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Abstract

We show that, for every positive real number h and every positive integer p, there exist
oriented graphs G, G’ (with countably many vertices) that are strongly connected, of period
p, of Gurevich entropy h, such that G is positive recurrent (thus the topological Markov
chain on G admits a measure of maximal entropy) and G’ is transient (thus the topological
Markov chain on G’ admits no measure of maximal entropy).

1 Vere-Jones classification of graphs

In this paper, all the graphs are oriented, have a finite or countable set of vertices and, if u, v
are two vertices, there is at most one arrow u — v. A path of length n in the graph G is a
sequence of vertices (ug,uy,...,uy) such that u; — u;4+1 in G for all ¢ € [0,n — 1]. This path is
called a loop if ug = uy,.

Definition 1 Let G be an oriented graph and let u,v be two vertices in G. We define the
following quantities.

e % (n) is the number of paths (ug,u1,. .., u,) such that ug = u and u,, = v; Ry (G) is the
n

radius of convergence of the series 3 pG (n)z".
e f8(n) is the number of paths (ug,u1,...,u,) such that ug = u, u, = v and u; # v for all
0 < i < n; Lyuy(G) is the radius of convergence of the series S f& (n)2".

Definition 2 Let G be an oriented graph and V its set of vertices. The graph G is strongly
connected if for all u,v € V, there exists a path from u to v in G. The period of a strongly
connected graph G is the greatest common divisor of (pG,,(1))uevn>0- The graph G is aperiodic
if its period is 1.

Proposition 3 (Vere-Jones [8]) Let G be an oriented graph. If G is strongly connected,
Ry (G) does not depend on u and v; it is denoted by R(G).

2010 Mathematics Subject Classification: 37B10, 37B40.
Keywords: topological Markov chain, countable oriented graph, topological entropy.



If there is no confusion, R(G) and Ly, (G) will be written R and Ly,,.

In [8] Vere-Jones gives a classification of strongly connected graphs as transient, null recur-
rent or positive recurrent. These definitions are lines 1 and 2 in Table [II The other lines of
Table |1/ state properties of the series 3 pG, (n)2", which give alternative definitions (lines 3 and
4 are in [§], the last line is Proposition [).

transient null positive
recurrent | recurrent

> fa ()R <1 1 1
n>0
Z nfS (n)R" < 400 +00 < 400
n>0
Zpgv(n)R" < 400 +00 +00
n>0
nll)r_lr_loo pS (n)R" 0 0 Auw >0

Table 1: properties of the series associated to a transient, null recurrent or positive recurrent
graph G (G is strongly connected); these properties do not depend on the vertices u, v.

Proposition 4 (Salama [7]) Let G be a strongly connected oriented graph. If G is transient
or null recurrent, then R = Ly, for all vertices u. Equivalently, if there exists a vertex u such
that R < Ly, then G is positive recurrent.

2 Topological Markov chains and Gurevich entropy

Let G be an oriented graph and V its set of vertices. We define I'g as the set of two-sided
infinite paths in G, that is,

T = {(n)nez | Y1 € Z,vp — vpy1 in G} C VZ,

The map o is the shift on I'g. The topological Markov chain on the graph G is the dynamical
system (I'g, o).

The set V is endowed with the discrete topology and I'g is endowed with the induced
topology of VZ. The space I'g is not compact unless G is finite.

The topological Markov chain (I'g, o) is transitive if and only if the graph G is strongly
connected. It is topologically mixing if and only if the graph G is strongly connected and
aperiodic.

If G is a finite graph, I'¢ is compact and the topological entropy hiop(I'G, o) is well defined
(see e.g. [2] for the definition of the topological entropy). If G is a countable graph, the Gurevich
entropy [3] of the graph G (or of the topological Markov chain I'¢) is given by

h(G) := sup{hiop(T'rr,0) | H C G, H finite}.

This entropy can also be computed in a combinatorial way, as the exponential growth of the
number of paths with fixed endpoints.



Proposition 5 (Gurevich [4]) Let G be a strongly connected oriented graph. Then for all
vertices u, v

1
h(G) = lim =logpl (n) = —log R(G).

n—+oo n

Moreover, the variational principle is still valid for topological Markov chains.
Theorem 6 (Gurevich [3]) Let G be an oriented graph. Then
h(G) = sup{h,(T'q) | p o-invariant probability measure}.

In this variational principle, the supremum is not necessarily reached. The next theorem
gives a necessary and sufficient condition for the existence of a measure of maximal entropy (that
is, a probability measure p such that h(G) = h,(I'g)) when the graph is strongly connected.

Theorem 7 (Gurevich [4]) Let G be a strongly connected oriented graph of finite positive
entropy. Then the topological Markov chain on G admits a measure of maximal entropy if and
only if the graph G is positive recurrent. Moreover, such a measure is unique if it exists.

3 Construction of graphs of given entropy and given period that
are either positive recurrent or transient

Lemma 8 Let 8 € (1,400). There exist a sequence of non negative integers (a(n))p>1 and
positive constants ¢, M such that

e a(l)=1,

D1 a(n)B% =1,

e Vn > 2, 0-5”2_" <a(n?) < C‘B”Q_"+M,
e Vn>1,0<ua(n) <M ifn is not a square.

These properties imply that the radius of convergence of anl a(n)z" is L = % and that
> on>1na(n) L™ < +oc.

Proof. First we look for a constant ¢ > 0 such that

1 e 1
5oLt g

n>2

=1 (1)

We have 1 1
27 e

n>2
Thus

Since B > 1, the constant ¢ := (3 — 1)? is positive. We define the sequence (b(n)),>1 by:
e bH(1):=1,

o b(n?) := [ for all n > 2,



e b(n) := 0 for all n > 2 such that n is not a square.

Then
1

Zb @SB—FCZBninﬁnQ:l

n>1 n>2
Weset § :=1-3 b(n)ﬂln [0,1) and k := |3%6]|. Then k < ﬁ25 < k+1<k+ 3, which
implies that 0 < § — B—’E < % We write the S-expansion of § — ﬂg (see e.g. [I, p 51] for the
definition): there exist integers d(n) €{0,...,[3]} such that § — 62 =D n>1 d(n)ﬁ% Moreover,

d(1) = 0 because § — 5 < ﬁ Thus we can write
§=> d(n
n>2

where d'(2) := d(2) + k and d'(n) := d(n) for all n > 3.
We set a(1) :=b(1) and a(n) := b(n) + d'(n) for all n > 2. Let M := § + k. We then have:

e a(l) =1,

D1 a(n)ﬂ% =1,

e =2 ¢ fT <a(n?) e BTN B < e B4 M,
e 0<al2)<fB+k=M

e Vn >3, 0<a(n) <pB <M ifnis not a square.

The radius of convergence L of >, -, a(n)z" satisfies

1 1
—log L = limsup —loga(n) = lim — loga(n 2y =log B because a(n?) ~ 66”2_".

n—+oo T n—+00 N
Thus L = % Moreover,
Zna MZn —i—canﬂ”’” n2—MZ—ﬂ+cZ—<+oo
n>1 n>1 n>1 /8 n>1 'B n>1

O

Lemma 9 ([5], Lemma 2.4) Let G be a strongly connected oriented graph and u a vertex.
1) R < Lyy if and only if 32,5, fy G (n)Lr, > 1.

ii) If G is recurrent, then R is the unique positive number x such that Y, <, f& (n)z™ = 1.

Proof. For (i) and (ii), use Table |I| and the fact that F(z) = Y o, f& (n)a™ is increasing for
€ [0, +ool. - O

Proposition 10 Let 5 €

1,4+00). There exist aperiodic strongly connected graphs G'(8) C
G(B) such that h(G(5)) (G

(1,
h(G'(B)) =log B, G(B) is positive recurrent and G'(B) is transient.



Remark: Salama proved the part of this proposition concerning positive recurrent graphs in
[6, Theorem 3.9].

Proof. This is a variant of the proof of [5, Example 2.9].

Let u be a vertex and let (a(n))n>1 be the sequence given by Lemma |8 for 5. The graph
G(p) is composed of a(n) loops of length n based at the vertex u for all n > 1 (see Figure [1)).
More precisely, define the set of vertices of G(3) as

+00 )
V= {u} U | J{uP? i € [La(m)],k € [t,n 1]},

where the vertices v}”’ above are distinct. Let v’ = vj* = u for all i € [1,a(n)]. There is an
arrow v, — vy for all k € [0,n — 1],7 € [1,a(n)], n > 2; there is an arrow u — u; and there

is no other arrow in G(3). The graph G(f) is strongly connected and fﬁfﬁ ) (n) = a(n) for all
n > 1.

Figure 1: the graphs G(8) and G’(8); the bold loop belongs to G(8) and not to G'(8), otherwise
the two graphs coincide.

By Lemma |8 the sequence (a(n)),>1 is defined such that L = % and

Za(n)L" =1, (2)

n>1

where L = L,,,(G(B)) is the radius of convergence of the series > a(n)z". If G(B) is transient,
then R(G(B)) = Luu(G(B)) by Proposition 4 But Equation contradicts the definition of
transient (see the first line of Table[L)). Thus G(f3) is recurrent, and R(G(3)) = L by Equation (2))
and Lemma [9[(ii). Moreover

Z na(n)L" < +o0

n>1
by Lemma [8] and thus the graph G(f) is positive recurrent (see Table . By Proposition
h(G(B)) = —log R(G(B)) = log 5.

The graph G'(8) is obtained from G(5) by deleting a loop starting at u of length ng for

some ng > 2 such that a(ng) > 1 (such an integer ng exists because L < 4+00). Obviously one
has Ly, (G'(B)) = L and

S FEP L =1-L" < 1.

n>1

Since R(G'(B)) < Luu(G'(B)), this implies that G’(8) is transient. Moreover R(G'(B)) =

L. (G'(B)) by Proposition 4} so R(G'(8)) = R(G(B)), and hence h(G'(8)) = h(G(B)) by
Proposition 5| Finally, both G(8) and G’(8) are of period 1 because of the arrow v — u. 0O



Corollary 11 Let p be a positive integer and h € (0,400). There exist strongly connected
graphs G, G" of period p such that h(G) = h(G') = h, G is positive recurrent and G’ is transient.

Proof For G, we start from the graph G(j3) given by Proposition [10] with 3 = e"P. Let V
denote the set of vertices of G(f). The set of vertices of G is V' x [1,p], and the arrows in G
are:

o (v,i) = (v,i+1)ifveV, ie[l,p—1],
e (v,p) = (w,1) if v,w €V and v — w is an arrow in G(3).

According to the properties of G(3), G is strongly connected, of period p and positive recurrent.
Moreover, h(G) = %h(G(ﬁ)) = %logﬁ =h.
For G’, we do the same starting with G'(3). O
According to Theorem [7] the graphs of Corollary [I1] satisfy that the topological Markov
chain on G admits a measure of maximal entropy whereas the topological Markov chain on
G’ admits no measure of maximal entropy; both are transitive, of Gurevich entropy h and
supported by a graph of period p.
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