

Université Paris VII - Denis Diderot

Université Pierre et Marie Curie

École Doctorale de Science Mathématiques de Paris Centre

Thèse de doctorat

Discipline : Mathématiques

présentée par

Ramanujan SANTHAROUBANE

Limites homologiques de représentations quantiques et applications à la conjecture AMU

dirigée par Gregor MASBAUM

Soutenue le 11 septembre 2015 devant le jury composé de :

M. Jorge	en Ellegaard Andersen	Université Aarhus	président et rapporteur
M. Fran	cesco Costantino	Université Toulouse 3	rapporteur
M. Chris	stian Blanchet	Université Paris 7	jury
M. Julie	n Marché	Université Paris 6	jury
M. Gwei	nael Massuyeau	CNRS	jury
M. Greg	or Masbaum	CNRS	directeur

2

Institut de Mathématiques de Jussieu Grand Moulins Bât. Sophie Germain 75 013 Paris UPMC Ecole Doctorale de Sciences Mathématiques de Paris Centre 4 place Jussieu 75005 Paris Cedex 05

Remerciements

Tout d'abord je tiens naturellement à remercier mon directeur de thèse Gregor Masbaum. Gregor m'a toujours soutenu et a fait preuve d'une grande patience tant d'un point de vue scientifique que personnel. Son expérience et son haut niveau d'exigence m'ont réellement permis de grandir intellectuellement. Ces conseils de rédaction et sa rigueur m'ont été très précieux. Un grand merci Gregor pour tout.

Je remercie sincèrement Jorgen Ellegaard Andersen et François Costantino pour avoir accepté l'importante tâche de rapporter ce manuscrit. Je remercie aussi Gwénael Massuyeau pour avoir accepté de faire partie de mon jury.

Un grand merci à Julien Marché qui a su me soutenir dès le tout début de cette thèse et qui a accepté de faire partie de mon jury. J'ai apprécié les conversations passionnantes que nous avons eues. Julien est quelqu'un d'admirable tant humainement que scientifiquement.

Christian Blanchet a eu une place importante pendant cette longue thèse et je le remercie pour sa bienveillance et ses conseils. Merci pour cet excellent cours de M2 qui a été le premier pas de mon immersion dans le monde de la TQFT. Merci Christian pour avoir accepté de faire partie de mon jury de thèse.

Un grand merci à Catherine Gille qui a toujours été à mon écoute. Je tiens aussi à exprimer ma gratitude à Sinnou David pour son soutient constant. Merci également à Laurent Charles et Maxime Wolff qui m'ont accompagné tout au long de cette thèse.

Les bons moments que j'ai passés avec mes collègues doctorants de Paris 7 et Paris 6 ont été vitaux. Ainsi merci à Ahmed, Chirstina, Fathi, François, Hsueh-Yung, Ildar, John, Léo, Louis, Lucas, Maylis, Marco, Nicolina, Olvier, Paul, Renaud, Valentin, Viet et tous ceux que j'oublie...

Voyager m'a permis de rencontrer de formidables doctorants. Entre autres Ben, Guillem, Jens Kristian, Jérémy, Julien, Paul, Soren, Xavier. Votre amitié m'est très chère, merci pour tout!

Pour terminer je remercie ma famille sans qui je n'aurais rien accompli.

En mémoire de Cyril et de Thirumurugan

Résumé

Résumé

On considère les représentations quantiques des mapping class group venant de la SU(2) et SO(3) Théorie Quantique des Champs Topologiques de Witten-Reshetikin-Turaev. La motivation de cette étude est conjecture AMU formulée par Andersen, Masbaum et Ueno (voir [2]). Nous explorerons deux cas intéressants :

- Le tore troué en théorie SO(3) où nous montrerons comment résoudre la conjecture AMU.
- Les sphères trouées en théorie SU(2) où nous étudierons certains espaces skein qui apparaissent comme noyau de l'application naturelle du skein module vers la TQFT. Nous verrons comment cette stratégie apporte des réponses partielles pour la conjecture AMU dans le cas des sphères munies de 2n points coloriés par un entier $N \geq 1$ quelconque.
- Enfin nous verrons comment la stratégie précédente permet de résoudre complètement la conjecture AMU pour la sphère munie de 4 points tous coloriés par $N \ge 2$. Cela étend les travaux initiaux de Andersen, Masbaum et Ueno lorsque N = 1 (voir [2])

Mots-clefs

Mapping class group, représentations quantiques, Witten-Reshetikin-Turaev, conjecture AMU, TQFT.

Homological limits of quantum representations and applications to the AMU conjecture

Abstract

We consider quantum representations of mapping class groups arising from SU(2) and SO(3) Witten-Reshetikin-Turaev Topological Quantum Field Theories. The motivation of this study is the AMU conjecture stated by Andersen, Masbaum et Ueno (see [2]). We explore two interesting cases :

- The punctured torus in the SO(3) theory. We will see how to prove the AMU conjecture in this case.
- Punctured spheres in the SU(2) theory. We study certain skein spaces which are kernels of the natural map from the skein module to the TQFT. We will see how this strategy gives partial answers to the AMU conjecture in the case of the sphere equipped with 2n points where all points are colored by an integer $N \ge 1$.
- Using the previous strategy we will prove the AMU conjecture completely for the sphere equipped with 4 points all colored by $N \ge 2$. It will extend the result found by Andersen, Masbaum et Ueno when N = 1 (voir [2])

Keywords

Mapping class group, quantum representations, Witten-Reshetikin-Turaev, AMU conjecture, TQFT.

Table des matières

Introduction 9				
1	\mathbf{Rep}	Représentations du mapping class group provenant de la TQFT		
	1.1	Introduction à la TQFT	13	
	1.2	Représentations du mapping class group	21	
	1.3	Appendice : Obtenir une représentation linéaire de $M(0,n)$	26	
2	Rés	Résultats connus		
	2.1	Le théorème de fidélité asymptotique	29	
	2.2	La Conjecture AMU	30	
	2.3	Les sphères marquées et les espaces novaux	32	
	2.4	Le tore troué en théorie $SO(3)$	37	
3 Limits of quantum $SO(3)$ representations for the one-holed toru		its of quantum $SO(3)$ representations for the one-holed torus	39	
	3.1	Introduction	39	
	3.2	Review of $SO(3)$ -TQFT	40	
	3.3	The limit of the representations	43	
	3.4	Appendice : Commentaires sur l'image quantique de $\Gamma_{1,1}$	50	
4 Action of $M(0, 2n)$ on some kernel spaces coming from $SU(2)$ -		ion of $M(0,2n)$ on some kernel spaces coming from $SU(2)$ -TQFT	55	
	4.1	Introduction	55	
	4.2	TQFT and the kernel space	56	
	4.3	Representations from cyclic branched covering of the sphere	62	
	4.4	Proof of the theorem 4.1.1 when $n \ge 6$	65	
	4.5	Proof of theorem 4.1.1 in the case of the four-punctured sphere	76	
	4.6	Detecting pseudo-Anosovs with representations on kernel spaces	84	
	4.7	Experimental results at other roots of unity not covered by corollary 4.1.3.	87	

Bibliographie

Introduction

In this thesis we study quantum representations of mapping class group arising from Witten-Reshetikhin-Turaev Topological Quantum Field Theories (TQFT).

In 1985, the Jones polynomial was introduced by Vaughan Jones, it is an invariant of knots and links in S^3 . In 1989, Edward Witten gave a physical interpretation of the Jones polynomial in terms of Feynman path integral and Chern-Simons gauge theory (see [35]). One year before Edward Witten introduced the notion of Topological Quantum Field Theories (see [34]). Such theories are described using the axioms introduced by Michael Atiyah (see [3]) and they give rise to representations of mapping class group called quantum representations. In 1991, Nicolai Reshetikhin and Vladimir Turaev gave a rigorous construction of such TQFT using the category of semi-simple representations of the universal enveloping algebra for the quantum lie algebra for $SL(2)_q$ (see [29]). Then Christian Blanchet, Nathan Habegger, Gregor Masbaum and Pierre Vogel built theses TQFT's from the Kauffman bracket (see [6]) using the universal construction applied to the invariants of closed 3 manifolds introduced by William.B.R. Lickorish (see [19]).

In all this thesis we will work in the setting of [6]. We will discuss the case of the punctured torus and punctured spheres. The motivation of this study is the conjecture stated by Jorgen. E Andersen, Gregor Masbaum and Kenji Ueno (see [2]). We now give an overview of the different chapters of this thesis. Chapter 1 and 2 are introductory and are in French; chapter 3 and 4 give the new results of this thesis and are in English.

Chapter 1

In the first section we recall briefly the construction of Christian Blanchet, Nathan Habegger, Gregor Masbaum and Pierre Vogel for SU(2)-TQFT. In particular we will see how to define for $r \ge 2$ a finite dimensional complex vector space $V_{2r}(\Sigma, p, \lambda)$ associated to Σ a compact oriented surface without boundary, p a finite set of oriented colored banded points on Σ and λ a lagrangien subspace of $H_1(\Sigma, \mathbb{Q})$. It corresponds to the SU(2) theory at level k = r - 2 in conformal field theory.

In the second section we recall how the space $V_{2r}(\Sigma, p, \lambda)$ is endowed with a projective action of the ribbon mapping class group $R\Gamma(\Sigma, p)$ of the pair (Σ, p) . We will see that this projective action depends of a choice of a 4r-th primitive root of unity A_r .

In an appendix we discuss the case of punctured spheres with colored banded points. We show how to get a linear representation of the mapping class group in this case.

Chapter 2

The first section deals with the asymptotic faithfullness theorem first proved by Jorgen E. Andersen in the setting of the geometric quantization (see [1]) and then proved in the skein theoretical setting by Michael H Freedman, Kevin Walker and Zhenghan Wang (see [10]). It says that if ϕ is a non central element of the mapping class group of a surface Σ then the projective action of ϕ on $V_{2r}(\Sigma, \emptyset, \lambda)$ is non trivial when r is big enough.

The second section of this chapter is devoted to the AMU conjecture. This conjecture was stated by Jorgen E Andersen, Gregor Masbaum and Kenji Ueno in [2]. It is conjectured that if ϕ is a pseudo-Anosov element of the mapping class group of a surface, with strictly negative Euler characteristic, then the quantum action of ϕ has asymptotically infinite order. We will discuss precisely the meaning of this conjecture.

The two last sections discuss in more details about questions which will appear in Chapter 3 and 4. We focus on the case of punctured spheres and the punctured torus in the SO(3) theory : We discuss specific problems involved in quantum representations associated with these surfaces.

The third section consider the case of $(S^2, (N)_n)$ which is the 2-sphere equipped with n banded points $(n \ge 4)$ all colored by N (with $N \ge 1$ and Nn even). We study some basic properties of $S(B^3, (N)_n)$: the skein module of the 3-ball whose boundary is equipped with n banded points all colored by N. We will see why the projective action of M(0,n)(the mapping class group of the *n*-th punctured sphere) on $V_{2r}(S^2, (N)_n)$ is actually the natural projective action of M(0,n) on $S_{A_r}(B^3,(N)_n)$ for r big enough. On the other hand we briefly recall the homological interpretation given by Ruth Lawrence (see [17] and [18]) of the projective action of M(0,n) on $S_{A_r}(B^3,(N)_n)$. We then give a strategy to study the AMU conjecture for $V_{2r}(S^2, (N)_n)$. More precisely, it is useful to evaluate the skein module at specific 4r-th root of unity where a simple homological interpretation of the projective action of M(0,n) can be given. We discuss how this strategy was used by Jorgen E Andersen, Gregor Masbaum and Kenji Ueno to solve the AMU conjecture for n = 4 and N = 1 (see [2]). We then see how Jens Kristian Egsgaard and Soren Fuglede Jorgensen generalized the case (n, N) = (4, 1) and the case (n, N) = (6, 1) (studied by Yasushi Kasahara in [16]) to the case (n, N) where n is even but N is still 1 (see [9]). In chapter 4 we will see how to get results when $N \geq 2$ using some other approach.

We finally remark the importance, in this strategy, of the kernel space $K_r(B^3, (N)_n)$ which is a natural subspace of the skein module $S_{A_r}(B^3, (N)_n)$ such that $V_{2r}(S^2, (N)_n) \simeq S_{A_r}(B^3, (N)_n)/K_r(B^3, (N)_n)$. The space $K_r(B^3, (N)_n)$ is zero when r is big enough, but when it is non trivial it can hide some interesting homological properties. A more detailed study of the space $K_r(B^3, (N)_n)$ is left to the last chapter (in the case 2r = Nn).

The fourth section considers the SO(3) theory in the case of T_c : the torus equipped with a single banded point colored by c. When $N \ge 2$ is fixed and $p \ge 2N + 1$, we can set c so that $\dim(V_p(T_c)) = N$. This problem was first studied by Patrick Gilmer and Gregor Masbaum (see [14]). This paper was focused on integral TQFT. We recall that it was found that at the zero-th order h-adic expansion, the quantum representations are isomorphic to the representations of $\Gamma_{1,1}$ (the mapping class group of the punctured torus) on the \mathbb{F}_p -vector space of homogeneous polynomials of two variables of total degree N-1.

Chapter 3

Here begin our new results. Chapter 3 is an extended version of [31], except for an appendix in French where we will discuss what our results might say about the image of quantum representations in the case of the punctured torus.

This chapter explores the case of the punctured torus T_c when the dimension of $V_p(T_c)$ remains constant as p grows. For N fixed and $p \ge 2N+1$ we denote c_p such that $\dim(V_p(T_{c_p})) = N$ and

$$\rho_p^{(c_p)}: \Gamma_{1,1} \to \operatorname{Aut}(V_p(T_{c_p}))$$

the associated quantum representation, we will prove the following theorem :

Theorem (see THEOREM 3.1.1) Let $\mathbb{Q}(X)$ be the field of rational functions in an indeterminate X. Fix $N \geq 2$ an integer. There exists a representation $\rho: \Gamma_{1,1} \to GL_N(\mathbb{Q}(X))$ which does not depend on p and a character $\chi_p: \Gamma_{1,1} \to \mathbb{C}^*$ (which depends on the choice of the root of unity A_p) such that :

- All the matrices in $\rho(\Gamma_{1,1})$ can be evaluated at $X = A_p$ and X = 1, those evaluations are denoted respectively $\rho^{[A_p]}$ and $\rho^{[-1]}$ (which are representations into $GL_N(\mathbb{C})$)
- $\begin{array}{l} & \chi_p \otimes \rho^{[A_p]} \text{ is isomorphic to } \rho_p^{(c_p)} \\ & \rho^{[-1]} \text{ is isomorphic to } h_N \end{array}$

where

$$h_N: \Gamma_{1,1} \to GL_N(H_N)$$

is the canonical action of $\Gamma_{1,1}$ on H_N : the \mathbb{C} -vector space of homogeneous polynomials of two variables of total degree N-1.

As an application we will prove that the AMU conjecture holds for these representations. More precisely:

Theorem (see THEOREM 3.1.3) For any fixed $N \ge 2$, if $\phi \in \Gamma_{1,1}$ is pseudo-Anosov then there exists $p_0(\phi)$ such that for any odd $p \ge p_0(\phi)$ the automorphism $\rho_p^{(c_p)}(\phi)$ has infinite order.

Finally, we discuss the problem of describing the image of the action of $\Gamma_{1,1}$ on $V_p(T_c)$. In an unpublished work, Gregor Masbaum proved that when $p \ge 7$, the projective image of the quantum representations of $\Gamma_{1,1}$ is isomorphic to the triangle group $\Delta(2,3,p)$ when the dimension is N = 2. In the appendix we explain the proof given by Gregor Masbaum and give some applications of our techniques to the case $N \geq 3$.

Chapter 4

Let $n \ge 4$ an even number, $N \ge 1$, $r \ge 2$ and A_r a 4r-th primitive root of unity. We consider the projective action of M(0,n) on the skein module $S_{A_r}(B^3,(N)_n)$. This chapter discusses in details the projective action of M(0, n) (the mapping class group of the *n*-th punctured sphere) on the kernel space $K_r(B^3, (N)_n)$. The space $K_r(B^3, (N)_n)$ is the left kernel of a natural bilinear form on $S_{A_r}(B^3, (N)_n)$ given by the Kauffman bracket. It is also the kernel of the natural map from the skein module $S_{A_r}(B^3, (N)_n)$ to the TQFT space $V_{2r}(S^2, (N)_n)$). The main theorem of this chapter is the following

Theorem (see THEOREM 4.1.1) When 2r = Nn and A_r is a 2*r*-th primitive root of -1, if we set $q = A_r^{4N}$, then

$$K_r(B^3, (N)_n) \simeq H^1(X)_{a^{-1}}$$

as projective representations of M(0, n). The representation $H^1(X)_{q^{-1}}$ is built from the homology of cyclic branched covering of the sphere and has been studied by Curtis McMullen ([26]), we will give a precise definition later on. For the proof, we have to distinguish the case n = 4 (see section 4.5) and the case $n \ge 6$ (see section 4.4). The proof for n = 4 relies on a recursive formula for Jones-Wenzl idempotents proved by Igor Frenkel and Mikhail Khovanov (see [11, Theor 3.5]) and independently proved by Scott Morrison (see [27]).

Using this theorem we will be able to prove the AMU conjecture for n = 4 and $N \ge 2$ (it extends the result found in [2]). More precisely, denoting by $\rho_{r,A_r} : M(0,4) \rightarrow \mathbb{P}\operatorname{Aut}(V_{2r}(S^2,(N)_4)))$ the quantum representation, we have

Corollary (see COROLLARY 4.1.2) For all $N \ge 1$, if $\phi \in M(0, 4)$ is pseudo-Anosov then there exists r_0 (depending on N and ϕ) such that for all $r \ge r_0$, $\rho_{r,A_r}(\phi)$ has infinite order.

Note that this result was already known in [2] for N = 1. Finally, we can use the main theorem of this chapter to study the AMU conjecture. Indeed, denoting by $\rho_{r,A_r}^{(n,N)}$: $M(0,n) \to \mathbb{P}\operatorname{Aut}(V_{2r}(S^2,(N)_n))$ the quantum representation, we have

Corollary (see COROLLARY 4.1.3) Let $\phi \in M(0, n)$ be pseudo-Anosov. Suppose that there exists A_{∞} a Nn primitive root of -1 such that the operator $\rho_{A_{\infty}^{-4N}}(\phi)$ acting on the space $H^1(X)_{A_{\infty}^{-4N}}$ has a spectral radius strictly greater than one. Then there exists r_0 (depending on N, n and ϕ) such that for all $r \geq r_0$, $\rho_{r,A_r}^{(n,N)}(\phi)$ has infinite order.

In section 4.6.2 we give some examples where this corollary can be applied.

Chapitre 1

Représentations du mapping class group provenant de la TQFT

1.1 Introduction à la TQFT

1.1.1 La catégorie des cobordismes étendus

Nous allons dans un premier temps donner les axiomes d'une (2 + 1)-TQFT, nous suivons l'approche décrite dans [7] et [33].

Soit K un corps. Une (2 + 1)-TQFT Z associe à toute surface compacte orientée sans bord lisse Σ un K-espace vectoriel de dimension fini $Z(\Sigma)$. Si Σ_1 et Σ_2 sont deux surfaces compactes sans bords lisses et si M est un cobordisme entre Σ_1 et Σ_2 c'est à dire une variété compacte orientée lisse de dimension 3 de bord ∂M muni d'un difféomorphisme $\partial M \simeq -\Sigma_1 \amalg \Sigma_2$, alors la TQFT Z associe à M un opérateur K linéaire

$$Z(M) \in \operatorname{Hom}(Z(\Sigma_1), Z(\Sigma_2))$$

De plus si $f: \Sigma_1 \to \Sigma_2$ est un difféomorphisme préservant l'orientation, alors il lui est associé un isomorphisme

$$Z(f) \in \operatorname{Iso}(Z(\Sigma_1), Z(\Sigma_2))$$

Enfin les axiomes d'Atiyah-Segal suivants sont vérifiés :

1. Soient Σ_1 , Σ_2 , Σ'_1 et Σ'_2 des surfaces compactes sans bords lisses. Soit M un cobordisme entre Σ_1 et Σ_2 ; soit M' un cobordisme entre Σ'_1 et Σ'_2 . Si g est un difféomorphisme préservant l'orientation entre M et M', alors le diagramme suivant est commutatif

2. Si M est un cobordisme entre Σ_1 et Σ ; si M' est un cobordisme entre Σ et Σ_2 ; si

f est un difféomorphisme préservant l'orientation de Σ alors

$$\begin{array}{c|c}
Z(\Sigma_1) \xrightarrow{Z(W)} Z(\Sigma_2) \\
Z(M) & \uparrow \\
Z(\Sigma) \xrightarrow{Z(f)} Z(\Sigma)
\end{array}$$

où W est le cobordisme entre Σ_1 et Σ_2 obtenu en recollant -M et M' le long de Σ à l'aide de f.

- 3. Si Σ est une surface compacte orientée sans bord lisse, l'opérateur linéaire $Z([0, 1] \times \Sigma)$ est l'identité de $Z(\Sigma)$.
- 4. On a les isomorphismes suivants

$$Z(\Sigma_1 \amalg \Sigma_2) \simeq Z(\Sigma_1) \otimes Z(\Sigma_2) \qquad V(\emptyset) \simeq \mathbb{K}$$

avec les diagrammes

 et

commutatifs.

5. Le difféomorphisme canonique entre $\Sigma_1 \amalg \Sigma_2$ et $\Sigma_2 \amalg \Sigma_1$ induit l'isomorphisme canonique entre $Z(\Sigma_1) \otimes Z(\Sigma_2)$ et $Z(\Sigma_2) \otimes Z(\Sigma_1)$.

En pratique la construction de la TQFT de Witten-Reshetikhin-Turaev ne peut se faire sans l'ajout de structures supplémentaires (voir [33]). En vue de décrire ces structures dites étendues, faisons quelques rappels de topologie algébrique. Soit Σ une surface compacte orientée sans bord, l'espace $H_1(\Sigma, \mathbb{Q})$ est muni d'une structure symplectique canonique : la forme d'intersection. Si M est une variété compacte orientée de dimension 3 de bord ∂M munie d'un difféomorphisme $\tau : \Sigma \to \partial M$, on peut définir un sous espace lagrangien naturel de $H_1(\Sigma, \mathbb{Q})$:

$$\lambda_{(M,\tau)} := \ker((i \circ \tau)_* : H_1(\Sigma, \mathbb{Q}) \to H_1(M, \mathbb{Q}))$$

où $i : \partial M \hookrightarrow M$ est l'inclusion. Rappelons aussi que pour 3 sous espaces lagrangiens L_1, L_2, L_3 d'un espace symplectique (E, ω) on peut définir l'indice de Maslov $\mu(L_1, L_2, L_3)$ comme la signature de l'application bilinéaire symétrique $\overline{\omega}$ construite sur l'espace vectoriel $\{(a, b, c) \in L_1 \times L_2 \times L_3 \mid a + b + c = 0\}$ comme

$$\overline{\omega}((a,b,c),(a',b',c')=\omega(a,b')$$

Définissons maintenant quelques points techniques.

Définition Soit Σ est une variété compacte orientée sans bord de dimension 2. Un ensemble fini de points en bandes orientés sur Σ est une sous variété orientée de Σ difféomorphe à une union disjointe finie d'intervalles [0, 1].

Définition Soit Σ est une variété compacte orientée sans bord de dimension 2, munie d'un ensemble fini de points en bandes orientés p et soit M une variété compacte orientée de dimension 3 de bord Σ . Un entrelacs en bande relatif à (Σ, p) dans M est un plongement $l: l_0 \times [0, 1] \to M$ où l_0 est une variété compacte orientée de dimension 1 (qui peut avoir du bord et non forcément connexe) tel que $\partial M \cap l = l(\partial l_0 \times [0, 1]) = p$, on demande de plus que cette intersection soit transverse et que ce plongement soit orienté avec une orientation induite sur $l(\partial l_0 \times [0, 1])$ coincidant avec celle de p.

Définition Soit Σ est une variété compacte orientée sans bord de dimension 2, munie d'un ensemble fini de points en bandes orientés p et soit M une variété compacte orientée de dimension 3 de bord Σ . Un graphe trivalent en bande relatif à (Σ, p) dans M est un plongement orienté d'un graphe en bande fini trivalent possédant certaines arêtes univalentes, on demande comme précédemment que les sommets en bandes univalents coincident avec orientations avec p et que ce soient les seules intersections avec le bord de M.

Remarque Dans la suite quand on représente graphiquement un segment qui n'est pas en bandes, cela signifie que la structure en bandes est parallèle au plan du tableau :

De même les orientations des points en bandes ne seront pas toujours indiquées.

Soit $r \geq 2$, on définit une catégorie \mathcal{C} comme suit.

Les objets sont les triplets (Σ, λ, p) où Σ est une variété compacte orientée sans bord de dimension 2, λ est un sous espace lagrangien de $H_1(\Sigma, \mathbb{Q})$ et p est un ensemble fini de points en bandes orientés et coloriés (à chaque bande est associé un nombre entre 0 et r-1) sur Σ .

Les morphismes entre deux objets $(\Sigma_1, \lambda_1, p_1)$ et $(\Sigma_2, \lambda_2, p_2)$ sont les quintuplets (M, i_1, i_2, n, l) où M est une variété compacte orientée de dimension 3 de bord $\partial M = \tilde{\Sigma_1} \amalg \tilde{\Sigma_2}$; $i_1 : -\Sigma_1 \rightarrow \tilde{\Sigma_1}$ et $i_2 : \Sigma_2 \rightarrow \tilde{\Sigma_2}$ sont deux difféomorphismes préservant les orientations; n est un entier relatif; l est un graphe trivalent en bande dans M relatif à $(\partial M, i_1(-p_1) \cup i_2(p_2))$ colorié (à chaque arête est associé un nombre entre 0 et r - 1) avec compatibilité au bord. On identifie deux morphismes (M', i'_1, i'_2, n', l') et (M, i_1, i_2, n, l) entre $(\Sigma_1, \lambda_1, p_1)$ et $(\Sigma_2, \lambda_2, p_2)$ lorsqu'il existe $\psi : M' \rightarrow M$ difféomorphismes préservant l'orientation tel que

$$i_1^{-1}\circ\psi\circ i_1'=id_{\Sigma_1},\,i_2^{-1}\circ\psi\circ i_2'=id_{\Sigma_2},\,n=n'$$
 et $\psi(l')$ est isotope à l

Soient

$$(M, i_1, i_2, n, l) \in \operatorname{Hom}_{\mathcal{C}}((\Sigma_1, \lambda_1, p_1), (\Sigma_2, \lambda_2, p_2))$$

 et

$$(N, j_1, j_2, m, l') \in \operatorname{Hom}_{\mathcal{C}}((\Sigma_2, \lambda_2, p_2), (\Sigma_3, \lambda_3, p_3))$$

la composition de (M, i_1, i_2, n, l) et de (N, j_1, j_2, m, l') est définie par

$$\left(M \underset{\Sigma_2}{\cup} N, i_1, j_2, m + n - \mu\left(\tilde{\lambda}_1, \lambda_2, \tilde{\lambda}_3\right), l \underset{p_2}{\cup} l'\right)$$

où $\tilde{\lambda}_1 = (i_2)^{-1}(i_1(\lambda_1))$ et $\tilde{\lambda}_3 = (j_1)^{-1}(j_2(\lambda_3)).$

La SU(2) TQFT construite par Christian Blanchet, Nathan Habegger, Gregor Masbaum et Pierre Vogel (voir [6]) est un foncteur de \mathcal{C} dans la catégorie des \mathbb{C} -espaces vectoriels de dimensions finis, ce foncteur sera noté Z_r et dépend d'un choix de racine 4r-ième de l'unité A_r . Nous travaillerons dans toute la suite dans le cadre de [6], notons que dans ce papier les structures étendues utilisées ne sont pas les lagrangiens mais sont les p_1 -structures. De plus le corps de base considéré est une extension quadratique de $\mathbb{Q}[A_r]$ (nous nous plaçons sur \mathbb{C} pour simplifier l'approche). Pour (Σ, λ, p) un objet de \mathcal{C} on note $V_{2r}(\Sigma, \lambda, p) := Z_r(\Sigma, \lambda, p)$.

La construction de ce foncteur utilise la construction universelle dont nous rappelons brièvement le principe : il existe un invariant $I_{r,A_r}(M,L,n) \in \mathbb{C}$ pour $(M,L,n) \in$ $\operatorname{Hom}_{\mathcal{C}}(\emptyset, \emptyset)$. Maintenant soit (Σ, λ, p) un objet de \mathcal{C} . Considérons l'espace

$$\mathcal{V}_r(\Sigma,\lambda,p) := \bigoplus_{X \in \operatorname{Hom}_{\mathcal{C}}(\emptyset,(\Sigma,\lambda,p))} \mathbb{C}.X$$

on peut définir une forme sesquilinéaire

$$\Delta: \mathcal{V}_r(\Sigma, \lambda, p) \otimes \mathcal{V}_r(\Sigma, \lambda, p) \longrightarrow \mathbb{C}$$

où $\Delta((M_1, j_1, n_1, L_1) \otimes (M_2, j_2, n_2, L_2))$ vaut

$$I_{r}(M_{1} \underset{\Sigma}{\cup} -M_{2}, n_{1} + n_{2} - \mu\left(\lambda_{(M_{1}, j_{1})}, \lambda_{2}, \lambda_{(M_{2}, j_{2})}\right), L_{1} \underset{p}{\cup} -L_{2})$$

notons $\ker_q(\Delta)$ le noyau à gauche de Δ on a alors

$$V_{2r}(\Sigma, \lambda, p) := \mathcal{V}_r(\Sigma, \lambda, p) / \ker_g(\Delta)$$

et Δ devient une forme hermitienne sur $V_{2r}(\Sigma, \lambda, p)$, sa signature dépend du choix de la racine A_r .

Si Σ est une surface compacte orientée à bord, on note $\hat{\Sigma}$ la surface sans bord obtenue en collant à Σ des disques le long de son bord. Si chaque disque que l'on colle est muni d'un point en bande orienté, on obtient après recollement en ensemble de points en bandes orientés p sur $\hat{\Sigma}$. Si $c : p \to \{0, ..., r - 1\}$ est un coloriage de p, on note p_c l'ensemble de points en bandes orientés coloriés sur $\hat{\Sigma}$ associé. Tout cela permet d'appliquer le foncteur Z_r aux surfaces à bords en définissant

$$V_{2r}(\Sigma,\lambda) = \bigoplus_{c \in \{0,\dots,r-1\}^p} V_{2r}(\hat{\Sigma}, p_c, \lambda)$$

où λ est un lagrangien de $H_1(\hat{\Sigma}, \mathbb{Q})$.

1.1.2 La théorie skein

Nous allons maintenant voir comment la SU(2) TQFT de [6] a été construite à partir de la théorie skein.

Définition Soit M une variété compacte orientée de bord ∂M , on suppose que ce bord est muni d'un ensemble fini de points en bandes orientés p. On définit le skein module $S(M, (\partial M, p))$ comme le $\mathbb{C}[A, A^{-1}]$ -module libre engendré par les entrelacs en bandes dans M relatifs à $(\partial M, p)$ modulo les relations locales suivantes

L'algèbre de Temperley-Lieb Pour $n \ge 0$, soit l_n un ensemble standard de points en bandes sur D^2 , on définit l'algèbroide de Temperley-Lieb (on renvoie à [6, section 1.D] pour la définition d'algébroide) pour $m, n \ge 0$

$$_{m}T_{n} := S(D^{2} \times [0, 1], (\partial (D^{2} \times [0, 1]), -l_{m} \times 0 \cup l_{n} \times 1))$$

l'empilement du bas vers le haut des entrelacs permet d'avoir un produit

$$_{a}T_{b}\otimes _{b}T_{c}\rightarrow _{a}T_{c}\qquad\forall a,b,c\geq 0$$

donnant la structure d'algébroide, en particulier ${}_{n}T_{n}$ est une algèbre. Par exemple le produit de

$$\bigvee \quad \in {}_4T_2 \quad \text{et} \quad \bigcap \quad \in {}_2T_4$$

donne

 ${}_mT_n$ est un module libre sur $\mathbb{C}[A, A^{-1}]$, si m + n est impaire dim $({}_mT_n) = 0$ sinon la dimension de ${}_mT_n$ est donnée par le (m + n)-ième nombre de Catalan

$$\dim({}_mT_n) = \left(\begin{array}{c} m+n\\ (m+n)/2 \end{array}\right) - \left(\begin{array}{c} m+n\\ (m+n)/2+1 \end{array}\right)$$

de plus une base est donnée par les diagrammes plans sans croisements et sans cercles triviaux. On note $\epsilon : {}_{n}T_{n} \to \mathbb{C}[A, A^{-1}]$ le morphisme d'algèbre qui vaut 1 sur l'élément

neutre de ${}_{n}T_{n}$ pour la multiplication et 0 sur les autres diagrammes plans sans croisements et sans cercles trivaux.

Il est bien connu qu'il existe un idempotent $f_n \in {}_nT_n$ appelé idempotent de Jones-Wenzl tel que

$$xf_n = f_n x = \epsilon(x)f_n \qquad \forall x \in {}_n T_n$$

on note graphiquement f_n par

Notons que la juxtaposition horizontale donne aussi un produit

$$_{a}T_{b} \otimes _{c}T_{d} \rightarrow _{a+c}T_{b+d} \qquad \forall a, b, c, d \ge 0$$

on peut en particulier voir un élément de ${}_mT_n$ dans ${}_{m+1}T_{n+1}$. Les idempotents de Jones-Wenzl vérifient la relation de récurrence suivante pour $n \ge 1$

où pour tout $k \ge 0$ on a $[k] = \frac{A^{2k} - A^{-2k}}{A^2 - A^{-2}}.$

Remarquons que quand A est spécialisé en une racine de l'unité, seuls un nombre fini d'idempotents de Jones-Wenzl existent. En effet soit $r \ge 2$ et soit A_r une racine 4r-ième primitive de l'unité, si l'on spécialise A en A_r , la formule récursive nous indique que seuls $f_0, ..., f_{r-1}$ sont définis car $[r]_{|_{A=A_r}} = 0$ et $[k]_{|_{A=A_r}} \ne 0$ pour $0 \le k \le r-1$.

Skein module colorié Soit M une variété compacte orientée de dimension 3 de bord ∂M , on suppose que ∂M est muni d'un ensemble de points en bandes $p = \{p_1, ..., p_m\}$ colorié c'est à dire qu'à chaque point en bande p_i est associé un entier positif n_i , on note $n = \{n_1, ..., n_m\}$. En remplaçant chaque p_i par n_i copies parallèles (dans un voisinage suffisamment petit de p_i), on obtient un nouvel ensemble de points en bandes que l'on note p^n .

Pour ne pas alourdir les notations, on note

$$S(\partial M \times [0,1], p^n) := S(\partial M \times [0,1], (\partial (\partial M \times [0,1]), -p^n \times 0 \cup p^n \times 1))$$

On peut modifier $p^n \times [0,1] \in S(\partial M \times [0,1], p^n)$ en insérant au milieu de n_i copies parallèles de p_i un idempotent f_{n_i} , on obtient un élément $\mathcal{P} \in S(\partial M \times [0,1], p^n)$ qui donne naturellement un morphisme

$$\mathcal{P}: S(\partial M \times [0,1], p^n) \to S(\partial M \times [0,1], p^n)$$

maintenant on définit le skein module colorié $S(M, (\partial M, p))$ comme l'image de \mathcal{P} .

Nous allons maintenant expliquer les liens entre le skein module colorié et la TQFT. Soit $r \ge 2$ et soit une A_r une racine 4r-ième primitive de l'unité. Soient M et M' deux variétés compactes orientées de dimension 3 de bord difféomorphes à Σ , on suppose Σ muni d'un ensemble fini de points en bandes coloriés $p = \{p_1, ..., p_m\}$ (par des couleurs $n = \{n_1, ..., n_m\}$ toutes entre 0 et r-1). Soit λ un sous espace lagrangien de $H_1(\Sigma, \mathbb{Q})$. Si Lest un entrelacs en bandes dans $(M, (\partial M, p^n))$ on a $\mathcal{P}(L) \in S(M, (\partial M, p))$. On construit alors un graphe en bande colorié G_L dans $(M, (\partial M, p))$ à partir de $\mathcal{P}(L)$ de la façon suivante : on modifie au voisinage d'un point en bande colorié par n ainsi

(où les points coloriés de p sont en haut dans la figure) et on colorie par 1 toutes composantes restantes. De plus, comme l'invariant I_r vérifie les relations skein, on a une application naturelle

$$\Psi_{r,A_r}: S_{A_r}(M, (\partial M, p)) \to V_{2r}(\Sigma, p, \lambda)$$

définie par $\Psi_{r,A_r}(L) = Z_r(M,G_L,0)$ et aussi une application sesquilinéaire

$$\Delta_{r,A_r}^{(M,M')}: S_{A_r}(M,(\partial M,p)) \otimes S_{A_r}(M',(\partial M',p)) \longrightarrow \mathbb{C}$$

définie par $\Delta_{r,A_r}^{(M,M')}(L \otimes L') = Z_r(M \underset{\Sigma}{\cup} -M', G_L \underset{p}{\cup} -G'_L, -\mu(\lambda_M, \lambda, \lambda_{M'})).$ D'après [6]

Theorem 1.1.1. Si M est connexe alors l'application Ψ_{r,A_r} est surjective et son noyau est le noyau à gauche de $\Delta_{r,A_r}^{(M,M')}$ que l'on note $\ker_g(\Delta_{r,A_r}^{(M,M')})$.

Remarque Ce théorème résulte de la construction universelle, des propriétés de 1-chirurgies et des propriétés de 2-chirurgies de l'invariant I_r .

Tentons maintenant de mieux décrire l'isomorphisme du théorème précédent.

Définition On dit qu'un triplet d'entiers positifs a, b, c est admissible si

$$a + b + c \equiv 0 \quad [2]$$
$$|a - c| \le b \le a + c$$

Définition Soit G un graphe en bande colorié dans $(M, (\partial M, p))$. On dit que le coloriage de G est admissible si pour tout sommet, le triplet formé des couleurs des arêtes adjacentes est admissible.

Définition Soit $r \ge 2$ et soit G un graphe en bande colorié dans $(M, (\partial M, p))$. On dit que le coloriage de G est r-admissible si toutes les couleurs sont entre 0 et r - 2 et pour tout sommet, le triplet formé des couleurs des arêtes adjacentes est admissible avec la condition supplémentaire $a + b + c \le 2r - 4$

Soit G est un graphe en bande colorié dans $(M, (\partial M, p))$ définissons l'élément $L_G \in S_{A_r}(M, (\partial M, p))$ qui vaut 0 si le coloriage n'est pas admissible et quand le coloriage est admissible on remplace localement chaque arête coloriée par n par f_n puis au niveau des sommets trivalents on procède comme suit

où
$$i = \frac{b+c-a}{2}, j = \frac{a+c-b}{2}$$
 et $k = \frac{a+b-c}{2}$. Il s'avère que

$$\Psi_{r,A_r}(L_G) = Z_r(M,0,G)$$

Remarque Si le coloriage de G n'est pas r-admissible (mais admissible) alors $\Psi_{r,A_r}(L_G) = 0$ par conséquent L_G donne un élément de $\ker_g(\Delta_{r,A_r}^{(M,M')})$. Notons qu'exhiber une base de $\ker_g(\Delta_{r,A_r}^{(M,M')})$ dans le cas général est une question non explorée à ce jour, on renvoie au chapitre 4 qui répond partiellement à ce problème dans le cas des sphères marquées où le noyau $\ker_g(\Delta_{r,A_r}^{(B^3,B^3)})$ est de dimension finie car le skein module lui même est de dimension fini (alors que dans le cas général $\ker_g(\Delta_{r,A_r}^{(M,M')})$ est de dimension infinie).

Par ailleurs on peut décrire des bases de $V_{2r}(\Sigma, p, \lambda)$ graphiquement. En effet soit (Σ, p, λ) un objet de \mathcal{C} , on note Σ_p la surface Σ privée d'un petit disque ouvert autour de chaque point en bande colorié de p. On suppose que Σ_p est de caractéristique d'Euler strictement négative et soit \mathcal{P} une décomposition en pantalons de Σ_p . Soit $H_{\mathcal{P}}$ le corps en anses de bord Σ associé à \mathcal{P} et soit $G_{\mathcal{P}}$ un graphe en bande dual à \mathcal{P} dans $H_{\mathcal{P}}$. Si c est un coloriage de $G_{\mathcal{P}}$ (une fonction qui associe à chaque arête un entier entre 0 et r-1 tel que les couleurs sur arêtes univalentes soient celles de p) : on note $G_{\mathcal{P}}^c \in V_{2r}(\Sigma, p, \lambda)$ l'élément correspondant.

Theorem 1.1.2. $\{G_{\mathcal{P}}^c\}_{c \text{ r-admissible}}$ est une base orthogonale (par rapport à Δ) de $V_{2r}(\Sigma, p, \lambda)$.

Exemple Considérons Σ_2 la surface de genre 2 et soit λ un lagrangien de $H_1(\Sigma_2, \mathbb{Q})$, regardons la décomposition en pantalons suivante

on a que

est un graphe dual à cette décomposition en pantalons (le corps en anses est clair ici), on a donc que

avec a, b, c r-admissibles est une base. En particulier on en déduit par comptage que

$$\dim(V_{2r}(\Sigma_2, \emptyset, \lambda)) = \frac{r^3 - r}{6}$$

La dimension est plus généralement donnée par la célèbre formule de Verlinde (voir [6, Corollary 1.16])

Theorem 1.1.3. Soit Σ_g une surface de genre $g \ge 1$ et soit $r \ge 2$ on a

$$\dim(V_{2r}(\Sigma_g, \emptyset, \lambda)) = \left(\frac{r}{2}\right)^{g-1} \sum_{j=1}^{r-1} \left(\sin\frac{\pi j}{r}\right)^{2-2g}$$

où λ est un lagrangien quelconque.

1.2 Représentations du mapping class group

Regardons maintenant comment construire des représentations des mapping class groups.

1.2.1 Surfaces sans points en bandes

Soit Σ une surface compacte connexe sans bord orientée. On note $\Gamma(\Sigma)$ son mapping class group, on rappelle que c'est le groupe des difféomorphismes orientés de Σ modulo le sous groupe normal des difféomorphismes de Σ isotopes à l'identité de Σ .

Soit $r \ge 2$ et soit A_r une racine 4r-ième primitive de l'unité, on souhaite construire une représentation projective

$$\rho_{r,A_r}: \Gamma(\Sigma) \to \mathbb{P}\operatorname{Aut}(V_{2r}(\Sigma, \emptyset, \lambda))$$

où λ est un lagrangien quelconque de $H_1(\Sigma, \mathbb{Q})$. L'approche naturelle est d'associer à un élément de $\Gamma(\Sigma)$ un cobordisme canonique de $\operatorname{Hom}_{\mathcal{C}}((\Sigma, \emptyset, \lambda), (\Sigma, \emptyset, \lambda))$ et appliquer le

foncteur Z_r . Soit f un difféomorphisme orienté de Σ , on regarde $(\Sigma \times [0, 1], \text{id}, f^{-1}, 0, \emptyset) \in$ Hom_{\mathcal{C}} $((\Sigma, \emptyset, \lambda), (\Sigma, \emptyset, \lambda))$ qui ne dépend que la classe d'isotopie de f, ainsi on peut définir

$$\rho_{r,A_r}([f]) := Z_r(\Sigma \times [0,1], \mathrm{id}, f^{-1}, 0, \emptyset) \in \mathrm{End}(V_{2r}(\Sigma, \emptyset, \lambda))$$

Avant d'étudier les propriétés multiplicatives de ρ_{r,A_r} , illustrons cette action sur un exemple simple.

Exemple Si Σ est la surface de genre 2 et t_{γ} est un twist de Dehn suivant la courbe γ suivante

considérons H le corps en anses standard dans lequel γ borde un disque, le twist de Dehn (un difféomorphisme dans cette classe) se prolonge au corps en anses (on note toujours t_{γ} ce prolongement). On va décrire l'action de $\rho_r(t_{\gamma})$ sur $V_{2r}(\Sigma, \emptyset, \lambda_H)$ (où on rappelle que λ_H est le lagrangien canonique associé à H). Maintenant soit G un graphe en bande colorié dans H et n un entier, dans \mathcal{C} on a

$$(H, n, G) \circ (\Sigma \times [0, 1], \mathrm{id}, t_{\gamma}, 0, \emptyset) = (H, n - \mu(\lambda_H, \lambda_H, (t_{\gamma}^{-1})_*(\lambda_H)), t_{\gamma}(G))$$

or $\mu(\lambda_H, \lambda_H, (t_{\gamma})_*(\lambda_H)) = 0$ donc si $r \ge 2$ et A_r est une racine 4r-ième primitive de l'unité

$$\rho_r(t_\gamma)(Z_r(H, n, G)) = Z_r(H, n, t_\gamma(G))$$

En particulier si a, b, c est un triplet *r*-admissible en notant

$$G_{a,b,c} = a + b + c$$

on a

$$\rho_r(t_\gamma)(G_{a,b,c}) = \begin{array}{ccc} & & & \\ & &$$

$$= (-A_r)^{a(a+2)}G_{a,b,c}$$

Revenons maintenant sur les propriétés multiplicatives de ρ_{r,A_r} . Soient $[f], [g] \in \Gamma(\Sigma)$, on calcule

$$\rho_{r,A_r}([f]) \circ \rho_{r,A_r}([g]) = Z_r(\Sigma \times [0,1], \mathrm{id}, f^{-1}, 0, \emptyset) \circ Z_r(\Sigma \times [0,1], \mathrm{id}, g^{-1}, 0, \emptyset)$$

= $Z_r(\Sigma \times [0,1], \mathrm{id}, (fg)^{-1}, -\mu(g_*(\lambda), \lambda, f_*^{-1}(\lambda)), \emptyset)$

mais

$$Z_r(\Sigma \times [0,1], \mathrm{id}, (fg)^{-1}, -\mu(g_*(\lambda), \lambda, f_*^{-1}(\lambda)), \emptyset) = \alpha Z_r(\Sigma \times [0,1], \mathrm{id}, (fg)^{-1}, 0, \emptyset)$$

où α est une racine de l'unité, en particulier ρ_{r,A_r} est à valeurs dans $\operatorname{Aut}(V_{2r}(\Sigma, \emptyset, \lambda))$ et est une représentation projective. Notons qu'en travaillant dans $\operatorname{End}(V_{2r}(\Sigma, \emptyset, \lambda))$ on a une représentation linéaire, plus précisément

$$\rho_{r,A_r}^K : \Gamma(\Sigma) \to \operatorname{Aut}\left(\operatorname{End}(V_{2r}(\Sigma, \emptyset, \lambda))\right)$$

définie pour $X \in \operatorname{End}(V_{2r}(\Sigma, \emptyset, \lambda))$ et $[f] \in \Gamma(\Sigma)$ par

$$\rho_{r,A_r}^K([f]) \cdot X = \rho_{r,A_r}([f]) X \rho_{r,A_r}([f])^{-1}$$

Dans [15] cette représentation projective est relevée en une représentation linéaire d'une extension centrale naturelle de $\Gamma(\Sigma)$, en effet soit λ un lagrangien quelconque de $H_1(\Sigma, \mathbb{Q})$ et soit le groupe

$$\tilde{\Gamma}(\Sigma) = \{ C(f,n) \mid f \in \Gamma(\Sigma), \ n \in \mathbb{Z} \}$$
(1.1)

où la multiplication est donnée par

$$C(f,n).C(g,m) = C(fg,n+m-\mu(g_*(\lambda),\lambda,f_*^{-1}(\lambda)))$$

on a clairement la suite exacte

$$0 \longrightarrow \mathbb{Z} \longrightarrow \tilde{\Gamma}(\Sigma) \longrightarrow \Gamma(\Sigma) \longrightarrow 1$$

et maintenant

$$\rho_{r,A_r}: C(f,n) \in \tilde{\Gamma}(\Sigma) \mapsto Z_r(\Sigma \times [0,1], \mathrm{id}, f, 0, \emptyset) \in \mathrm{Aut}(V_{2r}(\Sigma, \emptyset, \lambda))$$

est une représentation linéaire.

1.2.2 Surfaces avec points en bandes

Soit $r \ge 2$ et A_r une racine 4r-ième primitive de l'unité et soit Σ une surface compacte sans bord. Soit p un ensemble de points en bandes orienté colorés de Σ . On notera abusivement par $p = \{p_1, ..., p_n\}$ l'ensemble des points en bandes sans couleurs. On peut définir le ribbon mapping class group $R\Gamma(\Sigma, p)$ comme le groupe des difféomorphismes orientés de Σ préservant globalement l'ensemble des points en bandes marqués avec orientation (le fait que l'orientation soit préservée est très important) modulo isotopies préservant globalement les points en bandes avec orientations ; ainsi lorsque tous les points en bandes de p ont la même couleur on peut définir une représentation projective :

$$[f] \in R\Gamma(\Sigma, p) \mapsto Z_r(\Sigma \times [0, 1], \mathrm{id}, f^{-1}, 0, p \times [0, 1]) \in \mathbb{P}\mathrm{Aut}(V_{2r}(\Sigma, p, \lambda))$$

Si tous les points en bandes de p n'ont pas la même couleur il faut considérer le ribbon mapping class group pur $PR\Gamma(\Sigma, p)$: c'est à dire les difféomorphismes de Σ étant l'identité sur p modulo isotopies. Dans ce cas la définition précédente peut naturellement être étendue.

En général dans la littérature le mapping class group qui est considéré est celui d'une surface avec points marqués (sans structures en bandes). Plus précisément si l'on contracte les points en bandes de p en un ensemble de points $x = \{x_1, ..., x_n\}$, on peut considérer le groupe $\Gamma(\Sigma, x)$ des difféomorphismes orientés de Σ permutant les points de x modulo isotopies. En modifiant localement chaque difféomorphisme de Σ au voisinage de x, on voit qu'il existe une surjection

$$R\Gamma(\Sigma, p) \twoheadrightarrow \Gamma(\Sigma, x)$$

dont le noyau est le sous groupe isomorphe à \mathbb{Z}^n engendré par les twists de Dehn autours des points $x_1, ..., x_n$. Ainsi on a la suite exacte suivante

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow R\Gamma(\Sigma, p) \longrightarrow \Gamma(\Sigma, x) \longrightarrow 1$$

Dans le cas où toutes les couleurs des points en bandes de p sont les mêmes, on construit naturellement une représentation projective

$$\Gamma(\Sigma, x) \to \mathbb{P}\operatorname{Aut}(V_{2r}(\Sigma, p, \lambda))$$

en choisissant un relevé des générateurs de $\Gamma(\Sigma, x)$ à $R\Gamma(\Sigma, p)$ (cette représentation dépend bien entendu de ce choix).

Si Σ est une surface à bord, on note $(\hat{\Sigma}, p)$ la surface sans bord munie de points en bandes orientées canonique obtenue à partir de Σ et $(\hat{\Sigma}, x)$ la surface sans bord munie de points obtenue en contractant les points de p, on peut définir une représentation projective

$$\rho_{r,A_r}: \Gamma(\hat{\Sigma}, x) \to \mathbb{P}\operatorname{Aut}\left(\bigoplus_{c \in \{0, \dots, r-1\}^p} V_{2r}(\hat{\Sigma}, p_c, \lambda)\right)$$

en particulier si $\phi \in \Gamma(\hat{\Sigma}, x)$ fixe chaque point de x on a

$$\rho_{r,A_r}(\phi) \in \bigoplus_{c \in \{0,\dots,r-1\}^p} \operatorname{Aut} V_{2r}(\hat{\Sigma}, p_c, \lambda)$$

défini à un facteur de phase près.

1.2.3 Exemple des sphères pointées

Traitons le cas de la sphère pointée, fixons $n \ge 1$. Soit $p = \{p_1, ..., p_n\}$ n points en bandes orientés sur la sphère disposés de la sorte

On note $x = \{x_1, ..., x_n\}$ l'ensemble des points obtenus en contractant les bandes de p. On note M(0, n) le groupe $\Gamma(S^2, x)$. Soit ψ un difféomorphisme de la sphère préservant l'orientation S^2 permutant les points de p avec orientation. Il est connu que tous les difféomorphismes de S^2 préservant l'orientation sont isotopes à l'identité (dans le groupe des difféomorphismes préservant l'orientation de S^2 mais ne préservant pas forcément p), soit

$$F:[0,1]\times S^2\to S^2$$

une isotopie de l'identité à ψ c'est à dire telle que

$$F(0,x) = x$$
 $F(1,x) = \psi(x)$ $\forall x \in S^2$

on peut alors définir

$$L_{\psi} := F([0,1] \times p)$$

qui est un entrelacs en bandes dans $S^2 \times [0,1]$ relatif à $(\partial (S^2 \times [0,1]), -p \times 0 \cup p \times 1)$ Maintenant si $r \ge 2, r-1 \ge N \ge 0$ et A_r une racine 4r-ième primitive de l'unité on peut vérifier que

$$Z_r(S^2 \times [0, 1], \mathrm{id}, \mathrm{id}, k, L_{\psi}) = Z_r(S^2 \times [0, 1], \mathrm{id}, \psi^{-1}, k, p \times [0, 1])$$

pour tout entier k. Rappelons que $H_1(S^2, \mathbb{Q}) = 0$, par conséquent l'extension centrale de $R\Gamma(S^2, p)$ définie par (1.1) est triviale et on a une représentation

$$\tilde{\rho}_{r,A_r}: R\Gamma(S^2, p) \to \operatorname{Aut}(V_{2r}(S^2, (N)_n))$$

définie par

$$\tilde{\rho}_{r,A_r}([\psi]) = Z_r(S^2 \times [0,1], \mathrm{id}, \mathrm{id}, 0, L_{\psi}) \qquad \forall [\psi] \in R\Gamma(S^2, p)$$

où $(N)_n$ signifie que l'on colorie tous les points en bandes p par la même couleur N.

Définition On note $\tilde{M}(0,n)$ le groupe $R\Gamma(S^2,p)$.

Pour $1 \leq i \leq n-1$ on définit ψ_i comme le demi-twist (le difféomorphisme) entre le *i*-ième point et le (i + 1)-ième point modifié par des demi-twist sur les bandes en sens contraires de la demie rotation globale. Concrètement L_{ψ_i} est

On note σ_i la classe de ψ_i dans M(0, n) et $\tilde{\sigma}_i$ la classe de ψ_i dans $\tilde{M}(0, n)$. On rappelle (voir [4]) que M(0, n) est engendré par $\sigma_1, ..., \sigma_{n-1}$ avec les relations

$$\sigma_i \sigma_j = \sigma_j \sigma_i \qquad \qquad \text{quand} \quad |i - j| > 1 \qquad (1.2)$$

$$\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j \qquad \qquad \text{quand} \quad |i - j| = 1 \qquad (1.3)$$

$$\sigma_1 \dots \sigma_{n-1} \sigma_{n-1} \dots \sigma_1 = 1 \tag{1.4}$$

$$(\sigma_1...\sigma_{n-1})^n = 1 \tag{1.5}$$

Maintenant si l'on définit ρ_{r,A_r} par

$$\forall i = 1, ..., n - 1 \qquad \rho_{r,A_r}(\sigma_i) = \tilde{\rho}_{r,A_r}(\tilde{\sigma}_i) \tag{1.6}$$

alors ρ_{r,A_r} est une représentation projective.

1.3 Appendice : Obtenir une représentation linéaire de M(0, n)

Dans cet appendice on montre comment on peut modifier la représentation projective ρ_{r,A_r} pour obtenir une représentation linéaire $\hat{\rho}_{r,A_r}$. Nous allons utiliser la présentation de M(0,n) et la définition sur les générateurs de ρ_{r,A_r} (donnée par (1.6)), en modifiant cette définition nous allons obtenir une représentation linéaire $\hat{\rho}_{r,A_r}$. Ce résultat ne sera pas utilisé dans le reste de la thèse.

Remarque Nous étudierons dans le chapitre 4 une représentation projective noté ρ (voir chapitre 4 section 4.2.3) où le choix du facteur de phase sur les générateurs ne sera pas celui qui donne $\hat{\rho}_{r,A_r}$. La représentation ρ sera une représentation projective non linéaire.

On va examiner les relations (1.2), (1.3), (1.4) et (1.5). Tout d'abord, on remarque que par isotopies les relations (1.2) et (1.3) restent vérifiées par ρ_{r,A_r} . Examinons maintenant (1.4) et (1.5). Soit u un entrelacs en bandes colorié dans B^3 relatif à (S^2, p) que l'on représente par

$$u = \begin{bmatrix} \begin{smallmatrix} \mathsf{N} \ \mathsf{N} & \mathsf{M} & \cdots & \mathsf{N} \ \mathsf{N} \\ \downarrow & \downarrow & \cdots & \downarrow & \downarrow \end{bmatrix}$$

u peut être vu dans $V_{2r}(S^2, (N)_n)$. De plus, on a

maintenant on utilise le fait que

donc

$$(\rho_{r,A_r}(\sigma_1)...\rho_{r,A_r}(\sigma_{n-1}))^n u = (-A_r)^{-nN(N+2)}u$$

De même pour la relation (1.5)

On a donc

$$\left(\rho_{r,A_r}(\sigma_1) \dots \rho_{r,A_r}(\sigma_{n-1})^2 \dots \rho_{r,A_r}(\sigma_1) \right) u = \left((-A_r)^{-N(N+2)} \right)^2 u$$
$$(\rho_{r,A_r}(\sigma_1) \dots \rho_{r,A_r}(\sigma_{n-1}))^n u = (-A_r)^{-nN(N+2)} u$$

Comme tout élément de $V_{2r}(S^2, (N)_n)$ peut être vu comme une combinaison linéaire d'entrelacs en bandes, on conclut que

$$\left(\rho_{r,A_r}(\sigma_1) \dots \rho_{r,A_r}(\sigma_{n-1})^2 \dots \rho_{r,A_r}(\sigma_1) \right) = \left((-A_r)^{-N(N+2)} \right)^2 \operatorname{Id} \left(\rho_{r,A_r}(\sigma_1) \dots \rho_{r,A_r}(\sigma_{n-1}) \right)^n = \left((-A_r)^{-N(N+2)} \right)^n \operatorname{Id}$$

On peut maintenant vérifier que si l'on définit pour tout $1 \leq j \leq n-1$

$$\hat{\rho}_{r,A_r}(\sigma_j) = \theta \rho_{r,A_r}(\sigma_j)$$

où θ vérifie

$$\theta^{n-1} = (-A_r)^{N(N+2)}$$

alors $\hat{\rho}_{r,A_r}: M(0,n) \to \operatorname{Aut}(V_{2r}(S^2,(N)_n))$ est bien une représentation linéaire de M(0,n).

Chapitre 2

Résultats connus

2.1 Le théorème de fidélité asymptotique

Nous allons discuter ici du théorème de fidélité asymptotique. Cette propriété des représentations quantiques dit que si ϕ est un élément non central du mapping class group d'une surface Σ alors, pour r assez grand, l'action de ϕ sur $V_r(\Sigma, \lambda)$ est projectivement non triviale c'est à dire que ce n'est pas une homothétie.

Expliquons brièvement comment les opérateurs courbes apparaissent naturellement dans la preuve de ce théorème. Soit $r \ge 2$ et A_r une racine 4r-ième primitive de l'unité. Soit Σ une surface compacte sans bord et p un ensemble fini de points en bandes orientés coloriés. Soit γ une multicourbe sur $\Sigma - p$ (réunion disjointe de courbe simples fermées). Le cobordisme $C_{\gamma} = (\Sigma \times [0, 1], \text{id}, \text{id}, 0, \gamma \times [1/4, 3/4] \cup p \times [0, 1])$ définit un opérateur appelé opérateur courbe associé à γ :

$$Z_{r,A_r}(\gamma) := Z_r(C_{\gamma}) \in \operatorname{End}(V_{2r}(\Sigma, p, \lambda)))$$

qui ne dépend que de la classe d'isotopie de γ . Soit $\phi \in R\Gamma(\Sigma, p)$ on peut vérifier par égalité des cobordismes que l'action du mapping class group sur les opérateurs courbes est équivariante en ce sens que

$$\rho_{r,A_r}(\phi) Z_{r,A_r}(\gamma) (\rho_{r,A_r}(\phi))^{-1} = Z_{r,A_r}(\phi(\gamma))$$

Par conséquent pour démontrer qu'un élément $\phi \in R\Gamma(\Sigma)$ admet une action projectivement non triviale, il suffit d'exhiber une multicourbe γ sur $\Sigma - p$ telle que

$$Z_{r,A_r}(\gamma) \neq Z_{r,A_r}(\phi(\gamma))$$

J.E.Andersen a été le premier à introduire cette idée dans le cadre de la quantification géométrique où les analogues des opérateurs courbes sont les opérateurs de Toeplitz. Sans trop rentrer dans les détails, en notant ρ_k^{geom} la représentation projective du mapping class group provenant de la quantification géométrique de la variété des SU(2) caractères au niveau k, il est démontré (voir [1])

Theorem 2.1.1. (Andersen [1]) Si Σ est une surface de genre au moins 2 et $\phi \in \Gamma(\Sigma)$ est un élément non central alors $\rho_k^{\text{geom}}(\phi)$ est n'est pas une homothétie pour k assez grand.

Michael H Freedman, Kevin Walker et Zhenghan Wang ont ensuite donné la preuve de la fidélité asymptotique dans le cadre de la théorie skein (voir [10]) **Theorem 2.1.2.** (Freedman, Walker, Wang [10]) Soit Σ une surface sans bord. Soit $\phi \in \Gamma(\Sigma)$ un élément non central, alors il existe un entier $r_0(\phi)$ tel que pour tout $r \ge r_0(\phi)$ et toute racine 4r-ième primitive de l'unité A_r , l'opérateur $\rho_{r,A_r}(\phi) \in \operatorname{Aut}(V_{2r}(\Sigma, \emptyset, \lambda))$ n'est pas une homothétie.

Enfin Julien Marché et Majid Narimannejad ont trouvé l'asymptotique des traces des opérateurs courbes permettant de redémontrer ce théorème en théorie skein. Plus précisément si Σ est une surface sans bord compacte, on peut considérer la variété des SU(2)caractères $\mathcal{M}(\Sigma, SU(2))$ qui est symplectique (sur le sous ensemble des représentations irréductibles de $\pi_1(\Sigma)$ dans SU(2)), en particulier on peut associer à une multicourbe γ une fonction naturelle

$$f_{\gamma}: \mathcal{M}(\Sigma, SU(2)) \to \mathbb{R}$$

et il est dans [20] démontré que

Theorem 2.1.3. (Marché, Narimannejad voir [20]) Si Σ est une surface de genre $g \ge 1$ sans bord compacte. On pose d(g) = 3g - 3 lorsque $g \ge 2$ et 1 sinon, on a

$$\left(\frac{1}{r}\right)^{d(g)} \operatorname{tr}(Z_{r,A_r}(\gamma)) = \int_{\mathcal{M}(\Sigma, SU(2))} f_{\gamma} \, d\mu$$

où $d\mu$ est la mesure donnée par la forme symplectique canonique et $A_r = -\exp(\frac{i\pi}{2r})$.

La fidélité asymptotique en découle (voir [20]).

2.2 La Conjecture AMU

Dans la suite pour ne pas alourdir le langage on utilisera l'expression action quantique pour désigner l'action d'un élément du mapping class group sur un espace $V_r(\Sigma, \lambda)$.

Il faut noter que la fidélité des représentations quantiques n'est que asymptotique, en effet aucune des représentations n'est fidèle car les twists de Dehn (d'ordre infini dans le mapping class group) ont une action quantique d'ordre fini.

On peut se poser la question de savoir si les représentations quantiques sont d'images finies ou infinie. Dans le cas du tore sans points en bandes Patrick M Gilmer a démontré (voir [13]) que les représentations quantiques de $SL_2(\mathbb{Z})$ sont toutes d'image finie. Mais Gregor Masbaum a démontré dans [23] que dans une grande partie des cas l'image des représentations quantiques contient des éléments d'ordres infinis (voir aussi les travaux de Louis Funar dans [12]). Cette question a motivé une étude précise de la sphère avec 4 points marqués coloriée par 1 et il a été observé dans [2] que tous les éléments pseudo-Anosov ont une action quantique d'ordres infinis pour r assez grand. Ainsi Jorgen Ellegaard Andersen, Gregor Masbaum et Kenji Ueno ont posé la conjecture suivante (voir [2])

Conjecture AMU Soit Σ une surface orientée compacte (pouvant avoir du bord) que l'on suppose de caractéristique d'Euler strictement négative. Si ϕ est un élément pseudo-Anosov du mapping class group alors l'action quantique de ϕ est projectivement d'ordre fini seulement pour un nombre fini de $r \geq 2$.

Remarquons que si Σ est une surface sans bord (de caractéristique d'Euler strictement négative) cette conjecture se lit de la façon suivante : si $\phi \in \Gamma(\Sigma)$ est un élément pseudo-Anosov alors il existe $r_0(\phi)$ tel que pour tout $r \geq r_0(\phi)$ et pour toute racine 4r-ième primitive de l'unité A_r , l'opérateur $\rho_{r,A_r}(\phi)$ vu dans

$$\mathbb{P}\operatorname{Aut}(V_{2r}(\Sigma, \emptyset, \lambda)) = \operatorname{Aut}(V_{2r}(\Sigma, \emptyset, \lambda))/\mathbb{C}^*\operatorname{Id}$$

est d'ordre infini (où λ est un lagrangien quelconque de $H_1(\Sigma, \mathbb{Q})$). Part ailleurs, si l'on regarde l'opérateur $\rho_{r,A_r}(\phi)$ dans $\operatorname{Aut}(V_{2r}(\Sigma, \emptyset, \lambda))$, comme celui-ci est défini à un facteur projectif près qui est une racine de l'unité, dire que celui-ci est d'ordre infini a un sens.

Dans le cas où la surface Σ a du bord, si l'on note $(\tilde{\Sigma}, p)$ la surface sans bord avec points en bandes orientés canoniquement associée à Σ , il faut comprendre qu'il est conjecturé que

$$\rho_{r,A_r}(\phi) \in \mathbb{P}\operatorname{Aut}\left(\bigoplus_{c \in \{0,\dots,r-1\}^p} V_{2r}(\hat{\Sigma}, p_c, \lambda)\right)$$

est d'ordre infini pour r assez grand si ϕ est pseudo-Anosov.

De plus si x est l'ensemble de points marqués obtenu par contraction de p, on peut travailler directement sur $\Gamma(\hat{\Sigma}, x)$. En effet si $\phi \in \Gamma(\hat{\Sigma}, x)$ et $\tilde{\phi}_1, \tilde{\phi}_2 \in R\Gamma(\hat{\Sigma}, p)$ sont deux relevés de ϕ , on a que pour tout r et A_r

$$\rho_{r,A_r}(\tilde{\phi}_1) = (\alpha_{r,A_r})\,\rho_{r,A_r}(\tilde{\phi}_2)$$

vu dans Aut $(V_{2r}(\Sigma, \emptyset, \lambda))$ où α_{r,A_r} est une racine de l'unité.

Enfin, soit $r \ge 2$ et ϕ un élément du mapping class group. Soit A_r et A'_r deux racines 4r-ième primitives de l'unité on a que

$$\rho_{r,A_r}(\phi)$$
 est d'ordre infini $\Leftrightarrow \rho_{r,A'_r}(\phi)$ est d'ordre infini

cela vient du fait $\rho_{r,A_r}(\phi)$ et $\rho_{r,A'_r}(\phi)$ sont égaux modulo un opérateur Galoisien. Par conséquent le fait d'être projectivement d'ordre infini ne dépend que de r et non du choix de la racine 4r-ième primitive de l'unité.

Cette conjecture a été initialement démontré dans le cas de la sphère avec 4 points marqués coloriés par 1 (voir [2]), nous verrons dans la suite comment étendre ce résultat dans le corollaire 4.1.2 quand les 4 points marqués sont coloriées par un entier N fixe. Par ailleurs, nous verrons comment la démontrer dans le cas du tore pointé en théorie SO(3)(voir le théorème 3.1.1). Dans [9] Jens Kristian Egsgaard and Soren Fuglede Jorgensen apportent une réponse partielle dans le cas de la sphère avec 2n points marqués coloriés par 1. Enfin nous verrons avec le corollaire 4.1.3 comment aussi apporter une réponse partielle dans le cas des sphères marqués coloriés par un entier N fixe. On montrera par un exemple dans le chapitre 4 en quoi le résultat de [9] et le notre sont de natures différentes.

Nous énonçons maintenant un résultat de François Costantino et Bruno Martelli (voir [8])qui va dans la direction de la conjecture AMU, en donnant une borne inférieure du rang à partir du quel un pseudo-Anosov est détecté. Soit Σ une surface ayant au moins une composante de bord. Soit ϕ un difféomorphisme de Σ étant l'identité au bord. On suppose de plus que ϕ est un difféomorphisme pseudo-Anosov de facteur de dilatation $\lambda_{\phi} > 1$. Soit $r \geq 2$, A_r une racine 4r-ième primitive de l'unité et λ un lagrangien quelconque de $\hat{\Sigma}$. Si $X \in \bigoplus_{c \in \{0,...,r-2\}^p} \operatorname{End}(V_{2r}(\hat{\Sigma}, p_c, \lambda))$ on note

$$\rho_{r,A_r}^K(\phi)(X) = \rho_{r,A_r}(\phi) X \rho_{r,A_r}(\phi)^{-1}$$

ce qui donne un opérateur linéaire $\rho_{r,A_r}^K(\phi)$ bien défini (et non seulement défini à un facteur de phase près). Il est démontré dans [8]

Théorème (Costantino Martelli) (voir [8, Theorem 1.7]) Si

$$r > -6\chi(\Sigma)(\lambda_{\phi}^{-9\chi(\Sigma)} - 9\chi(\Sigma) - 1) + 1$$

où $\chi(\Sigma)$ est la caractéristique d'Euler de Σ , alors $\rho_{r,A_r}^K(\phi) \neq \mathrm{Id}$

Ce théorème améliore donc le théorème de fidélité asymptotique. Notons que la preuve de ce théorème utilise des données classiques associées au pseudo-Anosov (telles que son réseau ferroviaire ou sa matrice d'incidence) qui sont traduites en langage quantique.

2.3 Les sphères marquées et les espaces noyaux

2.3.1 Le skein module d'une boule dont le bord est muni de points en bandes coloriés

Soit $n \ge 1$, $N \ge 1$ et soit $r \ge N + 1$ avec Nn pair. Notons $(S^2, (N)_n)$ la sphère S^2 munie de n points en bandes standards tous coloriés par N. Considérons $S_{A_r}(B^3, (N)_n)$ le skein module de la boule B^3 relatif à $(S^2, (N)_n)$ où A_r est une racine 4r-ième primitive de l'unité fixé. Soit L un entrelacs en bandes dans B^3 relatif à $(S^2, (N)_n)$, comme cela a été vu précédemment les points en bandes coloriés au bord de la boule sont remplacés par des projecteurs de Jones-Wenzl (chacun par le N-ième), par conséquent si une composante connexe de L est collé deux fois au mème projeteur de Jones-Wenzl alors son image dans $S_{A_r}(B^3, (N)_n)$ est nulle. Dans le cas où aucune composante connexe de L n'est recollé deux fois au mème projecteur de Jones-Wenzl au voisinage du bord, on dira que L n'admet pas de retour.

 $S_{A_r}(B^3, (N)_n)$ est un \mathbb{C} -espace vectoriel de dimension fini. On note d(n, N) la dimension de $S_{A_r}(B^3, (N)_n)$. Notons que la dimension sur $\mathbb{C}[A, A^{-1}]$ du skein module $S(B^3, (N)_n)$ est la mème que la dimension sur \mathbb{C} de $S_{A_r}(B^3, (N)_n)$. Pour N = 1, il est connu que d(2n, 1) est donné par le *n*-ième nombre de Catalan :

$$d(2n,1) = \begin{pmatrix} 2n-2\\ n-1 \end{pmatrix} - \begin{pmatrix} 2n-2\\ n-3 \end{pmatrix}$$

On peut trouver dans [18] une formule générale pour d(n, N) que nous n'utiliserons pas ici.

Par exemple d(4,2) = 3 et une base de $S_{A_r}(B^3,(2)_4)$ est donnée par les trois entrelacs en bandes suivants

Nous avons précédemment vu que si $\sigma \in \tilde{M}(0, n)$ on peut lui associer naturellement un entrelacs en bande colorié L_{σ} dans $S^2 \times [0, 1]$ et que l'action quantique de σ est

$$\tilde{\rho}_{r,A_r}(\sigma) = Z_{r,A_r}(S^2 \times [0,1], \mathrm{id}, \mathrm{id}, 0, L_{\sigma})$$

or l'action par recollement permet de définir une représentation directement sur le skein module $S_{A_r}(B^3, (N)_n)$ que nous notons $\tilde{\rho}_{r,A_r}^S$. Par ailleurs, il existe clairement une représentation universelle

$$\rho: \widetilde{M}(0,n) \to GL_{d(n,N)}(\mathbb{Q}(X))$$

indépendante de r telle que ρ évaluée en $X = A_r$ soit isomorphe à $\tilde{\rho}_{r,A_r}^S$.

Définition Soit $\Delta_{r,A_r}^{B^3,B^3}$ la forme sésquilinéaire définie sur $S_{A_r}(B^3,(N)_n)$ (voir le théorème 1.1). On note $K_r(B^3,(N)_n)$ son noyau à gauche. L'espace $K_r(B^3,(N)_n)$ sera appelé l'espace noyau. Il jouera un rôle central dans le chapitre 4.

Pour r assez grand il est connu que la représentation $\tilde{\rho}_{r,A_r}$ est la représentation $\tilde{\rho}_{r,A_r}^S$. En effet on rappelle que

$$V_{2r}(S^2, (N)_n) \simeq S_{A_r}(B^3, (N)_n) / K_r(B^3, (N)_n)$$

Soit maintenant M_{r,A_r} la matrice de $\Delta_{r,A_r}^{B^3,B^3}$ dans une base où l'on peut supposer que les coefficients sont des fractions rationnelles en A. On remarque que les coefficients de M_{r,A_r} sont des fractions rationnelles en A_r . De plus M_{r,A_r} peut être vue comme l'évaluation en A_r d'une matrice \hat{M} indépendante de r à coefficients dans $\mathbb{Q}(X)$. Notons que det (\hat{M}) n'a qu'un nombre fini de racines par conséquent la forme $\Delta_{r,A_r}^{B^3,B^3}$ est dégénérée seulement pour un nombre fini de r. De ce fait pour r assez grand $V_{2r}(S^2,(N)_n) \simeq S_{A_r}(B^3,(N)_n)$ et $\tilde{\rho}_{r,A_r} \simeq \tilde{\rho}_{r,A_r}^S$.

Notons que dans le cas n = 4 et N = 1, la fidélité asymptotique des représentations $\tilde{\rho}_{r,A_r}$ est connue (voir [2, Corollary 4.3]), nous verrons dans le chapitre 4 comment étendre ce résultat pour n = 4 et $N \ge 2$. A notre connaissance, pour n > 4 et $N \ge 1$ avec Nn pair il n'est pas connu que l'action de $\tilde{M}(0,n)$ sur $V_{2r}(S^2,(N)_n)$ vérifie le théorème de fidélité asymptotique. La fidélité asymptotique dans ce cas est équivalente à ce que le noyau de la représentation

$$\rho: \widehat{M}(0,n) \to GL_{d(n,N)}(\mathbb{Q}(X))$$

soit exactement le centre de $\tilde{M}(0, n)$.

2.3.2 L'approche homologique de Ruth Lawrence

Dans sa thèse (voir [17]) Ruth Lawrence a donnée une interprétation homologique des représentations du groupe de tresses sur l'espace $S_A(B^3, (1)_n)$ (lorsque $n \ge 4$ est pair et A un nombre complexe non nul). Ces travaux ont été complétés dans [18] donnant une interprétation des représentations du groupe de tresses sur l'espace $S_A(B^3, (N)_n)$ lorsque $n \ge 4, N \ge 1$ avec Nn pair. Résumons brièvement ces idées.

Soit $n \ge 4$, $N \ge 1$ avec Nn pair fixés. Soit $w = (w_1, ..., w_n) \in \mathbb{C}^n$ tel que $\forall i \ne j$, $w_i \ne w_j$. On note m = Nn/2 et

$$Y_{m,w} = \{(z_1, ..., z_m) \in (\mathbb{C} - \{w_1, ..., w_n\})^m \mid \forall i \neq j \ z_i \neq z_j\}$$

Soit $z = (z_1, ..., z_m) \in Y_{m,w}$ fixé, le groupe fondamental $\pi_1(Y_{m,w}, z)$ peut ètre vu comme un sous groupe du groupe tresses pures à n+m brins. En particulier, $\pi_1(Y_{m,w}, z)$ est engendré par les tresses que nous allons décrire. Soit $\lambda \in \{z_1, ..., z_m\}$ et $\mu \in \{z_{j+1}, ..., z_m, w_1, ..., w_n\}$ où $\lambda = z_j$, on considère

On note E l'ensemble des tels $\beta_{\lambda,\mu}$. L'ensemble E génère $\pi_1(Y_{m,w}, z)$. Définissons les sous ensembles de E suivants

$$E_0 = \{\beta_{\lambda,\mu} \mid \lambda, \mu \in \{z_1, ..., z_m\}\}$$
$$E_1 = \{\beta_{\lambda,\mu} \mid \mu \in \{w_1, ..., w_n\}\}$$

on a clairement $E_0 \amalg E_1 = E$. Soit $\beta_{\lambda,\mu} \in E$ on pose $\chi(\beta_{\lambda,\mu}) = q^{\frac{-2}{Nn}}$ lorsque $\beta_{\lambda,\mu} \in E_0$ et $\chi(\beta_{\lambda,\mu}) = q$ lorsque $\beta_{\lambda,\mu} \in E_1$ où q est un nombre complexe non nul. Il s'avère que χ définit un caractère

$$\chi:\pi_1(Y_{m,w},z)\to\mathbb{C}^*$$

Soit $H^m(Y_{m,w},\chi)$ le *m*-ième espace de cohomologie de $Y_{m,w}$ tordu par le caractère χ .

Notons que le groupe symétrique S_m agit par permutation sur $Y_{m,w}$. On remarque que le caractère χ est invariant pour l'action de S_m . Par conséquent S_m agit sur $H^m(Y_{m,w},\chi)$, on note $(H^m(Y_{m,w},\chi))^{S_m}$ le sous espace de $H^m(Y_{m,w},\chi)$ invariant par S_m .

Par ailleurs le groupe de tresse B_n agit naturellement sur $Y_{m,w}$ et laisse aussi le caractère χ invariant. De ce fait, B_n agit sur l'espace $(H^m(Y_{m,w},\chi))^{S_m}$ et d'après les travaux de Ruth Lawrence (voir [18])

Théorème (Lawrence) La représentation de B_n sur $(H^m(Y_{m,w},\chi))^{S_m}$ admet une sous représentation isomorphe à la représentation de B_n induite sur $S_A(B^3, (N)_n)$ où $A^4 = q$.

Remarque Ces travaux ne seront pas utilisés dans le chapitre 4. Plus précisement, nous regarderons dans le chapitre 4 des espaces noyaux qui sont des sous espaces de $S_A(B^3, (N)_n)$ et nous les relierons à des espaces $H^1(X)_q$ considérés par Curtis McMullen. Nous ne savons pas comment déduire nos résultats des travaux de Ruth Lawrence.

2.3.3 L'importance de l'espace noyau pour la conjecture AMU

Tentons de comprendre la conjecture AMU dans le cadre de $(S^2, (N)_n)$ en utilisant la représentation ρ . Rappelons que

$$\rho: M(0,n) \to GL_{d(n,N)}(\mathbb{Q}(X))$$

est la représentation universelle et notons $\rho^{[A_0]}$ son évaluation en $X = A_0$ (pour A_0 un nombre complexe non nul).

Soit $\phi \in \tilde{M}(0, n)$ un pseudo-Anosov. Supposons qu'il existe $A_{\phi} \in \mathbb{C}$ avec $|A_{\phi}| = 1$ tel que la matrice $\rho^{[A_{\phi}]}(\phi)$ (la matrice $\rho(\phi)$ évaluée en A_{ϕ}) ait une valeur propre λ avec $|\lambda| \neq 1$. Rappelons que la représentation quantique

$$\tilde{\rho}_{r,A_r}: \tilde{M}(0,n) \to \operatorname{Aut}\left(V_{2r}(S^2,(N)_n)\right)$$

est la même que la représentation sur le skein module $S_{A_r}(B^3, (n)_N)$ pour r assez grand. Soit maintenant A_r une suite de racines 4r-ièmes primitives de l'unité tendant vers A_{ϕ} , pour r assez grand $\tilde{\rho}_{r,A_r} \simeq \tilde{\rho}_{r,A_r}^S$ et la matrice de $\tilde{\rho}_{r,A_r}(\phi)$ admet une valeur propre de module différent de 1. Ce qui implique que pour r assez grand $\tilde{\rho}_{r,A_r}(\phi)$ est d'ordre infini.

La stratégie consiste donc à trouver un A_{∞} avec $|A_{\infty}| = 1$ tel qu'un maximum de pseudo-Anosov ϕ soient tels que $\rho^{[A_{\infty}]}(\phi)$ ait une valeur propre λ_{ϕ} avec $|\lambda_{\phi}| \neq 1$. Toutes les preuves connues des instances de la conjecture AMU rentrent dans ce cadre. La question est de savoir comment choisir A_{∞} . Il est avantageux de prendre $A_{\infty} = A_{r_{\infty}}$ une racine $4r_{\infty}$ -ième de l'unité telle que $K_{r_{\infty}}(B^3, (N)_n) \neq 0$. Ainsi si ϕ est un pseudo-Anosov qui admet un vecteur propre $u_0 \in K_{r_{\infty}}(B^3, (N)_n)$, associé à une valeur propre de module différent de 1, alors le vecteur u_0 est bien entendu nul en TQFT mais c'est lui qui permet de comprendre que l'action quantique de ϕ est d'ordre infini pour r assez grand. J'ai observé que dans toutes les preuves connues des instances de la conjecture AMU, l'espace limite considéré était toujours un espace noyau. Ceci motive d'autant plus l'étude des espaces noyaux. J'utiliserais la même idée pour les instances de la conjecture AMU traitées dans le chapitre 4. Regardons maintenant les travaux de Andersen, Masbaum, Ueno (voir [2]) et Egsgaard , Jorgensen (voir [9]) sous cet angle.

Considérons un nombre de points marqués 2n. Fixons N = 1 et A_2 tel que $A_2^4 = -1$. Regarder la TQFT en cette racine de l'unité revient à regarder le cas r = 2. Notons que si r = 2 alors r - 2 = 0 donc $V_4(S^2, (1)_{2n}) = 0$ et ainsi

$$S_{A_2}(B^3,(1)_{2n}) \simeq K_2(B^3,(1)_{2n})$$

Ce cas a déjà été étudié voir [2], [16] et [9]. Afin de décrire ces travaux, faisons quelques rappels. Si $n \ge 2$, on note Σ_{n-1} la surface de genre n-1 sans bord, on note M(n-1,0)le mapping class group de Σ_{n-1} . Une involution hyperelleptique ι définie un revètement à deux feuillets $\pi : \Sigma_{n-1} \to S^2$ ramifié en 2n points. Si G_{ι} est le commutant de ι dans M(n-1,0) on a

$$G_{\iota}/\langle \iota \rangle \simeq M(0,2n)$$

Ainsi on a une action projective de M(0,2n) sur $H^1(\Sigma_{n-1},\mathbb{C})$ car ι agit comme moins l'identité sur $H^1(\Sigma_{n-1},\mathbb{C})$.

Dans le cas n = 2, Jorgen. E Andersen, Gregor Masbaum et Kenji Ueno ont prouvé que cette action projective cohomologique est liée à l'action projective de M(0,4) sur le skein module lorsque $A_2^4 = -1$, plus précisément

Théorème (Andersen, Masbaum, Ueno) (voir [2])

$$H^1(\Sigma_1, \mathbb{C}) \simeq S_{A_2}(B^3, (1)_4)$$

comme représentation projective de M(0,4) où $A_2^4 = -1$.

Ce théorème permet de résoudre la conjecture AMU pour la sphère avec 4 points marqués avec couleur 1, En effet

Théorème (Andersen, Masbaum, Ueno) (voir [2]) Si $\phi \in M(0, 4)$ est pseudo-Anosov alors pour r assez grand l'action de ϕ sur $V_{2r}(S^2, (1)_4)$ est d'ordre infini.

Nous verrons par la suite (voir corollaire 4.1.2) comment généraliser ce résultat lorsque la couleur sur les points marqués est quelconque.

Un résultat similaire a été démontré par Yasushi Kasahara pour n = 3

Théorème (Kasahara) (voir [16])

$$S_{A_2}(B^3,(1)_6) \simeq \bigwedge^2 H^1(\Sigma_2,\mathbb{C}) / \mathbb{C}.\omega$$

comme représentation projective de M(0, 6) où $A_2^4 = -1$ et où ω est la forme symplectique d'intersection canonique sur $H^1(\Sigma_2, \mathbb{C})$.

On notera dans toute la suite ω la forme symplectique d'intersection canonique sur $H^1(\Sigma_{n-1}, \mathbb{C})$. On remarque que si $n \ge 2$,

$$\dim(S(B^3, (1)_{2n})) = \begin{pmatrix} 2n-2\\ n-1 \end{pmatrix} - \begin{pmatrix} 2n-2\\ n-3 \end{pmatrix}$$
$$= \dim\left(\bigwedge^{n-1} H^1(\Sigma_{n-1}, \mathbb{C}) \middle/ \omega \wedge \bigwedge^{n-3} H^1(\Sigma_{n-1}, \mathbb{C}) \right)$$

cette observation a amenée Jens Kristian Egs
gaard et Soren Fuglede Jorgensen à généraliser les deux théorèmes précédents pour
 $n\geq 2$ quelconque

Théorème (Egsgaard, Jorgensen) (voir [9])

$$S_{A_2}(B^3,(1)_{2n}) \simeq \bigwedge^{n-1} H^1(\Sigma_{n-1},\mathbb{C}) / \underset{\omega \wedge \bigwedge^{n-3} H^1(\Sigma_{n-1},\mathbb{C})}{\wedge}$$

comme représentation projective de M(0, 2n) où $A_2^4 = -1$.

Ce théorème apporte une réponse partielle sur la conjecture AMU. En effet, on dit que $f \in M(0, 2n)$ est un pseudo-Anosov homologique si le pseudo-Anosov associé $\tilde{f} \in M(n - 1, 0)$ a un feuilletage mesurable orientable. Il est connu que si $f \in M(0, 2n)$ est un pseudo-Anosov homologique alors f agit sur $H^1(\Sigma_{n-1}, \mathbb{C})$ avec un rayon spectral strictement supérieur à 1. De ce fait Jens Kristian Egsgaard et Soren Fuglede Jorgensen démontrent

Théorème (Egsgaard , Jorgensen) (voir [9]) Si $f \in M(0, 2n)$ est un pseudo-Anosov homologique alors, pour r assez grand, l'action de f sur $V_{2r}(S^2, (1)_{2n})$ est d'ordre infini.

Un objectif intéressant est de continuer ce cheminement en tentant de trouver une interprétation homologique simple pour les représentations induites sur les espaces $K_r(B^3, (N)_n)$. Dans un premier temps le problème est qu'en général le calcul de dim $(K_r(B^3, (N)_n))$ est assez compliqué. En effet, utiliser la formule de dim $(S(B^3, (N)_n))$ (donnée dans les travaux de Ruth Lawrence : voir [18]) et utiliser la formule de Verlinde pour dim $(V_{2r}(S^2, (N)_n))$ semble difficile à exploiter. Néanmoins nous verrons dans le chapitre 4 comment calculer la dimension de $K_r(B^3, (N)_n)$ par un autre moyen lorsque *n* est pair et r = Nn/2. Nous contournerons la formule de Verlinde en remarquant que les polynômes de Chebyshev jouent un rôle central dans ces calculs de dimension. Entre autre nous verrons que

$$\dim\left(K_{\frac{nN}{2}}(B^3,(N)_n))\right) = n - 2$$
La deuxième difficulté est que des bases graphiques de $K_r(B^3, (N)_n)$ intéressantes pour le calcul ne sont pas connues. Ceci vient entre autre du fait que les théorèmes provenant de la TQFT ne s'appliquent pas à ces espaces. Enfin nous verrons que certains calculs de la théorie skein pouvant paraître très techniques se simplifient considérablement grâce à des propriétés remarquables de ces espaces noyaux.

2.4 Le tore troué en théorie SO(3)

2.4.1 La limite des représentations quantiques

Etudions plus détails le cas du tore avec un point en bande colorié en théorie SO(3). On se réfère à [6] pour plus de détails sur la théorie SO(3). Soit $p \ge 3$ un entier impair et soit $c \in \{0, ..., \frac{p-1}{2}\}$. On note T_c le tore muni d'un point en bande colorié par 2c. Rappelons que la TQFT SO(3) associe à T_c un \mathbb{C} -espace vectoriel de dimension $\frac{p-1}{2} - c$ que nous noterons $V_p(T_c)$.

Notons $\Sigma_{1,1}$ le tore avec une composante de bord et $\Gamma_{1,1}$ son mapping class group. Rappelons qu'il s'agit du groupe des difféomorphimes de $\Sigma_{1,1}$ préservant l'orientation et étant l'identité sur $\partial \Sigma_{1,1}$ modulo isotopies. Soit t_z le twist de Dehn le long de la longitude canonique et t_y le twist de Dehn le long du méridien canonique. On rappelle que $\Gamma_{1,1}$ admet la présentation suivante

$$\langle t_y, t_z \mid t_y t_z t_y = t_z t_y t_z \rangle$$

par conséquent $\Gamma_{1,1}$ est isomorphe au groupe de tresse B_3 . Notons pour la suite que $\Gamma_{1,1}$ est aussi engendré par t_y et l'élément $s = t_y t_z t_y$.

Il s'avère que $\Gamma_{1,1}$ est aussi isomorphe au ribbon mapping class group du tore muni d'un point en bande. Par conséquent, $\Gamma_{1,1}$ agit projectivement sur $V_p(T_c)$. Selon [21], cette représentation projective se relève en une représentation linéaire que nous noterons

$$\rho_p^{(c)}: \Gamma_{1,1} \to \operatorname{Aut}(V_p(T_c))$$

Remarquons si $N \ge 2$ est fixé et $p \ge 2N+1$, en notant $c_p = \frac{p-1}{2} - N$ on obtient une suite de représentations

$$\rho_p^{(c_p)}: \Gamma_{1,1} \to \operatorname{Aut}(V_p(T_{c_p}))$$

de dimension fixe égale à N qui dépend du choix d'une racine 2p-ième primitive de l'unité A_p . Le chapitre 3 est dédié à l'étude de ces représentation et à en comprendre l'asymptotique (dans un sens qui sera précisé).

Initialement les représentations $\rho_p^{(c_p)}$ ont été introduites et étudiées par Patrick Gilmer et Gregor Masbaum dans [14]. Rappelons brièvement ces travaux en essayant de voir ce que les travaux détaillés dans le chapitre 3 apportent de plus. Dans [14] une base $Q_n^{'(c_p)}$ utile dans l'étude des TQFT entière est décrite (ici nous ne rentrerons pas dans les détails de la TQFT entière). Dans la base $Q_n^{'(c_p)}$ notons $(a_{m,n})$ la matrice de $\rho_p^{(c_p)}(t_y)$ et $(b_{m,n})$ la matrice de $\rho_p^{(c_p)}(t_z)$. Des formules explicites ont été trouvées pour $(a_{m,n})$ et $(b_{m,n})$ (voir [14, Theorem 4.8]). Supposons que $p \ge 5$ et p premier. Soit ζ_p une racine p-ième primitive de l'unité et choisissons $A_p = -\zeta_p^{\frac{p-1}{2}}$ comme racine 2p-ième primitive de l'unité définissant $\rho_p^{(c_p)}$. Il est démontré dans [14] que les coefficients de $(a_{m,n})$ et de $(b_{m,n})$ sont dans $\mathbb{Z}[\zeta_p]$. Comme p est premier, le quotient $\mathbb{Z}[\zeta_p]/(1-\zeta_p)$ est isomorphe au corps à p éléments \mathbb{F}_p . En évaluant les coefficients de $(a_{m,n})$ et de $(b_{m,n})$ modulo $1-\zeta_p$, on obtient alors une représentation

$$\rho_{p,0}^{(c_p)}:\Gamma_{1,1}\to SL_N(\mathbb{F}_p)$$

Par ailleurs $\Gamma_{1,1}$ se projette sur $SL_2(\mathbb{F}_p)$ et agit donc naturellement sur $H_{N,p}$: le \mathbb{F}_p -espace vectoriel des polynômes homogènes à deux variables de degré total égal à N - 1. Il a été démontré que

Théorème (Gilmer, Masbaum) (voir [14, Theorem 5.1]) La représentation de $\Gamma_{1,1}$ sur $H_{N,p}$ est isomorphe à $\rho_{p,0}^{(c_p)}$.

Notons que les formules de $(a_{m,n})$ et $(b_{m,n})$ décrites dans [14] ne permettent pas directement le calcul de la limite lorsque A_p tend vers -1. Nous verrons dans le chapitre 3 comment obtenir des formules différentes. Ces nouvelles expressions proviennent de produits d'opérateurs courbes sur le tore troué. Cette formulation nous révèlera qu'il existe une représentation universelle indépendante de p

$$\hat{\rho}: \Gamma_{1,1} \to GL_N(\mathbb{Q}(X))$$

telle que si $p \ge 2N + 1$ est impair (non nécessairement premier) et A_p est une racine 2p-ième primitive de l'unité, $\hat{\rho}$ est évaluable en A_p (on note $\hat{\rho}^{[A_p]}$ cette évaluation) et

$$\hat{\rho}^{[A_p]} \simeq \chi_p \otimes \rho_p^{(c_p)}$$

où $\chi: \Gamma_{1,1} \to \mathbb{C}^*$ est un caractère dépendant de A_p . De plus la représentation $\hat{\rho}$ est évaluable en -1 (on note $\hat{\rho}^{[-1]}$ cette évaluation) et on a que $\hat{\rho}^{[-1]}$ est isomorphe à l'action de $\Gamma_{1,1}$ sur H_N : le \mathbb{C} -espace vectoriel des polynômes homogènes à deux variables de degré total égal à N - 1. Ceci donne clairement la limite des matrices $(a_{m,n})$ et $(b_{m,n})$ lorsque $A_p \to -1$.

Enfin cette approche permet de conclure que la famille de représentations $\rho_p^{(c_p)}$ vérifient la conjecture AMU. Plus précisément si N est fixé (rappelons que $c_p = \frac{p-1}{2} - N$), et $\phi \in \Gamma_{1,1}$ est pseudo-Anosov alors il existe p_0 (dépendant de ϕ et N) tel que si $p \ge p_0$ alors $\rho_p^{(c_p)}(\phi)$ est d'ordre infini.

Chapter 3

Limits of quantum SO(3)representations for the one-holed torus

This chapter is an extended version of the article "Limits of quantum SO(3) representations for the one-holed torus " (see [31]).

For $N \geq 2$, we prove that the AMU conjecture holds for a sequence $(\rho_p^{(c_p)})$ of Ndimensional representations of the mapping class group of the one holed torus arising from SO(3)-TQFT. This is done by proving that, in a certain basis and up to a rescaling, the matrices of these representations converge as p tends to infinity. Moreover, the limits describe the action of $SL_2(\mathbb{Z})$ on the space of homogeneous polynomials of two variables of total degree N - 1.

In an appendix in French we discuss the possible applications to determine the images of the representations $\rho_p^{(c_p)}$.

3.1 Introduction

Quantum topology was born by the physical interpretation of the Jones Polynomials made by E.Witten. An interesting problem in quantum topology is to study the asymptotics of quantum objects by linking them to classical objects. In this paper we focus on the quantum representations of the mapping class group arising from Witten-Reshetikhin-Turaev SO(3) Topological Quantum Field Theory (TQFT).

For any odd p and any $c \in \{0, ..., \frac{p-3}{2}\}$, the SO(3) TQFT built in [6] associates to the one holed-torus a finite dimensional complex vector space $V_p(T_c)$ of dimension $\frac{p-1}{2} - c$. Denoting $\Gamma_{1,1}$ the mapping class group of the one-holed torus, $V_p(T_c)$ carries a projective representation of $\Gamma_{1,1}$ which depends on a choice of a primitive 2*p*-th root of unity A_p . It is known (see [21]) and easy to see that in the case of $\Gamma_{1,1}$, this projective representation lifts to a linear representation which we denote :

$$\rho_p^{(c)}: \Gamma_{1,1} \to \operatorname{Aut}(V_p(T_c))$$

On the other hand $\Gamma_{1,1}$ maps onto $SL_2(\mathbb{Z})$. For $N \ge 2$, the later group acts naturally on H_N : the space of homogeneous polynomials of two variables of total degree N-1. So we have a representation :

$$h_N: \Gamma_{1,1} \to \operatorname{Aut}(H_N)$$

Remark that if p is odd and $p \ge 2N+1$ we can set $c_p = \frac{p-1}{2} - N$ so that $\dim(V_p(T_{c_p})) = C_p(T_{c_p})$ N. This creates a sequence of N-dimensional representations $\rho_p^{(c_p)}$ of $\Gamma_{1,1}$. It turns out that those representations are closely related to h_N . Indeed, up to rescaling, the quantum representations can be viewed as deformations of h_N . Here is a precise statement of what we mean :

Theorem 3.1.1. Let $\mathbb{Q}(X)$ be the field of rational functions in an indeterminate X. Fix $N \geq 2$ an integer. There exists a representation $\rho: \Gamma_{1,1} \to GL_N(\mathbb{Q}(X))$ which does not depend on p and a character $\chi_p: \Gamma_{1,1} \to \mathbb{C}^*$ (which depends on the choice of the root of unity A_p) such that :

- All the matrices in $\rho(\Gamma_{1,1})$ can be evaluated at $X = A_p$ and X = 1, those evaluations are denoted respectively $\rho^{[A_p]}$ and $\rho^{[-1]}$ (which are representations into $GL_N(\mathbb{C})$)
- $\begin{array}{l} \chi_p \otimes \rho^{[A_p]} \text{ is isomorphic to } \rho_p^{(c_p)} \\ \rho^{[-1]} \text{ is isomorphic to } h_N \end{array}$

Let t_y and t_z be the Dehn twists along the canonical meridian and longitude on the one-holed torus. We choose the map $\Gamma_{1,1} \to SL_2(\mathbb{Z})$ such that t_y maps to $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and t_z maps to $\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$. Since t_y and t_z generate $\Gamma_{1,1}$, the theorem 3.1.1 is implied by te

Theorem 3.1.2. Let $\{Q_n^{\prime(c_p)}\}_{0 \le n \le N-1}$ be the basis of $V_p(T_c)$ defined in [14]. Let T_p and T_p^* be the matrices of $\mu_{c_p}^{-1}\rho_p^{(c_p)}(t_y)$ and $\mu_{c_p}^{-1}\rho_p^{(c_p)}(t_z)$ in the basis, where $\mu_{c_p} = (-A_p)^{c_p(c_p+2)}$. Then there exists $\hat{T}(X), \hat{T}^*(X) \in GL_N(\mathbb{Q}(X))$ independent of p which can be evaluated at $X = A_p$ and X = -1 such that :

- $T_p = \hat{T}(A_p)$ and $T_p^* = \hat{T}^*(A_p)$

— The matrices $\hat{T}(-1)$ and $\hat{T}^*(-1)$ are the matrices of $h_N(t_y)$ and $h_N(t_z)$ in the basis

$$\alpha_n X^{N-n-} Y^n \quad 0 \le n \le N-1 \tag{3.1}$$

of H_N where $\alpha_n = \frac{2^n}{n!(N-1-n)!}$

Remark Concretely the previous theorem implies that if $\phi \in \Gamma_{1,1}$ and M_p denotes the matrix of $\rho_p^{(c_p)}(\phi)$ (in the basis of theorem 3.1.2), we have as $A_p \to -1$

$$(\chi_p(\phi))^{-1}M_p \to M$$

where M is the matrix of $h_N(\phi)$ in the basis (3.1).

We can also use this to prove the following version of the AMU conjecture (see [2]) in the case of the one-holed torus :

Theorem 3.1.3. For any fixed $N \geq 2$, if $\phi \in \Gamma_{1,1}$ is pseudo-Anosov then there exists $p_0(\phi)$ such that for any odd $p \ge p_0(\phi)$ the automorphism $\rho_p^{(c_p)}(\phi)$ has infinite order.

Remark The case N = 2 was already known to G.Masbaum : see [2, Remark 5.9] and [14, p.96].

Review of SO(3)-TQFT 3.2

We are going to recall the basic notions we need. We refer to [14] for more details.

3.2.1 Notations

For *p* an odd integer, let $A = A_p$ be a primitive 2*p*-th root of unity. Let *n* be an integer, we set $\{n\} = (-A)^n - (-A)^{-n}$, $\{n\}^+ = (-A)^n + (-A)^{-n}$. When *n* is positive let $\{n\}! = \{1\}...\{n\}$ with $\{0\}! = 1$ and when *n* is negative $\{n\}! = 0$. Also $\{n\}!! = \{n\}\{n-2\}...$ We set $\mu_n = (-A)^{n(n+2)}$ and $\lambda_n = -\{2n+2\}.$

In what follow $N \ge 2$ will be fixed. We set c = d - N where $d = \frac{p-1}{2}$. We saw that $V_p(T_c)$ is N-dimensional and it has a basis $\{L_{c,n}\}_{0\le n\le N-1}$ given by the colored graphs in the solid torus (see [14]) which can be described pictorially by the following diagrams :

 T_c can be viewed as a torus \mathbb{T}^2 equipped with a banded point x with color 2c. We can think of T_c as the boundary of a tubular neighborhood of the graph. This tubular neighborhood is a solid torus and the univalent vertex of the graph is attached to the banded point x.

Recall that $\Gamma_{1,1}$ is the mapping class group of the one-holed torus, which is the group of orientation preserving diffeomorphisms which fix (pointwise) the banded point x up to isotopies. $\Gamma_{1,1}$ is generated by the Dehn twist t_y along the canonical meridian and the Dehn twist t_z along the canonical longitude, moreover we have the unique relation

$$t_y t_z t_y = t_z t_y t_z$$

so it is isomorphic to the braid group on 3 strands B_3 . With this definition, the Dehn twist along a curve δ encirling x is non trivial with the expression

$$t_{\delta} = (t_y t_z)^6$$

and the kernel of the natural map from $\Gamma_{1,1}$ to $SL_2(\mathbb{Z})$ is generated by t_{δ} .

 $\rho_p^{(c_p)}(t_y)$ has a nice expression in the basis $\{L_{c,n}\}$, indeed for $0 \le n \le N-1$

$$\rho_p^{(c_p)}(t_y)(L_{c,n}) = \mu_{c+n} L_{c,n}$$

We also denote by ((,)) the Hopf pairing on $V_p(T_c)$. It is a symmetric non-degenerated bilinear form (see [14]). Recall that it is defined for $0 \le n, m \le N-1$ by

$$((L_{c,n}, L_{c,m})) = \left\langle \begin{array}{c} & & \\ & &$$

where $\langle \rangle$ is the evaluation of the Kauffman bracket of the banded colored graph in S^3 .

Remark In [14] $\rho_p^{(c_p)}(t_y)$ is denoted by t and $\rho_p^{(c_p)}(t_z)$ is denoted by t^* .

3.2.2 Curve operators

For any multicurve (disjoint union of simple close curves) γ on the one-holed torus $\mathbb{T}^2 - x$ we can form the cobordism C_{γ} as $\mathbb{T}^2 \times I$ (where I = [0, 1]) equipped with the banded link $\gamma \times [\frac{1}{2}, \frac{3}{4}] \cup x \times I$ where $x \times I$ has color 2c. By the axioms of TQFT, C_{γ} defines an operator $Z_p(\gamma) \in \text{End}(V_p(T_c))$. Let y and z be respectively the meridian and the longitude curves on the one-holed torus. We can see the action $Z_p(y)$ and $Z_p(z)$ in the basis $\{L_{c,n}\}$:

those diagrams can be evaluated using skein theory. We have also the following basic facts :

Proposition 3.2.1. Let $\phi \in \Gamma_{1,1}$ and γ be a simple closed curve.

 $- \rho_p^{(c_p)}(\phi) Z_p(\gamma) (\rho_p^{(c_p)}(\phi))^{-1} = Z_p(\phi(\gamma))$

- $Z_p(\gamma)$ diagonisable and it has $\{\lambda_1, ..., \lambda_{c+N-1}\}$ as eigenvalues.
- $Z_p(z)$ and $Z_p(y)$ are transposed by the Hopf pairing.

$$- Z_p(t_y(z)) = \frac{AZ_p(y)Z_p(z) - A^{-1}Z_p(z)Z_p(y)}{\{2\}}$$

Remark The first point is a consequence of the gluying axioms of the TQFT, and the seconde point is clearly implied by the first point. To see the third point, consider the following torus embedded in S^3

This torus bounds two solid tori : an inner one and an outer one. The third point comes from the fact that the curve z is a longitude for the inner solid torus and a meridian for the outer solid torus. Finally the last property is obtained by applying the skein relation

$$= A \left(+ A^{-1} \right) \left(+ A^{-1} \right)$$

3.2.3 The basis $\{Q_n^{\prime(c)}\}$

We can now recall the definition of the basis used in theorem 3.1.2. Following [14], for $0 \le n \le N - 1$ let :

$$Q_n^{\prime(c)} = (\{n\}!)^{-1} \left(\prod_{j=0}^{n-1} (Z_p(z) - \lambda_{c+j} \mathrm{Id}) \right) L_{c,0}$$

The interest of this basis is that it is orthogonal with respect to the Hopf pairing. For n, m we have (see [14]) :

$$\frac{((Q_n^{\prime(c)}, Q_n^{\prime(c)}))}{((Q_m^{\prime(c)}, Q_m^{\prime(c)}))} = \frac{\{m\}!\{2c+2n+1\}!!\{2c+n+1\}^+!}{\{n\}!\{2c+2m+1\}!!\{2c+m+1\}^+!}$$

this quantity will be denoted by $R_{n,m}^{(c)}$. In the basis $\{Q_n^{\prime(c)}\}\$ let $T_p = (a_{m,n})$ be the matrix of $\mu_c^{-1}\rho_p^{(c)}(t_y)$ and $T_p^* = (b_{n,m})$ be the matrix of $\mu_c^{-1}\rho_p^{(c)}(t_z)$. Let also $(y_{m,n})$ be the matrix of $Z_p(y)$, $(z_{n,m})$ be the matrix of $Z_p(z)$ and $(z_{m,n}^{\prime})$ be the matrix of $Z_p(t_y(z))$. Since, with respect to the Hopf pairing $\rho_p^{(c)}(t_y)$ is the transpose of $\rho_p^{(c)}(t_z)$ and $Z_p(y)$ is the transpose of $Z_p(z)$, we have :

$$a_{m,n} = R_{n,m}^{(c)} b_{n,m}$$

and

$$y_{m,n} = R_{n,m}^{(c)} z_{n,m}$$

Remark In [14] there are already explicit expressions for $(a_{m,n})$ and $(b_{n,m})$ but here we use new formulas which are more helpful for our purpose.

3.3 The limit of the representations

In this section will prove Theorem 3.1.2 and Theorem 3.1.3.

3.3.1 Proof of theorem 3.1.2

To make the proof of this theorem easier we need the following two lemmas :

Lemma 3.3.1. For any *n* and *m* there exist $\hat{R}_{n,m}(X) \in \mathbb{Q}(X)$ independent of *p* which can be evaluated at X = A and X = -1 such that :

$$\hat{R}_{n,m}(A) = R_{n,m} - \hat{R}_{n,m}(-1) = \frac{(-4)^{n-m}m!(N-1-m)!}{n!(N-1-n)!}$$

Proof. If n = m the result is clear. By symmetries, we can only prove it for $n \ge m+1$. In this case, since $(-A)^p = 1$ and 2c = p - 1 - 2N, for any integer x:

$$\{x + 2c\} = \{x - 1 - 2N\} = -\{2N + 1 - x\}$$

$$\{x + 2c\}^{+} = \{x - 1 - 2N\}^{+} = -\{2N + 1 - x\}^{+}$$

 \mathbf{SO}

$$R_{n,m} = \frac{\{m\}!\{2c+2n+1\}!!\{2c+n+1\}^+!}{\{n\}!\{2c+2m+1\}!!\{2c+m+1\}^+!}$$
$$= \frac{(-1)^{n-m}\{m\}!\{2N-2m-2\}!!\{2N-m-1\}^+!}{\{n\}!\{2N-2n-2\}!!\{2N-n-1\}^+!}$$

Since for all a, $\{a\}$ is the evaluation of $(-X)^n - (-X)^{-n} \in \mathbb{Q}(X)$ at X = A and $\{a\}^+$ is the evaluation of $(-X)^n + (-X)^{-n} \in \mathbb{Q}(X)$ at X = A we see that there exists $\hat{R}_{n,m}(X) \in \mathbb{Q}(X)$ (which clearly does not depend on p) such that $R_{n,m} = \hat{R}_{n,m}(A)$. We also know that for all a, when A tends to -1, $\frac{\{a\}}{\{1\}} \to a$ and $\{a\}^+ \to 2$ so we deduce the expression of $\hat{R}_{n,m}(-1)$.

Lemma 3.3.2. For $n \leq N - 2$ let $M^{(n)} = (M^{(n)}_{m,l})$ be the matrix of

$${n+1}^{-1}(Z_p(t_y(z)) - \lambda_{c+n} \mathrm{Id}_N)$$

in the basis $\{Q_n^{\prime(c)}\}$. Then there exists a matrix $\hat{M}^{(n)}(X) = (M_{m,l}^{(n)}(X)) \in GL_N(\mathbb{Q}(X))$ independent of p which can be evaluated at X = A and X = -1 such that for all $m, l : -\hat{M}_{m,l}^{(n)}(A) = M_{m,l}^{(n)}$

$$- \hat{M}_{m,l}^{(n)}(-1) = \delta_{m-1,l} \frac{m}{n+1} + \delta_{m,l} \frac{2(N-2m-1)}{n+1} + \delta_{m+1,l} \frac{-4(N-m-1)}{n+1}$$

where $\delta_{k,l}$ is the Kronecker symbol.

Proof. Since $Z_p(z)$ and $Z_p(y)$ are transposed by the Hopf pairing, we have $(y_{m,l}) = (R_{l,m}^{(c)} z_{l,m})$. By proposition 3.2.1 we also know that

$$Z_p(t_y(z)) = \{2\}^{-1} (AZ_p(y)Z_p(z) - A^{-1}Z_p(z)Z_p(y))$$

so for all m, l :

$$z'_{m,l} = \{2\}^{-1} \sum_{j=0}^{N-1} (Ay_{m,j}z_{j,l} - A^{-1}z_{m,j}y_{j,l})$$
$$= \{2\}^{-1} \sum_{j=0}^{N-1} (Az_{j,m}R_{j,m}^{(c)}z_{j,l} - A^{-1}z_{m,j}R_{l,j}^{(c)}z_{l,j})$$

We have easily (by just writing the definition of $\{Q_n^{'(c)}\}$) that for all m, l:

$$z_{m,l} = \delta_{l,m-1}\{m\} + \delta_{l,m}\lambda_{c+m}$$

Let us now compute $M_{m,l}^{(n)} = \{n+1\}^{-1}(z'_{m,l} - \lambda_{c+n}\delta m, l)$. We see from the expression of $(z_{m,l})$ that if $l \ge m+2$ or $m-2 \ge l$ we have $M_{m,l}^{(n)} = 0$. Then we have :

When l = m - 1

$$M_{m,m-1}^{(n)} = (\{2\}\{n+1\})^{-1} \sum_{j=0}^{N-1} (Az_{j,m} R_{j,m}^{(c)} z_{j,m-1} - A^{-1} z_{m,j} R_{m-1,j}^{(c)} z_{m-1,j})$$
$$= (\{2\}\{n+1\})^{-1} (Az_{m,m} R_{m,m}^{(c)} z_{m,m-1} - A^{-1} z_{m,m-1} R_{m-1,m-1}^{(c)} z_{m-1,m-1})$$

and since $R_{m,m}^{(c)} = R_{m-1,m-1}^{(c)} = 1$ and $A\lambda_{c+m} - A^{-1}\lambda_{c+m-1} = (-A)^{-2N+2m} \{2\}$, we have

$$M_{m,m-1}^{(n)} = (\{2\}\{n+1\})^{-1} z_{m,m-1} (A\lambda_{c+m} - A^{-1}\lambda_{c+m-1})$$
$$= \{m\}(-A)^{-2N+2m} \{n+1\}^{-1}$$

then $M_{m,m-1}^{(n)}$ is clearly the evaluation at X = A of a rational function $\hat{M}_{m,m-1}^{(n)}(X) \in \mathbb{Q}(X)$ (which is obviously independent of p). And as $A \to -1$:

$$M_{m,m-1}^{(n)} \to \frac{m}{n+1}$$

so $\hat{M}_{m,m-1}^{(n)}(-1) = \frac{m}{n+1}$. When l = m+1 a similar computation gives

$$M_{m,m+1}^{(n)} = (\{2\}\{n+1\})^{-1} (Az_{m+1,m} R_{m+1,m}^{(c)} z_{m+1,m+1} - A^{-1} z_{m,m} R_{m+1,m}^{(c)} z_{m+1,m})$$

= $(-A)^{-2N+2m+2} \{-2N+2m+2\} \{-2N+m+1\}^+ \{n+1\}^{-1}$

which tends to $\frac{-4(N-m-1)}{n+1}$ as $A \to -1$. We see that $M_{m,m+1}^{(n)}$ can also be easily viewed as the evaluation at X = A of a rational function $\hat{M}_{m,m+1}^{(n)}(X) \in \mathbb{Q}(X)$ independent of p which satisfies $\hat{M}_{m,m+1}^{(n)}(-1) = \frac{-4(N-m-1)}{n+1}$.

Finally when l = m

$$z'_{m,m} = \frac{Az^{2}_{m,m}R^{(c)}_{m,m} + Az^{2}_{m+1,m}R^{(c)}_{m+1,m} - A^{-1}z^{2}_{m,m-1}R^{(c)}_{m,m-1} - A^{-1}z^{2}_{m,m}R^{(c)}_{m,m}}{\{2\}}$$
$$= \{2\}^{-1}((A - A^{-1})\lambda^{2}_{c+m} + A\{m+1\}^{2}R^{(c)}_{m+1,m} - A^{-1}\{m\}^{2}R^{(c)}_{m,m-1})$$

 \mathbf{SO}

$$M_{m,m}^{(n)} = \frac{(A - A^{-1})\lambda_{c+m}^2 + A\{m+1\}^2 R_{m+1,m}^{(c)} - A^{-1}\{m\}^2 R_{m,m-1}^{(c)}}{\{2\}\{n+1\}} - \frac{\lambda_{c+n}}{\{n+1\}}$$

Since for all k, λ_{c+k} is the evaluation at X = A of $-((-X)^{-2N+2k+1} + (-X)^{2N-2k-1})$ (because $(-A)^p = 1$ and c = d - N) which is independent of p and by lemma 3.3.1 we deduce that there exists $\hat{M}_{m,m}^{(n)}(A) \in \mathbb{Q}(X)$ (whose expression is clear) independent of psuch that $\hat{M}_{m,m}^{(n)}(A) = M_{m,m}^{(n)}$. An explicit check gives that as $A \to -1$

$$\frac{(A - A^{-1})\lambda_{c+m}^2 - \lambda_{c+n}\{2\}}{\{2\}\{n+1\}} \to 0$$

and by lemma 3.3.1 as $A \rightarrow -1$

$$\frac{A\{m+1\}^2 R_{m+1,m}^{(c)} - A^{-1}\{m\}^2 R_{m,m-1}^{(c)}}{\{2\}\{n+1\}} \to \frac{2(N-2m-1)}{n+1}$$

We can conclude that $\hat{M}_{m,m}^{(n)}(-1) = \frac{2(N-2m-1)}{n+1}.$

Key observation The idea to prove theorem 3.1.2 is very simple. Observe that if $n \le N-2$:

$$Q_{n+1}^{\prime(c)} = \{n+1\}^{-1} (Z_p(z) - \lambda_{c+n}) Q_n^{\prime(c)}$$

and since (see proposition 3.2.1)

$$\rho_p^{(c_p)}(t_y)(Z_p(z) - \lambda_{c+n})\rho_p^{(c_p)}(t_y)^{-1} = Z_p(t_y(z)) - \lambda_{c+n}$$

we have by inserting $\rho_p^{(c_p)}(t_y)\rho_p^{(c_p)}(t_y)^{-1}$

$$\rho_p^{(c_p)}(t_y)Q_{n+1}^{\prime(c)} = \rho_p^{(c_p)}(t_y)\{n+1\}^{-1}(Z_p(z) - \lambda_{c+n})Q_n^{\prime(c)}$$

= $\rho_p^{(c_p)}(t_y)\{n+1\}^{-1}(Z_p(z) - \lambda_{c+n})\rho_p^{(c_p)}(t_y)^{-1}\rho_p^{(c_p)}(t_y)Q_n^{\prime(c)}$
= $\{n+1\}^{-1}(Z_p(t_y(z)) - \lambda_{c+n})\left(\rho_p^{(c_p)}(t_y)Q_n^{\prime(c)}\right)$

In the basis $\{Q_n^{\prime(c)}\}$ this simply means that if we apply the matrix $M^{(n)}$ to the *n*-th column of the matrix $(a_{m,k})$ we get the (n+1)-st column of $(a_{m,k})$. In other words if we denote

$$(a_{m,k}) = (a_0, \dots, a_{N-1})$$

where a_i is the *i*-th column, we have

$$a_{n+1} = M^{(n)}a_n$$

recall that $(a_{m,k})$ is the matrix of $\mu_p^{-1}\rho_p^{(c_p)}(t_y)$ in the basis $\{Q_n^{'(c)}\}$.

From this key observation we are going to prove theorem 3.1.2 in 3 steps. First we prove the existence of $\hat{T}(X), \hat{T}^*(X) \in GL_N(\mathbb{Q}(X))$ independent of p such that $\hat{T}(A) = T_p$ and $\hat{T}^*(A) = T_p^*$; then we compute $\hat{T}(-1)$ and $\hat{T}^*(-1)$; finally we give an interpretation of $\hat{T}(-1)$ and $\hat{T}^*(-1)$.

Step 1 : Existence of $\hat{T}(X)$ and $\hat{T}^*(X)$. We define

$$e := \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix} \in \mathbb{Q}^N$$

Let

$$\hat{a}_0(X) = e \in \mathbb{Q}(X)^N$$

and for $1 \le n \le N-1$

$$\hat{a}_n(X) = \hat{M}^{(n-1)}(X)...\hat{M}^{(1)}(X)\hat{M}^{(0)}(X)e \in \mathbb{Q}(X)^N$$

By lemma 3.3.2, these vectors are independent of p. Since

$$\rho_p^{(c_p)}(t_z)(Q_0^{\prime(c)}) = \mu_c Q_0^{\prime(c)}$$

we have

$$a_0 = e = \hat{a}_0(A)$$

then by the key observation and lemma 3.3.2, for $1 \le n \le N-1$

$$a_n = M^{(n-1)} \dots M^{(0)} e$$

= $\hat{M}^{(n-1)}(A) \dots \hat{M}^{(0)}(A) e$
= $\hat{a}_n(A)$

so $\hat{T}(X) := (\hat{a}_{m,n}(X)) = (\hat{a}_0(X), ..., \hat{a}_{N-1}(X)) \in GL_N(\mathbb{Q}(X))$ is independent of p and $(\hat{a}_{m,n}(A)) = (a_{m,n})$. Moreover

$$T_p^* = (b_{n,m})$$

= $(a_{m,n}(R_{n,m}^{(c)})^{-1})$
= $(\hat{a}_{m,n}(A)(\hat{R}_{n,m}^{(c)}(A))^{-1})$

and by lemma 3.3.1 $\hat{T}^*(X) := (\hat{a}_{m,n}(X)(\hat{R}_{n,m}^{(c)}(X))^{-1})$ is independent of p. Therefore we have found two matrices $\hat{T}(X), \hat{T}^*(X) \in GL_N(\mathbb{Q}(X))$ independent of p such that $\hat{T}(A) = T_p$ and $\hat{T}^*(A) = T_p^*$.

Step 2: Expression of $\hat{T}(-1)$ and $\hat{T}^*(-1)$. We will prove that for all n:

$$\hat{a}_{m,n}(-1) = \frac{2^{n-m}(N-1-m)!}{(n-m)!(N-1-n)!} \quad \text{when } m \le n \text{ and } 0 \text{ otherwise}$$
(3.2)
$$\hat{b}_{n,m}(-1) = \frac{2^{m-n}n!}{m!(n-m)!} \quad \text{when } m \le n \text{ and } 0 \text{ otherwise}$$
(3.3)

It is enough to prove (3.2), since (3.2) implies (3.3) using $\hat{b}_{n,m}(-1) = \frac{\hat{a}_{m,n}(-1)}{\hat{R}_{n,m}(-1)}$ and by lemma 3.3.1. We will compute $\hat{T}(-1)$ by an induction on n (the index of column). If

 $n = 0, a_0 = e$ so the limit is as expected. If n = 1, by the key observation

$$\hat{a}_1 = M^{(0)} \hat{a}_0$$

so by lemma 3.3.2

$$\hat{a}_{0,1}(-1) = 2(N-1)$$

 $\hat{a}_{1,1}(-1) = 1$
 $\hat{a}_{m,1}(-1) = 0$ when $m > 1$

so (3.2) is true when N = 2.

Now suppose $N \ge 3$. Let $1 \le n \le N-2$ and suppose by induction that (3.2) holds for n. Then by the key observation

$$\hat{a}_{n+1}(-1) = \hat{M}^{(n)}(-1)\hat{a}_n(-1)$$

so by lemma 3.3.2, when $1 \le m \le n-1$

$$\begin{split} \hat{a}_{m,n+1}(-1) &= \hat{M}_{m,m-1}^{(n)}(-1)\hat{a}_{m-1,n+1}(-1) + \hat{M}_{m,m}^{(n)}(-1)\hat{a}_{m,n}(-1) + \hat{M}_{m,m+1}^{(n)}(-1)\hat{a}_{m+1,n}(-1) \\ &= \frac{m}{n+1} \frac{2^{n+1-m}(N-m)!}{(n+1-m)!(N-n-1)!} + \frac{2(N-2m-1)}{n+1} \frac{2^{n-m}(N-m-1)!}{(n-m)!(N-n-1)!} \\ &\quad - \frac{4(N-m-1)}{n+1} \frac{2^{n-1-m}(N-m-2)!}{(n-1-m)!(N-n-1)!} \\ &= \frac{2^{n+1-m}(N-m-1)!}{(n+1-m)!(N-n-2)!} \left(\frac{m(N-m)}{(n+1)(N-n-1)} \right. \\ &\quad + \frac{(N-2m-1)(n-1-m)}{(n+1)(N-n-1)} - \frac{(n-m)(n+1-m)}{(n+1)(N-n-1)} \\ &= \frac{2^{n+1-m}(N-m-1)!}{(n+1-m)!(N-n-2)!} \end{split}$$

It remains to consider the cases m = 0, m = n, m = n + 1 and $m \ge n + 2$. We leave it to the reader to check that

$$\hat{a}_{0,n+1}(-1) = \frac{2^{n+1}(N-1)!}{(n+1)!(N-n-2)!}$$
$$\hat{a}_{n,n+1}(-1) = 2(N-n-1)$$
$$\hat{a}_{n+1,n+1}(-1) = 1$$
$$\hat{a}_{m,n+1}(-1) = 0 \quad \text{when } m \ge n+2$$

So we have shown that (3.2) holds for n + 1, this completes the proof of the induction step.

Step 3 : Interpretation of $\hat{T}(-1)$ and $\hat{T}^*(-1)$. Recall the action of $SL_2(\mathbb{Z})$ of H_N (the space of homogeneous polynomials of two variables X and Y of total degree N-1). For $0 \le n \le N-1$ and $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$: $\begin{pmatrix} a & b \\ c & d \end{pmatrix} (X^{N-n-1}Y^n) = (aX+cY)^{N-n-1}(bX+dY)^n$

 \mathbf{SO}

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} (X^{N-n-1}Y^n) = \sum_{m=0}^{N-1} \frac{n!}{m!(n-m)!} X^{N-m-1}Y^m$$
$$\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} (X^{N-n-1}Y^n) = \sum_{m=0}^{N-1} \frac{(-1)^{m-n}(N-n-1)!}{(N-m-1)!(n-m)!} X^{N-m-1}Y^m$$

which gives in basis (3.1)

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} (\alpha_n X^{N-n-1} Y^n) = \sum_{m=0}^{N-1} \hat{a}_{m,n} (-1) (\alpha_n X^{N-m-1} Y^m)$$
$$\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} (\alpha_n X^{N-n-1} Y^n) = \sum_{m=0}^{N-1} \hat{b}_{m,n} (-1) (\alpha_n X^{N-m-1} Y^m)$$

Since t_y maps to $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and t_z maps to $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ in $SL_2(\mathbb{Z})$ we conclude that $\hat{T}(-1)$

and $\hat{T}^*(-1)$ are the matrices of $h_N(t_y)$ and $h_N(t_z)$ in the basis (3.1) which completes the proof of theorem 3.1.2.

Remark 1 Using the previous techniques, one can get explicit formulas for \hat{T} and \hat{T}^* but they are quite complicated and we do not need them to compute the limits.

Remark 2 The theorem 3.1.1 is an easy implication of theorem 3.1.2. Indeed for all odd p with $p \ge 2N + 1$, $\rho_p^{(c_p)}$ is a representation so

$$\hat{T}(A)\hat{T}^{*}(A)\hat{T}(A) = \hat{T}^{*}(A)\hat{T}(A)\hat{T}^{*}(A)$$

(for any primitive 2-th root of unity A). Since a rational function has only a finite number of roots, in $GL_N(\mathbb{Q}(X))$ we have

$$\hat{T}\hat{T}^*\hat{T} = \hat{T}^*\hat{T}\hat{T}^*$$

and since $\Gamma_{1,1}$ has the presentation $\langle t_y, t_z | t_y t_z t_y = t_z t_y t_z \rangle$, the previous relation ensure that there exists a unique representation $\rho \Gamma_{1,1} \to GL_N(\mathbb{Q}(X))$ such that $\rho(t_y) = \hat{T}$ and $\rho(t_z) = \hat{T}^*$. By the same argument, for all odd p and all 2p-th primitive roots of the unity A, there exists a unique character $\chi_p : \Gamma_{1,1}\mathbb{C}^*$ such that $\chi(t_y) = \mu_{c_p}$ and $\chi(t_z) = \mu_{c_p}$. Then if we choose the same A (a primitive 2p-th root of the unity) to define $\rho_p^{(c_p)}$ and χ_p , by theorem 3.1.2 in the basis considered above we have

$$\chi_p \otimes \rho^{[A]} = \rho_p^{(c_p)}$$

and

$$\rho^{[-1]} = h_N$$

3.3.2 Proof of theorem 3.1.3

We know that $\Gamma_{1,1}$ acts on $H_1(\mathbb{T}^2, \mathbb{C})$ (the first homology of the torus with coefficients in \mathbb{C}). So we have a representation

$$\phi_N: \Gamma_{1,1} \to \operatorname{Aut}(\operatorname{Sym}^{N-1}H_1(\mathbb{T}^2, \mathbb{C}))$$

where $\operatorname{Sym}^{N-1}H_1(\mathbb{T}^2, \mathbb{C})$ is the space of symmetric (N-1)-tensors on $H_1(\mathbb{T}^2, \mathbb{C})$. We then use the following fact : ϕ_N is isomorphic to h_N (because ϕ_2 is isomorphic to h_2).

Now let $\phi \in \Gamma_{1,1}$ be pseudo-Anosov, we denote by ϕ' the image of ϕ in $SL_2(\mathbb{Z})$. We have $|\operatorname{tr}(\phi')| > 2$ so there exists $u \in H_1(\mathbb{T}^2, \mathbb{C}) - \{0\}$ and $\lambda \in \mathbb{C}$ with $|\lambda| > 1$ such that $\phi' u = \lambda u$. Then λ^{N-1} is an eigenvalue of the matrix of $h_N(\phi)$ in the basis of theorem 3.1.2 (which we denote by M). And of course $|\lambda^{N-1}| > 1$.

Then for odd p with $p \ge 2N + 1$ we set $A_p = -e^{\frac{i\pi}{p}}$ which is a primitive 2*p*-th root of unity. We define $\rho_p^{(c_p)}$ using A_p . Let M_p be the matrix of $\rho_p^{(c_p)}(\phi)$ in the basis $\{Q_n^{\prime(c)}\}$. By the theorem 3.1.1 since $A_p \xrightarrow[p \to \infty]{} -1$

$$\lim_{p \to \infty} (\chi_p(\phi))^{-1} M_p = M$$

so there exists $p_0(\phi)$ such that for $p \ge p_0(\phi)$, the matrix $(\chi_p(\phi))^{-1}M_p$ has an eigenvalue whose absolute value is greater than 1 and hence the this matrix has infinite order. As $\chi_p(\phi)$ is a root of unity for all p, it follows that the matrix M_p has also infinite order for $p \ge p_0(\phi)$. We can conclude because M_p be the matrix of $\rho_p^{(c_p)}(\phi)$.

Remark This proof is very similar to the case of the sphere with 4 holes see [2].

Remark This proof also says that the asymptotic faithfullness property (see [1], [2, Corollary 4.3] and [10]) holds for these representations, more precisely if $\phi \in \Gamma_{1,1}$ is non central then there exists $p_0(\phi)$ such that for all $p \ge p_0(\phi)$ the automorphism $\rho_p^{(c_p)}(\phi)$ is non trivial.

3.4 Appendice : Commentaires sur l'image quantique de $\Gamma_{1,1}$

3.4.1 L'image et le groupe du triangle lorsque N = 2

Intéressons nous au cas où la dimension de ces représentations est 2. Soit $p \ge 7$ un entier impair, on rappelle que $c_p = \frac{p-1}{2} - 2$. On souhaite étudier la représentation

$$\rho_p^{(c_p)}: \Gamma_{1,1} \to \operatorname{Aut}(V_p(T_{c_p}))$$

où dim $(V_p(T_{c_p})) = 2$. On notera simplement $\rho_{p,2}$ cette représentation. Gregor Masbaum a démontré dans des travaux non publiés mais mentionnés dans [25] que l'image projective de $\rho_{p,2}$ est le groupe du triangle $\Delta(2,3,p)$ donné par la présentation suivante

$$\langle t, s \mid t^p = s^2 = (st)^3 = 1 \rangle$$

Nous allons maintenant donner les grandes lignes de la preuve que Gregor Masbaum nous a révélé. Le calcul explicite des matrices dans la base $Q'_n^{(c_p)}$ nous donne

$$\rho_{p,2}(t_y) = A_p^{-1} \mu_c \begin{pmatrix} A_p & A_p^3 + A_p^{-3} \\ 0 & A_p^{-1} \end{pmatrix} \quad , \quad \rho_{p,2}(t_z) = A_p^{-1} \mu_c \begin{pmatrix} A_p & 0 \\ -(A_p + A_p^{-1})^{-1} & A_p^{-1} \end{pmatrix}$$

où $\mu_c = (-A_p)^{c_p(c_p+2)}$. On définit

$$\rho_{p,2}'(t_y) = \begin{pmatrix} A_p & A_p^3 + A_p^{-3} \\ 0 & A_p^{-1} \end{pmatrix} \quad , \quad \rho_{p,2}'(t_z) = \begin{pmatrix} A_p & 0 \\ -(A_p + A_p^{-1})^{-1} & A_p^{-1} \end{pmatrix}$$

On obtient alors une représentation

$$\rho'_{p,2}: \Gamma_{1,1} \to SL_2(\mathbb{C})$$

Notons pour la suite $\pi : SL_2(\mathbb{C}) \to \mathbb{P}SL_2(\mathbb{C})$ la projection canonique. On souhaite démontrer le théorème suivant

Théorème (Masbaum) Pour $p \ge 7$, on a $\pi(\rho'_{p,2}(\Gamma_{1,1})) \simeq \Delta(2,3,p)$.

Dans un premier temps, soit $F_2 = \langle x, y \rangle$ le groupe libre à deux éléments, comme $\Gamma_{1,1}$ est engendré par t_y et $s = t_z t_y t_z$, on a une application surjective $F_2 \to \Gamma_{1,1}$ (qui envoie xvers t_y et y vers s), si l'on compose cette application avec $\rho'_{p,2}$ on a une représentation

$$\rho_{p,2}^*: F_2 \to SL_2(\mathbb{C})$$

Dans un deuxième temps construisons une autre représentation de F_2 . Considérons un

triangle hyperbolique dans \mathbb{H}^2

d'angles $\frac{\pi}{2}$, $\frac{\pi}{3}$ et $\frac{\pi}{p}$, on note a, b et c ses sommets. Le groupe des isométries de \mathbb{H}^2 est isomorphe à $\mathbb{P}SL_2(\mathbb{R})$. Soit r_c la rotation hyperbolique de centre c et d'angle $\frac{2\pi}{p}$. Choisissons une matrice dans $SL_2(\mathbb{R})$ représentant r_c et telle que $\operatorname{tr}(R) = 2\cos\left(\frac{2\pi}{p}\right)$ (notons que l'autre représentant de r_c est -R). Soit r_b la rotation hyperbolique de centre b et d'angle π . Soit S une matrice dans $SL_2(\mathbb{R})$ représentant r_b . On a que SR correspond en tant qu' isométrie de \mathbb{H}^2 à la rotation de centre a et d'angle $\frac{2\pi}{3}$ donc $(SR)^3 = \pm I$. Quitte à changer S en -S, on peut supposer que

$$(SR)^3 = I$$

donc SR est diagonalisable et comme $SR \in SL_2(\mathbb{R})$ est non trivial, les valeurs propres de SR sont j et j^2 donc

$$\operatorname{tr}(SR) = j + j^2 = -1$$

En résumé nous avons construit 2 matrices R et S dans $SL_2(\mathbb{R})$ telles que

$$tr(R) = 2\cos\left(\frac{2\pi}{p}\right)$$
$$tr(S) = 0$$
$$tr(SR) = -1$$

On définit maintenant

$$\theta: F_2 \to SL_2(\mathbb{C})$$

par $\theta(x) = R$ et $\theta(y) = S$. Maintenant rappelons le lemme suivant

Lemme Si $\theta_1 : F_2 \to SL_2(\mathbb{C})$ et $\theta_2 : F_2 \to SL_2(\mathbb{C})$ sont deux représentations telles que tr $(\theta_1(x)) = \text{tr}(\theta_2(x)), \text{tr}(\theta_1(y)) = \text{tr}(\theta_2(y))$ et tr $(\theta_1(yx)) = \text{tr}(\theta_2(yx))$ alors θ_1 est isomorphe à θ_2 .

En utilisant les formules explicites de $\rho'_{p,2}$ on calcule

$$\operatorname{tr}(\rho_{p,2}^*(x)) = A_p + A_p^{-1}, \quad \operatorname{tr}(\rho_{p,2}^*(y)) = 0, \quad \operatorname{tr}(\rho_{p,2}^*(yx)) = -1$$

Donc grâce au lemme précédent on peut conclure que θ est isomorphe à $\rho_{p,2}^*$ lorsque $A_p = e^{\frac{2i\pi}{p}}$.

Rappelons maintenant que le groupe du triangle $\Delta(2,3,p)$ admet la présentation suivante

$$\langle t, s \mid t^p = s^2 = (st)^3 = 1 \rangle$$

Il y donc une application surjective naturelle de F_2 dans $\Delta(2,3,p)$ envoyant x vers t et y vers s. On note $\tilde{\Delta}(2,3,p)$ le sous groupe de $\mathbb{P}SL_2(\mathbb{R})$ des isométries de \mathbb{H}^2 laissant invariant un pavage de \mathbb{H}^2 formé de triangles hyperboliques d'angles $\frac{\pi}{2}$, $\frac{\pi}{3}$ et $\frac{\pi}{p}$. Il est connu que $\Delta(2,3,p)$ est un sous groupe d'indice 2 de $\tilde{\Delta}(2,3,p)$. Et l'application ι qui à t associe la matrice R et qui à s associe la matrice S définit une représentation fidèle

$$\iota: \Delta(2,3,p) \to \mathbb{P}SL_2(\mathbb{R})$$

La représentation ι peut se voir dans $\mathbb{P}SL_2(\mathbb{C})$ et se factorise clairement par θ ce qui nous donne le diagramme commutatif suivant

on a donc $\pi(\rho_{p,2}^*(F_2)) = \pi(\rho'_{p,2}(\Gamma_{1,1}))$. Sachant que θ et $\rho_{p,2}^*$ sont isomorphes on a $\pi(\rho'_{p,2}(\Gamma_{1,1})) = \pi(\theta(F_2))$. Enfin en suivant le diagramme et utilisant le fait que ι est fidèle on a

$$\pi(\theta(F_2)) = \iota(\Delta(2,3,p)) \simeq \Delta(2,3,p)$$

on conclut que

$$\pi(\rho_{p,2}'(\Gamma_{1,1})) \simeq \Delta(2,3,p)$$

lorsque $A_p = e^{\frac{2i\pi}{p}}$. Bien entendu, lorsque A_p est une autre 2*p*-ième primitive de l'unité, les représentations $\rho'_{p,2}$ sont conjuguées par un automorphisme Galoisien par conséquent l'isomorphisme reste vrai.

3.4.2 Le problème lorsque $N \ge 2$

Notons pour plus de simplicité ρ_p^N la représentation $\rho_p^{(c_p)}$ lorsque la dimension de celleci est N. Une question intéressante est de savoir si l'image de ρ_p^N est toujours un groupe du triangle lorsque $N \ge 3$. Plus précisément, est-il vrai que lorsque $N \ge 3$ et $p \ge 2N + 3$

$$\operatorname{Ker}\rho_p^2 = \operatorname{Ker}\rho_p^N$$
 ?

Remarquons que si p = 2N + 1 alors $c_p = 0$, par conséquent dans ce cas on regarde le tore sans points en bandes dont l'image est un groupe fini. Ce cas est donc exclu.

De plus, comme $\operatorname{Ker} \rho_p^2$ est le sous groupe normal engendré par t_y^p , on a évidement

$$\operatorname{Ker}\rho_p^2 \subset \operatorname{Ker}\rho_p^{\Lambda}$$

De ce fait, pour prouver que $\operatorname{Ker} \rho_p^N \neq \operatorname{Ker} \rho_p^2$, il suffit d'exhiber un élément $\phi \in \operatorname{Ker} \rho_p^N$ tel que $\phi \notin \operatorname{Ker} \rho_p^2$.

Décrivons maintenant les formules explicites que nos techniques permettent d'obtenir pour N = 3. Soit \hat{a} la matrice $\rho(t_y)$ et \hat{b} la matrice $\rho(t_z)$ où l'on rappelle que

$$\rho: \Gamma_{1,1} \to GL_N(\mathbb{Q}(X))$$

est la représentation universelle décrite dans le théorème 3.1.1. On a alors

$$\hat{a} = \begin{pmatrix} 1 & (X^4 + X^2 + X^{-6} + X^{-8}) & -(X^5 + X^{-3} + X^{-5} + X^{-13}) \\ 0 & X^{-4} & -(X^{-1} + X^{-9}) \\ 0 & 0 & X^{-6} \end{pmatrix}$$

$$\hat{b} = \begin{pmatrix} 1 & 0 & 0 \\ -(X^4 + 1)^{-1} & X^{-4} & 0 \\ -(X^7 + X^5 + X^3 + X)^{-1} & X^{-5} & X^{-6} \end{pmatrix}$$

Applications expérimentales lorsque N = 3 et p = 9 Fixons p = 9 et N = 3, soit A une racine 18-ième primitive de l'unité. Dans la base $(Q_n^{\prime(c)})$ soit la matrice $a \,\mathrm{de}\,\mu_c^{-1}\rho_9^3(t_y)$ et soit b la matrice de $\mu_c^{-1}\rho_9^3(t_z)$. On rappelle que a est la matrice \hat{a} où X est évaluée en A et b est la matrice \hat{b} où X est évaluée en A. On vérifie alors que $(ab^{-1})^{18} = 1$. D'autre part on vérifie aussi que $\rho_9^2(t_y t_z^{-1})$ est d'ordre

infini. On a donc

 $(t_y t_z^{-1})^{18} \in \text{Ker}\rho_9^3$ and $(t_y t_z^{-1})^{18} \notin \text{Ker}\rho_9^2$

Remarque On en déduit que dans le cas p = 9 l'image est un quotient non trivial du groupe du triangle $\Delta(2,3,9)$.

Chapter 4

Action of M(0, 2n) on some kernel spaces coming from SU(2)-TQFT

4.1 Introduction

For $n \ge 4$ an even number, we consider quantum representations of the mapping class group of the *n*-punctured sphere arising from Witten-Reshetikhin-Turaev SU(2) Topological Quantum Field Theory (TQFT) and we focus concretely on the representations induced from skein theory at certain special roots of unity.

For $N \geq 1$, $r-1 \geq N \geq 1$ and A_r a 2r-th primitive root of -1 we denote by $S_{A_r}(B^3, (N)_n)$ the skein module of the 3-ball whose boundary is equipped with n banded points all colored by N. The mapping class group of the n-punctured sphere (denoted by M(0,n)) acts projectively on $S_{A_r}(B^3, (N)_n)$ (we denote by ρ this representation). The case N = 1 and $A^4 = -1$ has already been studied (see [2], [9] and [16]), loosely speaking the representations were interpreted using an algebraic operation in the homology of a cyclic branched 2-covering of the sphere. Here we investigate at other special roots of unity and we do not restrict to N = 1.

Indeed, it is known that if $2r \ge Nn + 2$ then the quantum representation of M(0, n) is simply ρ but for 2r < Nn + 2, the quantum representation is defined on the space $V_{2r}(S^2, (N)_n)$ (we use the notations of [6], it corresponds to the SU(2)-TQFT at level k = r - 2). To describe this space we recall the following definition

Definition Let $K_r(B^3, (N)_n)$ be the left kernel of the natural sesquilinear form on $S_{A_r}(B^3, (N)_n)$ defined by the Kauffman bracket (see chapter 1 theorem 1.1.1)

It is known that for 2r < Nn + 2

$$V_{2r}(S^2, (N)_n) = S_{A_r}(B^3, (N)_n) / K_r(B^3, (N)_n)$$

Moreover the space $K_r(B^3, (N)_n)$ is stable for the action of M(0, n) and the goal of this paper is to give a cohomological interpretation of the projective representation induced on $K_r(B^3, (N)_n)$ in the case 2r = nN; this interpretation involves the space $H^1(X)_q$ (depending on a root of unity q) considered by Curtis McMullen in [26] which is a subspace of the first cohomology space of a cyclic branched covering of the sphere (where the cyclic branched 2-covering appearing in [2], [9] and [16] is $H^1(X)_{-1}$). We will prove the following theorem **Theorem 4.1.1.** When 2r = Nn and A_r is a 2r-th primitive root of -1, if we set $q = A_r^{4N}$, then

$$K_r(B^3, (N)_n) \simeq H^1(X)_{q^{-1}}$$

as projective representations of M(0, n).

For the proof of this theorem will have to separate the case $n \ge 6$ (see section 4.4) and the case n = 4 (see section 4.5). We remark that it would be interesting to understand this theorem using the homological approach due to Ruth Lawrence (see [18] and a review in chapter 2 section 2.3.2) but we will not do it here.

Remark that in the case of the four-punctured sphere, the cyclic branched covering of the sphere we consider is simply the torus quotiented by a hyperelliptic involution so if N = 1 the theorem 4.1.1 recovers the result known in [2] and actually extends it (in a certain sense) for $N \ge 2$. As an application we can prove that the conjecture of Andersen, Masbaum and Ueno (see [2]) holds for the four-punctured sphere when $N \ge 2$. More precisely for $r \ge 2$ and A_r a primitive 2*r*-th root of -1 denoting by $\rho_{r,A_r} : M(0,4) \rightarrow$ $\mathbb{P}\operatorname{Aut}(V_{2r}(S^2, (N)_4)))$ the quantum representation, we shall prove

Corollary 4.1.2. For all $N \ge 1$, if $\phi \in M(0, 4)$ is pseudo-Anosov then there exists r_0 (depending on N and ϕ) such that for all $r \ge r_0$, $\rho_{r,A_r}(\phi)$ has infinite order.

So we see that for N = 1 this corollary is the result proved in [2]. Moreover, if we denote by $\rho_q : M(0,n) \to \mathbb{P}\operatorname{Aut}(H^1(X)_q)$ the projective representation defined in [26], for any element $\phi \in M(0,n)$, the operator $\rho_q(\phi) \in \operatorname{Aut}(H^1(X)_q)$ is defined up to a phase factor which is a root of unity, therefore it makes sense to say that $\rho_q(\phi)$ has a spectral radius strictly greater than one. So if $n \ge 4$ even and $N \ge 1$ are fixed, for $r \ge N + 1$ and A_r a primitive 2r-th root of -1 denoting by $\rho_{r,A_r}^{(n,N)} : M(0,n) \to \mathbb{P}\operatorname{Aut}(V_{2r}(S^2,(N)_n))$ the quantum representation, we have

Corollary 4.1.3. Let $\phi \in M(0, n)$ be pseudo-Anosov. Suppose that there exists A_{∞} a Nn primitive root of -1 such that the operator $\rho_{A_{\infty}^{-4N}}(\phi)$ acting on the space $H^1(X)_{A_{\infty}^{-4N}}$ has a spectral radius strictly greater than one. Then there exists r_0 (depending on N, n and ϕ) such that for all $r \geq r_0$, $\rho_{r,A_r}^{(n,N)}(\phi)$ has infinite order.

4.2 TQFT and the kernel space

For this section let $N \ge 1$ and $n \ge 4$ even.

4.2.1 Review of the TQFT for the torus

Let $S(D^2 \times S^1)$ be the skein module of the solid torus over the ring of Laurent polynomials $\mathbb{C}[A, A^{-1}]$, it has a natural multiplicative structure. Moreover as a $\mathbb{C}[A, A^{-1}]$ -algebra

$$S(D^2 \times S^1) \simeq \mathbb{C}[A, A^{-1}][z]$$

where $\mathbb{C}[A, A^{-1}][z]$ is the $\mathbb{C}[A, A^{-1}]$ -algebra of polynomials in one variable. Recall that z is the following banded knot in $D^2 \times S^1$

and z^m is *m*-parallel copies of z.

For $l \geq 0$, we denote by e_l the *l*-th Chebyshev polynomial determined by

$$e_0 = 1, \qquad e_1 = z$$

and for $l \geq 2$

$$ze_l = e_{l+1} + e_{l-1}$$

For later use, we keep in mind that $\forall x \in \mathbb{C} - \{0\}$ and $l \ge 0$

$$e_l(x+x^{-1}) = \frac{x^{l+1} - x^{-l-1}}{x - x^{-1}}$$

Let $r \geq 2$, it is known that

$$V_{2r}(\mathbb{T}^2) \simeq \mathbb{C}[z]/(e_{r-1})$$

The image of z in $V_{2r}(\mathbb{T}^2)$ will also be denoted by z. For $0 \leq l \leq r-2$ we denote by z_l the banded knot z colored by l. Remark that

$$Z_r(D^2 \times S^1, z_l) = e_l$$

The natural hermitian form on $V_{2r}(\mathbb{T}^2)$ is denoted by $\langle , \rangle_{r,\mathbb{T}^2}$ and with respect to this form, e_0, \ldots, e_{r-2} is an orthonormal basis. The following lemma can be easily proved by induction but will be very important later on.

Lemma 4.2.1. In $V_{2r}(\mathbb{T}^2)$ we have the following periodicity

$$e_{2r+b} = e_b \qquad \forall b \ge 0$$

and

$$e_{r+a} = -e_{r-2-a}$$
 $a = 0, ..., r-1$

with the convention that $e_{-1} = 0$.

4.2.2 TQFT and the kernel space for punctured spheres

For $k \ge 0$ we denote by $(S^2, (N)_n, (k))$ the 2 sphere equipped with n marked points with color N and one marked point with color k. When k = 0, we simply write $(S^2, (N)_n)$ for $(S^2, (N)_n, (0))$. For $k \ge 0$ let $S(B^3, (N)_n, (k))$ be the skein module of the 3-ball whose boundary is $(S^2, (N)_n, (k))$, and we also write $S(B^3, (N)_n)$ for $S(B^3, (N)_n, (0))$. $S(B^3, (N)_n, (k))$ is a free module over $\mathbb{C}[A, A^{-1}]$. Let $r \geq 2$ and A_r be a 4*r*-th primitive root of the unity. If $r - 1 \geq N, k \geq 0$, there is a natural sesquilinear form on $S_{A_r}(B^3, (N)_n, (k))$ which we denote by \langle , \rangle_{A_r} . It is known that (see [6])

$$V_{2r}(S^2, (N)_n, (k)) \simeq S_{A_r}(B^3, (N)_n, (k)) / K_r(B^3, (N)_n, (k))$$

where $K_r(B^3, (N)_n, (k))$ is the left kernel of the form \langle , \rangle_{A_r} and $V_{2r}(S^2, (N)_n, (k))$ is the space associated to $(S^2, (N)_n, (k))$ by the SU(2) TQFT at A_r . It can been seen that for $2r \geq Nn+2$, dim $(K_r(B^3, (N)_n)) = 0$, but for 2r < Nn+2 the dimension of $K_r(B^3, (N)_n)$ can be difficult to compute, however we will see in this subsection that in the case 2r = Nn, this dimension is simply n-2.

Proposition 4.2.2. Let $r \ge 2$ and $r - 1 \ge N, k \ge 0$ we have

$$\dim(V_{2r}(S^2, (N)_n, (k))) = \langle e_k, (e_N)^n \rangle_{r, \mathbb{T}^2}$$

Proof. Let $P = \{p_1, ..., p_n, p_{n+1}\}$ be a set of n+1 banded points on S^2 . Let $(S^2 \times I, P_{N,k})$ be the cobordism $S^2 \times I$ equipped with the banded arcs $(p_i \times I)_{i=1,...,n}$ colored by N and the arc $p_{n+1} \times I$ colored by k. We can then define the operator $Z_r(S^2 \times I, P_{N,k}) \in$ End $(V_{2r}(S^2, (N)_n, (k)))$ which is nothing but the identity operator, therefore

$$\dim(V_{2r}(S^2, (N)_n, (k))) = \operatorname{tr}(Z_r(S^2 \times I, P_{N,k})) = Z_r(S^2 \times S^1, \tilde{P}_{N,k})$$

where $(S^2 \times S^1, \tilde{P}_{N,k})$ is the 3-manifold without boundary $S^2 \times S^1$ equipped with the banded link $(p_i \times S^1)_{i=1,\dots,n}$ colored by N and the banded knot $p_{n+1} \times S^1$ colored by k.

Moreover recall that $S^2 \times S^1$ can be obtained by gluing two solid tori along their boundary with the identity map, so

$$Z_r(S^2 \times S^1, \tilde{P}_{N,k}) = \langle Z_r(D^2 \times S^1, z_k), Z_r(D^2 \times S^1, z_N^n) \rangle_{r, \mathbb{T}^2}$$
$$= \langle e_k, (e_N)^n \rangle_{r, \mathbb{T}^2}$$

Corollary 4.2.3. If we write $(e_N(X))^n = \sum_{k=0}^{nN} c(k, N, n) e_k(X)$ in $\mathbb{Z}[X]$ then

$$c(k, N, n) = \dim(S(B^3, (N)_n, (k)))$$

Proof. For this proof, we suppose $r \ge Nn + 2$, we remark that

$$\dim(S(B^{3}, (N)_{n}, (k))) = \dim(V_{2r}(S^{2}, (N)_{n}, (k)))$$

= $\langle e_{k}(z), (e_{N}(z))^{n} \rangle_{r,\mathbb{T}^{2}}$
= $\sum_{l=0}^{nN} c(l, N, n) \langle e_{l}(z), e_{k}(z) \rangle_{r,\mathbb{T}^{2}}$

but since r-1 > Nn, for all $Nn \ge k, l \ge 0$ we have $\langle e_l(z), e_k(z) \rangle_{r,\mathbb{T}^2} = 1$ when k = l and 0 otherwise. So

$$\dim(S(B^3, (N)_n, (k))) = c(k, N, n)$$

Lemma 4.2.4.

$$c(Nn - 2, N, n) = n - 1$$
 and $c(Nn, N, n) = 1$

Proof. $S(B^3, (N)_n, (Nn)))$ is one dimensional with a basis vector given by

where there are n boxes labelled by N on the top. Here the boxes labelled by N and Nn are respectively the N-th and the Nn-th Jones-Wenzl idempotents. The lines labelled by N are banded arcs colored by N. So by corollary 4.2.3

$$c(Nn, N, n) = \dim(S(B^3, (N)_n, (Nn))) = 1$$

On the other hand define for j = 1, ..., n-1 the following vectors in $S(B^3, (N)_n, (Nn-2))$

where there are *n* boxes labelled by *N* on the top and the unique arc colored by 1 is between the *j*-th and the (j+1)-st box. We see that $(X_j)_{j=1,\dots,n-1}$ is a basis of $S(B^3, (N)_n, (Nn-2))$ so still by corollary 4.2.3

$$c(Nn-2, N, n) = \dim(S(B^3, (N)_n, (Nn-2))) = n-1$$

We can now compute the dimension of $K_r(B^3, (N)_n)$ when 2r = Nn.

Corollary 4.2.5. If 2r = Nn we have

$$\dim(K_r(B^3, (N)_n)) = n - 2$$
 and $\dim(K_r(B^3, (N)_{n-2}, (2N - 2))) = 1$

Proof. Let us compute $\dim(V_{2r}(S^2, (N)_n))$

$$\dim(V_{2r}(S^{2}, (N)_{n})) = \langle e_{N}^{n}, e_{0} \rangle_{r, \mathbb{T}^{2}}$$

$$= \sum_{k=0}^{Nn} c(k, N, n) \langle e_{k}, e_{0} \rangle_{r, \mathbb{T}^{2}}$$

$$= \sum_{k=0}^{\frac{Nn}{2}-1} c(k, N, n) \langle e_{k}, e_{0} \rangle_{r, \mathbb{T}^{2}} + \sum_{k=\frac{nN}{2}}^{Nn-1} c(k, N, n) \langle e_{k}, e_{0} \rangle_{r, \mathbb{T}^{2}}$$

$$+ c(Nn, N, n) \langle e_{Nn}, e_{0} \rangle_{r, \mathbb{T}^{2}}$$

by lemma 4.2.1

$$e_{\frac{Nn}{2}-1} = 0$$
 $e_{Nn-1} = 0$, $e_{Nn} = e_0$, $e_{Nn-2} = -e_0$

and for $Nn/2 \le k < Nn - 2$

$$e_k = -e_{Nn-2-k}$$

now since $e_0, ..., e_{\frac{Nn}{2}-2}$ is an orthonormal basis of $V_{2r}(\mathbb{T}^2)$ we deduce

$$\sum_{k=0}^{\frac{Nn}{2}-1} c(k, N, n) \langle e_k, e_0 \rangle_{r, \mathbb{T}^2} = c(0, N, n)$$
$$\sum_{k=\frac{nN}{2}}^{Nn-1} c(k, N, n) \langle e_k, e_0 \rangle_{r, \mathbb{T}^2} = -c(Nn-2, N, n)$$
$$c(Nn, N, n) \langle e_{Nn}, e_0 \rangle_{r, \mathbb{T}^2} = c(Nn, N, n)$$

 \mathbf{SO}

$$\dim(V_{2r}(S^2, (N)_n)) = c(0, N, n) - c(Nn - 2, N, n) + c(Nn, N, n)$$

moreover using corollary 4.2.3 and lemma 4.2.4

$$c(0, N, n) = \dim(S(B^3, (N)_n))$$
$$c(Nn - 2, N, n) = n - 1$$
$$c(Nn, N, n) = 1$$

therefore

$$\dim(K_r(B^3, (N)_n)) = \dim(S(B^3, (N)_n)) - \dim(V_{2r}(S^2, (N)_n))$$

= dim(S(B^3, (N)_n)) - dim(S(B^3, (N)_n)) + n - 1 - 1
= n - 2

Similarly we have

$$\begin{aligned} \dim(V_{2r}(S^2, (N)_{n-2}, (2N-2))) \\ &= \langle (e_N)^{n-2}, e_{2N-2} \rangle_{r,\mathbb{T}^2} \\ &= \sum_{k=0}^{Nn-2N} c(k, N, n-2) \langle e_k, e_{2N-2} \rangle_{r,\mathbb{T}^2} \\ &= \sum_{k=0}^{\frac{Nn}{2}-2} c(k, N, n-2) \langle e_k, e_{2N-2} \rangle_{r,\mathbb{T}^2} + \sum_{k=\frac{nN}{2}}^{Nn-2N} c(k, N, n-2) \langle e_k, e_{2N-2} \rangle_{r,\mathbb{T}^2} \\ &= c(2N-2, N, n-2) + \sum_{k=0}^{\frac{nN}{2}-2N} c(k+\frac{nN}{2}, N, n-2) \langle e_{k+\frac{nN}{2}}, e_{2N-2} \rangle_{r,\mathbb{T}^2} \\ &= c(2N-2, N, n-2) - \sum_{k=0}^{\frac{nN}{2}-2N} c(k+\frac{nN}{2}, N, n-2) \langle e_{\frac{nN}{2}-2-k}, e_{2N-2} \rangle_{r,\mathbb{T}^2} \end{aligned}$$

we see that in the last sum $0 \le k \le Nn/2 - 2 \le r - 1$ so

$$\sum_{k=0}^{\frac{nN}{2}-2N} c(k+\frac{nN}{2}, N, n-2) \langle e_{\frac{nN}{2}-2-k}, e_{2N-2} \rangle_{r,\mathbb{T}^2} = c(Nn-2N, N, n-2)$$

 \mathbf{SO}

$$\dim(V_{2r}(S^2, (N)_{n-2}, (2N-2))) = c(2N-2, N, n-2) - c(Nn-2N, N, n-2)$$

but by corollary 4.2.3

$$c(2N-2, N, n-2) = \dim(S(B^3, (N)_{n-2}, (2N-2)))$$

so using lemma 4.2.4 we have

$$\dim(K_r(B^3, (N)_{n-2}, (2N-2))) = c(Nn - 2N, N, n-2) = 1$$

4.2.3 The action of the mapping class group

We denote by M(0, n) the mapping class group of the sphere with n marked points, it is the group of orientation preserving diffeomorphisms of the sphere which globally preserve the n marked points quotiented by the orientation preserving diffeomorphisms isotopic to the identity. Recall that M(0, n) is generated by n-1 elements $\sigma_1, ..., \sigma_{n-1}$ where σ_i is the half twist around the *i*-th and the (i+1)-st hole with respect to the following numbering :

Moreover we have the relations :

$$\sigma_i \sigma_j = \sigma_j \sigma_i \qquad \text{when} \quad |i-j| > 1$$

$$\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j \qquad \text{when} \quad |i-j| = 1$$

$$\sigma_1 \dots \sigma_{n-1} \sigma_{n-1} \dots \sigma_1 = 1$$

$$(\sigma_1 \dots \sigma_{n-1})^n = 1$$

For i = 1, ..., n-1 we define ϕ_i : the decorated cobordism $S^2 \times I$ equipped with the colored banded arcs

where all banded arcs are colored by N, the half twist is done between the *i*-th and the (i + 1)-st banded points. This decorated cobordism defines naturally an operator $Z(\phi_i)$ on $S(B^3, (N)_n)$. We can now define a projective representation

$$\rho: M(0,n) \to \mathbb{P}\operatorname{Aut}(S(B^3,(N)_n))$$

by

$$\rho(\sigma_i) = (-A)^{N(N+2)} Z(\phi_i)$$

We denote by σ_n the half twist between the *n*-th hole and the first hole. We make a similar definition for $\rho(\sigma_n)$: let ϕ_n be the decorated cobordism

where the underlying manifold is drawn for more clarity. And we set

$$\rho(\sigma_n) = (-A)^{N(N+2)} Z(\phi_n)$$

Remark For $r \ge 2$, the space $K_r(B^3, (N)_n)$ is known to be stable for the action of M(0, n).

4.3 Representations from cyclic branched covering of the sphere

In this section we follow McMullen (see [26]).

4.3.1 General definitions

Let $d \ge 2, n \ge 2$ and $x_1, ..., x_n$ n distinct points in \mathbb{C} fixed in this section. Consider

$$X^* = \{ (x, y) \in \mathbb{C} \times \mathbb{C} \mid y^d = (x - x_1)...(x - x_n) \}$$

The first coordinate projection gives a degree d ramified cover (ramified over $x_1, ..., x_n$)

$$\pi: X^* \to \mathbb{C}$$

We denote by $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ the standard compactification of \mathbb{C} . The cover $\pi : X^* \to \mathbb{C}$ extends to a unique cover $\pi : X \to \hat{\mathbb{C}}$ where X is a compact orientable surface without boundary whose genus is given by the Riemann-Hurwitz formula :

$$g(X) = \frac{(n-1)(d-1) + 1 - \gcd(d, n)}{2}$$

moreover the cardinality of $\pi^{-1}(\infty)$ is $\operatorname{gcd}(d, n)$. Consider the diffeomorphism $T: (x, y) \in X \to (e^{2i\pi/d}x, y) \in X$ which is an automorphism of the cover X. The group of automorphisms of the cover X is actually isomorphic to \mathbb{Z}/d and generated by T. The space $H^1(X, \mathbb{C})$ splits as

$$H^1(X,\mathbb{C}) = \bigoplus_{q^d=1} H^1(X)_{q,d}$$

where $H^{1}(X)_{q,d} = \ker(T^{*} - qI).$

Let $\operatorname{Mod}(X)^T$ be the group of orientation preserving diffeomorphisms up to isotopies of X which commute with T. Let $\operatorname{Mod}_c(\mathbb{C}, \{x_1, ..., x_n\})$ be the group of compactly supported orientation preserving diffeomorphisms fixing a neighborhood of ∞ up to isotopies of \mathbb{C} which preserve the set of points $\{x_1, ..., x_n\}$. It is known that $\operatorname{Mod}_c(\mathbb{C}, \{x_1, ..., x_n\})$ is isomorphic to the braid group B_n .

Now if $\phi \in \text{Mod}_c(\mathbb{C}, \{x_1, ..., x_n\})$, there is a unique lift $\tilde{\phi} \in \text{Mod}(X)^T$ which fixes a neighborhood of $\pi^{-1}(\infty)$ (see [26]). So we have a representation

$$\rho_{q,d}: B_n \to \operatorname{Aut}(H^1(X)_{q,d})$$

which sends ϕ to the action of ϕ on $H^1(X)_{q,d}$. Actually the representation $\rho_{q,d}$ depends only on q (see [26, Remark: stabilization]), more precisely if $d \neq d'$ and $q^d = q^{d'} = 1$ then

$$\dim(H^{1}(X)_{q,d}) = \dim(H^{1}(X)_{q,d'})$$

 $\rho_{q,d} \simeq \rho_{q,d'}$

and

so we simply write ρ_q for $\rho_{q,d}$ and $H^1(X)_q$ for $H^1(X)_{q,d}$.

Remark Recall that M(0,n) is a quotient of B_n . As pointed out by McMullen in [26], the projective representation ρ_q is well defined on M(0,n) if and only if the point ∞ is not ramified, in other words, if $q^n = 1$.

Theorem (see [26, Corollary 3.3]) Let q be a root of unity different from 1 and n be the number of marked points.

$$\dim(H^1(X)_q) = n - 1 \quad \text{when} \quad q^n \neq 1$$
$$\dim(H^1(X)_q) = n - 2 \quad \text{when} \quad q^n = 1$$

and $H^1(X)_1 = 0$.

Remark We see that if $N \ge 1$, $r \ge 2$ such that 2r = Nn and A_r is primitive 2*r*-th root of -1, we have that $\left(A_r^{-4N}\right)^n = 1$ so

$$\dim(K_r(B^3, (N)_n)) = \dim(H^1(X)_{A^{-4N}}) = n - 2$$

and M(0,n) acts projectively on $H^1(X)_{A^{-4N}}$.

The space $H^1(X)_q$ is endowed with a natural hermitian form (\mathbb{C} -antilinear on the right and \mathbb{C} -linear on the left) which we denote by \langle , \rangle (the dependence in q is implicit) and the representation ρ_q is a unitary representation with respect to this form.

4.3.2 Explicit formulas

In this subsection we suppose $q^n = 1$ and $q \neq 1$, we want to have a basis of $H^1(X)_q$ and explicit formulas for the action of the braid group. We recall the explicit formulas for ρ_q which are given in [26].

Theorem (see [26, Theorem 4.1]) There is a spanning set $(u_j)_1^n$ for $H^1(X)_q$ such that the hermitian form is given by

$$\langle u_j, u_j \rangle = -i(q - \overline{q})$$

$$\langle u_j, u_{j+1} \rangle = i(1 - \overline{q}), \text{ and }$$

$$\langle u_j, u_k \rangle = 0 \quad \text{if } | j - k | > 1$$

(the indices $j,k \in \mathbb{Z}/n$ and |j-k| > 1 means $j-k \neq -1, 0$ or $1 \mod n$). The action of the braid group is given by

$$\rho_q(\sigma_j)(x) = x - \frac{i}{2} \langle x, u_j \rangle u_j$$

if q = -1, and otherwise by

$$\rho_q(\sigma_j)(x) = x - (q+1) \frac{\langle x, u_j \rangle}{\langle u_j, u_j \rangle} u_j$$

Let $q \neq 1$ such that $q^n = 1$. We chose a square root of q which we denote by $q^{1/2}$ such that $i(q^{1/2} - q^{-1/2}) \leq 0$. Let Δ be a square root of $i(q^{1/2} - q^{-1/2})$, we note that Δ is a pure imaginary number since $i(q^{1/2} - q^{-1/2}) \leq 0$. For j = 1, ..., n we define

$$\tilde{u}_j = \frac{(q^{-1/2})^j u_j}{\Delta}$$

In what follows we don't need \tilde{u}_n . In order to explicit the action of M(0,n) we need a basis of $H^1(X)_q$.

Proposition 4.3.1. The set $(u_j)_1^{n-2}$ or equivalently the set $(\tilde{u}_j)_1^{n-2}$ is a basis of $H^1(X)_q$ and in this basis

$$\tilde{u}_{n-1} = e_1(\delta)\tilde{u}_{n-2} - e_2(\delta)\tilde{u}_{n-3} + \dots + (-1)^{n-1}e_{n-2}(\delta)\tilde{u}_1$$

with $\delta = -q^{1/2} - q^{-1/2}$.

Proof. A straightforward computation gives for $j \in \mathbb{Z}/n$

$$\langle \tilde{u}_j, \tilde{u}_j \rangle = q^{1/2} + q^{-1/2}$$

$$\langle \tilde{u}_j, \tilde{u}_{j+1} \rangle = -1 \text{ and}$$

$$\langle \tilde{u}_j, \tilde{u}_k \rangle = 0 \quad \text{if } |j-k| > 1$$

so if $\delta = -q^{1/2} - q^{-1/2}$, the determinant of the matrix $M = (\langle \tilde{u}_j, \tilde{u}_k \rangle)_{j,k=1,\dots,n-2}$ is

$$\det(M) = \begin{vmatrix} -\delta & -1 & 0 & \cdots & \cdots & 0 \\ -1 & -\delta & -1 & \ddots & \ddots & \vdots \\ 0 & -1 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & -1 & 0 \\ \vdots & & \ddots & -1 & -\delta & -1 \\ 0 & \cdots & \cdots & 0 & -1 & -\delta \end{vmatrix} = (-1)^{n-2} e_{n-2}(\delta)$$

moreover since $q^n = 1$ and $q \neq 1$

$$\det(M) = e_{n-2}(q^{1/2} + q^{-1/2}) = \frac{q^{(n-1)/2} - q^{-(n-1)/2}}{q^{1/2} - q^{-1/2}} \neq 0$$

therefore since the sesquilinear form \langle , \rangle is non degenerate and since $\dim(H^1(X)_q) = n-2$, we conclude that $(\tilde{u}_j)_1^{n-2}$ is a basis. The formula for \tilde{u}_{n-1} come from a direct computation.

In the basis $(\tilde{u}_j)_1^{n-2}$ we have the following expression for the actions of the generators $\sigma_1, ..., \sigma_{n-1}$

Conclusion 1 For k = 1, ..., n - 2 and j = 1, ..., n - 2

$$\rho_q(\sigma_j)(\tilde{u}_k) = \tilde{u}_k \qquad \text{when} \quad |j-k| > 1$$

$$\rho_q(\sigma_j)(\tilde{u}_k) = \tilde{u}_k + q^{1/2}\tilde{u}_j \qquad \text{when} \quad |j-k| = 1$$

$$\rho_q(\sigma_j)(\tilde{u}_j) = -q\tilde{u}_j$$

and for σ_{n-1}

$$\begin{aligned} \rho_q(\sigma_{n-1})(\tilde{u}_l) &= \tilde{u}_l & \text{when} \quad l = 1, ..., n-3 \\ \rho_q(\sigma_{n-1})(\tilde{u}_{n-2}) &= \tilde{u}_{n-2} + q^{1/2} \tilde{u}_{n-1} \end{aligned}$$

with $\tilde{u}_{n-1} = e_1(\delta)\tilde{u}_{n-2} - e_2(\delta)\tilde{u}_{n-3} + \dots + (-1)^{n-1}e_{n-2}(\delta)\tilde{u}_1.$

4.4 Proof of the theorem 4.1.1 when $n \ge 6$

As we will see later on, we have to separate the case n = 4 and the case $n \ge 6$ (see remark 4.4). In this section we deal with the case $n \ge 6$. Suppose that $n = 2n' \ge 6$. Let A_r be a 2*r*-th primitive root of -1 with r = n'N. If $0 \le a, b, c$, recall that the triple (a, b, c) is said admissible when

$$a+b+c \equiv 0 \quad [2]$$
$$|a-c| \le b \le a+c$$

Moreover the triple (a, b, c) is said *r*-admissible if it is admissible and if

$$0 \le a, b, c \le r-2$$
 and $a+b+c \le 2r-4$

We consider in $S_{A_r}(B^3, (N)_n)$ the element

which is a colored banded graph in the 3-ball and the univalent vertices of the graph are attached to the banded points on the sphere. Reading the colors of the bottom edges from the left to the right, the colors increase by N from 2N - 2 to n'N - 2 in the left part of the diagram until the n'-th puncture and then decrease by N from (n'-1)N to 2N in the right part of the diagram. Observe that

$$n'N - 2 \le r - 1 = n'N - 1$$

$$n'N - N \le r - 1 = n'N - 1$$

so the coloring of the graph makes sense and the vector u exists in $S_{A_r}(B^3, (N)_n)$. Moreover this graph is clearly a dual graph of a certain pants decomposition of the *n*-th punctured sphere and the coloring of this graph is admissible so the vector u is not zero in $S_{A_r}(B^3, (N)_n)$.

Now we see that the sum of the colors of the edges meeting at the vertex "under" the (n'+1)-st puncture is

$$N + (n'N - 2) + (n'N - N) = 2n'N - 2 > 2r - 4 = 2n'N - 4$$

Hence the triple (n'N - 2, n'N - N, N) is not r-admissible so $u \in K_r(B^3, (N)_n)$. To avoid any confusion let illustrate that on an example

Example when n = 10 and N = 4. In this case r = 20 and

we see that at the vertex under the 6-th puncture (this vertex is encircled) 18 + 4 + 16 = 38 > 2r - 4 = 36 so $u \in K_{20}(B^3, (4)_{10})$.

Now we define the following decorated cobordisms

$$S = \bigvee_{N}^{N} \bigvee_{N}^{N} \bigvee_{N}^{N} \bigvee_{N}^{N} \bigvee_{N}^{N} \cdots \bigvee_{N}^{N} \bigvee_{N}^{N} \bigvee_{N}^{N} \cdots \bigvee_{N}^{N} \bigvee_{N}^$$

and

they give operators which we denote by $s, s_0 \in \text{End}(S_{A_r}(B^3, (N)_n))$. These operators are invertible and for later use we remark using isotopies that

$$s\rho(\sigma_{j})s^{-1} = \rho(\sigma_{j+1}) \qquad \forall j = 1, ..., n-1$$

$$s\rho(\sigma_{n})s^{-1} = \rho(\sigma_{1})$$

$$s_{0}\rho(\sigma_{j})s_{0}^{-1} = \rho(\sigma_{j+1}) \qquad \forall j = 3, ..., n-2$$

Lemma 4.4.1. In $S_{A_r}(B^3, (N)_3, (3N-2))$ which is 2 dimensional we have

Proof. We have

and if we resolve the crossing encircled we have

there are still crossings in both terms in the above sum, but for each term there is a unique resolution of the crossings which does not involve turn backs on the Jones-Wenzl idempotents. So we can check that

and

So the equation (4.1) holds.

Lemma 4.4.2. There exists $\lambda \in \mathbb{C} - \{0\}$ such that

$$\rho(\sigma_1)(u) = (-1)^{N-1} A_r^{2N(N-1)} u$$

$$\rho(\sigma_2)(u) = (-1)^N A_r^{2N(N+1)} u + (-1)^N A_r^{2N^2} \lambda s(u)$$

$$\rho(\sigma_j)(u) = (-1)^N A_r^{2N(N+1)} u$$

$$\rho(\sigma_n)(u) = (-1)^N A_r^{2N(N+1)} u + (-1)^N A_r^{2N^2} \lambda^{-1} s^{-1}(u)$$

for j = 3, ..., n - 1.

Proof. We recall the following known fact (see [22]) : if $0 \le a, b, c \le r - 1$ is a admissible

triple then

where $i = \frac{b+c-a}{2}$, $j = \frac{a+c-b}{2}$ and $k = \frac{a+b-c}{2}$. From this, it is clear that $\rho(\sigma_1)(u) = (-1)^{N-1} A_r^{2N(N-1)} u$ and $\rho(\sigma_{n-1})(u) = (-1)^N A_r^{2N(N+1)} u$. Now let $3 \le j \le n-2$ we have

and dim $(K_r(B^3, (N)_{n-2}, (2N-2))) = 1$ (by corollary 4.2.5) so $\rho(\sigma_j)(u), s_0(u) \in \mathbb{C}u$, finally using $s_0\rho(\sigma_j)s_0^{-1} = \rho(\sigma_{j+1})$ and $\rho(\sigma_{n-1})(u) = (-1)^N A_r^{2N(N+1)}u$ we conclude that

$$\rho(\sigma_i)(u) = (-1)^N A_r^{2N(N+1)} u$$

Let us now compute $\rho(\sigma_2)(u)$.

Using (4.1) we have

$$\rho(\sigma_2)(u) = (-1)^N A_r^{2N(N+1)} u + (-1)^N A_r^{2N^2} v$$
$$\rho(\sigma_1)(v) = (-1)^N A_r^{2N(N+1)} v + (-1)^N A_r^{2N^2} u$$

where

Next consider

Notice that

both belong to $K_r(B^3, (N)_{n-2}, (2N-2))$ which is one dimensional so they are proportional to each other, therefore v and s(u) are proportional, let λ be the non zero complex number such that $v = \lambda s(u)$. So far we have proved that

$$\rho(\sigma_2)(u) = (-1)^N A_r^{2N(N+1)} u + (-1)^N A_r^{2N^2} \lambda s(u)$$
(4.2)

and

$$\rho(\sigma_1)(\lambda s(u)) = (-1)^N A_r^{2N(N+1)} \lambda s(u) + (-1)^N A_r^{2N^2} u$$
(4.3)

It remains to prove that

$$\rho(\sigma_n)(u) = (-1)^N A_r^{2N(N+1)} u + (-1)^N A_r^{2N^2} \lambda^{-1} s^{-1}(u)$$

let

and

Observe that

are proportional to each other in $K_r(B^3, (N)_{n-2}, (2N-2))$ (because this space is one dimensional) hence \tilde{u} is proportional to u. Similarly we check that $s^{-1}(u)$ is proportional to w. Let $\tilde{\lambda}$ and μ non zero complex numbers such that

$$u = \tilde{\lambda}\tilde{u}$$
$$s^{-1}(u) = \mu w$$

 $\rho(\sigma_n)(u)$ can be difficult to compute if we directly use the definition of $\rho(\sigma_n)$ but applying the definition of $\rho(\sigma_n)$ on \tilde{u} is easier to handle using the relation (4.1), indeed

$$\rho(\sigma_n)(\tilde{u}) = (-A_r)^{N(N+2)} \tag{(Intersection of the section of$$

so using an isotopy $\rho(\sigma_n)(\tilde{u})$ is

now if we apply (4.1) in the encircled part we get

 $\rho(\sigma_n)(\tilde{u}) =$

which means

$$\rho(\sigma_n)(\tilde{u}) = (-1)^N A_r^{2N(N+1)} \tilde{u} + (-1)^N A_r^{2N^2} w$$

and since $u = \tilde{\lambda} \tilde{u}$ and $s^{-1}(u) = \mu w$ we get

$$\rho(\sigma_n)(u) = \rho(\sigma_n)(\tilde{\lambda}\tilde{u}) = (-1)^N A_r^{2N(N+1)} u + (-1)^N A_r^{2N^2} \tilde{\lambda} \mu^{-1} s^{-1}(u)$$
(4.4)

So we just have to prove that $\tilde{\lambda}\mu^{-1} = \lambda^{-1}$. Using $\rho(\sigma_n) = s^{-1}\rho(\sigma_1)s$ and (4.3) we have

$$\lambda \rho(\sigma_n)(u) = s^{-1} \rho(\sigma_1) \left(\lambda s(u)\right)$$

= $s^{-1} ((-1)^N A_r^{2N(N+1)} \lambda s(u) + (-1)^N A_r^{2N^2} u)$
= $(-1)^N A_r^{2N(N+1)} \lambda u + (-1)^N A_r^{2N^2} s^{-1}(u)$ (4.5)
and if we compare (4.4) and (4.5) we get

$$\tilde{\lambda}\mu^{-1} = \lambda^{-1}$$

we conclude

$$\rho(\sigma_n)(u) = (-1)^N A_r^{2N(N+1)} u + (-1)^N A_r^{2N^2} \lambda^{-1} s^{-1}(u)$$

Remarque Note that (4.1) only makes sense when n > 4 or for n = 4 and N = 1 which is a known case. This is why the case n = 4 has to be handled separately.

We define for j = 1, ..., n

$$w_j = \lambda^{j-1} s^{j-1}(u) \in K_r(B^3, (N)_n)$$

we can simplify the formulas by setting

$$q = A_r^{4N}$$
 and $\chi_0 = (-1)^{N-1} A_r^{2N(N-1)}$

Lemma 4.4.3. For j = 1, ..., n - 1 and k = 1, ..., n - 1

$$\begin{split} \rho(\sigma_j)(w_k) &= \chi_0(-qw_k) & \text{when } |j-k| > 1\\ \rho(\sigma_j)(w_k) &= \chi_0(-qw_k - q^{1/2}w_j) & \text{when } |j-k| = 1\\ \rho(\sigma_j)(w_j) &= \chi_0 w_j \end{split}$$

Proof. If we set $q = A_r^{4N}$ and $\chi_0 = (-1)^{N-1} A_r^{2N(N-1)}$ in the lemma 4.4.2 we get

$$\rho(\sigma_1)(u) = \chi_0 u \tag{4.6}$$

$$\rho(\sigma_2)(u) = -\chi_0 q u - \chi_0 q^{1/2} \lambda s(u)$$
(4.7)

$$\rho(\sigma_j)(u) = -\chi_0 q u \tag{4.8}$$

$$\rho(\sigma_n)(u) = -\chi_0 q u - \chi_0 q^{1/2} \lambda^{-1} s^{-1}(u)$$
(4.9)

for j = 3, ..., n - 1. Now using (4.6) and because $u = w_1$ we have

$$\rho(\sigma_1)(w_1) = \chi_0 w_1$$

Next,

$$\rho(\sigma_1)(w_2) = \rho(\sigma_1)\lambda s(u)$$
$$= \lambda s \left(s^{-1}\rho(\sigma_1)s\right)(u)$$

but $s^{-1}\rho(\sigma_1)s = \rho(\sigma_n)$ by (4.9)

$$\rho(\sigma_1)(w_2) = \lambda s \rho(\sigma_2)(u)$$
$$= \chi_0(-qw_2 - q^{1/2}w_1)$$

Similarly if j = 3, ..., n - 1,

$$\rho(\sigma_1)(w_j) = \rho(\sigma_1)\lambda^{j-1}s^{j-1}(u) = \lambda^{j-1}s^{j-1} \left(s^{-(j-1)}\rho(\sigma_1)s^{j-1}\right)(u)$$

but $s^{-(j-1)}\rho(\sigma_1)s^{j-1} = \rho(\sigma_{n-j+2})$ and by (4.8)

$$\rho(\sigma_1)(w_j) = \lambda^{j-1} s^{j-1} \rho(\sigma_{n-j+2})(u) = \lambda^{j-1} s^{j-1} \chi_0(-qu) = \chi_0(-qw_j)$$

so the lemma is true for σ_1 . We can use the same method for σ_2

$$\rho(\sigma_2)(w_1) = \rho(\sigma_2)(u) = \chi_0(-qu - q^{1/2}\lambda s(u)) = \chi_0(-qw_1 - q^{1/2}w_2)$$

$$\rho(\sigma_2)(w_2) = \rho(\sigma_2)(\lambda s(u)) = \chi_0 w_2$$

$$\rho(\sigma_2)(w_3) = \rho(\sigma_2)(\lambda^2 s^2(u))$$
$$= \lambda^2 s^2 \left(s^{-2}\rho(\sigma_2)s^2\right)(u)$$
$$= \lambda^2 \rho(\sigma_n)(u)$$
$$= \chi_0(-qw_3 - q^{1/2}w_2)$$

and for j = 4, ..., n - 1

$$\rho(\sigma_2)(w_j) = \rho(\sigma_2)\lambda^{j-1}s^{j-1}(u) = \lambda^{j-1}s^{j-1} \left(s^{-(j-1)}\rho(\sigma_2)s^{j-1}\right)(u) = \lambda^{j-1}s^{j-1} \left(\rho(\sigma_{n-j+3})\right)(u) = \chi_0(-qw_j)$$

So by induction we can continue the same method and we get that for j = 1, ..., n - 1 and k = 1, ..., n - 1

$$\begin{split} \rho(\sigma_j)(w_k) &= \chi_0(-qw_k) & \text{when } |j-k| > 1\\ \rho(\sigma_j)(w_k) &= \chi_0(-qw_k - q^{1/2}w_j) & \text{when } |j-k| = 1\\ \rho(\sigma_j)(w_j) &= \chi_0 w_j \end{split}$$

Proposition 4.4.4. The set $(w_j)_1^{n-2}$ is a basis of $K_r(B^3, (N)_n)$ and in this basis

$$w_{n-1} = e_1(\delta)w_{n-2} - e_2(\delta)w_{n-3} + \dots + (-1)^{n-1}e_{n-2}(\delta)w_1$$

with $\delta = -q^{1/2} - q^{-1/2}$.

Proof. To prove that $w_1, ..., w_{n-2}$ is a basis of $K_r(B^3, (N)_n)$, it is enough to prove that $w_1, ..., w_{n-2}$ are linearly independent vectors (because dim $(K_r(B^3, (N)_n)) = n - 2)$.

Let $\beta_1, ..., \beta_{n-2} \in \mathbb{C}$ such that

$$\sum_{l=1}^{n-2} \beta_l \, w_l = 0$$

let $2 \leq j \leq n-3$ we have

$$\rho(\sigma_j)\left(\sum_{l=1}^{n-2}\beta_l w_l\right) = 0$$

which gives by lemma 4.4.3

$$(\beta_j - q^{1/2}\beta_{j-1} - q^{1/2}\beta_{j+1})w_j - \sum_{\substack{l=1\\l\neq j}}^{n-2} q\beta_l w_l = 0$$
(4.10)

but

$$\sum_{\substack{l=1\\l\neq j}}^{n-2} -q\beta_l \, w_l = q\beta_j w_j$$

so (4.10) gives

$$((q+1)\beta_j - q^{1/2}\beta_{j-1} - q^{1/2}\beta_{j+1})w_j = 0$$

since $w_j \neq 0$ we have

$$-\beta_{j-1} + (q^{1/2} + q^{-1/2})\beta_j - \beta_{j+1}$$

and similarly

$$(q^{1/2} + q^{-1/2})\beta_1 - \beta_2 = 0$$
 and $-\beta_{n-3} + (q^{1/2} + q^{-1/2})\beta_{n-2} = 0$

 \mathbf{SO}

$$M\left(\begin{array}{c}\beta_1\\\vdots\\\beta_{n-2}\end{array}\right)=0$$

where

$$M = \begin{pmatrix} -\delta & -1 & 0 & \cdots & \cdots & 0 \\ -1 & -\delta & -1 & \ddots & \ddots & \vdots \\ 0 & -1 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & -1 & 0 \\ \vdots & & \ddots & -1 & -\delta & -1 \\ 0 & \cdots & \cdots & 0 & -1 & -\delta \end{pmatrix}$$

with $\delta = -q^{1/2} - q^{-1/2}$ but we have already seen that

$$\det(M) = e_{n-2}(q^{1/2} + q^{-1/2}) = \frac{q^{(n-1)/2} - q^{-(n-1)/2}}{q^{1/2} - q^{-1/2}} \neq 0$$

since A_r is a 2*r*-th primitive root of -1. So $\beta_1 = \dots = \beta_{n-2} = 0$ and w_1, \dots, w_{n-2} are linearly independent. The expression of w_{n-1} is obtained by a direct computation.

In the basis $(w_j)_1^{n-2}$ we have the expression of $\sigma_1, ..., \sigma_{n-1}$ by lemma 4.4.3.

Conclusion 2 For k = 1, ..., n - 2 and j = 1, ..., n - 1 by lemma 4.4.3

$$\begin{aligned} \rho(\sigma_j)(w_k) &= \chi_0(-qw_k) & \text{when } |j-k| > 1 \\ \rho(\sigma_j)(w_k) &= \chi_0(-qw_k - q^{1/2}w_j) & \text{when } |j-k| = 1 \\ \rho(\sigma_j)(w_j) &= \chi_0 w_j \end{aligned}$$

and for σ_{n-1}

$$\begin{split} \rho(\sigma_{n-1})(w_l) &= \chi_0(-qw_l) & \text{when} \quad l = 1, ..., n-3 \\ \rho(\sigma_{n-1})(w_{n-2}) &= \chi_0(-qw_{n-2} - q^{1/2}w_{n-1}) \\ \text{with } w_{n-1} &= e_1(\delta)w_{n-2} - e_2(\delta)w_{n-3} + ... + (-1)^{n-1}e_{n-2}(\delta)w_1. \end{split}$$

End of the proof Now let us multiply by $(-\chi_0 q)^{-1}$ all the equations in conclusion 2. We see that conclusion 2 is equivalent to the following : for k = 1, ..., n-2 and j = 1, ..., n-1

$$\begin{aligned} (-\chi_0 q)^{-1} \rho(\sigma_j)(w_k) &= w_k & \text{when } |j-k| > 1 \\ (-\chi_0 q)^{-1} \rho(\sigma_j)(w_k) &= w_k + q^{-1/2} w_j & \text{when } |j-k| = 1 \\ (-\chi_0 q)^{-1} \rho(\sigma_j)(w_j) &= -q^{-1} w_j \end{aligned}$$

and for σ_{n-1}

$$(-\chi_0 q)^{-1} \rho(\sigma_{n-1})(w_l) = w_l \qquad \text{when} \quad l = 1, ..., n-3$$
$$(-\chi_0 q)^{-1} \rho(\sigma_{n-1})(w_{n-2}) = w_{n-2} + q^{-1/2} w_{n-1}$$

with $w_{n-1} = e_1(\delta)w_{n-2} - e_2(\delta)w_{n-3} + \dots + (-1)^{n-1}e_{n-2}(\delta)w_1.$

Now comparing this new version of conclusion 2 and conclusion 1 we deduce that

$$K_r(B^3, (N)_n) \simeq H^1(X)_{q^{-1}}$$

as projective representations of M(0, n)

4.5 Proof of theorem 4.1.1 in the case of the four-punctured sphere

4.5.1 Action of M(0,4) on $S(B^3, (N)_4)$

Let $N \ge 1$. For $0 \le k \le N$, we define $Y^k X^{N-k} \in S(B^3, (N)_4)$ by :

where the lines represent colored bands in the 3-ball. It is easy to see that $(Y^k X^{N-k})_k$ is a basis of $S(B^3, (N)_4)$. Recall that

Lemma 4.5.1. For $0 \le k \le N$, we have :

and $s \circ \rho(\sigma_2) \circ s = \rho(\sigma_1)$ where s is defined by :

$$s(Y^k X^{N-k}) = Y^{N-k} X^k$$

Proof. We have

where the last equality comes from

we can conclude because

$$(-A)^{N(N+2)}(-A)^{(N-k)(N-k+2)}(-A)^{-2k(N-k)} = (-A)^{k(k+2)}$$

We denote by $(M_{j,k})$ (resp. $(\overline{M}_{j,k})$) the matrix of $\rho(\sigma_1)$ (resp. $\rho(\sigma_2)$) in the basis $(Y^k X^{N-k})_k$

Proposition 4.5.2. Let $L \ge 1$ we have :

where the product on the right hand side has to be understood as a formal notation and has to be developed using the rule XY = YX to have the coefficients in the basis $(Y^k X^{N-k})_k$.

Proof. If L = 1 it is a straightforward computation. If $L \ge 2$, we set:

We now resolve the crossing on the bottom left corner :

we then resolve the peripherical crossings to reach the other corners as follows :

we remark that at each step there is an unique non zero resolution. Finally, we get :

which simply means :

$$P_L(X,Y) = A^{-2L+1}XP_{L-1}(X,Y) + A^{2L-1}YP_{L-1}(X,Y)$$

The formula of the proposition is then given by induction.

Corollary 4.5.3. The coefficient of $Y^{N-1}X$ in $P_N(X,Y)$ is

$$A^{N^2} \left(\frac{1 - A^{-4N}}{A^2 - A^{-2}} \right)$$

Proof. Let D_N be the coefficient of $Y^{N-1}X$ in $P_N(X,Y)$. Clearly if we expand the expression (4.11) for L = N we have

$$D_N = \sum_{k=1}^N \left(\frac{\prod_{l=1}^N A^{2l-1}}{A^{2k-1}} \right) A^{-(2k-1)}$$
$$= \left(\prod_{l=1}^N A^{2l-1} \right) \left(\sum_{k=1}^N \left(A^{-2} \right)^{2k-1} \right)$$
$$= A^{N^2} \left(\frac{1 - A^{-4N}}{A^2 - A^{-2}} \right)$$

Corollary 4.5.4. The coefficient $M_{N-1,N}$ of the matrix $(M_{j,k})$ is given by

$$M_{N-1,N} = A^{2N^2 + 2N} (-1)^N \left(\frac{1 - A^{-4N}}{A^2 - A^{-2}}\right)$$

Proof. Using the definition of $\rho(\sigma_1)$ we see that $M_{N-1,N}$ is simply $(-A)^{N^2+2N}$ multiplied by the coefficient of $Y^{N-1}X$ in $P_N(X,Y)$. So using corollary 4.5.3 :

$$M_{N-1,N} = A^{2N^2 + 2N} (-1)^N \left(\frac{1 - A^{-4N}}{A^2 - A^{-2}}\right)$$

Remark We deduce from (4.11) that the matrix $(M_{j,k})$ is upper triangular and the matrix $(\overline{M}_{j,k})$ is lower triangular. Both have eigenvalues c_j for j = 0, ..., N where

$$c_i = (-1)^j A^{j(2j+2)}$$

We also note if A_r is a 4N-th primitive root of -1 and if A is evaluated at $A = A_r$ then

$$M_{N-1,N} = 2(-1)^N \left(\frac{A_r^{2N^2+2N}}{A_r^2 - A_r^{-2}}\right)$$

Remark After I finished the proof of corollary 4.5.4, I realized that Igor Frenkel and Mikhail Khovanov (see [11, Prop 3.1.1]) have expressions for all the coefficients of $P_N(X, Y)$ (obtained using non skein-theoretic techniques). Still, if one is only interested in $M_{N-1,N}$, the skein-theoretic proof above seems more direct then their proof.

4.5.2 The action on the kernel space

The restriction of the representation $\rho: M(0,4) \to \mathbb{P}\operatorname{Aut}(S_{A_r}(B^3,(N)_4))$ to the space $K_r(B^3,(N)_4)$ (which is 2-dimensional) will be denoted by ρ_{∞} . Now for $0 \le k \le N-1$, we can define the following vectors in $S_{A_r}(B^3,(N)_4)$:

these vectors are well defined since A_r is a 4N-th primitive root of -1 so the (2N - 2)-th Jones-Wenzl idempotent exists.

The first step to understand the representation ρ_{∞} is to understand the space $K_r(B^3, (N)_4)$. Since the triple (2N - 2, N, N) is not r-admissible : $v = v_{N-1}$ and $v^* = v_{N-1}^*$ belong to $K_r(B^3, (N)_4)$. To prove that these two vectors are linearly independent, we have to verify some properties of Jones-Wenzl idempotents.

For m an integer we denote by TL_m the *m* strands Temperley-Lieb algebra over the field of rational functions $\mathbb{C}(A)$. For *k* an integer, we denote by $[k] = \frac{A^{2k} - A^{-2k}}{A^2 - A^{-2}}$. We also define the following element in TL_{2m} :

We denote by $f^{(m)}$, the *m*-th Jones-Wenzl idempotent. For $x \in TL_{2m}$, we define $\phi_m(x)$ the coefficient of t_m in x with respect to the standard basis given by Temperley-Lieb diagrams without crossing and without trivial circles.

Proposition 4.5.5.

$$\phi_m(f^{(2m)}) = \prod_{k=1}^m \frac{[k]^2}{[2k][2k-1]}$$

Proof. If m = 1, this formula is given by a straightforward computation.

Let $m \ge 2$, we now use the recursive formula proved by Igor Frenkel and Mikhail Khovanov (see [11, Theor 3.5]) and independently proved by Scott Morrison (see [27, Prop 3.3]) :

We deduce that :

$$\phi_{m+1} \begin{bmatrix} & \vdots & \vdots \\ & \mathbf{2m+2} \\ & \vdots & \vdots \end{bmatrix} = \begin{bmatrix} [m] \\ [2m] \end{bmatrix} \phi_{m+1} \begin{bmatrix} & \vdots & \vdots \\ & \mathbf{2m+1} \\ & \vdots & \vdots \\ & \vdots & \vdots \end{bmatrix}$$

By applying (4.12) with $f^{(2m+1)}$ but now "on the top", we get :

$$\phi_{m+1} \begin{bmatrix} & \vdots & \vdots \\ & \mathbf{2m+2} \\ & \vdots & \vdots \end{bmatrix} = \begin{bmatrix} [m]^2 \\ [2m][2m-1] \end{bmatrix} \phi_{m+1} \begin{bmatrix} & \vdots & \vdots \\ & \mathbf{2m} \\ & \vdots & \vdots \\ & \vdots & \vdots \end{bmatrix}$$

The last equality means : $\phi_{m+1}(f^{(2m+2)}) = \frac{[m]^2}{[2m][2m-1]}\phi_m(f^{(2m)})$ which proves the formula.

Corollary 4.5.6. v and v^* are two linearly independent vectors in $K_r(B^3, (N)_4)$.

Proof. Let a_k be defined by $v = \sum_{k=0}^{N} a_k Y^k X^{N-k}$, since u = s(v), we have $v^* = \sum_{k=0}^{N} a_{N-k} Y^k X^{N-k}$. We remark that $a_N = 0$, so to prove the statement it is enough to prove that $a_0 \neq 0$. By a straightforward computation we get :

$$a_0 = \phi_{N-1}(f^{(2N-2)})_{|_{A=A_r}} \neq 0$$

since $[m]_{|A=A_r} \neq 0$ for $1 \leq m \leq 2N - 1$.

Proposition 4.5.7. In the basis (v, v^*) we have :

$$\rho_{\infty}(\sigma_1) = \chi_0 \begin{pmatrix} 1 & \alpha_N \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad \rho_{\infty}(\sigma_2) = \chi_0 \begin{pmatrix} 1 & 0 \\ \alpha_N & 1 \end{pmatrix}$$

where $\chi_0 = (-1)^{N-1} A_r^{2N(N-1)} \in \{-1, 1, -i, i\}$ and $\alpha_N \in \{-i, i\}.$

Proof. We denote by $\rho_r : M(0,4) \to \mathbb{P}\operatorname{Aut}(V_{2r}(S^2,(N)_4))$ the projective quantum representation. From the previous subsection, we know that the eigenvalues of $\rho(\sigma_1)$ are $c_j = (-1)^j A_r^{j(2j+2)}$ for j = 0, ..., N. On the other hand $v_0, ..., v_{N-2}$ is a basis of $V_{2r}(S^2, (N)_4)$ and we have for $0 \le k \le N-2$

$$\rho_r(\sigma_1)(v_k) = c_k v_k$$

so the eigenvalues of $\rho_r(\sigma_1)$ are $c_j = (-1)^j A_r^{j(2j+2)}$ for j = 0, ..., N-2. Now recall that

$$V_{2r}(S^2, (N)_4) \simeq S_{A_r}(B^3, (N)_4) / K_r(B^3, (N)_4)$$

so we deduce that $\rho_{\infty}(\sigma_1)$ has eigenvalues c_{N-1} and c_N , but since $A_r^{4N} = -1$,

$$c_{N-1} = c_N$$

and $\rho_{\infty}(\sigma_1)$ has a unique eigenvalue :

$$\chi_0 := c_{N-1} = c_N = (-1)^{N-1} A_r^{2N(N-1)} \in \{-1, 1, -i, i\}$$

we also see that v is an eigenvector for $\rho(\sigma_1)$, so the matrix of $\rho_{\infty}(\sigma_1)$ (in the basis (v, v^*)) has the form :

$$\rho_{\infty}(\sigma_1) = \chi_0 \begin{pmatrix} 1 & \alpha_N \\ 0 & 1 \end{pmatrix}$$

where $\alpha_N \in \mathbb{C}$. On the other hand, from $s \circ \rho_{\infty}(\sigma_1) \circ s = \rho_{\infty}(\sigma_2)$ and $s(v) = v^*$ we get :

$$\rho_{\infty}(\sigma_2) = \chi_0 \begin{pmatrix} 1 & 0\\ \alpha_N & 1 \end{pmatrix}$$

We now want to use the braiding relation

$$\sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2$$

this relation is true when applying ρ up to a scalar (since ρ is a projective representation) but we remark that the two following braids are isotopic

so from the definitions given in section 4.2.3, we see that the braiding relation between σ_1 and σ_2 remains true when applying ρ and therefore while applying ρ_{∞} ; in other words :

$$\rho_{\infty}(\sigma_1) \circ \rho_{\infty}(\sigma_2) \circ \rho_{\infty}(\sigma_1) = \rho_{\infty}(\sigma_2) \circ \rho_{\infty}(\sigma_1) \circ \rho_{\infty}(\sigma_2)$$

if we write this in the basis (v, v^*) we get by a straightforward computation

$$\alpha_N = 0$$
 or $\alpha_N^2 = -1$

So it remains to prove that $\alpha_N \neq 0$. Recall that $(M_{j,k})$ is the matrix of $\rho(\sigma_1)$ in the basis $(Y^k X^{N-k})_k$. Since v^* has a non zero last coefficient in the basis $(Y^k X^{N-k})_k$ and since $(M_{j,k})$ is upper triangular, an elementary check shows that $\alpha_N = 0$ implies $M_{N-1,N} = 0$. If we use (4.11) we deduce that $M_{N-1,N}$ is the coefficient of $Y^{N-1}X$ in $P_N(X,Y)$ multiplied by $(-A_r)^{N^2+2N}$, therefore :

$$M_{N-1,N} = 2(-1)^N \left(\frac{A_r^{2N^2+2N}}{A_r^2 - A_r^{-2}}\right) \neq 0$$

And hence $\alpha_N \neq 0$.

End of the proof of theorem 4.1.1 for the four-punctured sphere In proposition 4.4.4 if we set n = 4 and $q = A^{-4N} = -1$ (note that $q = q^{-1}$) : we have that \tilde{u}_1, \tilde{u}_2 is a basis of $H^1(X)_{-1}$. Moreover since $q^{1/2} \in \{-i, i\}$ we have $\delta = -q^{1/2} - q^{-1/2} = 0$. So the expression of \tilde{u}_3 in proposition 4.4.4 is

$$\tilde{u}_3 = e_1(0)\tilde{u}_2 - e_2(0)\tilde{u}_1 = \tilde{u}_1$$

(we recall that $e_1(0) = 0$ and $e_2(0) = -1$). Therefore, using conclusion 1, we can check that the matrices of $\rho_{-1}(\sigma_1)$, $\rho_{-1}(\sigma_2)$ and $\rho_{-1}(\sigma_3)$ in the basis \tilde{u}_1, \tilde{u}_2 are

$$\rho_{-1}(\sigma_1) = \rho_{-1}(\sigma_3) \begin{pmatrix} 1 & q^{1/2} \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad \rho_{-1}(\sigma_2) = \begin{pmatrix} 1 & 0 \\ q^{1/2} & 1 \end{pmatrix}$$
(4.13)

Hence if we compare (4.13) and proposition 4.5.7 (we recall that $q^{1/2}, \alpha_N \in \{-i, i\}$), we conclude that

$$H^1(X)_{-1} \simeq K_{2N}(B^3, (N)_4)$$

as projective representations of M(0, 4).

4.6 Detecting pseudo-Anosovs with representations on kernel spaces

4.6.1 Proof of corollary 4.1.2 and corollary 4.2.3

Actually the representation $\rho_{-1}: M(0,4) \to \mathbb{P}\operatorname{Aut}(H^1(X)_{-1})$ is the same as the representation defined in [2]

$$\rho_{\text{hom}}: M(0,4) \to \mathbb{P}SL_2(\mathbb{Z})$$

by

$$\rho_{\text{hom}}(\sigma_1) = \rho_{\text{hom}}(\sigma_3) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \text{ and } \rho_{\text{hom}}(\sigma_2) = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$

And one interesting thing about this representation is that it detects the Nielsen-Thurston classification.

Proposition (see [2, Lemma 3.6]) Let $\phi \in M(0, 4)$, the element ϕ is pseudo-Anosov if and only if $| \operatorname{tr}(\rho_{\text{hom}}(\phi)) | > 2$. We can now prove corollary 4.1.2.

Proof of corollary 4.1.2 Let $\phi \in M(0, 4)$ be pseudo-Anosov. Let Q be the matrix of $\rho(\phi)$ in the basis $(Y^k X^{N-k})_k$ and Q_0 be the matrix of $\rho_{\infty}(\phi)$ in the basis $(v, \alpha_N v^*)$. We remark that up to scale factor (which is a root of unity), the matrix Q_0 is the same as $\rho_{\text{hom}}(\phi)$. Since ϕ is pseudo-Anosov, $\rho_{\text{hom}}(\phi)$ has an eigenvalue λ with $|\lambda| > 1$, so the same property holds for Q_0 and Q. Now take a sequence of primitive 4r-th root of unity A_r which tends to a primitive 4N-th root of -1. For r big enough, $\dim(V_{2r}(S^2, (N)_4)) = N + 1$. Let Q_r be the matrix of $\rho_r(\phi)$ in the basis $(Y^k X^{N-k})_k$. We have :

$$\lim_{r \to \infty} Q_r = Q$$

So for r big enough, the matrix Q has an eigenvalue λ_r with $|\lambda_r| > 1$ which implies that $\rho_r(\phi)$ has infinite order.

Remark The corollary 4.2.3 can be proved using the exact same method.

We notice that the strategy to prove the AMU conjecture is to find a 4r-th primitive root of unity A_r such that, a large number of pseudo Anosov elements ϕ have eigenvalues λ_{ϕ} with $|\lambda_{\infty}| \neq 1$ when acting on $S_{A_r}(B^3, (N)_n)$. As we have seen in this chapter, it is helpful to take r such that the kernel space $K_r(B^3, (N)_n)$ is not zero. Moreover if ϕ is a pseudo-Anosov having a eigenvector $u_0 \in K_r(B^3, (N)_n)$, associated to a eigenvalue whose absolute value is not 1 when acting on $K_r(B^3, (N)_n)$, then the vector u_0 is zero in the TQFT vector space but u_0 gives asymptotic information about the quantum action of ϕ . I have observed that this strategy was always used in proofs of known cases of the AMU conjecture. It has been used by Andersen, Masbaum, Ueno in [2] and by Egsgaard, Jorgensen in [9]. This strategy gives a good motivation for further studies of the kernel spaces.

4.6.2 Further remarks

Review of results from [9]

Let first recall some known fact about the mapping class group of punctured spheres, we refer to [4] for more details. Let Σ_g be the genus g surface and let M(g,0) be the mapping class group of Σ_g . Let $\iota \in M(g,0)$ be the isotopy class of the diffeomorphism of Σ_g which is the following 180 degrees rotation in the surface

It is easy to see that ι is an involution. Let G_{ι} be the subgroup of elements of M(g, 0) which commute with ι . It is known that

$$G_{\iota}/\langle\iota\rangle \simeq M(0, 2g+2)$$
 (4.14)

In particular if we denote by t_j the Dehn-twist along the simple closed curve label by j according to the following numbering

we have that for j = 1, ..., 2g + 1, t_j belongs to G_i and corresponds to σ_j in the isomorphism (4.14).

We remark that the isomorphism (4.14) respects the Nielsen-Thurston classification, in particular an element $\sigma \in M(0, 2g+2)$ is pseudo-Anosov if and only if a corresponding element $\tilde{\sigma} \in G_{\iota} \subset M(g, 0)$ (which is defined only up to a power of ι) is pseudo-Anosov. **Définition** In what follows we say that an element $\sigma \in M(0, 2g + 2)$ is in the Torelli group if a corresponding element $\tilde{\sigma} \in G_{\iota} \subset M(g, 0)$ has a trivial action on $H_1(\Sigma_g, \mathbb{Z})$, and a pseudo-Anosov element $\phi \in M(0, 2g + 2)$ is said homological if a corresponding pseudo-Anosov element $\tilde{\phi} \in M(g, 0)$ has an orientable measured foliation.

Let $n \ge 2$, in [9] it was proved that

$$K_2(B^3,(1)_{2n}) \simeq \bigwedge^{n-1} H^1(\Sigma_{n-1},\mathbb{C}) / \underset{\omega \wedge \bigwedge^{n-3} H^1(\Sigma_{n-1},\mathbb{C})}{\bigwedge}$$

as projective representation of M(0, 2n) where ω is the canonical symplectic form on $H^1(\Sigma_{n-1}, \mathbb{C})$. The following result is still from [9]

Theorem 4.6.1. (Egsgaard, Jorgensen [9, Theorem 1.4]) If $\phi \in M(0, 2n)$ is a homological pseudo-Anosov element then there exists r_0 such that for $r \geq r_0$, ϕ has infinite order when acting on $V_{2r}(S^2, (1)_{2n})$.

This theorem is due to the fact that if $\phi \in M(0, 2n)$ is a homological pseudo-Anosov element then the spectral radius of ϕ is strictly greater than 1 when acting on $H^1(\Sigma_{n-1}, \mathbb{C})$. So the analog of this theorem in our setting is corollary 4.1.3.

Comparison of corollary 4.1.3 with theorem 4.6.1

If $n \ge 6$ even, $N \ge 1$ and A is a 2Nn primitive root of unity, one can check that the generators $\sigma_1, ..., \sigma_{n-1} \in M(0, n)$ all have order n when acting on $H^1(X)_{A^{-4N}}$ (note that this not true when n = 4). Using Penner's construction ([28]) it is easy to produce pseudo-Anosov elements. Indeed we use the following theorem

Theorem (Penner) (see [28]) Let $A = \{\alpha_1, ..., \alpha_n\}$ and $B = \{\beta_1, ..., \beta_m\}$ be multicurves in a surface Σ that together fill Σ . Any product of positive power of the Dehn twists t_{α_i} and negative power of the Dehn twists t_{β_i} , where each α_i and each β_i appears at least once, is pseudo-Anosov.

As an application, $\phi = \sigma_1^n \sigma_2^{-n} \dots \sigma_{n-1}^n \in M(0,n)$ is pseudo-Anosov (recall that *n* is even). On the other hand one can show that ϕ is a homological pseudo-Anosov element. Hence we can apply theorem 4.6.1 to ϕ . But we see that this element acts trivially on $H^1(X)_{A^{-4N}}$, so we cannot use corollary 4.1.3 for ϕ .

Let give an example of a pseudo-Anosov ϕ' in the Torelli group (in the sense of definition 4.6.2) for which corollary 4.1.3 can be used. Note that theorem 4.6.1 cannot be applied to ϕ' since ϕ' acts trivially on $H^1(\Sigma_{n/2-1}, \mathbb{C})$.

We set n = 6, we see that $(\sigma_1 \sigma_2)^6$ is represented by a Dehn twist along a separating curve on the surface Σ_2 , so the element $\phi' = (\sigma_1 \sigma_2)^6 (\sigma_3 \sigma_6) (\sigma_1 \sigma_2)^{-6} (\sigma_3 \sigma_6)^{-1}$ belongs to the Torelli group. Moreover using Thurston's construction (see [32]), it is known that ϕ is pseudo-Anosov. We check by an explicit computation that the spectral radius equals to 49,97 when acting on $H^1(X)_q$ for $q = \exp(\frac{-i\pi}{3})$ so the corollary 4.1.3 can be used for this element.

So we see that corollary 4.1.3 is different in nature from [9, Theorem 1.4].

4.7 Experimental results at other roots of unity not covered by corollary 4.1.3

For $n \ge 4$, we consider $K_4(B^3, (2)_n)$. Recall that this space is a subspace of the skein module of the 3-ball, whose boundary is equipped with n banded points all colored by 2, at a 8-th primitive root of -1 (which we denote here by A). We note that if $n \ne 4$ then $8 \ne 2n$, so when $n \ne 4$ we cannot apply theorem 4.1.1 to $K_4(B^3, (2)_n)$. Let us first give some general interesting facts about this space.

Remark that the space $K_4(B^3, (2)_n)$ is always $S_A(B^3, (2)_n)$ or a hyperplane of $S_A(B^3, (2)_n)$ (depending on the parity of n). Indeed

Proposition 4.7.1.

 $\dim(V_8(S^2,(2)_n)) = 1 \quad \text{when } n \text{ is even}$ $\dim(V_8(S^2,(2)_n)) = 0 \quad \text{when } n \text{ is odd}$

Proof. The dimension of $V_8(S^2, (2)_n)$ is given by the cardinality of the set of 4-admissible colorings of the following graph with n univalent vertices

Remark that each edge can only be colored by 0 or 2 and for 3 edges meeting at a vertex, the sum of the colors should be at most 4. We can easily check that if n is odd there is no such coloring and if n is even there is a unique such coloring.

In this subsection when we do not indicate the coloring in a drawn graph it means that all the edges are colored by 2, we note that such a graph is always in $K_4(B^3, (2)_n)$ as soon as it has a trivalent vertex. One major obstacle to faithfulness of the quantum representations of the mapping class group is due to the fact that all Dehn twists have finite order when acting on the quantum spaces. From what was said in the previous section in the case of the 4-punctured sphere, we remark that this problem does not happen in $K_4(B^3, (2)_n)$. Indeed

Proposition 4.7.2. The generators $\sigma_1, ..., \sigma_{n-1}$ all have infinite order when acting on $K_4(B^3, (2)_n)$.

Proof. Remark that the proposition 4.5.7 can be read like the following local relation

with $\alpha_2 \in \{-i, i\}$. This implies that $\rho(\sigma_j)$ for j = 1, ..., n - 1 is not diagonalisable. We show it for $\rho(\sigma_1)$ (a similar argument can be easily seen for $\rho(\sigma_j)$ for j = 2, ..., n - 1), consider the two following vectors in $K_4(B^3, (2)_n)$

$$g_1 = \bigsqcup$$
 $g_2 = \bigsqcup$ \cdots

from (4.15) we have

$$\rho(\sigma_1)(g_1) = -A^4 g_1 \rho(\sigma_1)(g_2) = -A^4(g_2 + \alpha_2 g_1)$$

so on the sub-vector space generated by g_1 and g_2 , $\rho(\sigma_1)$ has the following matrix

$$\rho(\sigma_1) = -A^4 \begin{pmatrix} 1 & \alpha_2 \\ 0 & 1 \end{pmatrix}$$

which implies that $\rho(\sigma_1)$ is not diagonalisable and therefore has infinite order.

Remark By a similar proof we can see that actually all Dehn twists have infinite order when acting on $K_4(B^3, (2)_n)$.

Now we give some experimental results in the case where the color is 2 at 8-th primitive root of -1 for the number of punctures on the sphere is equal to 6. Recall that

$$\dim(K_4(B^3, (2)_6)) = 14$$

we set $A = \exp(\frac{i\pi}{8})$ and we work at this root of unity. Here when $\phi \in M(0,6)$ we denote by λ_{ϕ} the spectral radius of ϕ when acting on $K_4(B^3, (2)_6)$.

Let

$$\phi_1 = \sigma_1 \sigma_2^{-1} \sigma_3 \sigma_4^{-1} \sigma_5, \ \phi_2 = \sigma_1 \sigma_2^{-2} \sigma_3 \sigma_4^{-5} \sigma_5$$

which are both homological pseudo-Anosov elements, we check that $\lambda_{\phi_1} \simeq 44, 43$ and $\lambda_{\phi_2} \simeq 244, 20$. Now let

$$\phi_3 = (\sigma_1 \sigma_2)^6 (\sigma_3 \sigma_6) (\sigma_1 \sigma_2)^{-6} (\sigma_3 \sigma_6)^{-1}, \ \phi_4 = (\sigma_1 \sigma_2)^6 (\sigma_3 \sigma_6) (\sigma_1 \sigma_2)^{18} (\sigma_3 \sigma_6)^{-1}$$

which are pseudo-Anosov elements in the Torelli group, we check that $\lambda_{\phi_3} \simeq 4545, 49$ and $\lambda_{\phi_4} \simeq 27258, 97$.

For all the pseudo-Anosov we have tried so far (beyond the examples given here), we have noticed that the spectral radius is always strictly greater than one, whether the pseudo-Anosov element is homological or in the Torelli group. Moreover we did not manage to find non trivial elements acting trivially on $K_4(B^3, (2)_6)$. Even if we do not have a homological interpretation of the representation on $K_4(B^3, (2)_6)$, we believe that this representation has really interesting properties concerning the spectral radius of the action pseudo-Anosovs, and perhaps solves the AMU conjecture for the 6-punctured sphere with color 2.

Bibliographie

- [1] Jørgen Ellegaard Andersen. Asymptotic faithfulness of the quantum SU(n) representations of the mapping class groups. Ann. of Math. (2), 163(1):347–368, 2006.
- [2] Jørgen Ellegaard Andersen, Gregor Masbaum, and Kenji Ueno. Topological quantum field theory and the Nielsen-Thurston classification of M(0, 4). Math. Proc. Cambridge Philos. Soc., 141(3):477–488, 2006.
- [3] Michael Atiyah. Topological quantum field theories. Inst. Hautes Études Sci. Publ. Math., (68) :175–186 (1989), 1988.
- [4] Joan S. Birman. Braids, links, and mapping class groups. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 82.
- [5] C. Blanchet, N. Habegger, G. Masbaum, and P. Vogel. Three-manifold invariants derived from the Kauffman bracket. *Topology*, 31(4) :685–699, 1992.
- [6] C. Blanchet, N. Habegger, G. Masbaum, and P. Vogel. Topological quantum field theories derived from the Kauffman bracket. *Topology*, 34(4) :883–927, 1995.
- [7] Vladimir Turaev Christan Blanchet. Axiomatic approach to tqft. Encyclopedia of Mathematical Physics, pages 117–123, 2006.
- [8] Francesco Costantino and Bruno Martelli. An analytic family of representations for the mapping class group of punctured surfaces. *Geom. Topol.*, 18(3):1485–1538, 2014.
- [9] Jens Kristian Egsgaard and Soren Fuglede Jorgensen. The homological content of the jones representations at q = -1, 2014. Available at arXiv, arXiv :1402.6059.
- [10] Michael H. Freedman, Kevin Walker, and Zhenghan Wang. Quantum SU(2) faithfully detects mapping class groups modulo center. *Geom. Topol.*, 6 :523–539 (electronic), 2002.
- [11] Igor B. Frenkel and Mikhail G. Khovanov. Canonical bases in tensor products and graphical calculus for $U_q(sl_2)$. Duke Math. J., 87(3) :409–480, 1997.
- [12] Louis Funar. On the TQFT representations of the mapping class groups. Pacific J. Math., 188(2) :251–274, 1999.
- [13] Patrick M. Gilmer. On the Witten-Reshetikhin-Turaev representations of mapping class groups. Proc. Amer. Math. Soc., 127(8) :2483-2488, 1999.
- [14] Patrick M. Gilmer and Gregor Masbaum. Integral topological quantum field theory for a one-holed torus. *Pacific J. Math.*, 252(1):93–112, 2011.
- [15] Patrick M. Gilmer and Gregor Masbaum. Maslov index, lagrangians, mapping class groups and TQFT. Forum Math., 25(5):1067–1106, 2013.
- [16] Yasushi Kasahara. An expansion of the Jones representation of genus 2 and the Torelli group. II. J. Knot Theory Ramifications, 13(2):297–306, 2004.

- [17] R. J. Lawrence. Homological representations of the Hecke algebra. Comm. Math. Phys., 135(1):141–191, 1990.
- [18] Ruth Lawrence. The homological approach applied to higher representations. available at http://www.ma.huji.ac.il/ruthel/.
- [19] W. B. R. Lickorish. Invariants for 3-manifolds from the combinatorics of the Jones polynomial. *Pacific J. Math.*, 149(2):337–347, 1991.
- [20] Julien Marché and Majid Narimannejad. Some asymptotics of topological quantum field theory via skein theory. Duke Math. J., 141(3):573–587, 2008.
- [21] G. Masbaum and J. D. Roberts. On central extensions of mapping class groups. Math. Ann., 302(1):131–150, 1995.
- [22] G. Masbaum and P. Vogel. 3-valent graphs and the Kauffman bracket. Pacific J. Math., 164(2):361–381, 1994.
- [23] Gregor Masbaum. An element of infinite order in TQFT-representations of mapping class groups. In *Low-dimensional topology (Funchal, 1998)*, volume 233 of *Contemp. Math.*, pages 137–139. Amer. Math. Soc., Providence, RI, 1999.
- [24] Gregor Masbaum. Quantum representations of mapping class groups. In Groupes et géométrie, volume 2003 of SMF Journ. Annu., pages 19–36. Soc. Math. France, Paris, 2003.
- [25] Gregor Masbaum. On representations of mapping class groups in integral TQFT. Oberwolfach Reports, Volume 5(Issue 2) :1157–1232, 2008. Available at http://webusers.imj-prg.fr/ gregor.masbaum/.
- [26] Curtis T. McMullen. Braid groups and Hodge theory. Math. Ann., 355(3):893–946, 2013.
- [27] Scott Morrison. A formula for the jones-wenzl projections. unpublished, available at http://tqft.net/math/joneswenzlprojections.pdf.
- [28] Robert C. Penner. A construction of pseudo-Anosov homeomorphisms. Trans. Amer. Math. Soc., 310(1) :179–197, 1988.
- [29] N. Reshetikhin and V. G. Turaev. Invariants of 3-manifolds via link polynomials and quantum groups. *Invent. Math.*, 103(3):547–597, 1991.
- [30] Ramanujan Santharoubane. Action of M(0,2n) on some kernel spaces coming from SU(2)-TQFT (en préparation).
- [31] Ramanujan Santharoubane. Limits of the quantum SO(3) representations for the one-holed torus. J. Knot Theory Ramifications, 21(11) :1250109, 13, 2012.
- [32] William P. Thurston. On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Amer. Math. Soc. (N.S.), 19(2):417–431, 1988.
- [33] Vladimir G. Turaev. Quantum invariants of knots and 3-manifolds, volume 18 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, revised edition, 2010.
- [34] Edward Witten. Topological quantum field theory. Comm. Math. Phys., 117(3):353– 386, 1988.
- [35] Edward Witten. Quantum field theory and the Jones polynomial. Comm. Math. Phys., 121(3):351–399, 1989.