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Abstract

We introduce complex cones and associated projective gauges, generalizing a real Birkhoff
cone and its Hilbert metric to complex vector spaces. We deduce a variety of spectral gap
theorems in complex Banach spaces. We prove a dominated complex cone-contraction The-
orem and use it to extend the classical Perron-Frobenius Theorem to complex matrices,
Jentzsch’s Theorem to complex integral operators, a Krĕın-Rutman Theorem to compact
and quasi-compact complex operators and a Ruelle-Perron-Frobenius Theorem to complex
transfer operators in dynamical systems. In the simplest case of a complex n by n matrix
A ∈ Mn(C) we have the following statement : Suppose that 0 < c < +∞ is such that
|Im AijAmn| < c ≤ ReAijAmn for all indices. Then A has a ‘spectral gap’.

1 Introduction

The Perron-Frobenius Theorem [Per07, Fro08] asserts that a real square matrix with strictly
positive entries has a ‘spectral gap’, i.e. the matrix has a positive simple eigenvalue and all other
eigenvalues are strictly smaller in modulus. More generally, let A be a bounded linear operator
acting upon a real or complex Banach space and write rsp(A) for its spectral radius. We say
that A has a spectral gap if (1) it has a simple isolated eigenvalue λ the modulus of which equals
rsp(A) and (2) the remaining part of the spectrum is contained in a disk centered at zero and
of radius strictly smaller than rsp(A).

Jentzsch generalized in [Jen12] the Perron-Frobenius Theorem to integral operators with a
strictly positive continuous kernel. The proof uses the Schauder-Tychonoff Theorem to produce
a dual eigenvector and then a contraction on the kernel of this eigenvector to get a spectral gap.
Krĕın-Rutman [KR50, Theorem 6.3] (see also [Rut40] and [Rot44]) gave an abstract setting of
this result by considering a punctured real closed cone mapped to its interior by a compact
operator. Compactness of the operator essentially reduces the problem to finite dimensions.

Birkhoff, in a seminal paper [Bir57], developed a more elementary and intuitive (at least
in our opinion) Perron-Frobenius ‘theory’ by considering the projective contraction of a cone
equipped with its associated Hilbert metric. Birkhoff noted that this projective metric satisfies
a contraction principle, i.e. any linear map preserving the cone is a contraction for the metric
and the contraction is strict and uniform if the image of the cone has finite projective diameter.

All these results, or rather their proofs, make use of the ‘lattice’-structure induced by a
real cone on a real Banach space (see [Bir67] and also [Mey91]). On the other hand, from
complex analysis we know that the Poincaré metric on the unit disk, D = {z ∈ C : |z| <
1}, and the induced metric on a hyperbolic Riemann surface enjoy properties similar to the
Hilbert metric, in particular a contraction principle with respect to conformal maps. More
precisely, if φ : U → V is a conformal map between hyperbolic Riemann surfaces then its
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hyperbolic derivative never exceeds one. The map is a strict contraction unless it is a bijection
(see e.g. [CG93, Chapter I.4: Theorems 4.1 and 4.2]). By considering analytic images of complex
discs Kobayashi [Kob67, Kob70] (see also [Ves76]) constructed a hyperbolic metric on complex
(hyperbolic) manifolds, a tool with many applications also in infinite dimensions (see e.g. [Rug02,
Appendix D]).

Given a real cone contraction, perturbation theory allows on abstract grounds to consider
‘small’ complex perturbations but uniform estimates are usually hard to obtain. Uniform com-
plex estimates are needed e.g. when (see e.g. [NN87, BR98]) proving local limit theorems and
refined large deviation theorems for Markov additive processes and also (see e.g. [Rue79, Rug02])
for studying the regularity of characteristic exponents for time-dependent and/or random dy-
namical systems (see section 10 below). It is desirable to obtain a description of a projective
contraction and, in particular, a spectral gap condition for complex operators without the re-
strictions imposed by perturbation theory. We describe in the following how one may accomplish
this goal.

In section 2 we introduce families of C-invariant cones in complex Banach spaces and a
theory for the projective contraction of such cones. The central idea is simple, namely to use
the Poincaré metric as a ‘gauge’ on 2-dimensional affine sections of a complex cone. At first sight,
this looks like the Kobayashi construction. A major difference, however, is that we only consider
disk images in 2-dimensional subspaces. Also we do not take infimum over chains (so as to obtain
a triangular inequality, see Appendix A). This adapts well to the study of linear operators and
makes computations much easier than for the general Kobayashi metric. Lemma 2.3 shows that
this gauge is indeed projective. The contraction principle for the Poincaré metric translates into
a contraction principle for the gauge and, under additional regularity assumptions, developed in
section 3, into a projective contraction, and finally a spectral gap, with respect to the Banach
space norm.

In sections 4 and 5 we consider real cones and define their canonical complexification. For
example, C

n
+ = {u ∈ C

n : |ui + uj| ≥ |ui − uj |,∀ i, j} = {u ∈ C
n : Reuiuj ≥ 0,∀ i, j} is

the canonical complexification of the standard real cone, R
n
+. We show that our complex cone

contraction yields a genuine extension of the Birkhoff cone contraction : A real Birkhoff cone
is isometrically embedded into its canonical complexification. It enjoys here the same contrac-
tion properties with respect to linear operators. We obtain then in section 6 one of our main
results: When a complex operator is dominated by a sufficiently regular real cone-contraction
(Assumption 6.1) then (Theorem 6.3) the complex operator has a spectral gap. It is of interest
to note that the conditions on the complex operator are expressed in terms of a real cone and,
at least in some cases, very easy to verify. Sections 7-9 thus present a selection of complex
analogues of well-known real cone contraction theorems : A Perron-Frobenius Theorem for com-
plex matrices (as stated at the end of the abstract), Jentzsch’s Theorem for complex integral
operators, a Krĕın-Rutman Theorem for compact and quasi-compact complex operators and a
Ruelle-Perron-Frobenius Theorem for complex transfer operators. In section 10 we prove results
on the regularity of characteristic exponents of products of random complex cone-contractions.
Finally, in section 11 we discuss how our results compare to those of perturbation theory.

Acknowledgments: I am grateful to A Douady for a key suggestion in the proof of Lemma
2.4, to Oscar Bandtlow for suggesting the use of ‘reproducing’ complex cones, to Löıc Dubois
for discovering errors in previous versions of the paper and to anonymous referees for several
valuable suggestions and corrections.
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2 Complex cones and gauges

Let Ĉ = C∪{∞} denote the Riemann sphere. When U ⊂ Ĉ is an open connected subset avoiding
at least three points one says that the set is hyperbolic. We write dU for the corresponding
hyperbolic metric. We refer to [CG93, Chapter I.4] or [Mil99, Chapter 2] for the properties
of the hyperbolic metric which we use in the present paper. As normalization we use ds =
2|dz|/(1 − |z|2) on the unit disk D and the metric dU on U induced by a Riemann mapping
φ : D → U . One then has :

dD(0, z) = log
1 + |z|
1 − |z| , |z| = tanh

dD(0, z)

2
. (2.1)

Let E be a complex topological vector space. We denote by Span{x, y} = {λx+µy : λ, µ ∈ C}
the complex subspace generated by two vectors x and y in E.

Definition 2.1

(1) We say that a subset C ⊂ E is a closed complex cone if it is closed in E, C-invariant
(i.e. C = C C) and C 6= {0}.

(2) We say that the closed complex cone C is proper if it contains no complex planes, i.e. if
x and y are independent vectors then Span{x, y} 6⊂ C.

Throughout this paper we will simply refer to a proper closed complex cone as a C-cone.

Let C be a C-cone. Given a pair of non-zero vectors, x, y ∈ C∗ ≡ C − {0}, we consider the
subcone : Span{x, y} ∩ C. We wish to construct a ‘projective distance’ between the complex
lines Cx and Cy within this subcone. We do this by considering the complex affine plane through
2x and 2y, choosing coordinates as follows (Lemma 2.3 below implies that the choice of affine
plane is of no importance) :

D(x, y) ≡ D(x, y; C) = {λ ∈ Ĉ : (1 + λ)x + (1 − λ)y ∈ C} ⊂ Ĉ, (2.2)

with the convention that ∞ ∈ D(x, y) iff x−y ∈ C. The interior of this ”slice” is denoted Do(x, y)
(for the spherical topology on Ĉ). Continuity of the canonical mapping C

2 → Span{x, y} implies
that D = D(x, y) is a closed subset of Ĉ. As the cone is proper, D ⊂ Ĉ is a strict subset so
that Ĉ − D is open and non-empty, whence contains (more than) 3 points. If, in addition, Do

is connected it is a hyperbolic Riemann surface ([CG93, Theorem I.3.1]).

Definition 2.2 Given a C-cone, we define the gauge, dC : C∗ × C∗ → [0,+∞], between two
points x, y ∈ C∗ as follows : When two vectors are co-linear we set dC(x, y) = 0. If they are
linearly independent and −1 and 1 belong to the same connected component U of Do(x, y) we
set :

dC(x, y) ≡ dU (−1, 1) > 0. (2.3)

In all remaining cases, we set dC = ∞.
When V ⊂ C is a (sub-)cone of the C-cone C we write diamC(V ∗) ≡ supx,y∈V ∗ dC(x, y) ∈

[0,+∞] for the projective ‘diameter’ of V in C. We call it a diameter even though the gauge
need not verify the triangular inequality, whence need not be a metric (see Appendix A for more
on this issue).

Lemma 2.3 Let C be a C-cone. The gauge on the cone is symmetric and projective, i.e. for
x, y ∈ C∗ and a ∈ C

∗ :

dC(y, x) = dC(x, y) = dC(ax, y) = dC(x, ay).
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Figure 1: The sequence of inclusions U →֒ V − {p} →֒ V in the proof of Lemma 2.4

Proof: For (1 + µ)a + (1 − µ) 6= 0 we write

(1 + µ)ax + (1 − µ)y =
(1 + µ)a + (1 − µ)

2
((1 + R)x + (1 − R)y)

with

R = Ra(µ) =
(1 + µ)a − (1 − µ)

(1 + µ)a + (1 − µ)
.

Then Ra extends to a conformal bijection Ra : µ ∈ D(ax, y) 7→ Ra(µ) ∈ D(x, y) (a Möbius
transformation of Ĉ) preserving −1 and 1. The hyperbolic metric is invariant under such trans-
formations so indeed dC(x, y) = dC(ax, y) (but both could be infinite). Similarly, the map
λ 7→ −λ yields a conformal bijection between the domains D(x, y) and D(y, x), interchanging
−1 and 1 and the symmetry follows.

Lemma 2.4 Let T : E1 → E2 be a complex linear map between topological vector spaces and let
C1 ⊂ E1 and C2 ⊂ E2 be C-cones for which T (C∗

1) ⊂ C∗
2 . Then the map,

T : (C∗
1 , dC1) → (C∗

2 , dC2),

is a contraction. If the image has finite diameter, i.e. ∆ = diamC∗
2
TC∗

1 < ∞, then the contraction
is strict and uniform. More precisely, there is η = η(∆) < 1 (depending on ∆ only) for which

dC2(Tx, Ty) ≤ η dC1(x, y), ∀x, y ∈ C∗
1 .

Proof : Let x, y ∈ C∗
1 and set D1 = D(x, y; C1) and D2 = D(Tx, Ty; C2) for which we have

{−1, 1} ⊂ D1 ⊂ D2 ⊂ Ĉ.

Suppose that Tx, Ty ∈ C∗
2 are linearly independent and that D2 and D1 are hyperbolic (if

not, dC2(Tx, Ty) vanishes and we are through). Since shrinking a domain increases hyperbolic
distances, it follows that dC2(Tx, Ty) ≤ dC1(x, y) (although both could be infinite).

Suppose now that ∆ < +∞. Then −1 and 1 belong to the same connected component, V ,
of Do(Tx, Ty). We may suppose that −1 and 1 also belong to the same connected component,
U , of Do(x, y) (or else dC1(x, y) = ∞) and we are through). Our assumptions imply that U ⊂ V
is a strict inclusion and that diamV (U) ≤ ∆. Choose λ ∈ U and [Dou04] pick p ∈ V \ U for
which dV (λ, p) ≤ ∆ (this is possible as the inclusion U ⊂ V is strict and the diameter of U did
not exceed ∆). The inclusion U →֒ V −{p} is non-expanding and the inclusion V −{p} →֒ V is
a contraction which has hyperbolic derivative uniformly smaller than some η = η(∆) < 1 on the
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punctured ∆-neighborhood, BV (p,∆)∗, of p (see Remark 2.5). In particular, the composed map
(see Figure 1) U →֒ V −{p} →֒ V has hyperbolic derivative smaller than η(∆) at λ ∈ BV (p,∆)∗.
As λ ∈ U was arbitrary this is true at any point along a geodesic joining −1 and 1 in U so that

dC2(Tx, Ty) = dV (−1, 1) ≤ η dU (−1, 1) = η dC1(x, y).

Remark 2.5 An explicit bound may be given using the expression ds = |dz|/(|z| log 1
|z|) for the

metric on the punctured disk at z ∈ D
∗ (see e.g. [Mil99, Example 2.8]). Denoting, t = tanh ∆/2,

we obtain the bound, η(∆) = 2t
1−t2

log 1
t = sinh(∆) log(coth ∆

2 ) < 1. Often, however, it is
possible to improve this bound. For example, suppose that U is contractible in V (e.g. if V is
simply connected) and that U is contained in a hyperbolic ball of radius 0 < R < ∞. Lifting
to the universal cover we may assume that V = D and that U = {z ∈ D : |z| < t} with

0 < t = tanh R
2 < 1. The inclusion (U, dU ) →֒ (D, dD) has hyperbolic derivative t1−|z|2/t2

1−|z|2 ≤ t for

z ∈ U . We may thus use η = tanh R
2 < 1 for the contraction constant. Recall that for a real

Birkhoff cone [Bir57] one may take η = tanh ∆
4 (an open interval in R of diameter ∆ is a ball

of radius ∆/2 in R).

3 Complex Banach spaces and regularity of C-cones

Let X be a complex Banach space and let C ⊂ X be a C-cone (Definition 2.1). We denote by
X ′ the dual of X and we write 〈·, ·〉 for the canonical duality X ′ × X → C. We will consider a

bounded linear operator T ∈ L(X) which preserves C∗ and is a strict and uniform contraction
with respect to our gauge on C. We seek conditions that assure : (1) The presence of an
invariant complex line (existence of an eigenvector of non-zero eigenvalue) and (2) A spectral
gap. In short, an invariant line appears when the cone is not too ‘wide’ and the spectral gap
when, in addition, the cone is not too ‘thin’.

Definition 3.1 Let C ⊂ X be a closed complex cone in a complex Banach space (in section 4
we will use the very same definition for a real cone in a real Banach space). When m ∈ X ′ is
a non-zero functional, bounded on the vector space generated by C, we define the aperture of C
relative to m :

K(C;m) = sup
u∈C∗

‖m‖ ‖u‖
|〈m,u〉| ∈ [1,+∞].

We define the aperture of C to be : K(C) = inf
m∈X′,m6=0

K(C;m) ∈ [1,+∞].

When K(C) < +∞ we say that C is of bounded aperture (or of K-bounded aperture with K(C) ≤
K < +∞ if we want to emphasize a value of the bounding constant).

Definition 3.2

(1) We call C inner regular if it has non-empty interior in X.

We say that C is reproducing (or generating) if there is a constant g < +∞ such that for
every x ∈ X we may find x1, x2 ∈ C for which x = x1 + x2 and

‖x1‖ + ‖x2‖ ≤ g ‖x‖. (3.4)

We that C is T -reproducing (or T -generating) if there are constants g < +∞, q ∈ N∪{0}
and 2 ≤ p < +∞ such that for every x ∈ X and ǫ > 0 there are y1, . . . , yp ∈ C with
‖y1‖ + ‖y2‖ + · · · + ‖yp‖ ≤ g‖x‖ and ‖y1 + y2 + · · · + yp − T qx‖ < ǫ.
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(2) We say that C is outer regular if K(C) < +∞.

We say that C is of K-bounded sectional aperture or of bounded sectional aperture (with a
bounding constant 1 ≤ K < +∞) iff for every pair x, y ∈ X, the subcone Span{x, y}∩ C is
of K-bounded aperture, i.e. there is a non-zero linear functional, m = m{x,y} ∈ Span{x, y}′,
such that

|〈m,u〉| ≥ 1

K
‖u‖ ‖m‖, ∀u ∈ Span{x, y} ∩ C. (3.5)

(3) We say that C is regular iff the cone is inner and outer regular.

Remarks 3.3 When a cone is of bounded aperture then the cone has a bounded global transverse
section not containing the origin. This is often a too strong requirement. For example, in L1-
spaces this is usually OK but not in Lp with 1 < p ≤ +∞ unless we are in finite dimensions.
Being inner regular means containing an open ball and this typically fails in Lp for 1 ≤ p < +∞,
again with the exemption of the finite dimensional case. The notions of being (T -)reproducing
and of bounded sectional aperture, respectively, are more flexible and may circumvent the two
above-mentioned restrictions. We illustrate this in Example 4.9 and Theorem 7.2. Obviously,
‘inner regular’ ⇒ reproducing ⇒ T -reproducing. Also, ‘outer regular’ ⇒ bounded sectional
aperture.

It is necessary to create a passage between the cone-gauge and the Banach space norm. The
regularity properties defined above will enable us to do so through the following two Lemmas :

Lemma 3.4 Let C be a closed complex cone of K-bounded sectional aperture. Then C is proper,
whence a C-cone (Definition 2.1). If x, y ∈ C∗ and m = m{x,y} is a functional associated to the
subcone Span{x, y} ∩ C as in equation (3.5) then :

‖ x

〈m,x〉 −
y

〈m, y〉‖ ≤ 4K

‖m‖ tanh
dC(x, y)

4
≤ K

dC(x, y)

‖m‖ .

Proof: We normalize the functional so that ‖m‖ = K. Then ‖u‖ ≤ |〈m,u〉| ≤ K‖u‖
for all u ∈ Span{x, y} ∩ C. Denote x̂ = x

〈m,x〉 and ŷ = y
〈m,y〉 and consider, as a function of

λ ∈ C, the point uλ = (1 + λ)x̂ + (1 − λ)ŷ. When uλ ∈ C the properties of m show that
‖uλ‖ ≤ |〈m,uλ〉| = |(1 + λ) + (1 − λ)| ≡ 2 and therefore,

|λ| ‖x̂ − ŷ‖ ≤ ‖uλ‖ + (‖x̂‖ + ‖ŷ‖) ≤ 4.

Setting R = 4
‖bx−by‖ ∈ [2,+∞] we see that D(x̂, ŷ) ⊂ B(0, R). The radius R is bounded iff x and

y are independent so the cone is proper. Enlarging a domain decreases hyperbolic distances so

dC(x, y) = dDo(bx,by)(−1, 1) ≥ dB(0,R)(−1, 1) = dD(
1

R
,− 1

R
) = 2 log

1 + 1
R

1 − 1
R

.

Therefore,
‖x̂ − ŷ‖

4
=

1

R
≤ tanh

dC(x, y)

4
≤ dC(x, y)

4
, and the stated bound follows.

Lemma 3.5 Let C be a C-cone of K-bounded sectional aperture and let x ∈ C∗, y ∈ X. Suppose
that there is r > 0 such that x + t y ∈ C∗ for all t ∈ C with |t| < r. Then

dC(x, x + s y) ≤ 2

r
|s| + o(|s|) as s → 0 (3.6)

and

‖y‖ ≤ K

r
‖x‖. (3.7)
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Proof: Let |s| < r. Using the scale-invariance of the cone we see that D(x, x + s y) = {λ ∈
Ĉ : (1 + λ)x + (1 − λ)(x + sy) ∈ C} = {λ ∈ Ĉ : x + (1 − λ) s

2 y ∈ C}. Our hypothesis implies

that D(x, x + s y) contains a disc of radius
2r

|s| , centered at 1. Shrinking a domain increases

hyperbolic distances, whence

dC(x, x + s y) ≤ dB(1, 2r
|s|

)(−1, 1) = dD(0,
|s|
r

) = log
1 + |s|/r
1 − |s|/r =

2

r
|s| + o(|s|).

Choose m associated to the subcone Span{x, y}∩ C as in equation (3.5), normalized so that
‖m‖ = K. As m is non-zero on the punctured subcone, 0 < |〈m,x + t y〉| = |〈m,x〉 + t〈m, y〉|
for all |t| < r, and this implies that r|〈m, y〉| ≤ |〈m,x〉|. Possibly after multiplying x and u with
complex phases we may assume that 〈m,x〉 ≥ 〈m, ry〉 > 0. But then 2r‖y‖ ≤ ‖x + ry‖ + ‖x −
ry‖ ≤ 〈m,x + ry + x − ry〉 ≤ 2K‖x‖.

Theorem 3.6 Let C be a C-cone of K-bounded sectional aperture. Let T ∈ L(X) be a strict
cone-contraction, i.e. T : C∗ → C∗ with ∆ = diamCT (C∗) < ∞. Let η < 1 be as in Lemma 2.4.
Then :

(1) C contains a unique T -invariant complex line, Ch.

We define λ ∈ C
∗ by setting Th = λh.

(2) There are constants R, C̃ < +∞ and a map c : C → C so that for any x ∈ C and n ≥ 1 :

‖λ−nT nx − c(x)h‖ ≤ C̃ ηn−1‖x‖ (3.8)

‖c(x)h‖ ≤ R ‖x‖ (3.9)

Proof: Let x0 ∈ C∗ and set e1 = Tx0/‖Tx0‖ ∈ T (C∗) ⊂ C∗. We will construct a Cauchy-
sequence (en)n∈N recursively. Given en, n ≥ 1 choose, as in Definition 3.2 (2), a functional
mn ∈ X ′ normalized so that ‖mn‖ = K, associated to the subcone Span{en, T en} ∩ C. Set
λn = 〈mn, T en〉/〈mn, en〉 (for which we have the bound 0 < |λn| ≤ ‖T‖ K) and define the next
element in our recursion :

en+1 =
λ−1

n Ten

‖λ−1
n Ten‖

∈ T n+1C∗.

Using Lemma 3.4 and then Lemma 2.4 (with a contraction constant η < 1) we obtain for n ≥ 1 :

‖ en

〈mn, en〉
− Ten

〈mn, T en〉
‖ ≤ dC(en, T en) ≤ diamT nC∗ ≤ ∆ηn−1. (3.10)

As 1 ≤ |〈mn, en〉| ≤ K and |〈mn, T en〉| ≤ ‖T‖K we get :

‖en − λ−1
n Ten‖ ≤ K ∆ ηn−1 and ‖λnen − Ten‖ ≤ ‖T‖ K ∆ ηn−1. (3.11)

Noting that ‖en‖ = 1, the first inequality implies :

‖en − en+1‖ ≤ 2K ∆ ηn−1. (3.12)

The sequence, (en)n∈N, is therefore Cauchy, whence has a limit,

h = lim
n

en ∈ C∗, ‖h‖ = 1. (3.13)
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The limit belongs to C because the cone was assumed closed. Writing (λn+1 − λn)en+1 =
(T − λn)en + (λn+1 − T )en+1 + (T − λn)(en+1 − en) and using the second inequality in (3.11) as
well as (3.12) and |λn| ≤ ‖T‖ K we obtain

|λn − λn+1| ≤ (1 + η + (2 + 2K)) ‖T‖ K ∆ ηn−1, (3.14)

so also the limit λ = limn λn exists. But ‖Th − λh‖ = limn ‖Ten − λnen‖ = 0 shows that

Th = λh ∈ C∗ which implies that λ 6= 0, whence that Ch ⊂ C is a T -invariant complex
line. Suppose that also Ck ⊂ C (with k 6= 0) is T -invariant. Then dC(h, k) = dC(Th, Tk) ≤
η dC(h, k) ≤ η∆ < +∞ and this implies dC(h, k) = 0 so the two vectors must be linearly
dependent. Thus, Ch is unique.

To see the second part, let x ∈ C∗ and define for n ≥ 1 : xn = T nx. This time we pick
mn ∈ X ′ associated to the subcone Span{xn, h}∩C and set cn = 〈mn, λ−nxn〉/〈mn, h〉 for which
|cn| ≤ K‖λ−nxn‖. As in (3.10) we get

‖ xn

〈mn, xn〉
− h

〈mn, h〉‖ ≤ K

‖mn‖
dC(T

nx, Tnh) ≤ K

‖mn‖
diamT nC∗ ≤ K

‖mn‖
∆ηn−1. (3.15)

Thus, ‖λ−nxn − cnh‖ ≤ K‖λ−nxn‖∆ ηn−1 and

‖λ−n−1xn+1−λ−nxn‖ = ‖λ−1T (λ−nxn−cnh)+(λ−nxn−cnh)‖ ≤ (1+‖λ−1T‖)K ‖λ−nxn‖∆ ηn−1.

Then ‖λ−n−1xn+1‖ ≤
(
1 + (1 + ‖λ−1T‖)K ∆ ηn−1

)
‖λ−nxn‖ so we get the following uniform

bound in n ≥ 1 :

‖λ−nxn‖ ≤
∏

k≥0

(
1 + (1 + ‖λ−1T‖)K ∆ ηk

)
‖λ−1x1‖ (3.16)

≤ exp

(
(1 + ‖λ−1T‖) K∆

1 − η

)
‖λ−1 T‖ ‖x‖ ≡ R ‖x‖. (3.17)

Writing cn+1h − cnh = (cn+1h − λ−n−1xn+1) + (λ−n−1xn+1 − λ−nxn) − (cnh − λ−nxn) we
obtain

|cn+1 − cn| = ‖cn+1h − cnh‖ ≤
(
η + (1 + ‖λ−1T‖) + 1

)
K ∆ ηn−1R ‖x‖.

Therefore, c∗ = lim cn ∈ C exists and by re-summing to ∞,

|c∗ − cn| ≤
2 + η + ‖λ−1T‖

1 − η
K ∆ ηn−1 R ‖x‖.

Then also

‖λ−nxn − c∗h‖ ≤ 3 + ‖λ−1T‖
1 − η

K ∆ ηn−1 R ‖x‖ ≤ C̃ ηn−1‖x‖

which implies that c(x) ≡ c∗ depends only on x (and not of the choice of mn’s). We also have :
|c(x)| = ‖c(x)h‖ = limn ‖λ−nxn‖ ≤ supn ‖λ−nxn‖ ≤ R ‖x‖.

Theorem 3.7 Let T ∈ L(X) and let C be a C-cone of K-bounded sectional aperture and which,
in addition, is reproducing. Suppose that T is a strict cone-contraction, i.e. T : C∗ → C∗ with
∆ = diamCT (C∗) < ∞. Then T has a spectral gap.
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Proof: Let x ∈ X and let g be the ‘reproducing’-constant from (3.4). Pick x1, x2 ∈ C with
x = x1 + x2 and ‖x1‖ + ‖x2‖ ≤ g‖x‖. We apply the previous Theorem to x1 and x2 and set
c∗ = c(x1) + c(x2) for which |c∗| ≤ Ã ‖x1‖ + Ã ‖x2‖ ≤ gÃ‖x‖. In a similar way we obtain
‖λ−nT nx− c∗h‖ ≤ g C̃ ηn−1‖x‖, n ≥ 1. Letting n → ∞, we see that c(x) ≡ c∗ depends on x but
not on the choice of the decomposition. Linearity of T furthermore implies that the mapping
x → 〈ν, x〉 ≡ c(x) ∈ C must be linear, and, as a linear functional, ν ∈ X ′ is bounded in norm
by A ≡ gÃ. We have shown that

∥∥λ−nT nx − h〈ν, x〉
∥∥ ≤ Cηn−1‖x‖, ∀ x ∈ X, n ≥ 1, (3.18)

with C < +∞. Therefore, λ is a simple eigenvalue of T corresponding to the eigenprojection,
x → h〈ν, x〉 and the remainder has spectral radius not exceeding η |λ|.

In the more general case, when C is T -reproducing, we let g, p, q be constants from Def-
inition 3.2. For x ∈ X and fixed k ≥ 1, set ǫ = 1/k and choose : y1, . . . , yp ∈ C with
‖y1‖+‖y2‖+· · ·+‖yp‖ ≤ g‖x‖ and ‖y1+y2+· · ·+yp−T qx‖ < 1

k . Setting c∗k = c(y1)+· · ·+c(yp) we

obtain in this way a sequence (c∗k)k≥1 for which ‖λ−nT n+qx− c∗kh‖ ≤ gC̃ηn−1‖x‖+ 1
k‖λ−nT nx‖,

n ≥ 1. The sequence is bounded so we may extract a convergent subsequence c∗km
→ c∗ and

conclude that ‖λ−nT n+qx− c∗h‖ ≤ gC̃ηn−1‖x‖, ∀n ≥ 1. Again, 〈ν, x〉 ≡ c∗ depends linearly on
x and T has a spectral gap.

Remark 3.8 Some explicit estimates for the constants in Theorem 3.7 when C is reproducing :

‖c∗‖ ≤ A ≡ g K ‖λ−1 T‖ exp

((
1 + ‖λ−1 T‖

) K ∆

1−η

)
and C =

(
3 + ‖λ−1 T‖

) ∆

1−η
A. (3.19)

Note, however, that in this setting there is no a priori lower bound on |λ|. In particular, to get
an explicit bound on ‖λ−1 T‖ one needs further information on the map T and the cone C.

Example 3.9 Let X be a complex Banach space and consider e ∈ X, ℓ ∈ X ′ with 〈ℓ, e〉 = 1.
We write P = e ⊗ ℓ for the associated one dimensional projection. For 0 < σ < +∞ we set

Cσ =
{

x ∈ X : ‖(1 − P )x‖ ≤ σ‖Px‖
}

. (3.20)

Then B

(
e,

σ‖e‖
1 + (1 + σ)‖P‖

)
⊂ Cσ and K(Cσ) ≤ (1 + σ)‖P‖ so that Cσ is a regular C-cone.

Furthermore, if 0 < σ1 < σ < +∞ a calculation shows that diamCσC∗
σ1

< +∞.

Remark 3.10 We have the following characterization of the spectral gap property : A bounded
linear operator, T ∈ L(X), has a spectral gap iff it is a strict contraction of a regular C-cone.
Sketch of proof: One direction is the content of Theorem 3.7 (since a regular cone in particular
is of uniformly bounded sectional aperture). For the other direction one uses the spectral gap
projection P to construct an adapted norm (equivalent to ‖·‖) : ‖x‖θ = ‖Px‖+∑k≥0 θ−k‖T k(1−
P )x‖ for some fixed choice of θ ∈ (η, 1). Using this norm to define the cone family in (3.20), it
is not difficult to see that T is a strict and uniform contraction of Cσ, σ > 0.

4 Real cones

Let XR denote a real Banach space. Recall that a subset CR ⊂ XR is called a (real) proper
closed convex1 cone if it is closed and convex and if

1Convexity of a real cone often is a useful property that a fortiori is lost when dealing with complex cones.
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R+CR = CR, (4.21)

CR ∩−CR = {0}. (4.22)

The real cone is said to be reproducing (or generating) provided CR+(−CR) = XR. Using Baire’s
Theorem and convexity of CR it is not difficult to see that this is equivalent to the existence of
g < +∞ such that every x ∈ XR decomposes into x = x+ − x− with x+, x− ∈ CR and such that

‖x+‖ + ‖x−‖ ≤ g ‖x‖. (4.23)

Remark 4.1 A possible generalization: As in Definition 3.2 (1) we may say that CR is T -
reproducing (or T -generating) if there is g < +∞ and q ∈ N so that for every x ∈ XR and ǫ > 0
there are y

+
, y− ∈ CR (CR is convex) with

‖y
+
‖ + ‖y−‖ ≤ g ‖x‖ and ‖y

+
− y− − T qx‖ < ǫ. (4.24)

In the following, we will refer to a real proper closed convex cone as an R-cone. We assume
throughout that such a cone is non-trivial, i.e. not reduced to a point. Given an R-cone one
associates a projective (Hilbert) metric for which we here give two equivalent definitions (for
details we refer to [Bir57, Bir67]). The first, originally given by Hilbert, uses cross-ratios and
is very similar to our complex cone gauge : Let R̂ = R ∪ {∞} denote the extended real line
(topologically a circle). For x, y ∈ CR

∗ ≡ CR − {0}, we write

ℓ(x, y) =
{

t ∈ R̂ : (1 + t)x + (1 − t)y ∈ CR ∪−CR

}
(4.25)

with the convention that ∞ ∈ ℓ(x, y) iff x − y ∈ CR ∪ −CR. Properness of the cone implies that
ℓ(x, y) = R̂ iff x and y are co-linear. In that case we set their distance to zero. Otherwise,
ℓ(x, y) is a closed (generalized) segment [a, b] ⊂ R̂ containing the segment [−1; 1], see Figure 3
in section 5.

The logarithm of the cross-ratio of a,−1, 1, b ∈ R̂,

dCR
(x, y) = R(a,−1, 1, b) = log

a − 1

a + 1

b + 1

b − 1
, (4.26)

then yields the Hilbert projective distance between x and y. Birkhoff [Bir57] found an equivalent
definition of this distance : For x, y ∈ CR

∗ ≡ CR − {0}, one defines

β(x, y) = inf{λ > 0 : λx − y ∈ CR} ∈ (0,+∞] (4.27)

in terms of which :
dCR

(x, y) = log (β(x, y)β(y, x)) ∈ [0,+∞]. (4.28)

A simple geometric argument shows that indeed the two definitions are equivalent.
Given a linear functional, m ∈ X

′

R
, the image of the cone, 〈m, CR〉, equals either {0}, R+,

R− or R. One defines the dual cone as

C ′

R = {m ∈ X
′

R : m|CR
≥ 0}. (4.29)

Using Mazur’s Theorem, cf. e.g. [Lang93, p. 88], one sees that the R-cone itself may be recovered
from :

CR = {x ∈ XR : 〈m,x〉 ≥ 0, ∀m ∈ C ′

R}. (4.30)
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Given an R-cone CR we use Definition 3.1 (replacing C by R, complex by real) to define the
aperture of CR. It is given as the infimum of K-values for which there exists a linear functional
m ∈ X

′

R
satisfying (see Figure 2)

‖u‖ ≤ 〈m,u〉 ≤ K‖u‖, u ∈ CR. (4.31)
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Figure 2: A real cone CR of K-bounded sectional aperture

Lemma 4.2 The aperture, K(CR) ∈ [1,+∞], of an R-cone, CR ⊂ XR, is determined by

1

K(CR)
= inf

{ ‖x1 + · · · + xn‖
‖x1‖ + · · · + ‖xn‖

: xi ∈ C∗
R, n ≥ 1

}
. (4.32)

Proof: Let x1, . . . , xn ∈ C∗
R

and note that a =
∑n

1 xi/
∑n

1 ‖xi‖ belongs to A ≡ Conv(CR ∩
∂B(0, 1)), the convex hull of cone-elements of norm one. The reciprocal of the right hand side
in (4.32) therefore equals r = inf{‖a‖ : a ∈ A} ∈ [0, 1]. Suppose that r > 0. Then B(0, r) and
Cl A are disjoint convex subsets. The vector difference, Z = {a − b : a ∈ Cl A, b ∈ B(0, r)}, is
open, convex and does not contain the origin, whence [Lang93, Lemma 2.2, p.89] there is ℓ ∈ X ′

R

whose kernel does not intersect Z. We may normalize ℓ so that

B(0, r) ⊂ {ℓ < 1} and Cl A ⊂ {ℓ ≥ 1}.

Then

‖x‖ ≤ 〈ℓ, x〉 ≤ ‖x‖
r

, ∀x ∈ CR
∗, (4.33)

and therefore K(CR) ≤ 1
r . To get the converse inequality let m be positive and verify (4.31).

Then
∑ ‖xi‖ ≤∑〈m,xi〉 = 〈m,

∑
xi〉 ≤ K‖∑ xi‖.

Lemma 4.3 Let CR ⊂ XR be a d-dimensional R-cone of K-bounded sectional aperture. Then
CR itself is of dK-bounded aperture.
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Proof: Let F ⊂ R
d. By a theorem of Caratheodory, a point in the convex hull, ConvF , is a

fortiori in the convex hull of d + 1 points in F (see e.g. [Rud91, p.73]). If x ∈ ∂ ConvF , we may
even write it as a limit of convex combinations of d points in F . Now, apply this to the set A
in the proof of the previous Lemma. In the formula, (4.32) it thus suffices to consider d cone-
elements which we may order decreasingly according to their norm, ‖x1‖ ≥ ‖x2‖ ≥ · · · ≥ ‖xd‖.
Using Lemma 4.2 with n = 2, the K-bounded sectional aperture implies that

‖x1 + · · · + xd‖ ≥ 1

K
‖x1‖ +

1

K
‖x2 + · · · + xd‖ ≥ 1

K
‖x1‖ ≥ 1

K

‖x1‖ + · · · + ‖xd‖
d

.

Thus
‖x1 + · · · + xd‖
‖x1‖ + · · · + ‖xd‖

≥ 1

dK
,

and in view of Lemma 4.2, we see that CR is of dK bounded aperture.

Lemma 4.4 Let CR ⊂ R
d be an R-cone. Then CR is outer regular.

Proof : As in the previous Lemma it suffices to look at the supremum in (4.32) over d-tuples.
The set A ≡ {x1, . . . , xd ∈ CR : ‖x1‖+ · · ·+ ‖xd‖ = 1} is compact and ‖x1 + · · · + xd‖ is contin-
uous and non-vanishing on A, whence has a minimum, r > 0. It follows that K(CR) ≤ 1

r < +∞.

Remark 4.5 In the literature an R-cone CR is said to be norm-directed (with a constant 1 ≤
K < ∞) if ‖x − y‖ ≤ K‖x + y‖, ∀x, y ∈ CR. For an R-cone our notion of uniformly bounded
sectional aperture is equivalent (up to a small unavoidable loss in constants) to that of being
norm-directed. To see this note that if CR is of K-bounded sectional aperture and ℓ verifies
(4.33) then ∀x, y ∈ CR :

‖x − y‖ ≤ ‖x‖ + ‖y‖ ≤ 〈ℓ, x〉 + 〈ℓ, y〉 = 〈ℓ, x + y〉 ≤ K‖x + y‖,

which shows that CR is K-norm-directed. Conversely, if CR is K-norm-directed then

‖x‖ + ‖y‖ ≤ ‖x + y‖ + ‖x − y‖ ≤ (1 + K)‖x + y‖

and Lemma 4.2 shows that CR is of (K+1)-bounded sectional aperture. For example, (Rd
+, ‖·‖1) is

1-norm directed and of 1-bounded aperture, whereas (Rd
+, ‖·‖∞) is 1-norm directed, of 2-bounded

sectional aperture but only of d bounded aperture. Lemma 3.5 is a complex cone-analogue of being
norm-directed.

Theorem 4.6 Let A ∈ L(XR) and let CR ⊂ XR be a reproducing R-cone which is K-norm-
directed. Suppose that A is a strict cone-contraction, i.e. A : C∗

R
→ C∗

R
with ∆A = diamCR

A(CR
∗) <

+∞. Then A has a spectral gap. More precisely, there is λ > 0 and a one dimensional projection
P for which λ−1A − P has spectral radius not greater than tanh ∆A

4 < 1.
Proof: The statement of this Theorem is very close to Birkhoff’s Theorem 4 in [Bir57]. The

proof of that Theorem may be adapted to the present case. Alternatively, we may here simply
use Remark 5.10 below. Our Theorem 4.6 also generalizes easily to the case when ‘reproducing’
is replaced by ‘T-reproducing’, equation (4.24). We omit the proof.

Corollary 4.7 Let CR be an R-cone in R
d, d < +∞ and suppose that A ∈ L(XR) verifies

A(C∗
R
) ⊂ Int CR. Then A has a spectral gap.
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Proof: Implicitly it is assumed that CR has non-empty interior. Lemma 4.4 shows that CR is
outer regular, in particular, norm-directed. As is easily shown, the map x, y ∈ CR

∗ 7→ dCR
(x, y)

is continuous. Compactness of CR ∩ {|x| = 1} then implies that diamCR
A(CR

∗) < +∞ so the
Corollary follows from Theorem 4.6.

Let CR ⊂ XR be an R-cone. It is standard to write x � y ⇔ y−x ∈ CR for the induced partial
ordering of x, y ∈ XR. For A,B ∈ L(XR), we also write A � B ⇔ ∀x ∈ CR : A(x) � B(x).

The following dominated cone contraction theorem is trivial in the context of an R-cone
contraction. In section 6 we show that a similar (non-trivial) result holds in the complex case.

Theorem 4.8 Let A,P ∈ L(XR) be contractions of the R-cone CR. Suppose that there are
constants 0 < α ≤ β < +∞ for which αP � A � βP . Then

diamCR
A(CR

∗) ≤ 2 log
β

α
+ diamCR

P (CR
∗).

Proof: Given x, y ∈ CR
∗, suppose that λ, λ′ > 0 are such that λPx − Py ∈ CR, λ′Py − Px ∈ CR.

Then also λβAx − αAy ∈ CR and λ′βAy − αAx ∈ CR so that

dCR
(Ax,Ay) ≤ 2 log

β

α
+ log(λλ′)

and the claim follows by Birkhoff’s characterization (4.28).

Example 4.9

(1) Let A ∈ Mn(R) and suppose that 0 < α ≤ Aij ≤ β < +∞ for all indices. Setting Pij ≡ 1
we see that

P
(
(Rn

+)∗
)

= {(t, . . . , t) : t > 0}
which is of zero projective diameter in R

n
+. By Theorem 4.8 we recover the standard result :

diamRn
+
A
(
(Rn

+)∗
)
≤ ∆A = 2 log

β

α
.

The cone R
n
+ is regular so Theorem 4.6 applies. If λ1 > 0 and |λ2| denote the leading

eigenvalue and the second largest eigenvalue (in absolute value), respectively, then |λ2|
λ1

≤
tanh ∆A

4 = β−α
β+α .

(2) The standard Perron-Frobenius Theorem generalizes to integral operators, cf. Jentzsch’s
Theorem [Jen12] and the generalization given by Birkhoff in [Bir57]. We present a some-
what different generalization : Let (Ω, µ) be a measure space and let XR = Lp ≡ Lp(Ω, µ),
1 ≤ p ≤ +∞. Let h ∈ Lp

+ (h > 0, a.e.) and m ∈ Lq
+ (m > 0, a.e.) with q = p/(p − 1) ∈

[1,+∞] being the conjugated exponent so that 0 <
∫
Ω h m dµ < +∞. Let kA : Ω×Ω → R+

be a µ ⊗ µ-measurable map. We suppose there are constants 0 < α ≤ β < +∞ so that for
µ-almost all x, y ∈ Ω :

α h(x)m(y) ≤ kA(x, y) ≤ β h(x)m(y).

Let A ∈ L(XR) be the integral operator defined by Aφ(x) =
∫
Ω kA(x, y)φ(y) dµ(y). Then A

has a spectral gap (again with a contraction rate given by β−α
β+α).
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Proof: We write CR = Lp
+(Ω, µ) for the cone of positive Lp-functions (φ ≥ 0, a.e.)

and compare the operator A with the one-dimensional projection Pφ = h
∫
Ω m φdµ. Our

assumption,
∫

hm dµ > 0 shows that P : C∗
R
→ C∗

R
and that ∆P = 0. By Theorem 4.8,

diamCR
A(CR

∗) ≤ 2 log β
α .

CR is (trivially) reproducing with a constant g = 21−1/p ≤ 2. To see that CR is of uniformly
bounded sectional aperture let f, g ∈ CR be of unit norm in Lp

+, 1 ≤ p < +∞ and pick

f̃ , g̃ ∈ Lq
+(Ω) with ‖f̃‖q = ‖g̃‖q = 1 (the case p = ∞, q = 1 should be treated separately; we

leave this to the reader) and
∫

f̃ f dµ =
∫

g̃ g dµ = 1. The functional m(u) =
∫
(f̃ + g̃)u dµ

then verifies ‖u‖p ≤ m(u) ≤ 2‖u‖p for all u ∈ CR ∩ Span{f, g}. Thus CR is of 2-bounded
sectional aperture.

5 The canonical complexification of a real Birkhoff cone

A complex cone yields a genuine extension/generalization of the cone contraction described by
Birkhoff [Bir57, Bir67]. More precisely, we will show that any Birkhoff cone may be isometrically
embedded in a complex cone, enjoying qualitatively the same contraction properties.

Let XR be a Banach space over the reals. A complexification XC of XR is a complex
Banach space, equipped with a bounded anti-linear complex involution, J : XC → XC, J2 = Id
(the identity map), J(λx) = λJ(x), J(x + y) = J(x) + J(y), λ ∈ C, x, y ∈ XC, for which
XR = 1

2 (Id + J)XC is the real part. Then XC = XR ⊕ iXR is a direct sum. [Note that this is
not the same as regarding XC as a real Banach space. For example, C

n is a complexification of
R

n for any ℓp-norm, 1 ≤ p ≤ ∞, while the real dimension of C
n is 2n].

For simplicity we will assume that J is an isometry on XC in which case the canonical
projections, Re = 1

2(Id +J) and Im = 1
2i (Id −J), have norm one. We note that any real Banach

space, (XR, ‖·‖R), admits a complexification, XC = XR⊕ iXR as follows : We adopt the obvious
rules for multiplying by complex numbers, set J(x + iy) = x − iy and introduce a norm e.g.
using real functionals,

‖x + iy‖C = sup{|〈ℓ, x〉 + i〈ℓ, y〉| : ℓ ∈ X
′

R, ‖ℓ‖R ≤ 1}.

The latter norm is equivalent (within a factor of 2) to any other conjugation invariant norm on
XC having as real part the given space (XR, ‖ · ‖R). For the rest of this section XR will denote
the real part of a complex Banach space XC. A real linear functional, m ∈ X

′

R
, extends to a

complex linear functional by setting 〈m,x + iy〉 = 〈m,x〉 + i〈m, y〉 for x + iy ∈ XR ⊕ iXR.

Definition 5.1 Given an R-cone CR ⊂ XR we define its canonical complexification :

CC = {u ∈ XC : Re 〈m,u〉 〈ℓ, u〉 ≥ 0, ∀m, ℓ ∈ C ′

R}. (5.34)

Proposition 5.2 We have the following polarization identity :

C∗
C = {λ(x + iy) : λ ∈ C, x ± y ∈ C∗

R} (5.35)

Proof: Let u ∈ C∗
C
. Our defining condition (5.34) means that 〈m,u〉 (assume here it is non-zero)

must have an argument that vary within a π/2 angle as m ∈ C ′

R
varies. Normalizing appropri-

ately, we may write u = λv with λ ∈ C
∗ and Arg〈m, v〉 ≤ π/4. If we set v = x+iy with x, y ∈ XR
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then |〈m, y〉| ≤ 〈m,x〉 for all m ∈ C ′

R
. Hence, 〈m,x ± y〉 ≥ 0 for all such functionals and by

(4.30) this is equivalent to x ± y ∈ CR. If x = y (or x = −y) then we may write u = λ(1 + i) x
(or u = λ(1 − i) x) so we may always assume x ± y ∈ C∗

R
.

Lemma 5.3 Let CR be an R-cone of K-bounded aperture. Then its canonical complexification,
CC, is of 2

√
2K-bounded aperture.

Proof: Let ℓ ∈ X ′
R

satisfy ‖x‖ ≤ 〈ℓ, x〉 ≤ K‖x‖, x ∈ CR and extend ℓ to a complex lin-
ear functional. When u ∈ CC we use polarization, Lemma 5.2, to write u = λ(x + iy) with
〈ℓ, x ± y〉 ≥ 0. Then ‖x ± y‖ ≤ 〈ℓ, x〉 ± 〈ℓ, y〉 ≤ K‖x ± y‖, from which ‖x‖ ≤ 〈ℓ, x〉 and
‖y‖ ≤ 〈ℓ, x〉 so that 1

2‖x + iy‖ ≤ 〈ℓ, x〉 ≤ |〈ℓ, x〉 + i〈ℓ, y〉|. As |〈ℓ, y〉| ≤ 〈ℓ, x〉 we also have

|〈ℓ, x + iy〉| ≤
√

2 〈ℓ, x〉 ≤
√

2 K‖x‖ ≤
√

2K‖x + iy‖. Therefore, 1
2‖u‖ ≤ |〈ℓ, u〉| ≤

√
2K ‖u‖

and the result follows.

Proposition 5.4 Let CR be an R-cone. If CR is (1) inner regular / (2) reproducing / (3) outer
regular/ (4) of bounded sectional aperture then so is its canonical complexification.

Proof: (1) One checks that if CR contains an open ball BXR
(h, r) then CC contains BXC

(h, r/2).

(2) Note that when u, v ∈ CR then by Proposition 5.2,

u + iv = (1 + i)

(
1 − i

2
u +

1 + i

2
v

)
= (1 + i)

(
u + v

2
+ i

u − v

2

)
∈ CC,

because u+v
2 ± u−v

2 ∈ CR. Now, let w = u+ iv ∈ XR ⊕ iXR and use that CR is reproducing in XR

to write u = u+ − u− and v = v+ − v− with u+, u−, v+, v− ∈ CR and ‖u+‖ + ‖u−‖ ≤ g‖u‖ and
‖v+‖+‖v−‖ ≤ g‖v‖. Then w = (u++iv+)−(u−+iv−) ∈ CC+CC and ‖u++iv+‖+‖u−+iv−‖ ≤
‖u+‖ + ‖u−‖ + ‖v+‖ + ‖v−‖ ≤ g(‖u‖ + ‖v‖) ≤ 2g‖w‖.

(3) As shown in Lemma 5.3, if CR ⊂ XR is of K-bounded aperture then CC is of 2
√

2K-
bounded aperture.

(4) Let u1, u2 ∈ C∗
C

and write W = SpanC{u1, u2} ∩ CC for the subcone generated by these
two elements. We also write F = SpanR{Re u1, Im u1,Re u2, Im u2} and VR = F ∩ CR which is
an at most 4 and at least 1-dimensional R-subcone of CR. Now, if w ∈ W then w = λ′(x′ + iy′)
with x′ ± y′ ∈ CR and clearly also x′, y′ ∈ F . But then x′ ± y′ ∈ VR so that also w ∈ VC, with VC

being the complexification of VR. By Lemma 4.3, VR is of 4K bounded aperture so by Lemma
5.3, VC and therefore also W are of 8

√
2 K bounded (complex) aperture.

Theorem 5.5 Let CR be an R-cone and let CC denote its canonical complexification (5.34).
Then CC is a C-cone (Definition 2.1). Writing dCC

for our projective gauge on the complex cone,
the natural inclusion,

(C∗
R, dCR

) →֒ (C∗
C, dCC

) ,

is an isometric embedding.

Proof: The set CC is clearly C-invariant. Consider independent vectors, x, y ∈ CR
∗. By

Lemma 4.4 any finite dimensional subcone of CR is outer regular, so in particular of uniformly
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Figure 3: Illustration of two possible configurations of D(x, y)

bounded sectional aperture. Our previous Lemma shows that the corresponding complex cone
is of bounded sectional (complex) aperture. But then CC must be proper by Lemma 3.4.

Regarding the embedding we may normalize the points so that ℓ(x, y) = [a, b] is a bounded
segment in R. Define the ‘boundary’ points, x0 = (1+a)x+(1−a)y and y0 = (1+b)x+(1−b)y.
For any ǫ > 0 the point −ǫx0 + (1 + ǫ)y0 is outside the closed convex cone CR. By Mazur’s
Theorem, [Lang93, p.88], we may separate this point from CR by a functional ℓ ∈ C ′

R
. For any

ǫ > 0 we may then find m, ℓ ∈ C ′

R
for which

〈m,x0〉 = 〈ℓ, y0〉 = ǫ and 〈m, y0〉 = 〈ℓ, x0〉 = 1.

Then u = µx0 + λy0 ∈ CC only if Re (ǫµ + λ)(ǫλ + µ) ≥ 0 for any 0 < ǫ ≤ 1 whence only if

Re λ µ ≥ 0 ⇔ |λ + µ|2 ≥ |λ − µ|2.

Conversely, when Re λµ ≥ 0 and m, ℓ ∈ C ′

R
then

Re 〈m,u〉 〈ℓ, u〉 ≥ Re (λµ) ( 〈m, y0〉 〈ℓ, x0〉 + 〈m,x0〉 〈ℓ, y0〉 ) ≥ 0,

so this condition is also sufficient. We thus have : D(x0, y0) = D. Therefore D = D(x, y) ⊂ Ĉ

is a generalized disc, symmetric under complex conjugation for which ℓ(x, y) = D(x, y) ∩ R̂

(see Figure 3). In this situation we know explicit formulas for both (4.26) the real and (2.1)
the complex hyperbolic metrics in terms of cross-ratios so we get dCC

(x, y) = dDo(x,y)(−1, 1) =
log R(a,−1, 1, b) = dCR

(x, y).

Corollary 5.6 For n ≥ 1 the set

C
n
+ = {u ∈ C

n : Re uiuj ≥ 0, ∀i, j} = {u ∈ C
n : |ui + uj| ≥ |ui − uj |, ∀i, j}

is a regular C-cone. The inclusion, ((Rn
+)∗, dRn

+
) →֒ ((Cn

+)∗, dCn
+
) is an isometric embedding.

Proof: Let ℓi ∈ (Rn)′, i = 1, . . . , n denote the canonical coordinate projections then R
n
+ =

{x ∈ R
n : 〈ℓi, x〉 ≥ 0, ∀ i} and C

n
+ = {u ∈ C

n : Re 〈ℓi, u〉〈ℓj , u〉 ≥ 0, ∀ i, j}. Thus, C
n
+ is the

canonical complexification of the standard real cone R
n
+. See Figure 4 for an illustration of C

2
+.

Below we shall need the following complex polarization
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Re z1

Im (z1 + z2)

Re z2

Figure 4: An attempt to illustrate the canonical complexification C
2
+ of R

2
+ in the coordinate

system (Re z1, Re z2, Im (z1 + z2)) and setting Im (z1 − z2) = 0. We show the part of the
cone contained in the region (Re (z1 + z2))

2 + (Im (z1 + z2))
2 ≤ 1 The shaded region shows the

intersection with the real cone, R
2
+.

Lemma 5.7 Let x ± y ∈ C∗
R

be at a distance ∆ = dCR
(x − y, x + y) < +∞. We may then find

α ∈ R so that the ‘rotated’ vector x′ + iy′ = eiα(x + iy), or equivalently :

x′ = x cos α − y sin α

y′ = x sinα + y cos α

verifies:

x′ − ty′ ∈ CR, ∀ |t| ≤ coth
∆

4
.

In particular, x′ ± y′ ∈ C∗
R

and we have for all ℓ ∈ C ′

R
:

|〈ℓ, y′〉| ≤
(

tanh
∆

4

)
〈ℓ, x′〉 and

1√
2
〈ℓ, x〉 ≤ 〈ℓ, x′〉 ≤

√
2〈ℓ, x〉. (5.36)

Proof: We have that

ℓ(x − y, x + y) = {t ∈ R̂ : (1 + t)(x − y) + (1 − t)(x + y) ∈ CR ∪ −CR}
= {t ∈ R : x − ty ∈ CR ∪ −CR}.

Now write t = tan(θ), θ ∈ R and set

Θ(x, y) = {θ ∈ R : x − tan θ y ∈ CR ∪−CR}
= {θ ∈ R : cos θ x − sin θ y ∈ CR ∪ −CR}
= {θ ∈ R : Re eiθ(x + iy) ∈ CR ∪−CR} (5.37)

Let [θ1, θ2] denote the connected component of Θ(x, y) containing [−π/4;π/4]. Then −θ1, θ2 ∈
]π4 , 3π

4 [ and θ2 − θ1 < π. Inserting a = tan θ1 and b = tan θ2 in equation (4.26) (see Figure 5)
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t

θ1 < 0 θ2 > 0

x + y x − y

+1−1a=tan(θ1) b=tan(θ2)

Figure 5: The subcone CR ∩ Span{x, y} viewed in the x,y-coordinate system.

standard trigonometric formulae show that the projective distance between x−y and x+y may
be written as

d(θ1, θ2) ≡ log

(
sin θ2 + cos θ2

sin θ2 − cos θ2
× sin(−θ1) + cos(−θ1)

sin(−θ1) − cos(−θ1)

)
.

If we do a complex rotation, x′ + iy′ = eiα(x + iy) then the last expression in (5.37) shows
that Θ(x′, y′) = [θ1 − α, θ2 − α]. Here, the interval J of allowed α-values is such that Θ(x′, y′)
contains [−π/4, π/4]. One has J = ]θ1 + π

4 , θ1 + 3π
4 [ ∩ ]θ2 − 3π

4 , θ2 − π
4 [. The derivative of

α ∈ J → dCR
(x′ − y′, x′ + y′) = d(θ1 − α, θ2 − α) equals

2

cos(2(θ1 − α))
− 2

cos(2(θ2 − α))
,

which vanishes precisely at α = −(θ2 + θ1)/2. So the minimal distance between x′ − y′ and
x′ + y′ is obtained for this value of α and corresponds to a symmetric configuration in which
ℓ(x′ − y′, x′ + y′) = [−L,L] with L = tan θ2−θ1

2 > 1 and ∆ ≥ d(x′ − y′, x′ + y′) = 2 log L+1
L−1 or

equivalently,

L ≥ coth
∆

4
.

Thus x′ − ty′ ∈ CR whenever |t| ≤ L and we have obtained the first claim. Since 〈ℓ, x′ − ty′〉 ≥ 0
for all −L ≤ t ≤ L we also get the first inequality in (5.36). To see the last inequality note
that 〈ℓ, x ± y〉 ≥ 0 implies that 〈ℓ, x′〉 = cos α 〈ℓ, x〉 − sinα 〈ℓ, y〉 ≤

√
2 〈ℓ, x〉. Similarly

〈ℓ, x〉 = cos α 〈ℓ, x′〉 + sin α 〈ℓ, y′〉 ≤
√

2 〈ℓ, x′〉 (because 〈ℓ, x′ ± y′〉 ≥ 0).

Lemma 5.8 Let x1, x2 ∈ CR be at a distance ∆ = dCR
(x1, x2) < +∞. Through a positive real

rescaling, e.g. replacing x1 by tx1 for a suitable t > 0, we may assure that ∀ℓ ∈ C ′

R
:

〈ℓ, x1〉 ≤ e∆/2〈ℓ, x2〉, 〈ℓ, x2〉 ≤ e∆/2〈ℓ, x1〉 and |〈ℓ, x1 − x2〉| ≤
(

tanh
∆

4

)
〈ℓ, x1 + x2〉.

Proof: From the Birkhoff characterization (4.28) of the projective distance we may rescale,
say x1, to obtain e∆/2x1 − x2 ∈ CR and e∆/2x2 − x1 ∈ CR. Then 〈ℓ, x1〉 ≤ e∆/2〈ℓ, x2〉 and
〈ℓ, x2〉 ≤ e∆/2〈ℓ, x1〉. From this we get : (e∆/2−1)(〈ℓ, x1〉+〈ℓ, x2〉)−(e∆/2+1)(〈ℓ, x1〉−〈ℓ, x2〉) =
2(e∆/2〈ℓ, x2〉 − 〈ℓ, x1〉) ≥ 0 and similarly with x1 and x2 interchanged. Rearranging terms the
claim follows.
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Proposition 5.9 Let C1
R
⊂ CR be an inclusion of R-cones and denote by C1

C
⊂ CC the inclu-

sion of the corresponding complexified cones. Let ∆R = diamCR
(C1

R
)∗ ∈ [0,+∞] and ∆C =

diamCC
(C1

C
)∗ ∈ [0,+∞] be the projective diameters of the respective inclusions. Then ∆R is

finite iff ∆C is finite.

Proof: From the embedding in Theorem 5.5 we see that ∆R ≤ ∆C which implies one direction.
To see the converse, suppose that η = tanh ∆R/4 < 1 and let u1, u2 ∈ C1

C

∗
. We write u1 =

λ1(x̃1 + iỹ1) with x̃1 ± ỹ1 ∈ C1
R

(and similarly for u2). Possibly after applying a real rescaling of
e.g. u1 we may by Lemma 5.8 assume that :

〈ℓ, x̃1〉 ≤ e∆R/2〈ℓ, x̃2〉 and 〈ℓ, x̃2〉 ≤ e∆R/2〈ℓ, x̃1〉 (5.38)

Rotating the complex polarization of x̃1 + iỹ1 and x̃2 + iỹ2, we may by Lemma 5.7 assume
that u1 = x1 + iy1 and u2 = x2 + iy2 with

|〈ℓ, y1〉| ≤ η〈ℓ, x1〉 and |〈ℓ, y2〉| ≤ η〈ℓ, x2〉 (5.39)

for all ℓ ∈ C ′

R
. The complex rotation may, however, push x1 and x2 out of the small cone2 but

using the second inequality in (5.36) as well as (5.38) we still have the bound :

〈ℓ, x1〉 ≤ 2e∆R/2〈ℓ, x2〉 and 〈ℓ, x2〉 ≤ 2e∆R/2〈ℓ, x1〉. (5.40)

Proceeding as in the proof of Lemma 5.8 we see that

|〈ℓ, x1 − x2〉| ≤ κ〈ℓ, x1 + x2〉 with κ ≡ 2e∆R/2 − 1

2e∆R/2 + 1
< 1. (5.41)

Let us write uλ = (1+λ)u1 +(1−λ)u2, λ ∈ C and similarly for xλ and yλ. In order to prove
our claim it suffices to find a fixed open neighborhood U = U(∆R) of the segment [−1; 1] ⊂ C,
depending on ∆R but not upon u1 and u2, such that uλ ∈ CC for every λ ∈ U . Let −1 ≤ t ≤ 1.
Then |〈ℓ, yt〉| ≤ η〈ℓ, xt〉 and we get (with ℓ1, ℓ2 ∈ C ′

R
) (a) :

Re〈ℓ1, ut〉〈ℓ2, ut〉 = 〈ℓ1, xt〉〈ℓ2, xt〉 + 〈ℓ1, yt〉〈ℓ2, yt〉 ≥ (1 − η2)〈ℓ1, xt〉〈ℓ2, xt〉

as well as (b) : |〈ℓ, ut〉| ≤
√

1 + η2〈ℓ, xt〉.
We also obtain the estimates (c) : |〈ℓ, u1 − u2〉| ≤

√
η2 + κ2 〈ℓ, x1 + x2〉 and (d) : |〈ℓ, xt〉| ≥

(1 − κ|t|)〈ℓ, x1 + x2〉 ≥ (1 − κ)〈ℓ, x1 + x2〉. Let us write λ = t + z with −1 ≤ t ≤ 1 and z ∈ C.
Using the expansion 〈ℓ, uλ〉 = 〈ℓ, ut〉+z〈ℓ, u1−u2〉 and inserting the estimates (a)-(d) we obtain

Re〈ℓ1, uλ〉〈ℓ2, uλ〉

≥ (1 − η2)〈ℓ1, xt〉〈ℓ2, xt〉 −
|z|
√

η2 + κ2
√

1 + η2 (〈ℓ1, xt〉〈ℓ2, x1 + x2〉 + 〈ℓ1, x1 + x2〉〈ℓ2, xt〉)
−|z|2(η2 + κ2)〈ℓ1, x1 + x2〉〈ℓ2, x1 + x2〉

≥ 〈ℓ1, xt〉〈ℓ2, xt〉



2 −
(
√

1 + η2 + |z|
√

η2 + κ2

1 − κ

)2


 .

This remains positive when |z| ≤ r0 where r0 =
√

2−
√

1+η2√
η2+κ2

(1 − κ) > 0 depends upon ∆R only.

The set, U , of such λ = t + z-values is the r0-neighborhood, of the segment [−1; 1] ⊂ C. Since
enlarging a domain decreases hyperbolic distances, we conclude that ∆C ≤ dU (1,−1) < ∞.

2I am grateful to Löıc Dubois for having pointed this out to me
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Remark 5.10 Suppose that T is a real bounded linear operator, that CR is a reproducing K-
norm-directed cone and that TC∗

R
has finite projective diameter in CR. By Theorem 4.6 the

operator has a spectral gap. In view of Remark 4.5 and the properties of the canonical complex-
ification shown above, the same conclusion follows when considering the complexified operator
acting on the canonically complexified cone. Our complex cone contraction thus contains the real
contraction as a special case (but, of course, with a more complicated proof).

6 Dominated complex cone-contractions

A real operator P which contracts a real cone CR contracts a fortiori the corresponding complex-
ified cone CC (easy). It is then natural to ask if this complex contraction may be preserved when
adding an imaginary part to the operator. Several of our applications below are cast over this
idea and has lead us to state an abstract assumption for the action upon CR and a corresponding
complex contraction Theorem for complexified cones :

Assumption 6.1 Let P ∈ L(XR) be a contraction of an R-cone CR. Let M ∈ L(XC) be an
operator acting upon the corresponding complex Banach space. We say that M is dominated by
P with constants 0 ≤ γ < α ≤ β < +∞ provided that for all ℓ1, ℓ2 ∈ C ′

R
and x1, x2 ∈ CR :

Re〈ℓ1,Mx1〉〈ℓ2,Mx2〉 ≥ α〈ℓ1, Px1〉〈ℓ2, Px2〉 (6.42)

Re〈ℓ1,Mx1〉〈ℓ2,Mx2〉 ≤ β〈ℓ1, Px1〉〈ℓ2, Px2〉 (6.43)

|Im〈ℓ1,Mx1〉〈ℓ2,Mx2〉| ≤ γ〈ℓ1, Px1〉〈ℓ2, Px2〉 (6.44)

Remark 6.2 The above conditions are R+-invariant and also stable when taking convex com-
binations. It thus suffices to verify that these conditions hold for subsets, V ⊂ CR and W ⊂ C ′

R

which are generating for the cone and the dual cone, respectively, i.e. for which :

CR = Cl Conv(R+ × V ) = {x ∈ XR : 〈ℓ, x〉 ≥ 0, ∀ ℓ ∈ W} .

When γ = 0 an operator M verifying the above assumption is essentially real. Possibly after
multiplication with a complex phase the operator maps CR into CR itself. The above condition
then reduces to the real cone-dominated condition of Theorem 4.8. Our goal is here to show that
the conclusion of that Theorem also applies when M is allowed to have a non-trivial imaginary
part. It turns out that the allowed ‘amount’ of imaginary part depends on the rate of contraction
of P .

Theorem 6.3 Let CR ⊂ XR be a proper convex cone and let P : C∗
R

→ C∗
R

be a strict cone-
contraction, i.e. ∆P = diamCR

P (C∗
R
) < +∞. Write CC for the canonical complexification of CR.

Suppose that M ∈ L(XC) is P -dominated (Assumption 6.1) with constants that satisfy :

γ cosh
∆P

2
< α. (6.45)

Then M : C∗
C
→ C∗

C
and diamCC

M(C∗
C
) < +∞. If, in addition, CR is reproducing and of uniformly

bounded sectional aperture then M has a spectral gap.
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Proof: Let u ∈ C∗
C

and ℓ1, ℓ2 ∈ C ′

R
. We write η = tanh ∆P

4 < +∞. The first step is to establish
the following inequality (which, in particular, implies that M : C∗

C
→ C∗

C
) :

Re〈ℓ1,Mu〉〈ℓ2,Mu〉 ≥
(

α

cosh(∆P /2)
− γ

)
|〈ℓ1, Pu〉||〈ℓ2, Pu〉|. (6.46)

We will use polarization twice to achieve this. First, write u = eiθ(x + iy) with θ ∈ R and
x ± y ∈ C∗

R
. Then

〈ℓ1,Mu〉〈ℓ2,Mu〉
= 〈ℓ1,M(x+iy)〉〈ℓ2,M(x−iy)〉 =

=
[
〈ℓ1,Mx〉〈ℓ2,Mx〉 + 〈ℓ1,My〉〈ℓ2,My〉

]
+ i
[
〈ℓ1,My〉〈ℓ2,Mx〉 − 〈ℓ1,Mx〉〈ℓ2,My〉

]

=
1

2

[
〈ℓ1,M(x+y)〉〈ℓ2,M(x+y)〉+〈ℓ1,M(x−y)〉〈ℓ2,M (x−y)〉

]
+

i

2

[
〈ℓ1,M(x+y)〉〈ℓ2,M(x−y)〉−〈ℓ1,M(x−y)〉〈ℓ2,M (x+y)〉

]

≡ 1

2
[A] +

i

2
[B].

Since x ± y ∈ CR we may use inequality (6.42) of our assumption to deduce :

Re A ≥ α 〈ℓ1, P (x + y)〉〈ℓ2, P (x + y)〉 + α 〈ℓ1, P (x − y)〉〈ℓ2, P (x − y)〉
= 2α 〈ℓ1, Px〉〈ℓ2, Px〉 + α〈ℓ1, Py〉〈ℓ2, Py〉
= 2α Re 〈ℓ1, P (x + iy)〉〈ℓ2, P (x − iy)〉
= 2α Re 〈ℓ1, Pu〉〈ℓ2, Pu〉.

For the second term we have by (6.44)

| Im B| ≤ γ 〈ℓ1, P (x + y)〉〈ℓ2, P (x − y)〉 + γ 〈ℓ1, P (x − y)〉〈ℓ2, P (x + y)〉
= 2γ (〈ℓ1, Px〉〈ℓ2, Px〉 − 〈ℓ1, Py〉〈ℓ2, Py〉)
≤ 2γ |〈ℓ1, P (x + iy)〉| |〈ℓ2, P (x − iy)〉|
= 2γ |〈ℓ1, Pu〉| |〈ℓ2, Pu〉|,

where for the last inequality we used Schwarz’ inequality. From these two estimates we get :

Re〈ℓ1,Mu〉〈ℓ2,Mu〉 ≥ α Re〈ℓ1, Pu〉〈ℓ2, Pu〉 − γ |〈ℓ1, Pu〉| |〈ℓ2, Pu〉|. (6.47)

We note that (6.47) is here independent of the choice of polarization. Since x±y ∈ C∗
R

we see
that the elements P (x + y) ∈ C∗

R
and P (x − y) ∈ C∗

R
are at a projective distance not exceeding

∆P . We may then use Lemma 5.7 to rotate the polarization again and write Pu = eiα(x′ + iy′)
where |〈ℓ, y′〉| ≤ η〈ℓ, x′〉 for all ℓ ∈ C ′

R
. But then

Re〈ℓ1, Pu〉〈ℓ2, Pu〉 ≥ 〈ℓ1, x
′〉〈ℓ2, x

′〉 + 〈ℓ1, y
′〉〈ℓ2, y

′〉 ≥ (1 − η2)〈ℓ1, x
′〉〈ℓ2, x

′〉.

We also obtain |〈ℓ, Pu〉| =
√

〈ℓ, x′〉2 + 〈ℓ, y′〉2 ≤
√

1 + η2 〈ℓ, x′〉 so that

Re〈ℓ1, Pu〉〈ℓ2, Pu〉 ≥ 1 − η2

1 + η2
|〈ℓ1, Pu〉| |〈ℓ2, Pu〉| =

(
cosh

∆P

2

)−1

|〈ℓ1, Pu〉| |〈ℓ2, Pu〉|.

Together with (6.47) this establishes (6.46).

21



In order to obtain an estimate for diamCC
M(C∗

C
) we also need the following inequality :

|〈ℓ,Mu〉| ≤
√

β + γ |〈ℓ, Pu〉|, ∀ℓ ∈ C ′

R, u ∈ CC. (6.48)

This follows by setting ℓ1 = ℓ2 = ℓ in the expression for A and B above and using the upper
bounds (6.43) and (6.44) of our Assumption :

A ≤ β(〈ℓ, P (x + y)〉2 + 〈ℓ, P (x − y)〉2) = 2β(〈ℓ, Px〉2 + 〈ℓ, Py〉2) = 2β |〈ℓ, Pu〉|2

and the bound |B| = |ImB| ≤ 2γ |〈ℓ, Pu〉|2 as before.

Consider u1, u2 ∈ C∗
C
. Using the polarization identity, Proposition 5.35, we may assume that

u1 = x1 + iy1 with x1 ± y1 ∈ C∗
R

so that |〈ℓ, Py1| ≤ 〈ℓ, Px1〉. Then also 〈ℓ, Px1〉 ≤ |〈ℓ, Pu1〉| ≤√
2〈ℓ, Px1〉 and with the same bounds for u2 = x2+iy2. Through a real rescaling, Lemma 5.8, we

may also assume that |〈ℓ, P (x1−x2)〉| ≤ η〈ℓ, P (x1+x2)〉. We also write uλ = (1+λ)u1+(1−λ)u2

with λ = t+z, −1 ≤ t ≤ 1 (and similarly for xλ and yλ). By the choice of polarization xt±yt ∈ CR

so that ut ∈ CC, i.e. belongs to the complex cone for all −1 ≤ t ≤ 1. We want to show that
when |z| is small enough the same is true for Mut+z.

First note that 〈ℓ, Pxt〉 ≥ (1−η|t|) 〈ℓ, P (x1 +x2)〉. Applying the inequality (6.48) we deduce
that |〈ℓ,Mut〉| ≤

√
2 (β + γ) 〈ℓ, Pxt〉 and |〈ℓ,M(u1 − u2)〉| ≤

√
2 (β + γ)〈ℓ, P (x1 + x2)〉 ≤

√
2 (β + γ)

〈ℓ, Pxt〉
1 − η|t| . Using (6.46) on ut and the expansion 〈ℓ,Mut+z〉 = 〈ℓ,Mut〉+z〈ℓ,M(u1 −

u2)〉, we obtain the inequality

Re 〈ℓ1,Mut+z〉 〈ℓ2,Mut+z〉 (6.49)

≥ Re 〈ℓ1,Mut〉 〈ℓ2,Mut〉
−|z|

(
|〈ℓ1,Mut〉| |〈ℓ2,M(u1 − u2)〉| + |〈ℓ2,Mut〉| |〈ℓ1,M(u1 − u2)〉|

)

−|z|2 |〈ℓ1,M(u1 − u2)〉| |〈ℓ1,M(u1 − u2)〉|

≥ 〈ℓ1, Pxt〉 〈ℓ2Pxt〉 ×
(

α

cosh(∆P /2)
− γ + 2(β + γ) − 2(β + γ)

(
1 +

|z|
1 − η|t|

)2
)

.

When condition (6.45) is satisfied, the set of t + z values, −1 ≤ t ≤ 1 for which the quantity
(6.50) is non-negative contains an open neighborhood,

U = U(
β

α
,
γ

α
,∆P ) (6.50)

of the segment [−1; 1] ⊂ C. It follows that diamCC
M(C∗

C) ≤ dU (−1, 1) < +∞.
When CR is reproducing and of uniformly bounded sectional aperture then so is CC by Propo-

sition 5.4. Thus, the conclusion follows from our spectral gap theorem, Theorem 3.7.

7 Applications

The most striking application is also the simplest. A complex Perron-Frobenius Theorem (see
also Appendix 11) :

Theorem 7.1 Let A ∈ Mn(C) and suppose there is 0 < c < +∞ for which |Im AijAmn| < c ≤
ReAijAmn for all indices. Then A has a spectral gap.
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Proof : The cone CR = R
n
+ is regular in R

n. By Corollary 5.6, CC = C
n
+ is regular in R

n. We will
compare M with the constant matrix Pij ≡ 1 with respect to the real cone R

n
+. As in Example

4.9(1), ∆P = 0. The canonical basis and its dual generates the cone and its dual, respectively, cf.
remark 6.2. The constants from Assumption 6.1 then become (sups and infs over all indices) (a)
α = α(A) = inf ReAijAkl, (b) β = β(A) = sup ReAijAkl and (c) γ = γ(A) = sup |ImAijAkl|.
Our spectral gap condition of Theorem 6.3 simply reads γ < α and by finiteness of n this is
equivalent to the stated assumptions on A. We also note that the ‘contraction constant’ for
the spectral gap, η = η(β/α, γ/α) < 1 from Lemma 2.4, cf. equations (6.50) and (6.50), only
depends on the ratios β/α ≥ 1 and γ/α < 1.

In the following, denote by osc(h) = ess sup(h) − ess inf(h) the essential oscillation of a real
valued function h on a measured space. Theorem 7.1 may (almost) be viewed as a special case
of the following complex version of a result of Jentzsch [Jen12] :

Theorem 7.2 Let (Ω, µ) be a measure space and let X = Lp(Ω, µ), with 1 ≤ p ≤ +∞. Let
h ∈ Lp, h > 0 a.e. and m ∈ Lq, m > 0 a.e. with 1

p + 1
q = 1 so that 0 <

∫
hm dµ < +∞, cf.

Example 4.9(2). Given g ∈ L∞(Ω × Ω) we define the integral operator, Mg ∈ L(X) :

Mgφ(x) = h(x)

∫

Ω
eg(x,y)φ(y)m(y)µ(dy). (7.51)

Set θ = osc(Im g) and Λ = osc(Re g). Suppose that θ < π/4 and that tan θ < exp(−2Λ). Then
Mg has a spectral gap.

Proof: As in Example 4.9(2) we consider the R-cone CR = {φ ∈ XR : φ ≥ 0 (a.e.)} and
we compare with Pφ = h

∫
Ω φm dµ. We have that P : C∗

R
→ C∗

R
and ∆P = 0. We obtain the

following estimate for the constants

Re eg(x,y)+g(x′,y′) ≥ α ≡ e2ess inf Re g cos θ and Im eg(x,y)+g(x′,y′) ≤ γ ≡ e2ess sup Re g sin θ.

The cone CR is reproducing. As shown in Example 4.9 (2) the real cone has uniformly bounded
sectional aperture. The spectral gap condition of Theorem 6.3 then translates into the stated
condition on θ and Λ.

8 A complex Krĕın-Rutman Theorem

Let X be a complex Banach space. We denote by Gr2(X) denote the set of complex planes in
X, i.e. subsets of the form Cx + Cy with x and y independent vectors in X. If we write S(X)
for the unit sphere in X then

d2(F,F ′) = distH
(
F ∩ S(X), F ′ ∩ S(X)

)
, F, F ′ ∈ Gr2(X)

defines a metric on Gr2(X). In the following let us fix a norm on C
n. The choice may affect the

constants below but is otherwise immaterial. The space (Gr2(C
n), d2) is then a compact metric

space.

Lemma 8.1 Let V ⊂ X be a C-cone and let F ∈ Gr2(X). Suppose there is u ∈ F , r > 0 such

that B(u, r) ∩ V = ∅. Then VF = F ∩ V has at most 1 + ‖u‖
r bounded aperture.
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Proof: Let m ∈ (F )′ be a linear functional with u ∈ ker m and ‖m‖ = 1. Choose x ∈ F for

which |〈m,x〉| = ‖x‖. If ax + bu ∈ VF then u + a
b x /∈ B(u, r) so that |b| ≤ |a|

r ‖x‖ and therefore,

‖ax + bu‖ ≤ |a| ‖x‖
(

1 +
‖u‖
r

)
= |〈m,ax + bu〉|

(
1 +

‖u‖
r

)
.

The 2-dimensional space F is spanned by u and x so K(VF ) ≤ 1 +
‖u‖
r

.

Lemma 8.2 Let V ⊂ C
n be a C-cone. Then there is K < ∞ so that V is of K-bounded sectional

aperture.

Proof: Suppose that this is not the case. Then we may find a sequence Fn of planes for which
the aperture K(V ∩ Fn) diverges. Taking a subsequence we may assume that Fn converges in
Gr2(X) to a plane F . As V is proper, V ∩ F is a strict subset of F . Thus there is u ∈ F − V .
But V is closed in C

n so there is r > 0 so that B(u, r) is disjoint from V as well. Given another
complex plane, F ′, we may find u′ ∈ F ′ for which ‖u− u′‖ ≤ ‖u‖d2(F,F ′). When F and F ′ are
close enough, r′ = r − ‖u‖d2(F,F ′) > 0 and B(u′, r′) is also disjoint from V . By our previous
Lemma, V ∩ F ′ is of aperture not exceeding 1 + ‖u‖/(r − ‖u‖d2(F,F ′)). But this contradicts
the divergence of K(V ∩ Fn) as Fn → F .

Lemma 8.3 Let V ⊂ C
n be a C-cone and let W ⊂ V be a closed complex subcone with W ∗ ⊂

Int V . Then there is ∆ = ∆(W,V ) < +∞ such that for x, y ∈ W ∗ :

dW (x, y) < +∞ ⇒ dV (x, y) ≤ ∆.

Proof: We denote by π : C
n − {0} → CPn−1 the canonical projection to complex projective

space. We consider CPn−1 as a metric space with the metric dCP n−1 as in equation (A.82).
The projected image, π(W ∗), is compact in the open set π(Int V ∗) ⊂ CPn−1 so there is ǫ =
ǫ(W,V ) > 0 for which the ǫ-neighborhood of π(W ∗) is contained in π(V ∗).

Let x, y ∈ W ∗ be linearly independent and suppose that dW (x, y) < +∞. Let F ∈ Gr2(C
n)

be the complex plane containing x and y. Denote by C the connected set in π(F ∗) containing
x and y. Let ξi ∈ C, i ∈ J be an ǫ/3-maximally separated set in C. Thus, the balls B(ξi,

ǫ
6 ),

i ∈ J are all disjoint and
⋃

i∈J B(ξi,
ǫ
3) = CPn−1. The cardinality of J is bounded by a constant

depending on ǫ only. Then B(ξi,
2ǫ
3 ) ⊂ π(V ∗), i ∈ J so by Lemma A.1(2) each B(xi,

ǫ
3), i ∈ J

is of radius not greater than log 1+1/2
1−1/2 = log 3 for the dV -metric. Also ∪i∈JB(ξ, ǫ

3) contains C

which is connected. It follows that dV (x, y) does not exceed 2 log 3 Card(J). which is bounded
by a constant depending on ǫ only.

Theorem 8.4 Let V ⊂ C
n be a closed subset which is C-invariant and contains no complex

planes (in terms of Definition 2.1, V is a C-cone). Suppose that A : C
n → C

n is a linear map
for which A(V ∗) ⊂ Int V . Then A has a spectral gap.

Proof : We write W = A(V ) for the image of V and use the notation and constants from the
two previous Lemmas. First note that for x, y ∈ V ,

dV (x, y) < ∞ ⇒ dV (Ax,Ay) ≤ η dV (x, y) and dV (Ax,Ay) ≤ ∆.
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To see this note that when dV (x, y) < ∞ then dV (Ax,Ay) < ∞ so by Lemma 8.3, dV (Ax,Ay) ≤
∆. If C∗ denotes the connected component of F ∩V ∗ containing x and y then also diamV A(C∗) ≤
∆. By Lemma 2.4, dV (Ax,Ay) ≤ η dC(x, y) ≤ ηdV (x, y). Iterating this argument we see that
diamV An(C∗) ≤ ∆ηn−1, n ≥ 1. By Lemma 8.2, V is of K-bounded sectional aperture, so Lemma
A.1(1) assures that diamCP n−1An(C∗) ≤ 2K∆ηn−1. Fix n1 < +∞ so that 2K∆ηn1−1 ≤ ǫ/3.

Now let ξi, i ∈ J be an ǫ/3-maximally separated set in W . Setting Vi = π−1B(ξi, ǫ) with
i ∈ J we see that diamCP n−1AnV ∗

i ≤ ǫ/3, n ≥ n1. It follows that there is a map, τ : J → J
so that AnV ∗

i ⊂ Wτ(i) ≡ π−1B(ξτ(i), 2ǫ/3), n ≥ n1. Since J is of finite cardinality, τ must
have a cycle. Thus, there are i1 ∈ J and n1 < +∞ for which An1(Vi1) ⊂ Wi1 . The cone Wi1

is regular (easy) and of bounded diameter in Vi1 so An1 has a spectral gap and therefore also A.

When the operator is sufficiently regular one may weaken the assumptions on the contraction
and the outer regularity of the cone. This is illustrated by the following complex version of a
theorem of Krĕın and Rutman [KR50, Theorem 6.3] :

Theorem 8.5 Let C ⊂ XC be an inner regular C-cone in the Banach space XC. Let A ∈ L(XC)
be a quasi-compact operator or a compact operator of strictly positive spectral radius and suppose
that A C∗ ⊂ Int C. Then A has a spectral gap.

Proof : Let P be the spectral projection associated with eigenvalues on the spectral radius
circle, {λ ∈ C : |λ| = rsp(A)}. By hypothesis imP is finite dimensional and we may find θ ∈ R

such that
rsp(A(1 − P )) < θ < rsp(A).

We claim that C∗ ∩ imP is non-empty : Let x ∈ C∗ and define en = Anx/‖Anx‖ ∈ C∗, n ∈ N.
Suppose first that Px 6= 0. Then limn→∞ ‖An(1 − P )x‖/‖AnPx‖ = 0 so that the distance

between en and imP tends to zero. Since im P is locally compact and en is bounded we may
extract a convergent subsequence e∗ = lim enk

∈ imP ∩ C∗. Suppose instead that Px = 0 then
Ax ∈ Int C so there is r > 0 for which B(Ax, r) ∈ C. We may then replace x by Ax + u where
u ∈ imP , ‖u‖ < r and we are back in the first case. Thus C∗

P = C∗ ∩ imP 6= ∅. Now,

A : C∗
P → (A C∗) ∩ imP ⊂ Int C ∩ imP = Int CP ,

the latter for the topology in imP . In particular, Int CP is non-empty so CP is an inner regular
C-cone in a finite dimensional space and A : C∗

P → Int CP . We may then apply the finite dimen-
sional contraction theorem, Theorem 8.4, to AP = A|imP ∈ L(imP ). It follows that AP , whence
also our original operator A has a spectral gap.

Remark 8.6 In the real cone version (replacing C by R) of theorem 8.5 it is not necessary to
assume that the spectral radius of A is strictly positive. This forms part of the conclusion. To
see this pick x ∈ C∗ of norm one. Then Ax ∈ Int C so there is λ > 0 for which B(Ax, λ) ⊂ C.
Therefore, Ax − λx ∈ C and then also B(A2x, λ2) = A(Ax − λx) + λB(Ax, λ) ⊂ C by the
properties of an R-cone. More generally, B(Anx, λn) ⊂ C. As 0 ∈ ∂C it follows that

rsp(A) ≥ lim sup n
√

|Anx| ≥ λ > 0.

The fact that this conclusion is non-trivial is illustrated e.g. by the operator, Aφ(t) =
∫ s
0 φ(s) ds,

0 ≤ t ≤ 1, which is compact when acting upon φ ∈ X = C0([0, 1]). It contracts (but not strictly)
the cone of positive elements but has spectral radius zero.

In the complex setup, if one assumes that C is of K-bounded sectional aperture then strict
positivity of rsp(A) also comes for free : Suppose that x ∈ C, |x| = 1 and B(Ax, r) ⊂ C, r > 0.
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Then Ax + λx ∈ C∗, ∀|λ| < r and also An+1x + λAnx ∈ C∗ for such λ-values. By Lemma 3.5.
we see that |An+1x| ≥ r

K |Anx| > 0 from which rsp(A) ≥ r
K > 0.

9 A complex Ruelle-Perron-Frobenius Theorem

The Ruelle-Perron-Frobenius Theorem, [Rue68, Rue69, Rue78] (see also [Bow75]), ensures a
spectral gap for certain classes of real, positive operators with applications in statistical me-
chanics and dynamical systems. Ferrero and Schmitt [FS79, FS88] used Birkhoff’s Theorem
on cone contraction to give a conceptually new proof of the Ruelle-Perron-Frobenius Theorem.
See also [Liv95] and [Bal00] for further applications in dynamical systems. We present here a
generalization to a complex setup.

Let (Ω, d) be a metric space of finite diameter, D < +∞. We write C0(Ω) for the Banach
space of (real- or complex-valued) continuous functions on Ω under the supremum norm, | · |0.
When φ : Ω → R (or C) we write Lip(φ) = supx 6=y |φx − φy|/d(x, y) ∈ [0,+∞] for the associated
Lipschitz constant. Then XR = {φ : Ω → R | ‖φ‖ ≡ |φ|0 + Lip(φ) < +∞} (and similarly for
XC) is a Banach algebra.

Let U ⊂ Ω and let f : U → Ω be an unramified covering map of Ω which is uniformly
expanding. For simplicity, we will take it to be of finite degree (it is an instructive exer-
cise to extend Theorem 9.1 below to maps of countable degree). More precisely, we assume
that there is 0 < ρ < 1 and a finite index set J so that for every couple y, y′ ∈ Ω we
have a pairing P(y, y′) = {(xj , x

′
j) : j ∈ J} of the pre-images, f−1(y) = {xj}j∈J ⊂ U and

f−1(y′) = {x′
j}j∈J ⊂ U , for which d(xj , x

′
j) ≤ ρ d(y, y′), j ∈ J .

Fix an element g ∈ XC and define for φ ∈ C0(Ω) (or φ ∈ XC) :

Mgφ(y) =
∑

x:f(x)=y

eg(x)φ(x), y ∈ Ω.

The norm of Mg when acting upon C0(Ω) (in the uniform norm) is given by

|||Mg|||0 = sup
y∈Ω

∑

x:f(x)=y

eReg(x),

and a straight-forward calculation shows that Mg ∈ L(XC) with ‖M‖ ≤ |||M |||0(1 + ρ Lip g).

Theorem 9.1 Denote a = Lip Re g, b = Lip Im g and θ = osc Im g. Suppose that

(
θ +

2 ρ2 D b

1 − ρ + ρ2 D a

)
exp

(
1 + ρ

1 + ρ

1 − ρ
D a

)
4

1 − ρ
< 1.

Then Mg ∈ L(XC) has a spectral gap.

Proof : We will compare Mg with the real operator P = MRe g. For σ > 0 the set,

Cσ,R = {φ : Ω → R+ | 〈ℓy,y′ , φ〉 ≡ φ(y) − e−σd(y,y′)φ(y′) ≥ 0, ∀y, y′ ∈ Ω}, (9.52)

defines a proper convex cone in XR which in addition is regular. Inner regularity : Let 1(x) ≡ 1,
x ∈ Ω and h ∈ XR. Then 1+ h ∈ Cσ,R provided Lip h/(1− |h|0) ≤ σ. Whence B(1,min(σ, 1)) ⊂
Cσ,R. Outer regularity : Pick x0 ∈ Ω and set ℓ0(φ) = φ(x0). For φ ∈ Cσ,R we have Lip φ ≤ σ|φ|0
so that ‖φ‖ ≤ (1 + σ)|φ|0 ≤ (1 + σ)eσDℓ0(φ), and this shows outer regularity.

26



Let 0 < σ′ < σ and φ1, φ2 ∈ C∗
σ′,R. As in (4.27) let βσ(φ1, φ2) = inf{λ > 0 : λφ1 −φ2 ∈ Cσ,R}.

A calculation using the defining properties of the cone-family yields :

βσ(φ1, φ2) ≤ sup
d>0

1 − exp(−(σ + σ′)d)

1 − exp(−(σ − σ′)d)
sup
y∈Ω

φ2(y)

φ1(y)
≤ σ + σ′

σ − σ′ sup
y∈Ω

φ2(y)

φ1(y)
,

and we get the following bound for the diameter ∆R = diamCσ,R
C∗

σ′,R, cf. (4.28) :

∆R ≤ 2 log
σ + σ′

σ − σ′ + sup
y,y′∈Ω

log
φ2(y)

φ1(y)

φ1(y
′)

φ2(y′)
≤ 2 log

σ + σ′

σ − σ′ + 2 D σ′ < +∞.

The injection Cσ′,R →֒ Cσ,R is thus a uniform contraction for the respective projective metrics.
Given φ ∈ Cσ,R and using the pairing P(y, y′) we get for the operator P = MReg :

Pφ(y) =
∑

x:f(x)=y

eRe g(x)φ(x) ≥
∑

x′:f(x′)=y′

eRe g(x′)−(a+σ)d(x,x′)φ(x′) ≥ e−ρ(a+σ)d(y,y′)Pφ(y′).

This implies that P : Cσ,R → Cσ′,R with σ′ = ρ(a + σ). If we choose σ > aρ/(1 − ρ) then P
becomes a strict cone contraction of the regular cone Cσ,R. We also get the estimate (to obtain
an a priori estimate for the contraction one may here try to optimize for the value of σ) :

∆P

2
≤ log

σ + ρ(σ + a)

σ − ρ(σ + a)
+ D ρ (σ + a). (9.53)

By Theorem 4.6, P ∈ L(XR) has a spectral gap (see [Rue68, FS79] and also [Liv95]).

Returning to the complex operator, Mg, let us fix y, y′ ∈ Ω and the corresponding pairing
of pre-images P(y, y′) as described above. Let φ ∈ C∗

σ′,R and write 〈ℓy,y′ ,Mgφ〉 =
∑

j〈µj(g), φ〉
with

〈µj(g), φ〉 ≡ eg(xj)φ(xj) − e−σd(y,y′)+g(x′
j)φ(x′

j), j ∈ J.

In order to compare with the real operator, we define complex numbers wj, j ∈ J , through the
relation

〈µj(g), φ〉 = ei Im g(xj) wj 〈µj(Re g), φ〉.
Equivalently (when the denominator is non-zero) :

ei Im g(xj) wj =
eg(xj)φ(xj) − e−σd(y,y′)+g(x′

j)φ(x′
j)

eRe g(xj)φ(xj) − e−σd(y,y′)+Re g(x′
j)φ(x′

j)
.

We may apply Lemma 9.3 below with the bounds Re(z1 − z2) ≥ (σ − ρ(σ + a)) d(y, y′) and
|Im(z1 − z2)| ≤ ρb d(y, y′) to deduce that

|Arg wj | ≤ s0 ≡ ρb

σ − ρ(σ + a)
. and 1 ≤ |wj |2 ≤ 1 + s2

0. (9.54)

Given i, j ∈ J and φ1, φ2 ∈ C∗
σ′,R we obtain :

〈µj(g), φ1〉〈µi(g), φ2〉 =
(
ei(Im g(xj)−Im g(xi))wjwi

)
〈µj(Re g), φ〉 〈µi(Re g), φ〉.

The two last factors are real and non-negative (because σ − ρ(σ + a) > 0) and the complex
pre-factor belongs to the set

A = {reiu : 1 ≤ r ≤ 1 + s2
0, |u| ≤ θ + 2s0}.
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Summing over all indices we therefore obtain

〈ℓy,y′ ,Mgφ1〉〈ℓw,w′ ,Mgφ2〉 = Z〈ℓy,y′ , Pφ1〉〈ℓw,w′ , Pφ2〉,
in which Z is an average of numbers in A whence belongs to Conv(A), the convex hull of A.

When θ + 2s0 < π/4 we conclude that the bounds in Assumption 6.1 are verified for the
constants α = cos(θ + 2s0), γ = (1 + s2

0) sin(θ + 2s0) and β = 1 + s2
0. The spectral gap condition

in Theorem 6.3 then reads as follows :

(1 + s2
0) tan(θ + 2s0) cosh

∆P

2
< 1. (9.55)

Now, in order to get a more tractable and explicit formula we make the following (not
optimal) choice for σ :

σ =
2aρ

1 − ρ
+

1

ρD
.

Then σ′ = ρ(a + σ) ≤ 1+ρ
2 σ so that (σ + ρ(a + σ))/(σ − ρ(a + σ)) ≤ (3 + ρ)/(1 − ρ). Using

(9.53) we obtain

cosh
∆P

2
≤ e∆P /2 =

3 + ρ

1 − ρ
exp

(
1 + 2aDρ

1 + ρ

1 − ρ

)
.

One also checks that (θ + 2s0)
4

1−ρ < 1 implies that (1 + s2
0) tan(θ + 2s0)

3+ρ
1−ρ < 1 so we

may replace (9.55) by the stronger condition

(θ + 2 s0) exp

(
1 + ρ

1 + ρ

1 − ρ
D a

)
4

1 − ρ
< 1.

Finally inserting s0 = ρ2 D b/(1−ρ+ρ2 D a) we obtain the claimed condition which thus suffices
to ensure a spectral gap.

Remark 9.2 In the literature, one often includes a statement on Gibbs measures as well. If we
let λh ⊗ µ denote the leading spectral projection of P = MRe g, then positivity of P implies that
the ‘state’ φ ∈ XR 7→ ν(φ) = µ(φh) is uniformly bounded with respect to |φ|0. By continuity,
ν extends to a linear functional on C0(Ω). If, in addition, we assume Ω compact, then by
Riesz, this functional defines a Borel probability measure dν on Ω. The measure is invariant
and strongly mixing for f . It is known as a Gibbs measure for f and the weight g. This part
of the theorem, however, needs the partial ordering induced by the cone of positive continuous
functions and does not extend to a complex setup (in general, it is even false there).

In the proof we made use of the following complex estimate :

Lemma 9.3 Let z1, z2 ∈ C be such that Re z1 > Re z2 and define w ∈ C through

ei Im z1w ≡ ez1 − ez2

eRe z1 − eRe z2
.

Then

|Arg w| ≤ |Im (z1 − z2)|
Re (z1 − z2)

and 1 ≤ |w2| ≤ 1 +

(
Im (z1 − z2)

Re (z1 − z2)

)2

.

Proof: Writing t = Re (z1 − z2) > 0 and s = Im (z1 − z2) we have :

w =
1 − e−t−is

1 − e−t
.

Taking real and imaginary parts, Re w = 1−e−t cos s
1−e−t and Im w = e−t sin s

1−e−t , we get |w|2 =

1+ sin2(s/2)

sinh2(t/2)
≤ 1+(s

t )
2. Also | ∂

∂s log w| = | 1
w

∂w
∂s | = e−t

|1−e−t−is| ≤ e−t

1−e−t ≤ 1
t so that |Arg w| ≤ |s|

t .
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10 Random products of cone contractions

A conceptual difference between standard perturbation theory and cone contractions is the be-
havior under compositions. Composing a sequence of operators that uniformly contracts the
same cone, one obtains again a contraction, and even with a sub-multiplicative bound for the
contraction rate. This is extremely useful when studying time-dependent and/or random prod-
ucts of such operators as it allows for the use of an implicit function theorem. In [Rue79],
Ruelle showed the real-analytic behavior of the characteristic exponent of a product of random
positive matrices. He did not use Birkhoff’s cone contractions (which would have simplified
some estimates and avoided some unnecessary assumptions) but the central part of his proof
may still be viewed as a an argument based upon real ‘cone-contractions’. We will here show
how results similar to [Rue79] hold for complex cone-contractions. The resulting theorems and
examples of this section may not deduced from neither real cone contractions, nor standard
analytic perturbation theory.

In the following we will assume that the C-cone C is regular (Definition 3.2). This is conve-
nient (if not necessary). In particular, for ρ > 0 sufficiently small the (closed) subcone

C(ρ) ≡ {φ ∈ C : B(φ, ρ ‖φ‖) ⊂ C} (10.56)

is non-trivial (not reduced to {0}). We fix such a value of ρ > 0 in the following. Also let
∆ < +∞ be arbitrary but fixed. We write η = η(∆) < 1 for the contraction constant from
Lemma 2.4.

Definition 10.1 Let M = M(∆, ρ) ⊂ L(X) be the (non-empty) family of cone contractions :
M ∈ L(X), M : C∗ → C∗ subject to the following uniform bounds : diamCM(C∗) ≤ ∆ and
M(C) ⊂ C(ρ).

Let (Ω, µ) be a probability-space and τ : Ω → Ω a µ-ergodic transformation. We denote
by E an average taken with respect to µ. When A is a subset of some Banach space Y we
write E(Ω, A) for the set of Bochner-measurable maps from Ω into A (the image of a set of
full measure has a countable dense subset). We write B(Ω, Y ) ⊂ E(Ω, Y ) for the Banach space
of (µ-essentially) bounded measurable maps equipped with the (µ-essential) uniform norm of

Y . For M ∈ E(Ω,M) we write M
(n)
ω = Mω · · ·Mτn−1ω for the product of operators along the

τ -orbit of ω ∈ Ω. It is again an element of E(Ω,M). Our goal here is to show the following :

Theorem 10.2 Let t ∈ D 7→ M(t) ∈ E(Ω,M) be a map for which

1. (t, ω) ∈ D × Ω 7→ M ω(t) ∈ L(X) is measurable and ∀ω ∈ Ω : t 7→ Mω(t) is analytic.

2. sup

{∥∥∥∥
d

dt
M ω(t)

∥∥∥∥ / ‖M ω(t)‖ : ω ∈ Ω, t ∈ D

}
< +∞.

3. E

( ∣∣∣ log
∥∥M ω(0)

∥∥
∣∣∣
)

< +∞

Then for each t ∈ D the following limit exists µ-a.s. and is µ-a.s. independent of ω ∈ Ω :

χ(t) = lim
1

n
log

∥∥∥M(n)
ω (t)

∥∥∥ . (10.57)

The function t ∈ D 7→ χ(t) ∈ R is real-analytic and harmonic.
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We first use our theory for complex cone contractions to get some necessary uniform bounds.
Using outer regularity we find (and fix throughout) m ∈ X ′ of norm one and K < +∞, such
that

‖u‖ ≥ |〈m,u〉| ≥ 1

K
‖u‖, ∀u ∈ C. (10.58)

For M : C∗ → C∗ a (linear) cone-contraction, we write

πM (u) =
Mu

〈m,Mu〉 , u ∈ C∗ (10.59)

for the natural projection of Mu onto the (bounded) subset : Cm=1 ≡ C ∩ {〈m,u〉 = 1}.

Lemma 10.3 Given a sequence of matrices, (Mn)n∈N ⊂ M, let M (n) = M1 · · ·Mn and write

π(n) ≡ πM (n) = πM1
◦ · · · ◦ πMn

. Suppose that h ∈ C(ρ) and |〈m,h〉| = 1. Then for φ1, φ2 ∈ C∗

and φ ∈ X :

‖π(n)(φ1) − π(n)(φ2)‖ ≤ K ηn−1 ∆. (10.60)

‖π(n)(h + φ) − π(n)(h)‖ ≤ K ηn

(
2

ρ
‖φ‖ + o(‖φ‖)

)
, as φ → 0. (10.61)

Proof: Using Lemma 3.4 and then Lemma 2.4 we see that the left hand side in (10.60) is bounded
by K dC(M (n)φ1,M

(n)φ2) ≤ K ηn−1 ∆. For the second inequality, equation (10.58) and our as-
sumption on h show that ‖h‖ ≥ 1 and then that B(h, ρ) ⊂ C. The first part of Lemma 3.5
implies that dC(h + φ, h) ≤ 2

ρ‖φ‖ + o(‖φ‖). We then use Lemmas 3.4 and 2.4 as before.

Lemma 10.4 For any M ∈ M and u ∈ C[ρ]∗ we have

1

K

∣∣∣∣
〈m,Mu〉
〈m,u〉

∣∣∣∣ ≤ ‖M‖ ≤ K2

ρ

∣∣∣∣
〈m,Mu〉
〈m,u〉

∣∣∣∣ (10.62)

Proof: Let φ ∈ X∗. The assumption on u implies that u + t φ ∈ C∗ when |t| ‖φ‖ < ρ‖u‖,
i.e. for |t| < r = ρ‖u‖/‖φ‖. Then also Mu + tMφ ∈ C∗ whenever |t| < r. By Lemma 3.5,

‖Mφ‖ ≤ K
r ‖Mu‖ = ‖φ‖ K

ρ
‖Mu‖
‖u‖ ≤ ‖φ‖ K2

ρ

∣∣∣ 〈m,Mu〉
〈m,u〉

∣∣∣ where the last inequality is a consequence

of the properties in (10.58) of m. We also have : |〈m,Mu〉| ≤ ‖M‖ ‖u‖ ≤ ‖M‖ |〈m,u〉| K.

Lemma 10.5 Let M ∈ M and h ∈ C with 〈m,h〉 = 1. Suppose that U ∈ L(X) and φ ∈ X

verify ‖U‖/‖M‖ ≤ ρ

4K3
and φ ≤ ρ

4K2
. Then

|〈m, (M + U)(h + φ)〉| ≥ ‖M‖ ρ

4K2
(10.63)

and

‖π
M+U

(h + φ)‖ ≤ 16K3

ρ
. (10.64)
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Proof: We need to show that the denominator in (10.59) stays uniformly bounded away from

zero : |〈m, (M + U)(h + φ)〉| ≥ |〈m,Mh〉| − ‖M‖ ‖φ‖ − ‖U‖(‖h‖ + ‖φ‖) ≥ ‖M‖ ρ

K2
(1 − 1

4
−

1

4
(1 + 1)) ≥ ‖M‖ ρ

4K2
(we have used : ‖h‖ ≤ K|〈m,h〉| = K and ‖φ‖ ≤ ρ/4K2 ≤ K). Then :

‖π
M+U

(h + φ)‖ ≤ ‖M‖ · 2 · 2K
‖M‖ (ρ/4K2)

=
16K3

ρ
.

We define for t ∈ D the (measurable) map πt : E(Ω, C∗) → E(Ω, Cm=1) through :

(πt(h))ω = πMω(t)(hτω), ω ∈ Ω, h ∈ E(Ω, C∗). (10.65)

Lemma 10.6 For each t ∈ D the map πt has a unique fixed point h∗(t) in E(Ω, Cm=1) ⊂
B(Ω,X).

Proof : The subsets π
n
t (E(Ω, Cm=1)), n ≥ 1 form a decreasing sequence in E(Ω, Cm=1) ⊂

B(Ω,X). By (10.60) the diameters verify : diam π
n
t (E(Ω, Cm=1)) ≤ Kηn−1∆. Pick h0 ∈ Cm=1

and define (h0(t))ω = h0, ω ∈ Ω. The sequence, hn+1(t) = πt(h
n(t)) ∈ B(Ω,X), n ≥ 0, is thus

Cauchy so the map has a (clearly unique) fixed point h∗(t) = πt(h
∗(t)) ∈ E(Ω, Cm=1).

Recall that 〈m,hω(t)〉 = 1 for all ω ∈ Ω. We define the map p : t ∈ D → E(Ω, C) by

pω(t) =
〈m,M ω(t)hτω(t)〉

〈m,hω(t)〉 = 〈m,M ω(t)hτω(t)〉, ω ∈ Ω. (10.66)

Lemma 10.7 We have for every t ∈ D : χ(t) =
∫

log |pω(t)| dµ(ω).

Proof : By Lemma 10.4, |pω(t)| is equivalent to ‖M ω(t)‖ (within uniformly bounded constants).
Assumption (2) in Theorem 10.2 implies that it is also equivalent to ‖M ω(0)‖ which, by Assump-
tion (3) of that Theorem, is log integrable. It follows that (ω ∈ Ω 7→ log |pω(t)|) ∈ L1(Ω, µ).
Our uniform bounds in Lemma 10.4 show that for every ω ∈ Ω :

1

n
log

∥∥∥M(n)
ω (t)

∥∥∥ =
1

n
log

∣∣∣∣∣
〈m,M

(n)
ω (t)hτnω(t)〉

〈m,hω(t)〉

∣∣∣∣∣+ O(
1

n
) =

1

n

n−1∑

k=0

log |pτkω(t)| + O(
1

n
).

The latter sum is a ‘Birkhoff’-average of the L1-function log |p(t)| so the almost sure convergence
follows from Birkhoff’s Ergodic Theorem. This a.s. limit is (a.s.) independent of ω ∈ Ω since τ
was supposed ergodic.

Lemma 10.8 The map t ∈ D 7→ h∗(t) ∈ B(Ω,X) is analytic.

Proof : Pick t0 ∈ D. It suffices to show that h∗(t) is analytic in a neighborhood of t0. Using
Assumption (2) of Theorem 10.2 we may find δ > 0 so that for |t − t0| < δ :

‖M ω(t) −M ω(t0)‖ ≤ ρ

4K3
‖M ω(t0)‖, ω ∈ Ω. (10.67)

By Lemma 10.5 the map,

(t,h) ∈ B(t0, δ) × B(h∗(t0),
ρ

4K2
) 7→ πt(h) ∈ B(Ω,X) (10.68)
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is analytic (because it is fiber-wise analytic and uniformly bounded). We denote by T0 =
Dhπt0(h

∗(t0)) ∈ L(B(Ω,X)) the derivative of πt0 at the fixed point h∗(t0). By linearization of

the uniform bound in (10.61) we see that for each n ≥ 1, Dhπ
(n)
t0 (h∗(t0)) = T n

0 ∈ L(B(Ω,X))
verifies : ‖T n

0 ‖ ≤ (2K/ρ)ηn. It follows that rsp(T0) ≤ η < 1. The derivative, 1−T0 ∈ L(B(Ω,X))
of h 7→ h− πt0(h) at the fixed point h∗(t0) is therefore invertible.

We may apply the implicit function theorem and conclude that there is 0 < δ1 < δ and an
analytic function

t ∈ B(t0, δ1) 7→ h∗(t) ∈ B(h∗(t0),
ρ

4K2
) ⊂ B(Ω,X) (10.69)

for which h∗(t) − πt(h
∗(t)) = 0 ∈ B(Ω,X) for all |t − t0| < δ1.

Proof (of Theorem 10.2): For fixed ω ∈ Ω the map t ∈ D 7→ pω(t) ∈ C is holomorphic (being a
continuous bilinear form composed with analytic functions). The difficulties here are that the
images need not be uniformly bounded (with respect to ω) and that we want to define a complex
logarithm in a consistent way. We proceed as follows : For t ∈ B(t0, δ1),

|pω(t) − pω(t0)| ≤ ‖M ω(t) − M ω(t0)‖ · ‖hτω(t)‖ + ‖M ω(t0)‖ · ‖hτω(t) − hτω(t0)‖
≤

( ρ

4K3
K +

ρ

4K2

)
‖M ω(t0)‖

=
ρ

2K2
‖M ω(t0)‖.

Lemma 10.4 shows that |pω(t0)| ≥ ρ
K2 ‖M ω(t0)‖ so we conclude that

∣∣∣∣
pω(t)

pω(t0)
− 1

∣∣∣∣ ≤
1

2
, , ω ∈ Ω, |t − t0| < δ1. (10.70)

The difference,

χ(t) − χ(t0) =

∫
log

∣∣∣∣
pω(t)

pω(t0)

∣∣∣∣ dµ(ω), (10.71)

is thus the real part of the following holomorphic function (with the usual logarithm on C−R−) :

H(t) =

∫
log

(
pω(t)

pω(t0)

)
dµ(ω), |t − t0| < δ1. (10.72)

Therefore, χ(t) is harmonic, whence real-analytic.

Theorem 10.2 applies to certain classes of dominated complex cone-contractions as defined
in section 6. We need to impose a further :

Assumption 10.9

1. We assume that CR ⊂ XR is a regular cone in a real Banach space. [The real-subcones
CR(ρ), ρ > 0 are then defined analogously to (10.56)].

2. Let P ∈ L(XR), P : C∗
R
→ C∗

R
. We assume that there is ρ0 > 0 such that P (CR) ⊂ CR(ρ0).

(And also that ∆P = diamCR
P (C∗

R
) < +∞).

Given a complex operator M ∈ L(XC), which is dominated by P , we write α(M), β(M) and
γ(M) for the optimal constants in Assumption 6.1. Now, let 0 < κ < 1 and define the following
subset of complex operators :

Mκ =

{
M ∈ L(XC) : , 1 − α(M)

β(M)
< κ , 0 ≤ γ(M)

α(M)
cosh

∆P

2
< κ

}
. (10.73)
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Theorem 10.10 Suppose that Assumption 10.9 holds. The class of operators Mκ ⊂ L(XC)
defined in (10.73) verifies the uniform bound in Definition 10.1 (for suitable values of ∆ and
ρ). So Theorem 10.2 applies when setting M = Mκ.

Proof : The bound (6.50) in the proof of Theorem 6.3 shows that there is ∆ = ∆(κ,∆P ) < ∞
(depending upon κ and ∆P only) so that for any M ∈ Mκ : diamCC

M(C∗
C) ≤ ∆. We still

need to show that M ∈ Mκ maps CC uniformly into its interior : CR is assumed regular.
Lemma 5.4 shows that CC is then also regular. We may assume that we have found m ∈ C ′

R
,

extended to m ∈ X ′
C

which verifies (10.58). By the assumption on P we have for any u ∈ CR :
B(Pu, ρ0‖Pu‖) ⊂ CR. When ℓ ∈ CR

′ is of norm one this implies : 〈ℓ, Pu〉 ≥ ρ0 ‖Pu‖. Using the
bound (6.48) we then get for x ∈ CR :

‖Mx‖ ≤ K|〈m,Mx〉| ≤ K
√

β + γ‖Px‖ ≤ K
√

β + γ

ρ0
〈ℓ, Px〉.

Let u ∈ C∗
C

and (by Proposition 5.2) write u = eiθ(x + iy) with θ ∈ R and x ± y ∈ C∗
R
. Then

‖Mu‖ ≤ ‖M(x + y)‖ + ‖M(x − y)‖ ≤ K
√

β + γ

ρ0
〈ℓ, P (2x)〉 ≤ 2K

√
β + γ

ρ0
|〈ℓ, Pu〉|.

Denote σ2 = (
α

cosh ∆P

2

− γ)/(β + γ) ∈ ]0, 1[ and let ℓ1, ℓ2 ∈ C ′

R
be of norm 1. Given φ ∈ XC we

use (6.46) to obtain :

Re〈ℓ1,Mu + φ〉〈ℓ2,Mu + φ〉 ≥ (
α

cosh ∆P

2

− γ)|〈ℓ1, Pu〉||〈ℓ2, Pu〉| − 2‖φ‖ |〈ℓ,Mu〉| − ‖φ‖2

≥ σ2 ρ2

4K2
‖Mu‖2 − 2‖φ‖ ‖Mu‖ − ‖φ‖2.

This is non-negative when ‖φ‖/‖Mu‖ ≤ ρ ≡
√

1 + σ2 ρ2
0

4K2 − 1. Thus, B(Mu, ρ‖Mu‖) ∈ CC.

Corollary 10.11 In the case of finite dimensional matrices Assumption 10.9 is indeed verified.
The class of matrices in (10.73) then reduces to (see Theorem 7.1) :

Mκ =

{
A ∈ Mn(C) : 1 − inf ReAijAkl

sup ReAijAkl

< κ , 0 ≤ sup |ImAijAkl|
inf ReAijAkl

< κ

}
.

Theorem 10.2 thus applies when we set M = Mκ.

Example 10.12 Let (ξn)n∈N be a sequence of i.i.d random variables with values in D. For
t ∈ D define :

Mn(t) =

(
8 − t 7 + ξn

7 − iξn 6 + it

)

One checks that (see e.g. the calculation leading to (11.78) below) each Mn(t) ∈ Mκ=0.75, t ∈ D.
By the previous Corollary, a.s. χ(t) = lim 1

n log ‖M1(t) · · ·Mn(t)‖ exists and defines a harmonic
function of t ∈ D.

For a closely related result we mention [Rue79] in which Ruelle was able to show that the
characteristic exponent of a product of random real matrices (under additional assumptions)
behaves real-analytically with respect to the matrices. Using Theorem 10.11 above, it is possible
to recover the result of Ruelle together with an explicit estimate for the analytic extension.

It seems plausible that a result similar to Theorem 10.2 should hold for integral operators
of the type given in our Theorem 7.2 (a complex generalization of Jentzsch’s Theorem), but our
proofs are insufficient as the cones needed in Theorem 10.2 are not regular.
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11 Complex cone contraction versus perturbation theory

The applications in section 7 and 9 were based upon Theorem 6.3 on dominated complex cone
contractions. In Theorem 6.3 it is conceivable to view the complex operator M as a ‘pertur-
bation’ of a real operator P . It is natural to ask what are then the benefits from our above-
mentioned applications relative to applying standard analytic perturbation theory when looking
for a spectral gap for one fixed (real) operator. We address this question here.

We consider the case of an operator T contracts a regular real cone so that T = λP + R
where P is a projection of rank 1, λ > 0 and the residual operator R commutes with P and
verifies ‖λ−nRn‖ ≤ Cηn−1, n ≥ 1 for some C < +∞ and 0 ≤ η < 1. Now, recall what can
be obtained within the framework of perturbation theory, see e.g. Kato [Kato80, III.§6.4 and
IV.§3.1] : If we perturb T then the spectral gap persists provided that the perturbation is ‘small’
compared to the resolvent on a suitable separating circle. To be more precise, for z /∈ σsp(T ) we
have :

R(z, T ) = (z − T )−1 = (z − λ)−1P + (z − R)−1(1 − P ). (11.74)

When λ > |z| > η λ, one has :

R(z, T ) = (z − λ)−1P + z−1(1 − P ) +
∑

n≥1

z−n−1Rn. (11.75)

Using the estimate for the residual operator and re-summing we get :

‖R(z, T )‖ ≤ ‖P‖
|λ − z| +

‖1 − P‖
|z| +

C

|z| (|z| − λ η)
. (11.76)

Consider now the closed curve (our not necessarily optimal choice for a separating circle), Γ =
{z ∈ C : |z| = λ1+η

2 }. For z ∈ Γ :

‖R(z, T )‖ ≤ 2‖P‖
λ(1 − η)

+
2‖1 − P‖
λ(1 + η)

+
4C

λ (1 − η2)
≡ 1

ρ∗
. (11.77)

When ‖S‖ < ρ∗, the von Neumann series (z − T − S)−1 = R(z, T ) + R(z, T )SR(z, T ) + · · ·
converges normally on Γ. It follows that [Kato80, II,§1.3 and IV.§3.1] the spectral projections
on the two components of C − Γ depend analytically on S. In particular, that the algebraic
dimension of the spectral projection on the unbounded component stays constant, i.e. equals
one. In other words the spectral gap persists.

To be more concrete, consider then the case of a real matrix T ∈ Md(R) and constants
0 < m ≤ M < +∞ such that m ≤ Tij ≤ M for all indices. Let us perturb by a purely imaginary
matrix iS with S ∈ Md(R) and such that |Sij | < r for all indices. The matrix A = T + iS
then verifies Re Aij Akl ≥ m2 − r2 and Im Aij Akl ≤ 2Mr. Thus, the condition in Theorem
7.1 simply reads: 2rM ≤ m2 − r2. Consequently if

r ≤ m2

M +
√

M2 + m2
, (11.78)

then A has a spectral gap. For example if m = 3 ≤ Tij ≤ M = 4 then |Sij | < r = 9√
25+4

= 1 suf-

fices to get a spectral gap. Also, one cannot take r to be bigger than 3 or else

(
3 + 3i 3 − 3i
3 − 3i 3 + 3i

)

provides a counter-example of a matrix without a spectral gap.
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Perturbation theory works well in a special case, namely when T is itself of rank one. For
example, suppose that Tij = 1, so that (using Euclidean norm) m = M = 1, ‖P‖ = ‖1−P‖ = 1
and λ = d. In this case C = η = 0 so setting |z| = d/2 we obtain from (11.76) :

‖R(z, T )‖ ≤ ‖P‖
|λ − z| +

‖1 − P‖
|z| ≤ 4

d
≡ 1

ρ∗
. (11.79)

Thus, if we add S ∈ Md(R) with ‖S‖ < ρ∗ = d/4 then T + iS has a spectral gap. In particular,
when |Sij | < r then ‖S‖ ≤ rd so one needs r < 1/4 in order to apply this result. By comparison,
the bound obtained from the complex cone contraction (11.78) is r < 1

1+
√

2
. On the other hand,

and in favor of the perturbation result, note that it applies to some perturbations which are
not immediately seen by the complex cone contraction, e.g. when only one element of Sij is
non-zero, and this element is strictly smaller than d/4.

Consider now the case when the original matrix T is not of rank one. In order to make
a computation within perturbation theory note that the matrix contracts the real standard
cone R

n
+ and given the constants 0 < m ≤ M < +∞ from above one has (see Example 4.9) :

diamRn
+
(TR

n
+) ≤ ∆ = 2 log M

n . From this, η = tanh
∆

4
=

M − m

M + m
and 1 − η =

2m

M + m
. Using

‖T‖ ≤ Md and λ ≥ md we also see that ‖λ−1 T‖ ≤ M/m. One also has ‖P‖ ≤ M
m . In order to

get a bound on C we may use the constants in Remark 3.8 equation (3.19), which were obtained
for the complex cone but apply equally well to the real case. With the Euclidean norm on R

n

one has K = g =
√

2 and we obtain

A =
(√

2
)2 M

m
exp

(

(1 +
M

m
)

(
√

2) 2 log M
m

2m
M+m

)

, C =

(
3 +

M

m

)
2 log M

m
2m

M+m

A. (11.80)

When |z| = λ1+η
2 we have the bound:

‖R(z, T )‖ ≤ M(M + m)

2dm3
+

(M + m)2

2dMm2
+

C(M + m)2

4dMm2
≡ 1

ρ∗
. (11.81)

When m = 3 and M = 4 we obtain from these estimates that r = ρ∗/d = 0.02825... ensures
a spectral gap. This is within two orders of magnitude to r = 1 which we obtained above from
equation (11.78).

Increasing, however, the ratio of M to m substantially deteriorates the perturbative bounds.
When e.g. m = 10 and M = 100 we obtain r ≈ 2 · 10−175 (!!) from (11.80) and (11.81). This
should be compared to the bound r = 0.4987... obtained from equation (11.78) when using the
complex cone-contraction.

A Projective space

Let X be a complex Banach space. Given non-zero elements x, y ∈ X∗ ≡ X − {0} we write
x ∼ y iff Cx = Cy. Let π : X∗ → X∗/ ∼ denote the quotient map and write [x] = C

∗x for the
equivalence class of x ∈ X∗. We equip the quotient space π(X∗) with the following metric

dπ(X∗)([x], [y]) = distH(Cx∩S, Cy∩S) = inf

{∥∥∥∥
µx

‖µx‖−
νy

‖νy‖

∥∥∥∥ : µ, ν ∈ C
∗
}

, x, y ∈ X∗ (A.82)

in which distH is the Hausdorff distance between non-empty sets and S = S(X) is the unit-
sphere.

Lemma A.1
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1. Let C ⊂ X be a C-cone of K-bounded sectional aperture. Then for all x, y ∈ C∗ :

dπ(X∗)([x], [y]) ≤ 2KdC(x, y).

2. Let x ∈ X∗, r > 0 and set V = π−1Bπ(X∗)([x], r). Then for all y ∈ V ∗

dV (x, y) ≤ log
r + dπ(X∗)([x], [y])

r − dπ(X∗)([x], [y])
.

Proof: Using the inequality

∥∥∥∥
x

‖x‖ − y

‖y‖

∥∥∥∥ ≤ 2‖x − y‖min

{
1

‖x‖ ,
1

‖y‖

}
, x, y ∈ X∗ (A.83)

we obtain from Lemma 3.4 :
∥∥∥∥

x/〈m,x〉
‖x/〈m,x〉‖ − y/〈m, y〉

‖y/〈m, y〉‖

∥∥∥∥ ≤ 2‖m‖
∥∥∥∥

x

〈m,x〉 −
y

〈m, y〉

∥∥∥∥ ≤ 2KdC(x, y)

and the first conclusion follows. For the second claim, normalize so that dπ(X∗)([x], [y]) =

‖x − y‖ < r and ‖x‖ = ‖y‖ = 1. Let uλ = 1+λ
2 x + 1−λ

2 y = x + 1−λ
2 (y − x). By (A.83),

‖ uλ

‖uλ‖ − x‖ ≤ |1−λ|
2 ‖y − x‖ which remains smaller than r when |1 − λ| < 2r

‖x−y‖ ≡ 2R ∈ (2,+∞].

Then dV (x, y) ≤ dBC(1,2R)(−1, 1) = dD(0, 1
R ) = log R+1

R−1

Given any two points x, y ∈ C∗ we may follow Kobayashi [Kob67, Kob70] and define a
projective pseudo-distance between x and y through :

d̃C(x, y) = inf{
∑

dC(xi, xi+1) : x0 = x, x1, . . . , xn = y ∈ C∗}.

Since dπ(X∗) is a (projective) metric, the previous Lemma implies that

Theorem A.2 Suppose that C is of K-bounded sectional aperture in X. Then the inclusion
map, (C∗, d̃C) → (C∗, dπ(X∗)) is 2K-Lipschitz.

In other words, this new distance does not degenerate when taking the inf over finite chains,
so distinct complex lines in C have a non-zero d̃C-distance. This is conceptually very nice, but,
in our context, not particularly useful. The reason is that even if T ∈ L(X) maps C∗ into
a subset of finite diameter in C∗ for the metric d̃ this does not seem to imply a uniform con-
traction of T , i.e. no spectral gap. We leave a further study of this metric to the interested reader.
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