Feuille d'Exercices 4

Équations différentielles linéaires d'ordre 1

Exercice 4.1.— On considère l'équation différentielle linéaire homogène y'-ay=0, où $a\in\mathbb{R}$ est une constante.

- 1. Résoudre cette équation en séparant les variables.
- **2.** Vérifier que l'ensemble des solutions est de la forme $\{\lambda g \mid \lambda \in \mathbb{R}\}$ pour une certaine fonction g qui ne s'annule jamais (à déterminer).

Exercice 4.2.— On considère résoudre l'équation différentielle linéaire d'ordre $1: y'-y=e^{2x}$.

1. Résolution de l'équation homogène

Écrire l'équation homogène associée, puis la résoudre.

2. Recherche d'une solution particulière

Chercher **une** solution particulière de l'équation différentielle $y'-y=e^{2x}$ sous la forme d'une fonction $x\mapsto \lambda(x)g(x)$ où :

- g est la solution de l'équation homogène trouvée à la question précédente,
- et λ est une fonction inconnue à trouver.

Autrement dit, dans l'équation initiale, on fait le "changement de fonction inconnue" $y = \lambda g$ (où y est l'ancienne fonction inconnue, et λ la nouvelle).

3. Résolution de l'équation

On note f_0 la fonction solution particulière trouvée à la question précédente.

- a) Montrer que toutes les fonctions $f_0 + \lambda g$, avec $\lambda \in \mathbb{R}$, sont aussi des solutions de l'équation différentielle $y' y = e^{2x}$.
 - b) A-t-on trouvé toutes les solutions?

Exercice 4.3.— Résoudre les équations ci-dessous. À chaque fois, on esquissera le champs de tangentes et on tracera quelques solutions. Préciser les intervalles de résolution quand c'est nécessaire.

- 1. $y' \frac{y}{x} = 1 + 2x$.
- 2. $y' + \frac{2}{x}y = x^4$.
- 3. y' + 2xy = 2x.
- 4. y'-y=x. Indication: pour calculer une primitive d'une fonction de la forme xe^{ax} , faire une intégration par parties.
- 5. $y' = y \tan x + \sin x$, sur l'intervalle $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.

* Exercice 4.4.— On voudrait résoudre le système différentiel suivant :

$$\begin{cases} x'(t) = x(t) + y(t) \\ y'(t) = 3x(t) - y(t) \end{cases}$$
 avec la condition initiale
$$\begin{cases} x(0) = 2 \\ y(0) = -2 \end{cases}$$

- 1. On pose u = x y et v = 3x + y. Calculer u'(t) et v'(t) en fonction de x et y, puis en fonction de u et v. En déduire que u et v sont solutions d'équations différentielles linéaires d'ordre 1, et résoudre ces équations différentielles.
- **2.** En déduire les solutions (x, y) du système d'équations différentielles, puis la solution vérifiant la condition initiale.

Exercice 4.5.— On considère l'équation différentielle suivante

(E)
$$y' - (1 - \tan(x))y = \cos(x)$$
.

On s'intéresse à cette équation sur l'intervalle $]-\frac{\pi}{2},\frac{\pi}{2}[.$

1. Champ de tangentes de l'équation homogène

Dans cette partie, on considère l'équation homogène associée à l'équation (E), toujours sur l'intervalle $]-\frac{\pi}{2},\frac{\pi}{2}[$.

- a) Écrire l'équation homogène.
- b) Déterminer, et indiquer sur un dessin,
- l'ensemble des points où le champ de tangentes est horizontal;
- l'ensemble des points où sa pente est positive;
- l'ensemble des points où sa pente est négative.
- \mathbf{c}) Esquisser rapidement l'allure du champ de tangentes, et l'allure du graphe de quelques solutions.

2. Résolution de l'équation homogène

Résoudre l'équation homogène sur l'intervalle $]-\frac{\pi}{2},\frac{\pi}{2}[$. Tester les solutions obtenues.

3. Dessin des solutions de l'équation homogène

- a) Quelle est la solution vérifiant la condition initiale y(0) = 1? On la note g_0 . Donner le tableau de variations de g_0 sur l'intervalle $]-\frac{\pi}{2}, \frac{\pi}{2}[$ (on pourra utiliser la question 1). Déterminer les limites aux bornes de l'intervalle. Tracer le graphe de g_0 .
- b) Tracer sur le même dessin, rapidement, les graphes des trois solutions vérifiant respectivement y(0) = 2, y(0) = 3, y(0) = -1.

4. Résolution de l'équation (E)

Résoudre complètement l'équation (E). Tester une solution particulière.

* 5. Variante : Résoudre de même, sur l'intervalle] $-\frac{\pi}{2}, \frac{\pi}{2}[$, l'équation différentielle suivante :

$$(E_2)$$
 $y' - (1 - \tan(x))y = \cos^2(x)$.

Indication : on pourra calculer la primitive en utilisant l'exponentielle complexe¹, ou des intégrations par parties.

6. Question subsidiaire.

Quelles sont les solutions de l'équation différentielle suivante sur l'intervalle] $-\frac{\pi}{2}, \frac{\pi}{2}$ [?

$$y' - (1 - \tan(x))y = \cos(x) + \cos^{2}(x).$$

On peut traiter cette question sans avoir fait la question 5. Dans ce cas, on considèrera connue une solution particulière f_1 de l'équation différentielle (E_2) .

^{1.} On peut dériver une fonction à valeurs complexes en dérivant sa partie réelle et sa partie imaginaire : si $f: \mathbb{R} \to \mathbb{C}, x \mapsto f(x) = f_r(x) + i f_i(x)$ avec $f_r(x), f_i(x) \in \mathbb{R}$, la dérivée de f est $f' = f'_r + i f'_i$. Pour l'exponentielle complexe, on a encore la formule suivante : si $\alpha = a + ib \in \mathbb{C}$, $(e^{\alpha x})' = \alpha e^{\alpha x}$. On rappelle les formules d'Euler : $\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$ et $\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$.