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Abstract

Abelian differentials on Riemann surfaces can be seen as translation surfaces,
which are flat surfaces with cone-type singularities. Closed geodesics for the
associated flat metrics form cylinders, whose number under a given maximal
length was proved by Eskin and Masur to generically have quadratic asymp-
totics in this length, with a common coefficient for the quadratic asymptotics
shared by almost all surfaces in each moduli space of translation surfaces, and
called a Siegel-Veech constant.

Square-tiled surfaces are some specific translation surfaces which have their own
quadratic asymptotics for the number of cylinders of closed geodesics. It is an
interesting question whether the Siegel-Veech constant of a given moduli space
can be recovered as a limit of individual constants of square-tiled surfaces in
this moduli space. Here we prove that it is the case in the moduli space H(2)
of translation surfaces of genus two with one singularity.
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1 Introduction

1.1 Geodesics on the torus

On the standard torus T2 = R?/Z2 | the number N (L) of maximal families of
parallel simple closed geodesics of length not exceeding L is well-known (and
easily seen) to grow quadratically in L, with

1
N~ 329

which is one half of the asymptotic for the number of primitive lattice points in
a disc of radius L. The factor one half comes from counting unoriented rather
than oriented geodesics.

.wL?

By convention, the corresponding Siegel-Veech constant is %(2) Note that it

is the coefficient of wL?, and not of L?, in the asymptotic.
Marking the origin of the torus (i.e. artificially considering it as a singularity or

saddle), the number of geodesic segments joining the saddle to itself, of length
at most L, coincides with the number of families of simple closed geodesics.



1.2 Geodesics on translation surfaces

It is a standard fact that Abelian differentials on Riemann surfaces can be seen
as translation surfaces. On translation surfaces of genus > 2, countings of
closed geodesics or saddle connections, similar to those just described for the
torus, can be made.

There, the countings of saddle connections and of cylinders of simple closed
geodesics do not coincide, but their growth rates remain quadratic. This is
made more precise by several related results.

Masur proved [Ma88, Ma90] that for every translation surface, there exist pos-
itive constants ¢ and C such that the counting functions of saddle connections
and of maximal cylinders of closed geodesics satisfy

¢ TL* < Neyt(L) € Neo(L) < C - L2

for large enough L.

Veech [Ve] proved that on a square-tiled surface (and on any Veech surface)
there are in fact exzact quadratic asymptotics, and Gutkin and Judge [GuJu]
gave another proof of that.

Another proof for the upper quadratic bounds for Ney(L) and Ny (L) was
given by Vorobets [Vo].

Eskin and Masur [EM] gave yet another one, and proved that for each connected
component of each stratum of each moduli space of normalised (i.e., area 1)
abelian or quadratic differentials, there are constants cs. and ccy such that
almost every surface in the component has Ng(L) ~ ceemL? and Neyi(L) ~
cCymLQ.

It is an interesting open problem whether all translation surfaces have exact
quadratic asymptotics for countings of saddle connections and of cylinders of
closed geodesics.

The particular constants for many Veech surfaces have been computed explic-
itly by Veech [Ve], Vorobets [Vo], Gutkin—Judge [GuJu], Schmoll [Schmo]. Con-
stants for some families of non-Veech surfaces were also given by Eskin-Masur—
Schmoll [EMS] and Eskin—Marklof-Morris [EMWM]. The generic constants for
the connected components of all strata of abelian differentials were computed
by Eskin, Masur and Zorich in [EMZ].

In general, the particular constants for Veech surfaces do not coincide with the
generic constants of the strata where they live.

There is also another subtle difference between Veech surfaces and generic sur-
faces. Define cylinders as regular if their boundary components both consist
of a single saddle connection. In any connected component of stratum in genus
> 2, a generic surface has no irregular cylinders, while on Veech surfaces count-
ings of irregular cylinders have quadratic asymptotics.

What we will prove however is that individual ‘quadratic constants’ for regular
cylinders on square-tiled surfaces of the stratum H(2) (translation surfaces of
genus 2 with one singularity) allow to retrieve the generic Siegel-Veech constant
of H(2) as a limit. See Theorem 1 in § 1.3 for a precise statement.

1.3 Setting and main result

In this paper, we are concerned with the stratum H(2) consisting of genus 2
abelian differentials with a double zero, or in other words translation surfaces
of genus 2 with one singularity (of angle 67). We prove:

Theorem 1 Consider a sequence S,, of area 1 surfaces in H(2), each tiled by
some prime number p,, of squares, with p,, — oo. Then the constants in the
quadratic asymptotics for regular cylinders of closed geodesics on the surfaces
Sy tend to % . ﬁ, the Siegel-Veech constant of H(2) for cylinders of closed
geodesics.

Remark It is possible to adapt our calculations to show that the constants
in the quadratic asymptotics for irregular cylinders of closed geodesics on the
surfaces S, in the theorem tend to 0, so that the constants in the quadratic
asymptotics for all cylinders (both regular and irregular), tend to the generic
constant of the stratum H(2) as well.

Remark We believe that the assumption that the number of squares tiling
the surfaces is prime is unnecessary, but we have not yet been able to adapt
the calculations to show the convergence of Siegel-Veech constants in the case
of nonprime numbers of tiles.

The proof of the theorem relies on fine estimates presented in §3.1.

Pierre Arnoux pointed out to us the analogy to a result of C. Faivre on Lévy
constants of quadratic numbers, see [F| or [DP].
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2 Preliminaries

The stratum H(2) is the simplest stratum of abelian differentials after the
(well-understood) stratum of abelian differentials on tori. As every stratum, it
admits a natural SL(2,R) action, and we will recall here some facts concerning
the orbits of certain special points of H(2): square-tiled surfaces.

A square-tiled surface is a ramified translation cover of the standard torus, with
only one branch point. The number of square tiles is the number of sheets of
the covering, or the degree of the corresponding covering map to the standard
torus. A square-tiled surface is called primitive if this covering map does not
factor through a covering of a larger torus with only one branch point.

2.1 Orbits of square-tiled surfaces

By a theorem of McMullen [Mc2], in H(2), for n > 3, primitive n-square-tiled
surfaces are all in one SL(2, R)-orbit if n is even, and in exactly two SL(2,R)-
orbits if n is odd (see [HL1] for the prime n case). We will denote these orbits
by A, and B, for odd n and by &, for even n.

The integer points in these orbits are primitive n-square-tiled surfaces, and
they form SL(2,Z)-orbits which we will denote respectively by A,, Bn, E,.
The number of primitive n-square-tiled surfaces in H(2) is thus the cardinality
of E, when n is even and the sum of the cardinalities of A,, and B, when n
is odd. This number is given in [EMS, Lemma 4.11] to be asymptotic to

3 . 1
§n3 [[a- P)'

pln

Formulas for the separate countings of A, and B, conjectured in [HL1], are
established in [LeRo] to be

3 ) 1 3 ) 1
an:1—6(n—1)n ll_[(l—]?), bnzﬁ(n—l)n ll_[(l—?),
pin pin

respectively.

If n tends to infinity within the set of prime numbers, both a, and b, are

asymptotic to 13—6 n3.

The natural definition of primitive n-square-tiled surfaces gives them area n
(each square tile having area 1), but it is sometimes useful to consider the

corresponding unit area surfaces, i.e. apply the natural projection from H(2)
to the unit hyperboloid H1(2).

2.2 Cusps

Each square-tiled surface in the stratum H(2) decomposes into either one or
two horizontal cylinders, and can be given as coordinates the heights, widths
and twist parameters of these cylinders, see [EMS| or [HL1]. Here we are
interested in regular cylinders of closed geodesics, which exist only in two-
cylinder decompositions (in one-cylinder decompositions, the unique cylinder
has three saddle connections on each boundary component).

The decompositions into cylinders provide a way to parametrise square-tiled
surfaces (by the heights, widths and twist parameters of their cylinders). These
parameters are very convenient to describe the action of U = {({1): n € Z},
which only affects the twist parameters.

The following lemma puts together Lemmas 2.4, 2.5 and 3.1 of [HL1].

Lemma 1 Let S be a primitive n-square-tiled surface, and denote by D, resp.
D, its orbit under SL(2,R), resp. SL(2,Z). Then D is the set of primitive n-
square-tiled surfaces in D and the cusps of D are in bijection with the U -orbits
inD.

If S has two cylinders, with h;, w; and t; (i =1, 2) as height, width and twist
parameters, then its cusp width (the cardinality of its U-orbit), is

w1 v wa

w1 A hy wa A ho

ew(S) = (= M x 2

= o X s for prime n).

The surface S" with h}, = h;, w}, = w;, and t;, = t; mod (w; Ah;) Is a “canonical”
representative of the U-orbit of S. FEach cusp thus has a unique representative
with 0 < t; < w; A\ h;.



(The notations A and V are used for ged and lem respectively.)

We also recall that given a square-tiled surface S, each direction of rational
slope on it gives rise to a decomposition of S in cylinders of closed geodesics,
and that this direction can be associated to one of the cusps of the SL(2,R)-
orbit of S.

Note that these cusps can also be understood as cusps of I'(S), the Veech group,
or stabiliser under SL(2,R), of S. Algebraically this means conjugacy classes of
maximal parabolic subgroups; geometrically the ‘cusps’ of the quotient surface
P(s)\H.

2.3 A formula for the constants

Here, we establish a formula for the constants, for which we will compute esti-
mates in § 3.

Lemma 2 The number Nyeg(L) of regular cylinders of closed geodesics of
length < L on a unit area square-tiled surface S has the following asymptotics:

n cw(C;) 1 9
Nieg(L) ~ #—D Z w%J T(Q)WL .

C; two-cyl
cusp of S

Remark Following a tradition we wrote the asymptotic as a multiple of 7L?
rather than just L2, and we wrote s=mL? instead of 2L% to bring out the
analogy with the corresponding formula for the torus.

Proof We deduce this formula from the material reviewed in §§2.1-2.2 above,
and from § 3 of [Ve], to which we refer freely here, both for notations and results.

Veech introduces, for any finite covolume subgroup I' of PSL(2, R), a complete
set {Ajhgjr of representatives of the maximal parabolic subgroups of I'. We
will also refer to the cusps C;. He defines Ag = {(}%): k € Z} which we
denoted by U.

Then for each j he selects 3; € SL(2,R) which conjugates Ay to Aj, ie.

Bj_lAjﬁj = Ag. When T is the Veech group of a translation surface S, this
amounts to represent the cusp j by the surface B]-_IS . Indeed, 3;S has Veech

group ﬁj_lFﬁj .

These ‘representatives’ 63715’ of the cusps have width 1. For square-tiled sur-
faces, I'(S) is always a subgroup of SL(2,Z), so it is also usual to conjugate
inside SL(2,Z) to the group generated by some ((1) ’f) rather than to Ag itself,
thus keeping track of the cusp width (the adequate k).

Let us illustrate the difference on an example.

Consider the surface S, pictured on the left of figure 1, made of seven squares
S1, ..., s7 forming a horizontal cylinder where the right edge of each s; is glued
to the left edge of s;11 (indices being understood modulo 7), and where the top
edges of squares s to s7 are respectively glued to the bottom edges of squares
s3 to sg, s1 to s2, s7.

Consider the direction of the first diagonal. In this direction the surface S de-
composes into cylinders of closed geodesics as illustrated on the right of figure 1
(parallel sides of same length identified).

/]

LTIl

Figure 1:

We get to the standard square-tiled representative of the cusp corresponding
to that direction by applying the matrix M = (% ) (the matrix in SL(2, Z)

which sends (1,1) to (1,0) and (0,1) toitself). A choice of Bj*l is (1/(‘)/g \/OE)M
This sends 3-(1,1) to (1,0).
Figure 2 below represents ﬂ;l S on the left, and M S on the right.

Figure 2:
Veech defines &; to be the vector 3; - (1,0). And for each cylinder of closed

geodesics in the direction of A;, calling v the holonomy vector for this cylinder,

he associates to the cylinder the constant ¢;(v) = ll“%‘:l .




In our notations, for a surface tiled by unit squares, if v is the holonomy vector
of cylinder i of cusp C;, we have c;(v) = \/cw(Cj)/w;, where w; is the width
of this cylinder and cw(C;) the width of this cusp.

Veech’s formula for the asymptotics (see [Ve], formula (3.11)) is:

T

N(L) ~vol(T(5)\H)™* (Z (Z cj(u)2) > L2

7j=1 v

So the contribution of a given cylinder of a cusp C; to the coefficient of the
quadratic asymptotics is vol( T'(S) \H ) "!¢;(v)?, where v is the holonomy vector
of this cylinder.

If we are concerned with regular cylinders of closed geodesics for square-tiled
surfaces in H(2), we need only consider cylinder 1 of two-cylinder cusps.

The volume of the quotient I'(S)\H equals the index of I'(S) in SL(2,Z)
times the volume of SL(2,Z)\H ; and the index equals the cardinality of the
SL(2,Z)-orbit D of S, while the volume of SL(2,Z)\H is 7/3.

The last thing to observe is the effect of scaling a surface. Consider a surface
S where quadratic asymptotics N(L) = ¢ - wL? hold, and scale S by a scale
factor . On 7S, the asymptotics become N (L) = c - m(L/r)2.

A square-tiled surface S of area 1 is a scaled-down version by 1/4/n of a surface
tiled by n unit squares; this scaling changes the asymptotic by a factor n.

This completes the proof of the formula in Lemma 2. m]

Let us denote by ¢(S) the quantity

2
#D C; two-cyl w1
cusp of S

Our aim is now to prove that ¢(S) tends to 13—0 as the number of square tiles of
S tends to infinity staying prime. This will establish Theorem 1.

As a first step for this, using the description of the two-cylinders cusps in the
orbits of square-tiled surfaces (see [HL1]), and renaming wq, wa, h1, hy as a,
b, h, y respectively, we get:

for S in orbit A,:

_ n ab 1 ab
=X wty X w)
" abhy>1 abhy>1
ah+by=n ah+by=n
hAy=1 hAy=1
h, y odd aZb mod 2
a<b h#y mod 2
a<b

~ n ab 1 ab
=3 X 5ty X 3)
a,b,h,y>1 a,b,h,y>1
ah+by=n ah+by=n
hAy=1 hAy=1
a, byodd aZb ?nod?
a<b h#y mod 2
k<t

The idea is to group two-cylinder cusps sharing the same parameters wy, wa,
hi, ha. Then the sum of the cusp widths adds up to wjws (for nonprime n
some values of the twist parameters could correspond to nonprimitive surfaces,
but for prime n all surfaces with n tiles are primitive). All surfaces with hy
and hs odd are in orbit A, all surfaces with w; and ws odd are in orbit B,
and those with mixed parities for w; and h; are half in orbit A half in orbit B.

3 Asymptotics for a large prime number of squares

We need to estimate quantities of the type

N b
ADn) = #TzL)n > @

a,b,hy

where the sum is over positive integers a, b, h, y satisfying certain conditions
as above.

3.1 A simpler sum

Since #D, for prime n, is asymptotically 13—6n3, we first replace #TIan by n—12
Second, we momentarily drop the parity conditions; we will reintroduce them
in the following subsections. Last, we drop the condition a < b; we will explain
later why this does not change the asymptotic.
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So we first consider the following simplified sum:

1 b F(z,k,q) = d
S(n)zzgz Z %. 1§%§1’

a>1 b>1 h>1, y>1 md=k [q]
ah+by=n

LSmsz 1<d<z/m
mAG=1 d=mk [q]

= d

@b a > >

S(n,a) = E E w2 = 2 -F(n—a,n,a) 1<m<e 1<d<a/m
1<m<n—a blm mAG=1 =y lq]

m=n [a] _ Z Z (u n )\q)

1<m<e 1<ut+N\g<z/m
where Sy IS +Ag<a/

Fekg= 3 Y -2 (( £ o)

1<m<z bm

Denote the sum over b by S(n,a). Introducing the variable m = by,

m=k [q] }ﬁgg LA (&)
1 =z
= > (5a-) +0(=) +0(1))
The following asymptotics hold for F(x,k,q), S(n,a) and S(n). 1<m<a qam
mAg=1
x? 1
Lemma 3 For kAg=1, and x — oo, T2 Z W—’_O(xng)
q 1<m<e
mAq=1
z? 72
F(x,k,q) = ; ‘12 (1- —2) + Ogy(xlog x). To sum only over the integers m with m A ¢ = 1, we can sum over all m with
plq a factor p(m A q), so that all terms cancel out except the ones we want.
2
x (d) 1
Lemma 4 F(z,k,q) = % (7 Z W) + O(zlog x)
Stn,a) —— = I[0-5) oo
n,a T) — - ) 2 d 2
nprime 12 pla p =z &Q)(W— +O(1/z)) + O(zlog x)
2q d 6
dlq
2 2
4T 1
Lemma 5 S(n) — 5 == (1= =)+ O(xlogx).
— 7 q | p
n prime pla
O
Proof of Lemma 3 If m is prime to ¢, denote by 7 the integer in {0,...,q—
1} such that mm = 1 [g], and by u = u(m, k,¢) the integer in {0,...,q — 1} Proof of Lemma 4 Lemma 4 follows immediately from Lemma 3 by a dom-
such that u =k [¢; error terms depend on q. inated convergence argument (similar arguments were used in [HL1, §7]). DO
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Proof of Lemma 5 Lemma 5 is a consequence of Lemma 4 by the following

observation.
Z [[o-s) =T[a+Yr>a-p>)=][a+pr?
a>1 pla p v>1 p

Crrl-pt (2 w*/6 15
’H1 T C(4) T w190 w2

3.2 Sums with specified parities

We introduce sub-sums of S(n) for specified parities of the parameters.

The observation we just made will need to be completed by the following one.

> oalo- =% nillo- o+ 3 wllo-

a>1 pla a}l p‘a a>1 p‘a
a even a odd a even
3
so that E H = — and E H .
a>1 pla azl pla
a odd a even

3.2.1 0Odd widths

We now consider the sum over odd a and b:

S OED DD

a>l b>1 h>1,y>1
a odd b odd ah+by=n

We proceed as for the sum S(n): putting

FV(x,k,q) = Z Z b and S (n,a) = % - F%(n —a,n,a),

1<m<e blm
m= k[q]bodd

ow 1 ow
SV(n) = Z ?S (n,a).
a>1
a odd

The following asymptotics hold for F°V(z, k,q), S°(n,a) and S°%(n).

13

Lemma 6 For odd ¢, odd k, and x — oo,

22 72 1

—— |11 - =)+ O(zlogz).
24 2

1 plg b

F"(x,k,q) =

For odd a,
§™(n.a) ——— 57 H

n prime p\a

Finally,
1

SO(n) —— ~.
n prime

Proof

F¥(a, ko)=Y Y > b

120 1<m<z /2t blm
2tm=k [q]
m=1 [2]

T t\2 7]'2
=S (U T - )+ OtGar2) (a2

p|2q

22 w2
= L —(1—i)H(1—%)+O(mlog:ﬂ)

3.2.2 0Odd heights

We now consider the sum over odd h and y:

= ny Y%

a1 b>1 h21,y2>1
h, y odd
ah+by=n

14



Proceeding as previously, we are led to introduce

FoMz k,q) = Z Z b and S°"(n,a) = FOh(n —a,n,a),
1<m<e
m=k-+q [2q] m/b odd

1
and to write S°(n) = E —2S0h(n,a).
a
a>1

The following asymptotics hold for F°'(x, k,q), S°*(n,a) and S°"(n).

Lemma 7 For even ¢, odd k, and x — o0,

Fz k,q) = i H(l — i) + O(xzlog z)
k) ) q 24 p2 *
plg
For odd q, odd k, and © — o0,
2.2
h o =T 1
Fo'z,k,q) = VD (1- F) + O(zlog x).
plg
For even a,
oh
S (n,a) pa— —H l—p—
n prime pla
For odd a,
oh
S (n,a) o 32 H 1— —
n prime
Finally,
1
oh
59(n) == 3
n prime

Proof For even ¢ and odd k:

FoMz k,q) = Z Zb

1<m<z blm

m=k+q [2q]
22
Tem 1
= —— 1—-— O(xz1
513 1101~ —5) + Oz loga)
pl2q
2.2
Tem 1
=21 (1- P) + O(zlog z).
plq
15

For odd ¢ and odd k:

FoMx K, q) = Z Z ZQt

21 1<m<z/2t bim

2tm=k+q [2q]
m odd
=22 > )b
t=1 1<m<z /2t blm
2= tm=174 [g]
m odd
¢ (x/20)? w2
= Z 20 12 (1 )+ O(zlog z)
t>1 p|2q
1 22 72 1
21 pla
22
:%% | (1 )+ O(xlog z)
riqa

3.2.3 Mixed parities

Dealing with the even-odd sums as above would be most cumbersome; this is
fortunately not necessary. Indeed, since S(n) = S°%(n) + S°%(n) + S (n),
and we know the limits of S(n), S°¥(n) and S°®(n) when n tends to infinity

staying prime, we have:
1

S (n) —— .
n—00
n prime

3.3 Asymptotics for orbits A and B

We end by showing that the limit we obtained is unchanged by adding a con-
dition a < b.

a
Indeed, since #{(h,y): h > 1, y > 1, ah+by = n} < n, the sum Z Z

b=1h21,y2>1
ah+by=n

is O(1/n), where the constant of the O depends on a.
Putting things together, ¢(A,) and &(B,,) have the same asymptotics: S*(n) =

B(5M(n) + 15%°(n)) and SB(n) = £(5°¥(n) + $5°(n)), so they both tend
to % as n tends to infinity, n prime.
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4 Concluding remarks

Numerical evidence suggests that the convergence to the generic constant of the
stratum occurs not only for prime n but for general n; however a proof would
involve some complications in the calculations which would make the exposition
tedious.

A similar study for the constants that appear in the quadratic asymptotics
for the countings of saddle connections could also be made. There one has
to take into consideration both one-cylinder and two-cylinder cusps, and some
interesting phenomena can be observed: numerical calculations suggest that
the sum of the contributions of one-cylinder and two-cylinder cusps has a limit,
but separate countings for one-cylinder cusps do not have a limit for general n;
their asymptotics have fluctuations involving the prime factors of n.
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