Contrôle nº3 du 31 mars 2015

Durée 1 heure 30

La qualité de la rédaction interviendra dans l'appréciation de la copie. Les documents, calculatrices et téléphones portables sont interdits.

Exercice 1 - Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire $X \mapsto AX$ associée à la matrice

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 4 & 1 \end{pmatrix} .$$

- 1. Donner le rang de f et une base de Im f. L'application f est-elle surjective?
- **2.** Quelle est la dimension de $\ker f$? En donner une base si $\ker f$ n'est pas nul. L'application f est-elle injective?
- 3. Donner une équation cartésienne de $\operatorname{Im} f$.
- **4.** Résoudre l'équation f(x, y, z) = (1, 2, a) en fonction du paramètre a.

Exercice 2 - 1. Donner un exemple de matrice A de taille 2×2 telle que Im A soit la droite engendrée par $\overrightarrow{u_1} = (2,1)$.

- **2.** Donner un exemple de matrice B de taille 2×2 telle que $\ker B = \operatorname{Im} B$ soit la droite engendrée par $\overrightarrow{e_1} = (1,0)$. Que vaut B^2 ?
- **3.** Donner une base du plan P de \mathbb{R}^3 d'équation x+y+z=0. En déduire un exemple de matrice C de taille 3×3 telle que Im C=P. L'application linéaire associée $X\mapsto CX$ est-elle injective?

Exercice 3 - Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire telle que

$$f(1,0,0) = (1,-1,0), f(0,1,0) = (0,1,-1) \text{ et } f(0,0,1) = (1,-1,1).$$

- 1. Donner la matrice A de f dans la base canonique.
- **2.** A est-elle inversible? Si oui, calculer son inverse.

Exercice 4 - Soit $\ell: \mathbb{R}^3 \to \mathbb{R}$ l'application linéaire définie par $\ell(x,y,z) = x - y + z$ et $\overrightarrow{u} = (1,1,1)$. On note $P = \ker \ell$ et D la droite engendrée par \overrightarrow{u} .

- 1. Montrer que l'application $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par $f(\overrightarrow{v}) = \overrightarrow{v} 2\ell(\overrightarrow{v})\overrightarrow{u}$ est linéaire et donner sa matrice A dans la base canonique.
- **2.** Montrer que $\mathbb{R}^3 = P \oplus D$, et que $f(\overrightarrow{v}) = \overrightarrow{v}$ si $\overrightarrow{v} \in P$ et $f(\overrightarrow{v}) = -\overrightarrow{v}$ si $\overrightarrow{v} \in D$.
- **3.** En déduire qu'il existe une base $B' = (\overrightarrow{e_1}', \overrightarrow{e_2}', \overrightarrow{e_3}')$ de \mathbb{R}^3 telle que la matrice de f dans la base B' soit

$$A' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} .$$

4. Calculer $(A')^2$. Que vaut $f \circ f$? L'application f est-elle inversible? Si oui, déterminer A^{-1} .