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Abstract

We show that, for every positive real number h and every positive integer p, there exist
oriented graphs G,G′ (with countably many vertices) that are strongly connected, of period
p, of Gurevich entropy h, such that G is positive recurrent (thus the topological Markov
chain on G admits a measure of maximal entropy) and G′ is transient (thus the topological
Markov chain on G′ admits no measure of maximal entropy).

1 Vere-Jones classification of graphs

In this paper, all the graphs are oriented, have a finite or countable set of vertices and, if u, v
are two vertices, there is at most one arrow u → v. A path of length n in the graph G is a
sequence of vertices (u0, u1, . . . , un) such that ui → ui+1 in G for all i ∈ J0, n− 1K. This path is
called a loop if u0 = un.

Definition 1 Let G be an oriented graph and let u, v be two vertices in G. We define the
following quantities.

• pGuv(n) is the number of paths (u0, u1, . . . , un) such that u0 = u and un = v; Ruv(G) is the
radius of convergence of the series

∑
pGuv(n)zn.

• fGuv(n) is the number of paths (u0, u1, . . . , un) such that u0 = u, un = v and ui 6= v for all
0 < i < n; Luv(G) is the radius of convergence of the series

∑
fGuv(n)zn.

Definition 2 Let G be an oriented graph and V its set of vertices. The graph G is strongly
connected if for all u, v ∈ V , there exists a path from u to v in G. The period of a strongly
connected graph G is the greatest common divisor of (pGuu(n))u∈V,n≥0. The graph G is aperiodic
if its period is 1.

Proposition 3 (Vere-Jones [8]) Let G be an oriented graph. If G is strongly connected,
Ruv(G) does not depend on u and v; it is denoted by R(G).
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If there is no confusion, R(G) and Luv(G) will be written R and Luv.

In [8] Vere-Jones gives a classification of strongly connected graphs as transient, null recur-
rent or positive recurrent. These definitions are lines 1 and 2 in Table 1. The other lines of
Table 1 state properties of the series

∑
pGuv(n)zn, which give alternative definitions (lines 3 and

4 are in [8], the last line is Proposition 4).

transient null positive
recurrent recurrent∑

n>0

fGuu(n)Rn < 1 1 1∑
n>0

nfGuu(n)Rn ≤ +∞ +∞ < +∞∑
n≥0

pGuv(n)Rn < +∞ +∞ +∞

lim
n→+∞

pGuv(n)Rn 0 0 λuv > 0

R = Luu R = Luu R ≤ Luu

Table 1: properties of the series associated to a transient, null recurrent or positive recurrent
graph G (G is strongly connected); these properties do not depend on the vertices u, v.

Proposition 4 (Salama [7]) Let G be a strongly connected oriented graph. If G is transient
or null recurrent, then R = Luu for all vertices u. Equivalently, if there exists a vertex u such
that R < Luu, then G is positive recurrent.

2 Topological Markov chains and Gurevich entropy

Let G be an oriented graph and V its set of vertices. We define ΓG as the set of two-sided
infinite paths in G, that is,

ΓG := {(vn)n∈Z | ∀n ∈ Z, vn → vn+1 in G} ⊂ V Z.

The map σ is the shift on ΓG. The topological Markov chain on the graph G is the dynamical
system (ΓG, σ).

The set V is endowed with the discrete topology and ΓG is endowed with the induced
topology of V Z. The space ΓG is not compact unless G is finite.

The topological Markov chain (ΓG, σ) is transitive if and only if the graph G is strongly
connected. It is topologically mixing if and only if the graph G is strongly connected and
aperiodic.

If G is a finite graph, ΓG is compact and the topological entropy htop(ΓG, σ) is well defined
(see e.g. [2] for the definition of the topological entropy). If G is a countable graph, the Gurevich
entropy [3] of the graph G (or of the topological Markov chain ΓG) is given by

h(G) := sup{htop(ΓH , σ) | H ⊂ G,H finite}.

This entropy can also be computed in a combinatorial way, as the exponential growth of the
number of paths with fixed endpoints.
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Proposition 5 (Gurevich [4]) Let G be a strongly connected oriented graph. Then for all
vertices u, v

h(G) = lim
n→+∞

1

n
log pGuv(n) = − logR(G).

Moreover, the variational principle is still valid for topological Markov chains.

Theorem 6 (Gurevich [3]) Let G be an oriented graph. Then

h(G) = sup{hµ(ΓG) | µ σ-invariant probability measure}.

In this variational principle, the supremum is not necessarily reached. The next theorem
gives a necessary and sufficient condition for the existence of a measure of maximal entropy (that
is, a probability measure µ such that h(G) = hµ(ΓG)) when the graph is strongly connected.

Theorem 7 (Gurevich [4]) Let G be a strongly connected oriented graph of finite positive
entropy. Then the topological Markov chain on G admits a measure of maximal entropy if and
only if the graph G is positive recurrent. Moreover, such a measure is unique if it exists.

3 Construction of graphs of given entropy and given period that
are either positive recurrent or transient

Lemma 8 Let β ∈ (1,+∞). There exist a sequence of non negative integers (a(n))n≥1 and
positive constants c,M such that

• a(1) = 1,

•
∑

n≥1 a(n) 1
βn = 1,

• ∀n ≥ 2, c · βn2−n ≤ a(n2) ≤ c · βn2−n +M ,

• ∀n ≥ 1, 0 ≤ a(n) ≤M if n is not a square.

These properties imply that the radius of convergence of
∑

n≥1 a(n)zn is L = 1
β and that∑

n≥1 na(n)Ln < +∞.

Proof. First we look for a constant c > 0 such that

1

β
+ c

∑
n≥2

βn
2−n 1

βn2 = 1. (1)

We have ∑
n≥2

βn
2−n 1

βn2 =
∑
n≥2

β−n =
1

β(β − 1)
.

Thus

(1)⇐⇒ 1

β
+

c

β(β − 1)
= 1⇐⇒ c = (β − 1)2.

Since β > 1, the constant c := (β − 1)2 is positive. We define the sequence (b(n))n≥1 by:

• b(1) := 1,

• b(n2) := bcβn2−nc for all n ≥ 2,
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• b(n) := 0 for all n ≥ 2 such that n is not a square.

Then ∑
n≥1

b(n)
1

βn
≤ 1

β
+ c

∑
n≥2

βn
2−n 1

βn2 = 1.

We set δ := 1 −
∑

n≥1 b(n) 1
βn ∈ [0, 1) and k := bβ2δc. Then k ≤ β2δ < k + 1 < k + β, which

implies that 0 ≤ δ − k
β2 <

1
β . We write the β-expansion of δ − k

β2 (see e.g. [1, p 51] for the

definition): there exist integers d(n) ∈ {0, . . . , bβc} such that δ− k
β2 =

∑
n≥1 d(n) 1

βn . Moreover,

d(1) = 0 because δ − k
β2 <

1
β . Thus we can write

δ =
∑
n≥2

d′(n)
1

βn

where d′(2) := d(2) + k and d′(n) := d(n) for all n ≥ 3.
We set a(1) := b(1) and a(n) := b(n) + d′(n) for all n ≥ 2. Let M := β + k. We then have:

• a(1) = 1,

•
∑

n≥1 a(n) 1
βn = 1,

• ∀n ≥ 2, c · βn2−n ≤ a(n2) ≤ c · βn2−n + β ≤ c · βn2−n +M ,

• 0 ≤ a(2) ≤ β + k = M ,

• ∀n ≥ 3, 0 ≤ a(n) ≤ β ≤M if n is not a square.

The radius of convergence L of
∑

n≥1 a(n)zn satisfies

− logL = lim sup
n→+∞

1

n
log a(n) = lim

n→+∞

1

n2
log a(n2) = log β because a(n2) ∼ cβn2−n.

Thus L = 1
β . Moreover,

∑
n≥1

na(n)
1

βn
≤M

∑
n≥1

n
1

βn
+ c

∑
n≥1

n2βn
2−n 1

βn2 = M
∑
n≥1

n

βn
+ c

∑
n≥1

n2

βn
< +∞.

�

Lemma 9 ([5], Lemma 2.4) Let G be a strongly connected oriented graph and u a vertex.

i) R < Luu if and only if
∑

n≥1 f
G
uu(n)Lnuu > 1.

ii) If G is recurrent, then R is the unique positive number x such that
∑

n≥1 f
G
uu(n)xn = 1.

Proof. For (i) and (ii), use Table 1 and the fact that F (x) =
∑

n≥1 f
G
uu(n)xn is increasing for

x ∈ [0,+∞[. �

Proposition 10 Let β ∈ (1,+∞). There exist aperiodic strongly connected graphs G′(β) ⊂
G(β) such that h(G(β)) = h(G′(β)) = log β, G(β) is positive recurrent and G′(β) is transient.
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Remark: Salama proved the part of this proposition concerning positive recurrent graphs in
[6, Theorem 3.9].

Proof. This is a variant of the proof of [5, Example 2.9].
Let u be a vertex and let (a(n))n≥1 be the sequence given by Lemma 8 for β. The graph

G(β) is composed of a(n) loops of length n based at the vertex u for all n ≥ 1 (see Figure 1).
More precisely, define the set of vertices of G(β) as

V := {u} ∪
+∞⋃
n=1

{vn,ik | i ∈ J1, a(n)K, k ∈ J1, n− 1K},

where the vertices vn,ik above are distinct. Let vn,i0 = vn,in = u for all i ∈ J1, a(n)K. There is an

arrow vn,ik → vn,ik+1 for all k ∈ J0, n− 1K, i ∈ J1, a(n)K, n ≥ 2; there is an arrow u→ u; and there

is no other arrow in G(β). The graph G(β) is strongly connected and f
G(β)
uu (n) = a(n) for all

n ≥ 1.

u

Figure 1: the graphs G(β) and G′(β); the bold loop belongs to G(β) and not to G′(β), otherwise
the two graphs coincide.

By Lemma 8, the sequence (a(n))n≥1 is defined such that L = 1
β and∑

n≥1
a(n)Ln = 1, (2)

where L = Luu(G(β)) is the radius of convergence of the series
∑
a(n)zn. If G(β) is transient,

then R(G(β)) = Luu(G(β)) by Proposition 4. But Equation (2) contradicts the definition of
transient (see the first line of Table 1). ThusG(β) is recurrent, andR(G(β)) = L by Equation (2)
and Lemma 9(ii). Moreover ∑

n≥1
na(n)Ln < +∞

by Lemma 8, and thus the graph G(β) is positive recurrent (see Table 1). By Proposition 5,
h(G(β)) = − logR(G(β)) = log β.

The graph G′(β) is obtained from G(β) by deleting a loop starting at u of length n0 for
some n0 ≥ 2 such that a(n0) ≥ 1 (such an integer n0 exists because L < +∞). Obviously one
has Luu(G′(β)) = L and ∑

n≥1
fG

′(β)
uu (n)Ln = 1− Ln0 < 1.

Since R(G′(β)) ≤ Luu(G′(β)), this implies that G′(β) is transient. Moreover R(G′(β)) =
Luu(G′(β)) by Proposition 4, so R(G′(β)) = R(G(β)), and hence h(G′(β)) = h(G(β)) by
Proposition 5. Finally, both G(β) and G′(β) are of period 1 because of the arrow u→ u. �
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Corollary 11 Let p be a positive integer and h ∈ (0,+∞). There exist strongly connected
graphs G,G′ of period p such that h(G) = h(G′) = h, G is positive recurrent and G′ is transient.

Proof. For G, we start from the graph G(β) given by Proposition 10 with β = ehp. Let V
denote the set of vertices of G(β). The set of vertices of G is V × J1, pK, and the arrows in G
are:

• (v, i)→ (v, i+ 1) if v ∈ V , i ∈ J1, p− 1K,

• (v, p)→ (w, 1) if v, w ∈ V and v → w is an arrow in G(β).

According to the properties of G(β), G is strongly connected, of period p and positive recurrent.
Moreover, h(G) = 1

ph(G(β)) = 1
p log β = h.

For G′, we do the same starting with G′(β). �

According to Theorem 7, the graphs of Corollary 11 satisfy that the topological Markov
chain on G admits a measure of maximal entropy whereas the topological Markov chain on
G′ admits no measure of maximal entropy; both are transitive, of Gurevich entropy h and
supported by a graph of period p.
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