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Abstract. For a dynamical system (X, f), X being a compact metric space
with metric d and f being a continuous map X → X, a set S ⊆ X is scrambled
if every pair (x, y) of distinct points in S is scrambled, i.e.,

lim inf
n→+∞

d(fn(x), fn(y)) = 0 and lim sup
n→+∞

d(fn(x), fn(y)) > 0.

The system (X, f) is Li-Yorke chaotic if it has an uncountable scrambled set.
It is known that for interval and circle maps, the existence of a scrambled pair
implies Li-Yorke chaos, in fact, the existence of a Cantor scrambled set. We
prove that the same result holds for graph maps. We further show that on
compact countable metric spaces one scrambled pair implies the existence of
an infinite scrambled set.

1. Introduction and main results

A (topological) dynamical system is a pair (X, f) or, less formally, a map f :
X → X, where X is a compact metric space and f : X → X is continuous. The
distance in any metric space will be denoted by d.

Let f : X → X be a dynamical system. The orbit (under f) of a set A ⊆ X
is Orbf (A) :=

⋃
n≥0 f

n(A), and the orbit Orbf (x) of a point x ∈ X is simply

equal to Orbf ({x}). The sequence (fn(x))∞n=0 is the trajectory of x. The ω-limit
set (under f) of a point x, denoted by ωf (x), is the set of all limit points of the
trajectory of x. It is a closed set and f(ωf (x)) = ωf (x). An ω-limit set ωf (x)
is called orbit-enclosing if there exists y ∈ ωf (x) (hence Orbf (y) ⊆ ωf (x)) with
ωf (y) = ωf (x).

Definition 1. Let f : X → X be a dynamical system. If x, y ∈ X and δ > 0, (x, y)
is a δ-scrambled pair if

lim inf
n→+∞

d(fn(x), fn(y)) = 0 and lim sup
n→+∞

d(fn(x), fn(y)) ≥ δ,
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and (x, y) is a scrambled pair if it is δ-scrambled for some δ > 0. A set S ⊆ X
is δ-scrambled (resp. scrambled) if for all x, y ∈ S, x �= y, (x, y) is a δ-scrambled
(resp. scrambled) pair. The dynamical system (X, f) is Li-Yorke chaotic if there
exists an uncountable scrambled set in X.

There are compact metric spaces which do not admit continuous selfmaps with
scrambled pairs, say finite spaces and rigid spaces (a space is rigid if it does not
admit any continuous selfmap except for the identity and the constant maps). A
less trivial example of such a space is the subspace {0} ∪ {1, 1/2, 1/3, . . . } of the
real line (an easy proof is left to the reader).

On the other hand, every metric space containing an arc, i.e. a homeomorphic
copy of the real compact interval I = [0, 1], admits a continuous selfmap having
scrambled pairs. This follows from the following facts: 1) I admits such a map;
2) I is an absolute retract for the class of all metric spaces [12] (recall that a
subspace S of X is called a retract of X if there exists a retraction of X onto S, i.e.
a continuous map r : X → S such that r(s) = s for all s ∈ S, and a metric space
A is called an absolute retract for the class of all metric spaces if, for every metric
space X, every subspace of X homeomorphic with A is a retract of X); and 3) if
S ⊆ X are compact metric spaces with S being a retract of X and S admitting a
continuous selfmap with scrambled pairs, then also X admits a continuous selfmap
with scrambled pairs (say the composition of a retraction X → S with such a
selfmap of S).

If a system has a scrambled pair, it may happen that it has no scrambled set
with three points. An example of a triangular map in the square with this property
is found in [13]. Using the fact that the square (hence also the disc) is an abso-
lute retract for the class of all metric spaces, we easily get that every metric space
containing a subset homeomorphic with a 2-dimensional disc, in particular every
manifold with dimension ≥ 2, admits a continuous selfmap having a scrambled pair
but no scrambled set with more than two points. In [14] it was shown that the Can-
tor set and the Warsaw circle also admit continuous selfmaps with this property.
Examples of symbolic systems with only boundedly finite, or countable, scrambled
sets were given in [2] — symbolic systems generated by primitive constant-length
substitutions have at most finite scrambled sets (some have no scrambled sets at
all and others have finite scrambled sets); systems with infinite but only count-
able scrambled sets are obtained as inverse limits of a sequence of constant-length
substitution systems. In [4] it is shown that for every non-empty subset of the
set {2, 3, . . . } ∪ {ℵ0} ∪ {c}, where ℵ0 is the cardinal number of the set of positive
integers and c is the cardinal number of the reals, there is a dynamical system
(X, f) such that the set of cardinalities of all maximal scrambled sets of the system
coincides with this set. Moreover, given any δ > 0, all scrambled sets of (X, f) may
be assumed to be δ-scrambled and X can be chosen to be an arc-wise connected
one-dimensional planar continuum.

We are interested in sufficient conditions for the existence of a “large” scrambled
set in the sense of cardinality. Our main motivation is the following result proved
by Kuchta and Smı́tal.

Theorem 2 (Kuchta, Smı́tal [20]). Let I be a compact interval and f : I → I a
continuous map. If f has a scrambled pair, then f has a δ-scrambled Cantor set
for some δ > 0.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

ONE SCRAMBLED PAIR IMPLIES LI-YORKE CHAOS 2089

It is difficult to prove this theorem from scratch. However, when one uses other
deep results from interval dynamics, it becomes obvious. In fact, it is an immediate
consequence of the dichotomy which holds for interval maps. By [27] (cf. [18]),
any continuous map f : I → I satisfies one of the following two mutually exclusive
properties:

(i) f has a δ-scrambled Cantor set for some δ > 0.
(ii) All trajectories of f are approximable by cycles ; that is, for any x and any

ε > 0 there is a periodic point p such that lim supn→+∞ |fn(x)−fn(p)| < ε.

Later Kuchta [19] showed that the result from Theorem 2 is true also for contin-
uous selfmaps of the circle. In [4, p. 315] the authors ask a question whether this
is still true for graph maps. The main result of the present paper is an affirmative
answer to this question.

Throughout the paper, a (topological) graph is a non-degenerate compact con-
nected metric space G containing a finite subset V such that each connected com-
ponent of G \V is homeomorphic to an open interval. A branching point is a point
having no neighborhood homeomorphic to an interval (of any kind). The set of
branching points is finite (it is included in V ). A graph map is a dynamical system
on a graph, that is, a continuous map f : G → G, where G is a graph.

In the present paper we prove the following theorem.

Theorem 3. Let f : G → G be a graph map. If f has a scrambled pair, then it has
a Cantor δ-scrambled set for some δ > 0.

By using easy arguments, one can extend this theorem to graphs which are not
necessarily connected, i.e. to finite unions of connected graphs.

While the existence of a scrambled pair implies Li-Yorke chaos only in particular
spaces, the following is a general result which holds on any compact metric space.
By h(f) we denote the topological entropy of f .

Theorem 4 (Blanchard, Glasner, Kolyada, Maass [3]). Let f : X → X be a dy-
namical system. If h(f) > 0, then f has a δ-scrambled Cantor set for some δ > 0.

In [3], it is in fact proved only that positive topological entropy implies the
existence of a Cantor scrambled set. Although the result is not stated in terms of
a δ-scrambled set, the proof of [3, Theorem 2.3] clearly implies Theorem 4.

Positive topological entropy is only a sufficient condition for the existence of a
Cantor scrambled set, not a necessary one. Even on the interval there are zero
entropy maps having Cantor δ-scrambled sets [27].

Theorem 4 is a motivation for the question, what kind of weaker assumption
could be sufficient for the existence of an infinite scrambled set?

Before giving an answer, we wish to bring the attention of the reader to the fact
that

• for graph maps, positive topological entropy is equivalent with the existence
of an infinite ω-limit set containing a periodic point.

Indeed, if a graph map f has an infinite ω-limit set containing a periodic point, then
it is a basic set in that classification of ω-limit sets which we adopt in Section 2, and
so f has positive entropy by Corollary 21. Conversely, if a graph map f : G → G
has positive entropy, then by [21, Theorem B] there are closed intervals J,K ⊆ G
with disjoint interiors, and n ∈ N such that fn(J) ∩ fn(K) ⊇ J ∪ K. Then,
by [5, pp. 35–37], f has an infinite ω-limit set containing a periodic point.
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Contrary to the graph case, in general there is no relation between positive
topological entropy and the existence of an infinite ω-limit set containing a peri-
odic point. On one hand, there exist positive entropy homeomorphisms which are
minimal [24], hence do not have any periodic points. On the other hand, the square
and the topologist’s sine curve admit zero entropy maps with an infinite ω-limit set
containing a fixed point [13], [14], although they have only scrambled pairs and no
scrambled sets with three points.

In spite of the fact that in general there is no relation between positive topological
entropy and the existence of an infinite ω-limit set containing a periodic point, it
turns out that the existence of some kinds of ω-limit sets implies the existence of
some kinds of scrambled sets. First observe the following trivial fact:

• if f has an infinite ω-limit set containing a periodic point, then there exist
scrambled pairs in the system; however, it is possible that no scrambled set
has cardinality larger than two.

By [17, Theorem 4.1],

• if X is an infinite compact metric space and f : X → X is transitive and
has a periodic point, then there is an uncountable scrambled set for f .

Notice that an equivalent formulation of this result is

• if X is a compact metric space and a continuous map f : X → X has an
infinite orbit-enclosing ω-limit set containing a periodic point, then f has
an uncountable scrambled set.

This result and Theorem 4 are independent. On one hand, positive entropy does not
imply the existence of an infinite orbit-enclosing ω-limit set containing a periodic
point (again recall that there are positive entropy minimal homeomorphisms [24]),
and, on the other hand, there exists a zero entropy transitive map with dense
periodic points on the Cantor set [29].

Our following result gives, again in terms of ω-limit sets, a required sufficient
condition for an infinite δ-scrambled set.

Proposition 5. Let X be a compact metric space and f : X → X a continuous
map. If f has an infinite ω-limit set containing a periodic point and also containing
an isolated point (isolated in the relative topology of the ω-limit set), then f has an
infinite δ-scrambled set for some δ > 0.

In connection with this proposition and Theorem 4 (cf. also the mentioned result
from [17]), it would be interesting to find, if possible, a stronger assumption on ω-
limit sets than that in Proposition 5, but weaker than positive topological entropy,
which would imply the existence of a Cantor scrambled set.

Using Proposition 5 one can prove the following corollary.

Corollary 6. Let X be a compact countable metric space and f : X → X a
continuous map. If f has a scrambled pair, then it has an infinite δ-scrambled set
for some δ > 0.

Systems on compact countable metric spaces are relatively simple (say they
always have zero entropy). However, recall that the first example of a completely
scrambled compact system (X, f), i.e. a system for which the whole space X is a
scrambled set, was found on a countable space [16].
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This paper is organized as follows. In Section 2 we study ω-limit sets on graphs,
which are the main tool in our proof of Theorem 3 presented in Section 3. In
Section 4 we then prove Proposition 5 and Corollary 6.

2. Preliminaries on ω-limit sets on graphs

2.1. Cycles of graphs and topological characterization of ω-limit sets on
graphs. It is well known that a finite ω-limit set is a periodic orbit. In order to
classify infinite ω-limit sets, we need the notion of a cycle of graphs.

Definition 7. Let f : G → G be a graph map. A subgraph K of G is called periodic
or weakly periodic if there is a positive integer k such that K, f(K), . . . , fk−1(K)
are pairwise disjoint and fk(K) = K or fk(K) ⊆ K, respectively. In such a case,
k is called the period of K. We then say that K is (weakly) periodic of period k

or (weakly) k-periodic, and the set Orb(K) =
⋃k−1

i=0 f i(K) is called a (weak) cycle
of graphs of period k or a (weak) k-cycle of graphs. Thus the period of a (weakly)
periodic subgraph K and that of the corresponding (weak) cycle of graphs X are
determined uniquely and are equal to the number of connected components of X.

Remark 8. To better understand what follows, it may be useful to recall the fol-
lowing fact (see [15]). If ω is an ω-limit set of a graph map, then ω is either a
non-empty finite set (in fact, a periodic orbit) or an infinite closed nowhere dense
set or a finite union of non-degenerate subgraphs (which form a cycle of graphs).
Conversely, whenever ω is a subset of a graph and is of one of the above three forms,
there exists a continuous selfmap of that graph such that ω is an ω-limit set of it.

2.2. Cycles of graphs containing a given infinite ω-limit set. When classi-
fying ω-limit sets of one-dimensional systems, the terminology and the definitions
of the different classes vary in the literature. Sharkovskii, when studying interval
maps, says that an ω-limit set is of genus 0, or genus 1/first kind, or genus 2/sec-
ond kind, if it is finite, or infinite and containing no periodic point, or infinite and
containing a periodic point respectively. However, we will follow the terminology
of [10]; see also [6].

Remark 9. The classification of ω-limit sets in [15] is equivalent to the one in [6,10],
although the equivalence is not straightforward and does not seem to be explicitly
proved in the literature. Let us also remark that the classification in [15] concerns
only maximal ω-limit sets (with respect to the inclusion). This makes sense because,
for a graph map, any ω-limit set is included in a maximal ω-limit set. This follows
from the fact that the family of all ω-limit sets of a graph map is closed with respect
to the Hausdorff metric in the hyperspace of all closed subsets of the graph; see [22].

We start with a lemma about cycles containing an ω-limit set.

Lemma 10. Let f : G → G be a graph map and ωf (x) be an infinite ω-limit set.

(i) If X is a weak k-cycle of graphs containing ωf (x), there exists a k-cycle of
graphs X ′ such that ωf (x) ⊆ X ′ ⊆ X.

(ii) If X,Y are two cycles of graphs containing ωf (x), there exists a cycle of
graph Z such that ωf (x) ⊆ Z ⊆ X∩Y . Moreover, the period of Z is greater
than or equal to the maximum of the periods of X and Y .
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(iii) If X is a k-cycle of graphs containing ωf (x), then one can write X =⋃k−1
i=0 f i(K), where K is a k-periodic graph such that ∀0 ≤ i < k, ωf (x) ∩

f i(K) = ωfk(f i(x)). Moreover, ∀0 ≤ i < k, the set ωf (x) ∩ f i(K) is
infinite.

Proof. (i) Suppose that ωf (x) is a subset of X = Orbf (K), where K is a weak k-
periodic graph. The set K ′ :=

⋂
n≥0 f

nk(K) is non-empty, compact and connected
because it is a decreasing intersection of non-empty compact connected sets, and
fk(K ′) = K ′. Moreover, ωf (x) ⊆ Orbf (K

′) because f(ωf (x)) = ωf (x). Since
ωf (x) is infinite, K ′ is non-degenerate, and thus X ′ := Orbf (K

′) is a k-cycle of
graphs.

(ii) Suppose that ωf (x) ⊆ X∩Y , where X,Y are cycles of graphs. Let Z1, . . . , Zn

denote the connected components of X ∩ Y meeting ωf (x) (they are finitely many
because X ∩ Y has finitely many connected components). For every 1 ≤ i ≤ n,
f(Zi) is included in a connected component of X ∩Y and meets f(ωf (x)) = ωf (x),
and thus there exists τ (i) ∈ {1, . . . , n} such that f(Zi) ⊆ Zτ(i). This implies that
Zi is eventually weakly periodic under f . Then it follows easily from the properties
of ω-limit sets that Z1, . . . , Zn is actually a weak cycle of graphs. By (i), there
exists a cycle of graphs Z such that ωf (x) ⊆ Z ⊆ Z1 ∪ · · · ∪ Zn ⊆ X ∩ Y . The
period of Z is trivially greater than or equal to the maximum of the periods of X
and Y .

(iii) Suppose that J is a k-periodic graph such that ωf (x) ⊆ Orbf (J) = X, and
write Ji = f i(J) for all 0 ≤ i < k. At least one of the sets (ωf (x) ∩ Ji)0≤i<k is
infinite, and so ωf (x) ∩ Ji is infinite for every 0 ≤ i < k because f(ωf (x) ∩ Ji) =
ωf (x)∩Ji+1 mod k. For all 0 ≤ i < k, choose pairwise disjoint neighborhoods Ui of Ji
and let Vi ⊆ Ui be a neighborhood of Ji such that Vi ⊆ Ui and f(Vi) ⊆ Ui+1 mod k.

Since V :=
⋃k−1

i=0 Vi is a neighborhood of ωf (x), there is N such that fn(x) ∈ V
for all n ≥ N . Choose n0 ≥ N , a multiple of k, say n0 = Nk. Consider j with
y := fn0(x) ∈ Vj . Then fr(y) = fn0+r(x) ∈ Vj+r mod k for every non-negative r.

Hence ωfk(f i(y)) ⊆ Vj+i mod k ⊆ Uj+i mod k for all 0 ≤ i < k. This together with

Orbf (J) ⊇ ωf (x) = ωf (y) =
k−1⋃

i=0

ωfk(f i(y))

gives that ωfk(f i(y)) ⊆ Jj+i mod k for all 0 ≤ i < k. Thus we have

ωfk(f i(x)) = ωfk(fn0+i(x)) = ωfk(f i(y)) ⊆ Jj+i mod k

for all 0 ≤ i < k. Then for K := Jj we get ωfk(f i(x)) ⊆ f i(K), and so ωf (x) ∩
f i(K) = ωfk(f i(x)) for all 0 ≤ i < k. This proves (iii). �

For an infinite ω-limit set ωf (x), let

(2.1) C(x) := {X | X ⊆ G is a cycle of graphs and ωf (x) ⊆ X}.

Since the whole graph G is weakly 1-periodic, Lemma 10(i) implies that C(x) is
never empty.

The periods of the cycles in C(x) are either unbounded or bounded. We study
these two possibilities in the next subsections.
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2.3. Solenoid ω-limit sets. The next lemma describes the situation when the
periods of the cycles in C(x) are unbounded.

Lemma 11. Let f be a graph map and let ωf (x) be an infinite ω-limit set such
that the periods of the cycles in C(x) are not bounded. Then there exists a sequence
of cycles of graphs (Xn)n≥1 with strictly increasing periods (kn)n≥1 such that, for
all n ≥ 1, Xn+1 ⊆ Xn and ωf (x) ⊆

⋂
n≥1 Xn. Moreover, for all n ≥ 1, kn+1 is

a multiple of kn and every connected component of Xn contains the same number
(equal to kn+1/kn ≥ 2) of components of Xn+1. Furthermore, ωf (x) contains no
periodic point.

Proof. By assumption, there exists a sequence (Yn)n≥0 of cycles of graphs in C(x),
with strictly increasing periods (ln)n≥1. We define inductively a sequence (Y ′

n)n≥1

as follows. Let Y ′
1 = Y1. If Y

′
n is already defined, then, according to Lemma 10(ii),

there exists an l′n+1-cycle of graphs Y ′
n+1 such that ωf (x) ⊆ Y ′

n+1 ⊆ Y ′
n ∩ Yn+1 and

l′n+1 ≥ ln+1. Choose a subsequence (ni)i≥1 such that ∀i ≥ 1, l′ni+1
> l′ni

, and set

Xi := Y ′
ni
. Then (Xi)i≥1 is a sequence of cycles of graphs containing ωf (x), with

strictly increasing periods and such that ∀i ≥ 1, Xi+1 ⊆ Xi. The fact that ki+1

is a multiple of ki follows trivially from the inclusion of the cycles. Fix i. We can
write Xi = Orbf (Ki) and Xi+1 = Orbf (Ki+1) with Ki,Ki+1 periodic intervals
such that Ki+1 ⊆ Ki. Let p := ki+1/ki. Then, for a given 0 ≤ j < ki, the sets
(fnki+j(Ki+1))0≤n<p are pairwise disjoint and included in f j(Ki). This shows that
every f j(Ki) (which is a connected component of Xi) contains p components of
Xi+1. Finally, if z is a k-periodic point in Xn, then k ≥ kn, and so

⋂
n≥1 Xn

contains no periodic point. �
Definition 12. An infinite ω-limit set ωf (x) of a graph map is called a solenoid if
the periods of cycles in C(x) are not bounded.

Notice that, for instance, according to Remark 8, the solenoid ωf (x) is necessarily
nowhere dense.

2.4. ω-limit sets in a minimal cycle of graphs. The next lemma states that
there exists a minimal cycle containing ωf (x) when the periods of the cycles in C(x)
are bounded.

Lemma 13. Let f be a graph map and let ωf (x) be an infinite ω-limit set such
that the periods of the cycles in C(x) are bounded. There exists a cycle of graphs
X ∈ C(x) such that ∀Y ∈ C(x), X ⊆ Y . The period of X is maximal among the
periods of all cycles in C(x).
Proof. Let k denote the maximal period of the cycles in C(x), and define

Ck := {X ∈ C(x) | X is of period k}.
Let (Yλ)λ∈Λ be a totally ordered family in Ck (that is, all elements in Λ are com-
parable and if λ ≤ λ′, then Yλ ⊆ Yλ′). Then Y =

⋂
λ∈Λ Yλ is compact and has

k connected components because this is a decreasing intersection of k-cycles, and
f(Y ) = Y . Moreover, ωf (x) ⊆ Y . Hence Y ∈ Ck. Thus Zorn’s Lemma applies, and
there exists an element X ∈ Ck such that

(2.2) ∀X ′ ∈ Ck, X ′ ⊆ X ⇒ X ′ = X.

Let Y ∈ C(x). By Lemma 10(ii), there exists Z ∈ C(x) such that Z ⊆ X ∩ Y , and
the period of Z is greater than or equal to the period of X. On the other hand, the
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period of Z is at most k by definition. Hence Z ∈ Ck. Then Z = X by (2.2), i.e.,
X ⊆ Y . �

If X is any finite union of subgraphs of G such that f(X) ⊆ X, we define

(2.3) E(X, f) = {y ∈ X | ∀U neighborhood of y in X, Orbf (U) = X}.
This set is obviously closed and it is easily seen to be f -invariant, i.e., f(E(X, f)) ⊆
E(X, f). In general f(E(X, f)) �= E(X, f). For instance, let G be a circle and
X = G. The circle G is the union of “western half-circle” and “eastern half-
circle”. Let f restricted to any of these half-circles be topologically conjugate to
the tent map, the “south pole” of G being a fixed point of f and the “north pole”
being mapped to the “south pole”. Then E(X, f) consists of the two “poles”, but
f(E(X, f)) is a singleton containing just the “south pole”.

Notice also that E(X, f) was defined without referring to any ω-limit set and
that

(2.4) if E(X, f) �= ∅, then f(X) = X.

Lemma 14. Let f : G → G be a graph map and let ωf (x) be an infinite ω-limit set
such that the periods of cycles of graphs containing ωf (x) are bounded, and let K
be the minimal cycle of graphs containing ωf (x).

(i) For every y ∈ ωf (x) and for every relative neighborhood U of y in K,

Orbf (U) = K.
(ii) ωf (x) ⊆ E(K, f). In particular, E(K, f) is infinite.

Proof. Since K is the union of finitely many subgraphs, the set ∂K is finite. Hence
ωf (x) ∩ Int(K) �= ∅. This implies that there exists N such that fN (x) ∈ Int(K),
and thus Orbf (f

N (x)) ⊆ K. Then ωf (x) = ωf (f
N (x)) is an ω-limit set for the

restricted map f |K . Let y ∈ ωf (x) and U be a relative neighborhood of y in K.
Then, by considering the map f |K , we get that there exist i ≥ N and n ≥ 1 such
that f i(x), f i+n(x) ∈ U , which implies that fn(U) ∩ U �= ∅. It follows that the set

X := Orbf (U) has at most n connected components and is a weak cycle of graphs.
Moreover, X ⊇ ωf (x). Then one can find a cycle of graphs which contains ωf (x)
and is included in X by Lemma 10(i). By minimality of K, this cycle is equal to
K. Hence X = K, which is (i). Then (ii) trivially follows from (i). �

Notice that the definition of E(X, f) is unfortunately missing in [8]. In Section 2
of [10], the definition is given and the theorem is recalled (the series of papers
[8–10] forms a whole). Notice that in Blokh’s papers, a “graph” (also called a one-
dimensional ramified manifold) is not assumed to be connected and is actually a
finite union of graphs with the definition of a graph that we use.

Theorem 16 is [8, Theorem 2] (stated in the slightly restricted case of a graph).
To state it, we need the notion of almost conjugacy.

Definition 15. Let f : X → X, g : Y → Y be two continuous maps. A continuous
map ϕ : X → Y is a semi-conjugacy between f and g if ϕ is onto and ϕ ◦ f = g ◦ϕ.
If in addition ϕ is a homeomorphism, then it is a conjugacy between f and g.

Assume further that K ⊆ X is a closed set such that f(K) ⊆ K. Then a
semi-conjugacy ϕ between f and g is an almost conjugacy between f |K and g if

(i) ϕ(K) = Y ,
(ii) ∀y ∈ Y , ϕ−1(y) is connected,
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(iii) ∀y ∈ Y , ϕ−1(y) ∩K = ∂ϕ−1(y), where ∂ denotes the boundary in X,
(iv) ∃N ≥ 1 such that ∀y ∈ Y , ϕ−1(y) ∩ K has at most N elements (and, by

(i), at least one element).

Notice that when f and g are graph maps, the last condition of this definition is
implied by the other ones. Indeed, if the set ϕ−1(y) is connected, then it is either
a singleton or a subgraph of the graph X, and thus the cardinality of ∂ϕ−1(y) is
finite and uniformly bounded.

Recall that if an ω-limit set ωf (x) contains a point y (hence also contains its
orbit) such that ωf (y) = ωf (x), we say that the ω-limit set ωf (x) is orbit-enclosing.
Recall also that a set is called perfect if it is closed and dense in itself.

Theorem 16 (Blokh [8]). Let f : G → G be a graph map and X ⊆ G a finite union
of subgraphs such that f(X) ⊆ X. Suppose that E = E(X, f) is infinite. Then E is
a perfect set, f |E is transitive (i.e., E is an orbit-enclosing ω-limit set) and ∀z ∈ G,
if ωf (z) ⊇ E, then ωf (z) = E (hence, E is a maximal ω-limit set). Moreover, there
exists a transitive map g : Y → Y , where Y is a finite union of graphs, and a semi-
conjugacy ϕ : X → Y between f |X and g which almost conjugates f |E and g.

Remark 17. In [8, Theorem 2], we may understand that E = E(X, f) is a maximal
ω-limit set for the restricted map f |X (when considering z such that ωf (z) ⊇ E,
it is not stated whether z belongs to G or X). But it is easy to show that if
E is a maximal ω-limit set for f |X , then it is also a maximal ω-limit set for f .
Indeed, suppose that E is a maximal ω-limit set for f |X and let z ∈ G be such
that ωf (z) ⊇ E. The set E is infinite and ∂X is finite, and so E ∩ Int(X) �= ∅,
which implies that z′ := fn(z) ∈ X for some n. Then Orbf (z

′) ⊆ X and, since
ωf (z

′) = ωf (z), we get that ωf (z) = E.

Remark 18. In Theorem 16, X is in fact the minimal cycle of graphs containing the
infinite ω-limit set E(X, f). To show this, first realize that by (2.3) and (2.4), X
is indeed a cycle of graphs containing E(X, f). Further, let Y be a cycle of graphs
containing E(X, f). We claim that X ⊆ Y . Suppose this is not the case. Then,
by Lemma 10(ii), there is a cycle of graphs Z ⊆ X ∩ Y � X containing E(X, f).
Since E(X, f) ⊆ Z � X is infinite and Z,X are cycles of graphs, there is a point
y ∈ E(X, f) such that some neighborhood U of y in Z is also a neighborhood of y

in X. Then, by (2.3), Orbf (U) = X. However, U ⊆ Z, and so Orbf (U) ⊆ Z. We
get X ⊆ Z, which contradicts the fact that Z � X.

If ωf (x) is infinite and included in a minimal cycle of graphs K, then the set
E(K, f) contains ωf (x) and so is infinite by Lemma 14(ii). Therefore, in such a case
Theorem 16 states that the set E(K, f) is a (maximal) ω-limit set and also gives a
partial description of f |E(K,f). This explains why the next definition is relevant in
the classification of ω-limit sets.

Definition 19. Let f : G → G be a graph map and X ⊆ G a finite union of
subgraphs such that f(X) ⊆ X. If E(X, f) is infinite (hence, by Theorem 16, it is
an orbit-enclosing ω-limit set of f and it is a maximal ω-limit set of f), it is called
a basic set if X contains a periodic point, and circumferential otherwise.

Let us recall that in this definition, by Remark 18, X is a minimal cycle of graphs
containing E(X, f).

The next result is due to Blokh [7] (see also [11, Corollary 1] for the statement
without proof). A proof in English can be found in [1].
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Theorem 20 (Blokh [7]). Let Y be a finite union of graphs and g : Y → Y be a
transitive, continuous map. If g has periodic points, then it has positive topological
entropy.

Corollary 21. If a graph map f admits a basic ω-limit set, then h(f) > 0.

Proof. Let E = E(X, f) be a basic set. According to Theorem 16, there exist a
transitive map g : Y → Y , where Y is a finite union of graphs, and a semi-conjugacy
ϕ : X → Y between f |X and g. The map g has a periodic point because X contains
a periodic point by definition. Then h(g) > 0 by Theorem 20, which implies that
h(f) > 0. �

Now consider a circumferential set E(X, f). Let X1, . . . , Xk be the connected
components of X. Then X is a cycle of graphs and for every 1 ≤ i ≤ k, fk|Xi

is
“almost” an irrational rotation. More precisely, either for every i, fk|Xi

is conjugate
to an irrational rotation (and in this case E(Xi, f

k) = Xi) or, for every i, there
exists a semi-conjugacy ϕi between fk|Xi

and an irrational rotation which is an
almost conjugacy on fk|E(Xi,fk), and every connected component of Xi \E(Xi, f

k)
is sent to one point by ϕi. In the latter case the ω-limit set E(X, f) is said to
be of Denjoy type. For precise statements and proofs, see [10] and [23]. Notice
that this situation cannot occur for interval or tree maps. We do not discuss the
circumferential ω-limit sets in more detail, because we will only need the following
result. It is due to Blokh [7] (see [8, Theorem S, p. 506] for a statement in English).

Theorem 22 (Blokh [7]). A transitive graph map with no periodic point is conju-
gate to an irrational rotation of the circle.

3. On graphs, one scrambled pair implies a Cantor scrambled set

This section is first of all devoted to the proof of Theorem 3, which is the main
result of this paper. We recall this theorem.

Theorem 3. Let f : G → G be a graph map. If f has a scrambled pair, then it has
a Cantor δ-scrambled set for some δ > 0.

Lemma 23. Let f : G → G, g : G′ → G′ be two graph maps and E ⊆ G a closed set
such that f(E) ⊆ E. Suppose that ϕ : G → G′ is a semi-conjugacy between f and
g, which is an almost conjugacy between f |E and g. If g is an irrational rotation
of the circle, then f has no scrambled pair.

Proof. Let x, y be two points in G such that

lim inf
n→+∞

d(fn(x), fn(y)) = 0.

The semi-conjugacy implies that lim infn→+∞ d(gn(ϕ(x)), gn(ϕ(y))) = 0. This is
possible only if ϕ(x) = ϕ(y) because g is a rotation. For every n ≥ 0, we set
zn := ϕ(fn(x)) = ϕ(fn(y)) and Gn = ϕ−1(zn). Then Gn is a closed connected set
containing both fn(x) and fn(y). If there exists k such that Gk is reduced to a
single point, then fk(x) = fk(y) and the trajectories of x and y eventually coincide.
Otherwise, all the sets Gn are subgraphs and so have non-empty interiors. If there
exist m < n such that Gm∩Gn �= ∅, then zm = zn = gn−m(zm). This is impossible
because g has no periodic point. Therefore, the subgraphs (Gn)n≥0 are pairwise
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disjoint. This implies that the diameter of Gn tends to 0 when n goes to +∞.
Hence

lim
n→+∞

d(fn(x), fn(y)) = 0

and f has no scrambled pair. �

Proof of Theorem 3. Let (x, y) be a scrambled pair. Then at least one of the points
x, y has an infinite ω-limit set (if both ω-limit sets were finite, they would be periodic
orbits and the pair (x, y) would not be scrambled). Say ωf (x) is infinite.

Suppose first that ωf (x) is a solenoid. By Lemma 11, we have ωf (x) ⊆
⋂∞

n=1 Xn,
where (Xn)

∞
n=1 is a nested sequence of cycles of graphs whose periods (kn)

∞
n=1 form a

strictly increasing sequence of positive integers. One can choose n such that kn ≥ 2
is larger than the number of branching points of G (which is finite), and thus some
connected component I of Xn is an arc which does not contain any branching point
of G. Then the arc I contains at least 4 subarcs which are connected components
of Xn+2. Hence there is a component of Xn+2, call it J , which is a subset of the
interior of the arc I. Since ωf (x) is infinite and f(ωf (x)) = ωf (x), it intersects
each of the components of Xn+2 in an infinite set by Lemma 10(iii). Hence there
is a point of ωf (x) which lies in the interior of J , and so, for some i0, x

′ := f i0(x)
also belongs to the interior of J . Let g = fkn+2 . Then g(J) = J , and so, for all
j ≥ 0, gj(x′) ∈ J . Let y′ := f i0(y). Since (x, y) is a scrambled pair for f , (x′, y′)
is a scrambled pair for g. In particular, there exists j0 such that y′′ := gj0(y′) is
so close to x′′ := gj0(x′) ∈ J that it belongs to I. Then g(I) = I and x′′, y′′ ∈ I
form a scrambled pair of the interval map g|I : I → I. By Theorem 2, g|I has a
δ-scrambled Cantor set for some δ > 0. This set is δ-scrambled also for f .

Suppose now that ωf (x) is not a solenoid, and let K be the minimal cycle
of graphs containing ωf (x) given by Lemma 13. The set E(K, f) is infinite by
Lemma 14. If E(K, f) is a basic set, then h(f) > 0 by Corollary 21, and the
conclusion follows from Theorem 4. The proof of the theorem will be finished if we
show that E(K, f) is not circumferential. Suppose on the contrary that K contains
no periodic point. Let K1, . . . ,Kk be the connected components of K. It is clear

that E(K, f) =
⋃k

i=1 E(Ki, f
k). Since ωf (x) is infinite, Lemmas 10(ii) and 14(ii)

imply that each of the sets E(Ki, f
k) is infinite. Let g := fk|K1

and E := E(K1, g).
According to Theorem 16, there exist a transitive graph map g′ : G′ → G′ and a
semi-conjugacy ϕ between g and g′ which is an almost conjugacy between g|E and
g′ (the set G′ is a graph because G′ = ϕ(K1) and K1 is connected). Then g′ has
no periodic point because g has no periodic point, and thus g′ is conjugate to an
irrational rotation by Theorem 22.

Since (x, y) is a scrambled pair, Ω := ωf (x) ∩ ωf (y) �= ∅. Of course, f(Ω) ⊆ Ω,
and since ωf (x) ⊆ K, also Ω ⊆ K. Suppose that Ω ⊆ ∂K. Then Ω is finite and,
being f -invariant, contains a periodic orbit of f , which contradicts the assumption
that K contains no periodic point. Therefore there exists z ∈ Ω ∩ Int(K). It
follows that the trajectories of x and y enter K. So, fn(x), fn(y) ∈ K for all
sufficiently large n. Since (x, y) is a scrambled pair and the distances between
the components of the cycle K are positive, there exists N such that x′ := fN (x)
and y′ := fN (y) belong to K1. But (x′, y′) is then a scrambled pair for g, which
contradicts Lemma 23. This finishes the proof. �
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4. A special ω-limit set implies an infinite scrambled set

In this section, we show Proposition 5 and Corollary 6. For clarity, we restate
these results before their proof.

In a compact dynamical system (X, f), an ω-limit set ωf (x) may contain a
periodic point, hence a whole periodic orbit P . If P is a proper subset of ωf (x),
then ωf (x) is infinite (otherwise it would be a periodic orbit properly containing
another periodic orbit, which is absurd) and, by [26], no point of P is isolated in
ωf (x).

By B(x, ε) and B(x, ε) we denote the open and the closed, respectively, ball with
center x and radius ε.

Proposition 5. Let X be a compact metric space and f : X → X a continuous
map. If f has an infinite ω-limit set containing a periodic point and also containing
an isolated point (isolated in the relative topology of the ω-limit set), then f has an
infinite δ-scrambled set for some δ > 0.

Proof. First we show that we may, without loss of generality, assume that the
periodic point is a fixed point. To see this, suppose that ωf (x) is infinite, P ⊆ ωf (x)
is a periodic orbit of period k > 1 and z0 ∈ ωf (x) is an isolated point of ωf (x). Put

g := fk. Then, as is well known (see e.g. [5, pp. 70-71]), ωf (x) =
⋃k−1

i=0 ωg(f
i(x))

and each of the sets in this union is mapped by f onto the next one mod k. It
follows that each of the sets in the union is infinite and contains a point from P .
One of them of course contains z0 as an isolated point. Thus, the map g has an
infinite ω-limit set containing a fixed point of g and an isolated point. If we prove
that g has an infinite δ-scrambled set, then it will be a δ-scrambled set also for f .

So, assume that ωf (x) is infinite and contains a fixed point z of f and an isolated
point z0. As we already know, z0 �= z. Choose δ > 0 such that B(z0, 4δ)∩ ωf (x) =

{z0}. In particular, d(z, z0) > 4δ. Put B3 := B(z0, 3δ) and B1 := B(z0, δ). Since
ωf (x) is infinite, any two points in the trajectory of x under f are distinct and
Orbf (x) is an infinite set. We are going to prove that it is a δ-scrambled set for
f (in fact even {z} ∪ Orbf (x) is δ-scrambled). To this end fix two points x2 and
x1 := fm(x2) in Orbf (x), where m is a positive integer.

Of course, ωf (x1) = ωf (x2) = ωf (x) � z. Since z is a fixed point of f , for
an arbitrarily small neighborhood of z there exists j such that both f j(x2) and
f j+m(x2) = f j(x1) are in this neighborhood. Hence x1 and x2 are proximal (that
is, lim infn→+∞ d(fn(x1), f

n(x2)) = 0).
On the other hand, both z0 and z are in ωf (x1), and so the trajectory of x1

visits B1 infinitely many times and is outside B3 also infinitely many times. Taking
further into account that ωf (x1) ∩ (B3 \ B1) = ∅, we see that the trajectory of x1

visits the compact set B3 \ B1 only finitely many times and so it is eventually
in (X \ B3) ∪ B1. Moreover, x1 is proximal to the fixed point z, and so there
are arbitrarily long intervals of consecutive times when the trajectory of x1 is in
X \ B3. It follows that there are infinitely many times j with f j(x1) ∈ B1 and
f j−m(x1) = f j(x2) ∈ X \ B3. For each such j we have d(f j(x1), f

j(x2)) > 2δ.
Hence lim supn→∞ d(fn(x1), f

n(x2)) ≥ 2δ > δ. �

The fact that every countable compact Hausdorff space has the periodic point
property is known [28]. Since there is a very short dynamical proof [25], we repeat
it.
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Lemma 24. Let X be a countable compact Hausdorff space. Then every continuous
map f : X → X has a periodic point.

Proof. Since X is compact, there is a minimal set M of the system (X, f) (i.e. a
minimal with respect to the inclusion, non-empty, closed, f -invariant subset of X).
ThenM is a compact Hausdorff, hence a Baire space. Since it is countable, applying
the Baire Category Theorem we get that it has an isolated point z. However, in
the minimal system (M, f |M ) every orbit is dense; therefore the isolated point z is
periodic (and M is just the orbit of z). �

On a countable space, Li-Yorke chaos is impossible for cardinality reasons. How-
ever, the following holds.

Corollary 6. Let X be a compact countable metric space and f : X → X a
continuous map. If f has a scrambled pair, then it has an infinite δ-scrambled set
for some δ > 0.

Proof. Let {x, y} be a scrambled pair of f . At least one of the points x, y has an
infinite ω-limit set, say ωf (x) is infinite. Then ωf (x), being compact and countable,
has an isolated point (in the topology of ωf (x)) and being also invariant for f , by
Lemma 24 contains a periodic point. Now apply Proposition 5. �
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[1] Ll. Alsedà, M. A. del Ŕıo, and J. A. Rodŕıguez, Transitivity and dense periodicity for graph
maps, J. Difference Equ. Appl. 9 (2003), no. 6, 577–598, DOI 10.1080/1023619021000040515.
MR1978125 (2004d:37061)

[2] François Blanchard, Fabien Durand, and Alejandro Maass, Constant-length substitutions
and countable scrambled sets, Nonlinearity 17 (2004), no. 3, 817–833, DOI 10.1088/0951-
7715/17/3/005. MR2057129 (2005j:37013)

[3] François Blanchard, Eli Glasner, Sergĭı Kolyada, and Alejandro Maass, On Li-Yorke
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Wydawnictwo Naukowe, Warsaw, 1967. MR0216473 (35 #7306)

http://www.ams.org/mathscinet-getitem?mr=1978125
http://www.ams.org/mathscinet-getitem?mr=1978125
http://www.ams.org/mathscinet-getitem?mr=2057129
http://www.ams.org/mathscinet-getitem?mr=2057129
http://www.ams.org/mathscinet-getitem?mr=1900136
http://www.ams.org/mathscinet-getitem?mr=1900136
http://www.ams.org/mathscinet-getitem?mr=2353910
http://www.ams.org/mathscinet-getitem?mr=2353910
http://www.ams.org/mathscinet-getitem?mr=1176513
http://www.ams.org/mathscinet-getitem?mr=1176513
http://www.ams.org/mathscinet-getitem?mr=659433
http://www.ams.org/mathscinet-getitem?mr=659433
http://www.ams.org/mathscinet-getitem?mr=884346
http://www.ams.org/mathscinet-getitem?mr=884346
http://www.ams.org/mathscinet-getitem?mr=865783
http://www.ams.org/mathscinet-getitem?mr=865783
http://www.ams.org/mathscinet-getitem?mr=916445
http://www.ams.org/mathscinet-getitem?mr=916445
http://www.ams.org/mathscinet-getitem?mr=916457
http://www.ams.org/mathscinet-getitem?mr=916457
http://www.ams.org/mathscinet-getitem?mr=928783
http://www.ams.org/mathscinet-getitem?mr=928783
http://www.ams.org/mathscinet-getitem?mr=0216473
http://www.ams.org/mathscinet-getitem?mr=0216473


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

2100 SYLVIE RUETTE AND L’UBOMÍR SNOHA
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