## Feuille d'exercices nº 4

## Inégalités de Markov et de Bienaymé-Tchebychev, loi des grands nombres

Exercice 1. Le nombre de pièces sortant d'une usine en une journée est une variable aléatoire d'espérance 50. On veut estimer la probabilité que la production de demain dépasse 75 pièces.

- a) En utilisant l'inégalité de Markov, quelle estimation obtient-on sur cette probabilité?
- b) Que peut-on dire de plus sur cette probabilité si on sait que l'écart-type de la production quotidienne est 5 ?

Exercice 2. Pour étudier les particules émises par une substance radioactive, on dispose d'un détecteur. On note X la variable aléatoire représentant le nombre de particules qui atteignent le détecteur pendant un intervalle de temps  $\Delta t$ . Le nombre maximal de particules que le détecteur peut compter pendant un intervalle de temps  $\Delta t$  est de  $10^3$ . On suppose que X suit une loi de Poisson de paramètre  $\lambda = 10^2$ . Donner une majoration de la probabilité que X dépasse  $10^3$ . Caractéristiques d'une loi de Poisson  $\mathcal{P}(\lambda)$ : son espérance et sa variance sont égales à  $\lambda$ .

**Exercice 3.** On lance n fois un dé à 6 faces et on regarde la fréquence d'obtention de la face "6" (c'est-à-dire le nombre de fois qu'on obtient "6", divisé par n). Que peut-on dire de cette fréquence quand n devient grand? (si on parle de limite, préciser en quel sens)

## Théorème Central Limite, intervalles de confiance

**Exercice 4.** On considère l'expérience consistant à lancer 100 fois une pièce (équilibrée) et on note S la variable aléatoire comptant le nombre de "pile" obtenu lors d'une expérience. Que vaut  $P(40 \le S \le 60)$ ? Quelle est la probabilité pour que S soit supérieur à 60?

**Exercice 5.** Selon une étude, 20% des consommateurs se déclarent influencés par la marque lors d'un achat. Si on interroge 100 consommateurs pris au hasard, quelle est la probabilité pour qu'au moins 28 d'entre eux se déclarent influencés par la marque?

Exercice 6. La firme Comtec vient de développer un nouvel appareil électronique. On veut en estimer la fiabilité en termes de durée de vie. D'après une étude, l'écart-type de la durée de vie d'un appareil serait de l'ordre de 100 heures. On suppose également que la durée de vie suit une loi normale, et que les durées de vie de différents appareils sont indépendantes.

Déterminer le nombre d'essais requis pour estimer, avec un niveau de confiance de 95%, la durée de vie moyenne d'une grande production de sorte que la marge d'erreur dans l'estimation n'excède pas  $\pm$  20 heures.

Exercice 7. On interroge 1000 électeurs, 521 déclarent vouloir voter pour le candidat A. Indiquer avec une probabilité de 0.95 entre quelles limites se situe la proportion du corps électoral favorable à A au moment du sondage.

## Exercices supplémentaires

**Exercice 8.** On considère une marche aléatoire sur  $\mathbb{Z}$  définie de la façon suivante : on part de 0 et, à chaque étape, on a une probabilité p de faire un pas vers la droite et une probabilité 1-p de faire un pas vers la gauche. Autrement dit, on considère une suite de variables aléatoires  $(X_n)_{n\geq 1}$ , indépendantes, de même loi donnée par

$$\forall n \in \mathbb{N}^*, \ P(X_n = 1) = p \ \text{et} P(X_n = -1) = 1 - p,$$

et  $S_n = X_1 + X_2 + \cdots + X_n$  représente la position sur  $\mathbb{Z}$  de la marche aléatoire à l'étape n.

- a) Que vaut  $\lim_{n\to +\infty} \frac{S_n}{n}\,?$  (on précisera de quel type de limite on parle)
- b) On suppose que  $p > \frac{1}{2}$ . En utilisant la loi forte des grands nombres, montrer que  $S_n$  tend presque sûrement vers  $+\infty$ .

**Exercice 9.** On effectue un sondage sur un échantillon de 10000 personnes à la veille d'un référendum : 4903 d'entre elles s'apprêtent à voter oui, et 5097 à voter non. On note p la proportion (inconnue) de personnes dans la population s'apprêtant à voter oui. Donner un intervalle de confiance à 95% pour p.

Exercice 10. Chaque jour, un train subit un retard aléatoire au départ, évalué en minutes. On modélise la loi du retard par une loi exponentielle  $\mathcal{E}(\lambda)$  (mais on ignore la valeur de  $\lambda$ ). On suppose également que les retards sont indépendants entre eux. Sur 400 jours, le retard moyen est de 10 minutes. Donner un intervalle de confiance de niveau approximativement 95% pour  $\lambda$ . Caractéristiques d'une loi exponentielle  $\mathcal{E}(\lambda)$ : son espérance et son écart-type valent  $1/\lambda$ .

**Exercice 11.** Soit  $(X_n)_{n\geq 1}$  une suite de variables aléatoires indépendantes, suivant toutes la loi de Bernoulli de paramètre p. Pour tout  $n\geq 1$ , on note  $S_n=X_1+\cdots+X_n$ . On fixe  $\varepsilon>0$ . a) En utilisant l'inégalité de Bienaymé-Tchebychev, minorer  $P\left(p-\varepsilon<\frac{S_n}{n}< p+\varepsilon\right)$ .

b) Déterminer  $a_n$  (dépendant de n, p et  $\varepsilon$ ) pour que les encadrements suivants soient équivalents :

$$-a_n < \frac{S_n - np}{\sqrt{np(1-p)}} < a_n \iff -\varepsilon < \frac{S_n}{n} - p < \varepsilon.$$

On suppose que n est assez grand pour appliquer le théorème central limite. En déduire une approximation de  $P\left(p-\varepsilon<\frac{S_n}{n}< p+\varepsilon\right)$  (sous forme d'intégrale faisant intervenir la densité de la loi normale).

c) Application numérique : comparer les estimations obtenues en a) et b) pour  $p = \frac{1}{2}$ , n = 400 et  $\varepsilon = 0.05$ .

Exercice 12. On considère le nombre de garçons parmi n naissances choisies au hasard. On suppose que, pour chaque naissance, la probabilité que ce soit un garçon est p=0.514, et que les naissances sont indépendantes entre elles. A partir de quelle valeur de n y a-t-il une probabilité inférieure à 1% pour que le nombre de filles soit supérieur ou égal au nombre de garçons?

Exercice 13. On considère l'intervalle [0,1] muni de la probabilité uniforme. Si  $x \in [0,1]$ , on note  $X_1(x), X_2(x), \ldots, X_n(x), \ldots$  les chiffres du développement décimal de x. On admet que les v.a.  $(X_n)_{n\geq 1}$  sont indépendantes de loi uniforme dans l'ensemble des chiffres  $\{0,1,\ldots,9\}$ . Un nombre  $x\in [0,1]$  est dit normal si, pour tout  $k\in \{0,1,\ldots,9\}$ , le chiffre k apparaît avec une proportion  $\frac{1}{10}$  dans le développement décimal de x, c'est-à-dire  $\lim_{n\to +\infty} \frac{N_n(x)}{n} = \frac{1}{10}$ , où  $N_n(x) = \operatorname{Card}\{1 \leq i \leq n \mid X_i(x) = k\}$ . Montrer qu'un nombre est normal avec probabilité 1.

Table (partielle) pour une v.a. X de loi normale  $\mathcal{N}(0,1)$ 

| t     | $P(0 \le X \le t)$ | $P(-t \le X \le t)$ |
|-------|--------------------|---------------------|
| 0.6   | 0.226              | 0.451               |
| 0.68  | 0.25               | 0.5                 |
| 0.8   | 0.288              | 0.576               |
| 1.26  | 0.396              | 0.792               |
| 1.32  | 0.407              | 0.813               |
| 1.645 | 0.45               | 0.90                |
| 1.96  | 0.475              | 0.95                |
| 2     | 0.477              | 0.954               |
| 2.326 | 0.49               | 0.98                |