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We show that, for every positive real number h and every positive integer p,
there exist oriented graphs G, G′ (with countably many vertices) that are
strongly connected, of period p, of Gurevich entropy h, and such that G is
positive recurrent (thus the topological Markov chain on G admits a mea-
sure of maximal entropy) and G′ is transient (thus the topological Markov
chain on G′ admits no measure of maximal entropy).

1. Vere-Jones classification of graphs

In this paper, all the graphs are oriented and have a finite or countable set of vertices,
and if u, v are two vertices, there is at most one arrow u→ v. A path of length n
in the graph G is a sequence of vertices (u0, u1, . . . , un) such that ui → ui+1 in G
for all i ∈ [[0, n− 1]]. This path is called a loop if u0 = un .

Definition 1. Let G be an oriented graph, and let u, v be two vertices in G. We
define the following quantities:

• pG
uv(n) is the number of paths (u0, u1, . . . , un) such that u0 = u and un = v;

Ruv(G) is the radius of convergence of the series
∑

pG
uv(n)z

n .

• f G
uv(n) is the number of paths (u0, u1, . . . , un) such that u0 = u, un = v, and

ui 6= v for all 0 < i < n; Luv(G) is the radius of convergence of the series∑
f G
uv(n)z

n .

Definition 2. Let G be an oriented graph and V its set of vertices. The graph G
is strongly connected if, for all u, v ∈ V , there exists a path from u to v in G.
The period of a strongly connected graph G is the greatest common divisor of
(pG

uu(n))u∈V, n≥0. The graph G is aperiodic if its period is 1.

Proposition 3 [Vere-Jones 1962]. Let G be an oriented graph. If G is strongly
connected, Ruv(G) does not depend on u and v; it is denoted by R(G).
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transient null positive
recurrent recurrent∑

n>0 f G
uu(n)R

n < 1 1 1∑
n>0 n f G

uu(n)R
n

≤+∞ +∞ <+∞∑
n≥0 pG

uv(n)R
n <+∞ +∞ +∞

limn→+∞ pG
uv(n)R

n 0 0 λuv > 0
R = Luu R = Luu R ≤ Luu

Table 1. Properties of the series associated to a transient, null
recurrent or positive recurrent graph G (G is strongly connected);
these properties do not depend on the vertices u, v.

If there is no confusion, R(G) and Luv(G) will be written R and Luv.
Vere-Jones [1962] gives a classification of strongly connected graphs as transient,

null recurrent, or positive recurrent. These definitions are lines 1 and 2 in Table 1.
The other lines of Table 1 state properties of the series

∑
pG

uv(n)z
n , which give

alternative definitions (lines 3 and 4 are in [Vere-Jones 1962], and the last line is
Proposition 4).

Proposition 4 [Salama 1992]. Let G be a strongly connected oriented graph. If G
is transient or null recurrent, then R = Luu for all vertices u. Equivalently, if there
exists a vertex u such that R < Luu , then G is positive recurrent.

2. Topological Markov chains and Gurevich entropy

Let G be an oriented graph and V its set of vertices. We define 0G as the set of
two-sided infinite paths in G, that is,

0G := {(vn)n∈Z | for all n ∈ Z, vn→ vn+1 in G} ⊂ V Z.

The map σ is the shift on 0G . The topological Markov chain on the graph G is the
dynamical system (0G, σ ).

The set V is endowed with the discrete topology, and 0G is endowed with the
induced topology of V Z. The space 0G is not compact unless G is finite.

The topological Markov chain (0G, σ ) is transitive if and only if the graph G is
strongly connected. It is topologically mixing if and only if the graph G is strongly
connected and aperiodic.

If G is a finite graph, 0G is compact and the topological entropy htop(0G, σ )

is well defined (see, e.g., [Denker et al. 1976] for the definition of the topological
entropy). If G is a countable graph, the Gurevich entropy [1969] of the graph G (or
of the topological Markov chain 0G) is given by

h(G) := sup{htop(0H , σ ) | H ⊂ G, H finite}.
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This entropy can also be computed in a combinatorial way, as the exponential
growth of the number of paths with fixed endpoints.

Proposition 5 [Gurevich 1970]. Let G be a strongly connected oriented graph.
Then for all vertices u, v,

h(G)= lim
n→+∞

1
n

log pG
uv(n)=− log R(G).

Moreover, the variational principle is still valid for topological Markov chains.

Theorem 6 [Gurevich 1969]. Let G be an oriented graph. Then

h(G)= sup{hµ(0G) | µ σ -invariant probability measure}.

In this variational principle, the supremum is not necessarily reached. The next
theorem gives a necessary and sufficient condition for the existence of a measure of
maximal entropy (that is, a probability measure µ such that h(G)= hµ(0G)) when
the graph is strongly connected.

Theorem 7 [Gurevich 1970]. Let G be a strongly connected oriented graph of finite
positive entropy. Then the topological Markov chain on G admits a measure of
maximal entropy if and only if the graph G is positive recurrent. Moreover, such a
measure is unique if it exists.

3. Construction of graphs of given entropy and given period
that are either positive recurrent or transient

Lemma 8. Let β ∈ (1,+∞). There exist a sequence of nonnegative integers
(a(n))n≥1 and positive constants c,M such that

• a(1)= 1,

•
∑

n≥1 a(n)(1/βn)= 1,

• for all n ≥ 2, c ·βn2
−n
≤ a(n2)≤ c ·βn2

−n
+M ,

• for all n ≥ 1, 0≤ a(n)≤ M if n is not a square.

These properties imply that the radius of convergence of
∑

n≥1 a(n)zn is L = 1/β
and that

∑
n≥1 na(n)Ln <+∞.

Proof. First we look for a constant c > 0 such that

(1)
1
β
+ c

∑
n≥2

βn2
−n 1
βn2 = 1.

We have ∑
n≥2

βn2
−n 1
βn2 =

∑
n≥2

β−n
=

1
β(β − 1)

.
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Thus,

(1) ⇐⇒
1
β
+

c
β(β − 1)

= 1 ⇐⇒ c = (β − 1)2.

Since β > 1, the constant c := (β−1)2 is positive. We define the sequence (b(n))n≥1

by

• b(1) := 1,

• b(n2) := bcβn2
−n
c for all n ≥ 2,

• b(n) := 0 for all n ≥ 2 such that n is not a square.

Then ∑
n≥1

b(n)
1
βn ≤

1
β
+ c

∑
n≥2

βn2
−n 1
βn2 = 1.

We set δ := 1−
∑

n≥1 b(n)(1/βn)∈ [0, 1) and k := bβ2δc. Then k ≤ β2δ < k+1<
k+β, which implies that 0≤ δ−k/β2< 1/β. We write the β-expansion of δ−k/β2

(see, e.g., [Dajani and Kraaikamp 2002, p. 51] for the definition): there exist integers
d(n) ∈ {0, . . . , bβc} such that δ− k/β2

=
∑

n≥1 d(n)(1/βn). Moreover, d(1)= 0
because δ− k/β2 < 1/β. Thus, we can write

δ =
∑
n≥2

d ′(n)
1
βn

where d ′(2) := d(2)+ k and d ′(n) := d(n) for all n ≥ 3.
We set a(1) := b(1) and a(n) := b(n)+d ′(n) for all n ≥ 2. Let M := β+ k. We

then have

• a(1)= 1,

•
∑

n≥1 a(n)(1/βn)= 1,

• for all n ≥ 2, c ·βn2
−n
≤ a(n2)≤ c ·βn2

−n
+β ≤ c ·βn2

−n
+M ,

• 0≤ a(2)≤ β + k = M ,

• for all n ≥ 3, 0≤ a(n)≤ β ≤ M if n is not a square.

The radius of convergence L of
∑

n≥1 a(n)zn satisfies

− log L = lim sup
n→+∞

1
n

log a(n)= lim
n→+∞

1
n2 log a(n2)= logβ

because a(n2)∼ cβn2
−n.

Thus, L = 1/β. Moreover,∑
n≥1

na(n)
1
βn ≤M

∑
n≥1

n
1
βn +c

∑
n≥1

n2βn2
−n 1
βn2 =M

∑
n≥1

n
βn +c

∑
n≥1

n2

βn <+∞. �
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u

Figure 1. The graphs G(β) and G ′(β); the bold loop belongs to
G(β) and not to G ′(β), otherwise the two graphs coincide.

Lemma 9 [Ruette 2003, Lemma 2.4]. Let G be a strongly connected oriented graph
and u a vertex.

(i) R < Luu if and only if
∑

n≥1 f G
uu(n)L

n
uu > 1.

(ii) If G is recurrent, then R is the unique positive number x such that∑
n≥1

f G
uu(n)x

n
= 1.

Proof. For (i) and (ii), use Table 1 and the fact that F(x) =
∑

n≥1 f G
uu(n)x

n is
increasing for x ∈ [0,+∞). �

Proposition 10. Let β ∈ (1,+∞). There exist aperiodic strongly connected graphs
G ′(β)⊂ G(β) such that h(G(β))= h(G ′(β))= logβ, G(β) is positive recurrent,
and G ′(β) is transient.

Remark. Salama [1988, Theorem 3.9] proved the part of this proposition concern-
ing positive recurrent graphs.

Proof. This is a variant of the proof of [Ruette 2003, Example 2.9].
Let u be a vertex, and let (a(n))n≥1 be the sequence given by Lemma 8 for β.

The graph G(β) is composed of a(n) loops of length n based at the vertex u for all
n ≥ 1 (see Figure 1). More precisely, define the set of vertices of G(β) as

V := {u} ∪
+∞⋃
n=1

{v
n,i
k | i ∈ [[1, a(n)]], k ∈ [[1, n− 1]]},

where the vertices vn,i
k above are distinct. Let vn,i

0 = v
n,i
n = u for all i ∈ [[1, a(n)]].

There is an arrow v
n,i
k → v

n,i
k+1 for all k ∈ [[0, n−1]], i ∈ [[1, a(n)]], and n ≥ 2; there

is an arrow u→ u; and there is no other arrow in G(β). The graph G(β) is strongly
connected, and f G(β)

uu (n)= a(n) for all n ≥ 1.
By Lemma 8, the sequence (a(n))n≥1 is defined such that L = 1/β and

(2)
∑
n≥1

a(n)Ln
= 1,
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where L = Luu(G(β)) is the radius of convergence of the series
∑

a(n)zn . If G(β)
is transient, then R(G(β))= Luu(G(β)) by Proposition 4. But (2) contradicts the
definition of transient (see the first line of Table 1). Thus, G(β) is recurrent, and
R(G(β))= L by (2) and Lemma 9(ii). Moreover,∑

n≥1

na(n)Ln <+∞

by Lemma 8, and thus the graph G(β) is positive recurrent (see Table 1). By
Proposition 5, h(G(β))=− log R(G(β))= logβ.

The graph G ′(β) is obtained from G(β) by deleting a loop starting at u of length
n0 for some n0≥ 2 such that a(n0)≥ 1 (such an integer n0 exists because L <+∞).
Obviously one has Luu(G ′(β))= L and∑

n≥1

f G ′(β)
uu (n)Ln

= 1− Ln0 < 1.

Since R(G ′(β)) ≤ Luu(G ′(β)), this implies that G ′(β) is transient. Moreover,
R(G ′(β)) = Luu(G ′(β)) by Proposition 4, so R(G ′(β)) = R(G(β)), and hence
h(G ′(β))= h(G(β)) by Proposition 5. Finally, both G(β) and G ′(β) are of period 1
because of the arrow u→ u. �

Corollary 11. Let p be a positive integer and h ∈ (0,+∞). There exist strongly
connected graphs G,G ′ of period p such that h(G) = h(G ′) = h, G is positive
recurrent, and G ′ is transient.

Proof. For G, we start from the graph G(β) given by Proposition 10 with β = ehp.
Let V denote the set of vertices of G(β). The set of vertices of G is V × [[1, p]],
and the arrows in G are

• (v, i)→ (v, i + 1) if v ∈ V and i ∈ [[1, p− 1]],

• (v, p)→ (w, 1) if v,w ∈ V and v→ w is an arrow in G(β).

According to the properties of G(β), G is strongly connected, of period p, and
positive recurrent. Moreover, h(G)= (1/p)h(G(β))= (1/p) logβ = h.

For G ′, we do the same starting with G ′(β). �

According to Theorem 7, the graphs of Corollary 11 satisfy that the topological
Markov chain on G admits a measure of maximal entropy whereas the topological
Markov chain on G ′ admits no measure of maximal entropy; both are transitive, of
Gurevich entropy h, and supported by a graph of period p.
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