Feuille d'Exercices 2 Primitives

Exercice 2.1.—

- 1. Trouver toutes les primitives de la fonction f(x) = x + 1 sur \mathbb{R} .
- **2.** Parmi les fonctions suivantes, lesquelles sont des primitives de x + 1?

$$F(x) = \frac{x^2}{2} + x + 1$$
 $G(x) = \frac{x^2}{2} + x + x$ $H(x) = \frac{x^2}{2} + x + \pi$.

3. Résoudre l'équation différentielle y'=x+1 avec la condition initiale y(2)=1.

Exercice 2.2.— Trouver toutes les fonctions f définies sur \mathbb{R}^* et qui vérifient f' = 0 sur \mathbb{R}^* (faire attention au domaine de définition!).

Exercice 2.3.— (Quelques primitives classiques)

- **1.** Donner une primitive de $x \mapsto \sin(x)$, puis de $x \mapsto \cos(x)$, puis de $x \mapsto \exp(x)$.
- **2.** Soit $n \in \mathbb{Z}$, $n \neq -1$. Donner une primitive de $f(x) = x^n$. Préciser le domaine de définition de f selon le signe de n.
- **3.** Donner les primitives de la fonction $x \mapsto x^{-1} = \frac{1}{x}$ sur l'intervalle $]0, +\infty[$, puis sur $]-\infty, 0[$. En déduire une primitive de $x \mapsto \frac{1}{x}$ sur \mathbb{R}^* .
- **4.** Donner une primitive de $f(x) = \frac{1}{\sqrt{x}}$ sur l'intervalle $]0, +\infty[$.

Exercice 2.4.— Soit $x \mapsto u(x)$ une fonction dérivable.

- **1.** a) Rappeler la formule pour la dérivée de la fonction $x \mapsto u(x)^2$.
 - b) En déduire une primitive de la fonction $x \mapsto \sin(x)\cos(x)$.
- 2. Donner la dérivée de chacune des fonctions suivantes :
 - **a**) u^3 ;
 - **b)** $\frac{1}{u}$ (si u ne s'annule pas);
 - c) $\ln(u)$ (si u ne prend que des valeurs > 0, c'est-à-dire : pour tout x, u(x) > 0);
 - d) $\ln(-u)$ (si u ne prend que des valeurs < 0).
- **3.** En déduire les primitives des fonctions $u'u^2$, $\frac{u'}{u^2}$, $\frac{u'}{u}$.
- **4.** En déduire une primitive de la fonction $x \mapsto \frac{x}{x^2 + 1}$.

- * Exercice 2.5.— On rappelle la notation $x^a = e^{a \ln x}$ (pour $a \in \mathbb{R}$ et $x \in]0, +\infty[$).
 - **1.** Soit $a \in \mathbb{R}$. On considère la fonction $f(x) = x^a$ définie sur $]0, +\infty[$. Donner la dérivée de f.
 - **2.** En déduire que, quand $a \neq -1$, la fonction $F(x) = \frac{1}{a+1} x^{a+1}$ est une primitive de f sur $]0, +\infty[$.

Remarque : comparer cette formule avec celle de l'exercice 2.3.

Exercice 2.6.—

1. Trouver des réels a et b tels que, pour tout $x \in \mathbb{R} \setminus \{0,1\}$,

$$\frac{1}{x(x-1)} = \frac{\alpha}{x} + \frac{\beta}{x-1}.$$

2. En déduire les primitives de la fonction $x \mapsto \frac{1}{x(x-1)}$ sur l'intervalle]0,1[.

Exercice 2.7.—

- 1. Trouver les primitives de $x \mapsto \tan(x) = \frac{\sin(x)}{\cos(x)}$ sur l'intervalle $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.
- **2.** Même question sur l'intervalle $\left]\frac{\pi}{2}, \frac{3\pi}{2}\right[$.

Exercice 2.8.—

- 1. Résoudre l'équation différentielle y'' = 1.
- **2.** Résoudre l'équation différentielle $y' = \tan(x)$ avec la condition initiale $y(\pi) = 1$.
- **3.** Résoudre l'équation différentielle $y'' = \cos(x)$.
- * Exercice 2.9.— On rappelle qu'une fonction f définie sur \mathbb{R} est
 - paire si, pour tout $x \in \mathbb{R}$, f(-x) = f(x) (exemple: $f(x) = x^2$),
 - impaire si, pour tout $x \in \mathbb{R}$, f(-x) = -f(x) (exemple: $f(x) = x^3$),
 - périodique s'il existe un réel T > 0 tel que, pour tout $x \in \mathbb{R}$, f(x+T) = f(x) (exemple : $f(x) = \sin(x)$ avec $T = 2\pi$).

Pour chacune des questions suivantes, répondre par vrai ou faux et justifier votre réponse (si c'est faux, donner un contre-exemple; si c'est vrai, donner une preuve).

- 1. Toute primitive d'une fonction continue paire est impaire.
- 2. Toute primitive d'une fonction continue impaire est paire.
- 3. Toute primitive d'une fonction continue périodique est périodique.