z,
(ii) (P1 ∪ · · · ∪ Pk) + Z = T ,
(iii) if i 6= j then Pi ∩ Pj contains at most one point,
(iv) for all 1 6 i 6 k, F (Pi) is an interval, F

∣∣
Pi

: Pi −→ F (Pi) is mono-
tone, and F (Pi) is a finite union of sets {Pj + n}16j6k,n∈Z.

When we will need to specify it, we will say that F is a Markov map with
respect to the partition (P1, . . . , Pk), or that (P1, . . . , Pk) is the Markov
partition of F .

The Markov map F is called affine if F
∣∣
Pi

is affine for all 1 6 i 6 k.
If F (Pi) ⊃ Pj + n, we write Pi

n−→ Pj . This gives a finite labelled
oriented graph, which is called the Markov graph of F and denoted by
G(F ). If B = {B1, . . . , Bp} and A

n−→ Bi for all 1 6 i 6 p, we also write
(or picture) A

n−→ B for short.

We now give some notations about paths in graphs that we will need
later.

Let G be a finite labelled oriented graph. A (finite) path is a sequence of
labelled arrows in G of the form

A := A0
n0−→ A1

n1−→ · · ·Ap−1
np−1−→ Ap.

The length of A is L(A) = p and its weight is W (A) = n0 + · · ·+ np−1.
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If B := B0
m0−→ B1

m1−→ · · ·Bq−1
mq−1−→ Bq is another path with B0 = Ap,

we define the concatenated path as

A0
n0−→ A1

n1−→ · · ·Ap−1
np−1−→ Ap

m0−→ B1
m1−→ · · ·Bq−1

mq−1−→ Bq.

Such a path will be denoted by AB. A path A is called a loop if A0 = Ap.
In such a case, A0 denotes the empty path and, for n > 1, An denotes the
path

n times︷ ︸︸ ︷
AA · · ·A .

Also, A∞ denotes the loop A concatenated with itself infinitely many times,
which gives an infinite path.

A loop A is called simple if it is not of form Bn, B being a shorter loop
and n > 2. A loop is elementary if it cannot be formed by concatenating
two loops, up to a circular permutation. Equivalently, A := A0

n0−→ A1
n1−→

· · ·Ap−1
np−1−→ A0 is elementary if A0, . . . , Ap−1 are all pairwise different.

Observe that the number of distinct elementary loops in G is finite.
If A := A0

n0−→ A1
n1−→ · · ·Ap−1

np−1−→ Ap
np−→ · · · is an infinite path, let

Aj
i denote the truncated path Ai

ni−→ · · · nj−1−→ Aj , where 0 6 i < j.
Suppose that G is the Markov graph of a Markov map F ∈ C1(T ) and

let x ∈ T . We say that an infinite path

A := A0
n0−→ A1

n1−→ · · ·Ap−1
np−1−→ Ap

np−→ · · ·

is an itinerary of x if there exists n(x) ∈ Z such that F i(x) ∈ Ai + n(x) +
W (Ai

0) for all i > 0. If in addition there exists a loop B such that A = B∞,
then we say that B is a periodic itinerary of x.

The following proposition is a version for lifted graph maps of folk knowl-
edge properties of Markov maps on finite topological graphs.

Proposition 6.2. — Let T ∈ T◦ and let F ∈ C1(T ) be a Markov map
with respect to the partition (P1, . . . , Pk).

(a) If F is an affine Markov map such that G(F ) is connected and is
not reduced to a unique loop, then F is transitive (mod 1).

(b) For every x ∈ T , there exists an infinite path in G(F ) which is an
itinerary of x.

(c) If x ∈ T is a periodic (mod 1) point, then there exists a simple loop
B in G(F ) which is a periodic itinerary of x. Moreover, if the period
(mod 1) of x is p and F i(x) /∈

⋃k
j=1 ∂Pi + Z for all 0 6 i < p, then

p = L(B) and F p(x) = x + W (B).
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(d) Every infinite path in G(F ) is an itinerary of some point x ∈ T .
Every loop in G(F ) is a periodic itinerary of some periodic (mod 1)
point x.

The next two lemmas show how the rotation numbers and the rotation
set can be deduced from the Markov graph.

Lemma 6.3. — Let F ∈ C1(T ) be a Markov map with T ∈ T◦ and let
x ∈ T be such that ρ

F
(x) exists. If the infinite path A := A0

n0−→ · · ·Ai
ni−→

Ai+1 · · · is an itinerary of x in G(F ), then

ρ
F
(x) = lim

i→+∞

W (Ai
0)

i
.

If B is a loop in G(F ) which is a periodic itinerary of x, then ρ
F
(x) = W (B)

L(B) .

Proof. — Let (P1, . . . , Pk) be the Markov partition of F . By definition of
an itinerary, F i(x)− n(x)−W (Ai

0) ∈ Ai for all i > 0. The set {r(y) : y ∈
P1 ∪ · · · ∪ Pk} is bounded, and Ai ∈ {P1, . . . , Pk} for all i > 0. Therefore
r ◦ F i(x)−W (Ai

0) is bounded too, and thus

ρ
F
(x) = lim

i→+∞

W (Ai
0)

i
.

Suppose that the loop B is a periodic itinerary of x. Then A = B∞ is
an itinerary of x, and W (AiL(B)

0 ) = iW (B) for all i > 0. What precedes
implies that ρ

F
(x) = W (B)

L(B) . �

Lemma 6.4. — Let F ∈ C1(T ) be a transitive (mod 1) Markov map with
T ∈ T◦ and set

m := min
E

W (E)
L(E)

and M := max
E

W (E)
L(E)

,

where E ranges over the set of all elementary loops in G(F ). Then Rot(F ) =
[m,M ].

Proof. — By Theorem 3.1 RotR(F ) is a compact interval, and by Theo-
rem 5.5 Rot(F ) = RotR(F ) because F is transitive (mod 1). By Propo-
sition 6.2(d) and Lemma 6.3, m and M belong to Rot(F ), and hence
[m,M ] ⊂ Rot(F ).

Let x ∈ T such that ρ
F
(x) exists and let

A := A0
n0−→ A1

n1−→ · · ·Ak
nk−→ · · ·

be an itinerary of x, which exists by Proposition 6.2(b). Since the number
of vertices in G(F ) is finite, there exists P , an element of the partition, and
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an increasing sequence ki such that Aki = P for all i > 0. By Lemma 6.3,
ρ

F
(x) = ρ

F
(F k0(x)) is equal to

lim
i→∞

W (Aki

k0
)

ki − k0
.

If we decompose the loop Aki

k0
into elementary loops, we see that the above

quantity is a barycentre of{
W (E)
L(E)

: E is an elementary loop of G(F ).
}

Hence, ρ
F
(x) ∈ [m,M ]. �

6.2. The examples

Example 6.5. — Rot(F ) = [−1/2, 1/2], Per(0, F ) = {1} ∪ {n > 4} and
if p/q ∈ Rot(F ) with p, q coprime, p 6= 0 then Per(p/q, F ) = qN.

Let F ∈ C1(T ) be the affine Markov map represented in Figure 6.1. By
Proposition 6.2(a), F is transitive (mod 1).

We define:

A :=C4
0−→ A

1−→ C4,

B :=C2
−1−→ B

0−→ C2 and

C :=C3
0−→ C3.

The loops B and A correspond respectively to min W (E)
L(E) and max W (E)

L(E) ,
where E describes the set of elementary loops. Thus Rot(F ) = [−1/2, 1/2]
by Lemma 6.4. Notice that

Rot(F ) = 1
2 Rot(F r

2 ) but 1
3 Rot(F r

3 ) = [−1/3, 1/3] 6= Rot(F ),

and thus
{

1
n Rot(F r

n)
}

n>1
is not an increasing sequence of sets.

We are going to show that 0 is the unique rational p/q ∈ Rot(F ) such
that Per(p/q, F ) 6= qN. Moreover there is a “gap” in Per(0, F ): it contains
1 and 4 but not 2 and 3 (it is also possible to construct examples with more
than one gap in Per(0, F )). This shows that Per(p/q, F ) is not necessarily
of the form {nq : n > N} when p/q ∈ IntRot(F ) and p, q coprime.

We compute Per(p/q, F ) by using Proposition 6.2 and Lemma 6.3. If x

is an endpoint of one of the intervals of the Markov partition then, either
x is not periodic (mod 1), or x = e (mod 1) and F (x) = x.
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From one side 1 ∈ Per(0, F ) because F (e) = e. Also, there are no simple
loops of length 2 or 3 and weight 0. Thus 2, 3 /∈ Per(0, F ). For all k > 0,
the loop

(C2
−1−→ B

0−→ C4
0−→ A

1−→ C3)Ck

is simple, its length is k +4 and its weight is 0 (if k = 0, take C2 instead of
C3 to get a loop). Thus there exists a point x such that F k+4(x) = x and
k + 4 ∈ Per(0, F ).

If p > 1, q > 2p and n > 1, we consider the loop

Anp−1(C4
0−→ A

1−→ C3)Cn(q−2p)−1(C3
0−→ C4).

It is simple, its length is nq and its weight is np. Thus there exists a periodic
(mod 1) point of period nq and rotation number p/q. For q = 2p and np > 2
consider the simple loop

Anp−2(C4
0−→ A

1−→ C5
0−→ A

1−→ C4).

...

...

...

...

F

e e+1 e+2

F(b) F(B) F(A) F(a)

F(C  )

F(C  )

F(C  )

F(C  )

F(C  )2 4

3

51

ba

1C C2 3C C4 5C

F(e+1)

A B

... . .

. .0 1
0

0

0

B A

1C 2C
C3

C4 5C

!1
!1

Figure 6.1. In the picture above the affine Markov map F . Below it
is displayed its Markov graph. In this example Rot(F ) = [−1/2, 1/2],
Per(0, F ) = {1} ∪ {n > 4} and if p/q ∈ Rot(F ) with p, q coprime,
p 6= 0 then Per(p/q, F ) = qN.
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For p = n = 1 and q = 2 we consider the loop A.
If p < 0 then the same arguments hold with B instead of A.
Therefore, if p/q ∈ [−1/2, 1/2], p 6= 0 then Per(p/q, F ) ⊃ qN. To con-

clude, we use that, if p, q are coprime, then Per(p/q, F ) ⊂ qN by Proposi-
tion 3.6.

Example 6.6. — Rot(F ) = [0, 1],
⋃

n>1
1
n Rot(F r

n) = (0, 1] is not closed
and there exist infinitely many p/q ∈ (0, 1) with p, q coprime such that
Per(p/q, F ) 6= qN.

Let F ∈ C1(T ) be the affine Markov map represented in Figure 6.2. By
Proposition 6.2(a), F is transitive (mod 1).

1

e+2

e e+1

a c
b

D D2 3DA4
A3

A2

A1
B C

F(a)

F(A  )1

F(A  ) F(A  ) F(A  )3 42e!2 e!1 e F(e)

F(B)

F(b)
F(c)

F(D  )2

F(D  )3

. .

. . .

. F(D )1F(C)

......F

.. .

. . . ...C B AA1 2 A3 A4

D2 D3D1

1

1

1 1

1

!2

0!1!2

Figure 6.2. In the picture above the affine Markov map F . Below
it is displayed its Markov graph. In this example Rot(F ) = [0, 1],⋃

n>1
1
n Rot(F r

n) = (0, 1] is not closed and there exist infinitely many
p/q ∈ (0, 1) with p, q coprime such that Per(p/q, F ) 6= qN.
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We define the loops

A :=C
1−→ B

1−→ A1
−2−→ C,

Bε :=C
1−→ B

1−→ A
ε−→ D2

1−→ C, and

D :=D3
1−→ D3,

where ε ∈ {0,−1,−2} and A represents either A2, A3 or A4 depending on ε.
The weights of A, D and Bε are respectively 0, 1 and 3 + ε. Modifying

D into D2
1−→ D3 and Bε into D3

1−→ C
1−→ B

1−→ A
ε−→ D2, we can

concatenate them. For short, we will write DBε as the concatenated loop.
The only periodic (mod 1) points which are endpoints of intervals of the

Markov partition are e (mod 1), with F (e) = e + 1, and a, b, c, that form a
periodic (mod 1) orbit of period 3 and rotation number 0. They correspond
respectively to the loops D and A. Therefore, by Proposition 6.2(c,d), there
is a correspondence between periodic (mod 1) points of periods p and simple
loops of length p.

The loops A and D correspond respectively to min W (E)
L(E) and max W (E)

L(E) ,
where E describes the set of elementary loops. Thus Rot(F ) = RotR(F ) =
[0, 1] by Lemma 6.4. According to Theorem 3.1, (0, 1) ⊂

⋃
n>1

1
n Rot(F r

n).
The only simple loop of weight 0 is A. It is the periodic itinerary of c,
which is of period 3, and thus Per(0, F ) = {3}. Moreover, Fn(c) /∈ R for
all n > 0. Thus 0 /∈ Rot(F r

n) by Theorem 1.15. The only simple loop L
with W (L)/L(L) = 1 is D. It is the periodic itinerary of e + 1 ∈ R, and
F (e + 1) = (e + 2). Thus Per(1, F ) = {1} and

⋃
n>1

1
n Rot(F r

n) = (0, 1].
We are going to compute Per(p/q, F ) for all p/q ∈ (0, 1), p, q coprime.

The final results are given in Table 6.1.

Per(p/q, F )
p = 1 q ≡ 0 mod 3 {nq : n > 3}

q ≡ 1 mod 3 qN
q ≡ 2 mod 3 {nq : n > 2}

p = 2 q ≡ 0 mod 3 {nq : n > 2}
q ≡ 1, 2 mod 3 qN

p > 3 qN

Table 6.1. Values of Per(p/q, F ) for p/q ∈ (0, 1) and p, q coprime.
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• The only loops of weight 1 are D (length 1) and B−2Ak (which is of
length 4 + 3k), for all k > 0. Thus there exists a periodic (mod 1) point of
period n and rotation number 1/n if and only if n ≡ 1 mod 3.

• The only simple loops of weight 2 are B2
−2Ak (length 8 + 3k), B−1Ak

(length 4 + 3k), and B−2DAk (length 5 + 3k), for all k > 0. Thus there
exists a periodic (mod 1) point of period n and rotation number 2/n if and
only if n ≡ 1 or 2 mod 3 and n > 4.

• Considering the simple loops B0Ak, DB−1Ak and D2B−2Ak of weight 3,
we see that, for all n > 4, there exists a periodic (mod 1) point of period
n and rotation number 3/n. For all n > 4, we call Ln the loop of length n

among the above loops. We notice that Ln passes through D2.

• If m > 4 and n > m, then n − m + 3 > 4. The loop L(n−m+3)Dm−3 is
of length n and weight m, and thus it gives a periodic (mod 1) point of
period n and rotation number m/n. This completes Table 6.1.

This example shows that there may exist infinitely many rationals p/q,
with p and q coprime, in the interior of the rotation interval such that
Per(p/q, F ) 6= qN, and the integer N of Theorem 3.11 cannot be taken the
same for the whole interval RotR(F ). Moreover, the interval⋃

n>1

1
n Rot(F r

n)

may not be closed and, if 0 ∈ ∂ RotR(F ), there may not exist a periodic
(mod 1) point x ∈ R with ρ

F
(x) = 0 (although there exists x ∈ T with this

property).
Compare also this situation with the one for combed maps. In view of

Theorem 4.16, the rotation interval of a combed map is a closed interval and
coincides with Rot(F r

1 ). Moreover, in view of Theorem 4.17, Per(p/q, F ) =
qN for every p/q ∈ Int(Rot(F )) with p, q coprime. This example shows that
both statements can fail for a non combed map lifted graph map.

Example 6.7. — RotR(F ) = [0, 1] but there is no periodic (mod 1) point
x ∈ T such that ρ

F
(x) = 0.

We define T as the following subset of R3:

T = {(x, 0, 0) : x ∈ R} ∪ {((n, y, z) : n ∈ Z and y2 + z2 6 1}.

Clearly, T ∈ T. To be able to define a map F on T we will identify the z,
y-plane with C taking the y axis as the real axis in C. Then we define the
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(0)=  (1/2)FF

F
D

0

2!"

1

(0,1)

x
z

y

Figure 6.3. T ∈ T, F ∈ C1(T ), RotR(F ) = [0, 1] but there is no peri-
odic (mod 1) point x ∈ T such that ρ

F
(x) = 0.

sets

D ={z ∈ C : |z| 6 1} and

C ={z ∈ C : |z| = 1}.

We identify the x-axis with R and we denote D + (n, 0, 0) by D + n when
n ∈ Z. Note that to define a map F ∈ C1(T ) it is enough to define it on
D∪(x, 0, 0) with x ∈ [0, 1] and extend the definition to the whole T by using
that F (z + 1) must be F (z) + 1. Thus, we construct our map by choosing
α ∈ R \Q defining (see Figure 6.3 for a representation of T and F ):

(1) If z ∈ D with 1
2 6 |z| 6 1 then F (z) = z′ ∈ D with |z′| = 2|z| − 1 ∈

[0, 1] and arg(z′) = arg(z) + 2πα.
(2) If z ∈ D with 0 6 |z| 6 1

2 then F (z) = (1− 2|z|, 0, 0) ∈ R.
(3) If x ∈ [0, 1/2], F (x, 0, 0) = (1, 1− 4|x− 1/4|, 0).
(4) if x ∈ [1/2, 1], F (x, 0, 0) = (2x, 0, 0).

The map F
∣∣
C is the rotation of angle 2πα.

We are going to show that RotR(F ) = [0, 1] but there is no periodic
(mod 1) point x ∈ T such that ρ

F
(x) = 0.

It is clear that, if x ∈ D + Z, then r(x) 6 r(F (x)) 6 r(x) + 1. And, if
x ∈ R, then

r(x) + 1
2 6 r(F (x)) 6 r(x) + 1.
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Hence Rot(F ) ⊂ [0, 1]. Moreover F (0, 0, 0) = (1, 0, 0) and

Fn+1(1/4, 0, 0) = Fn(1, 1, 0) = (1, ei2πnα, 0).

Thus ρ
F
(0, 0, 0) = 1, ρ

F
(1/4, 0, 0) = 0 and RotR(F ) = Rot(F ) = [0, 1] by

Theorem 3.1.
Suppose that x ∈ T is a periodic (mod 1) point such that ρ

F
(x) = 0.

Because of the properties stated above, x cannot belong to R, and there
exists k ∈ Z such that Fn(x) ∈ D + k for all n > 0. By definition of F |D,
the point x = (k, z) with k ∈ Z and z ∈ D must belong to C + k. Thus
Fn(x) = (k, zei2πnα) 6= x for all n > 1. This is a contradiction and, hence,
Per(0, F ) = ∅.
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