Tsinghua University 2017-2018
“Advanced Probability” (Part III: Brownian motion)

Ezercise sheet #111.1:

Construction of Brownian motion

Exercice 1. Let & be a Gaussian .4/(0, 1) random variable. Let > 0.
(i) Prove that 27r)1/2 (2 —-L)e ™2 <P(E¢>0a)< o ;1/2 1g=a/2,
(ii) Prove that! P(¢ > z) < e /2,

Solution. (i) We have

7u2/2 1 ]_ /OO 7“{2/2 o ]_ 1 71.2/2
> ) U< —— ue du = —-e¢ ,
P& \/ / 2t J, V2rx

giving the desired upper bound. For the lower bound, we note that by integration by parts,

11 u2/2ro_ 1 (1

1 e 2
P >x)=— e_“/gdu:[———e_ — —e /2 du.
€ ) \/27T/x V2mu v N2, u?

This yields the desired lower bound because [ u%e’“z/ 2du < &5 [ ue 2 du = x.
(ii) By the Markov inequality, for any A > 0,

(5 > a:) )\xE[ ,\5] fo+,\2/27
which yields the desired inequality by taking A = x. U

Exercice 2. Let ¢ be a Gaussian .4(0, 1) random variable.

(i) Compute E(£*) and E(|¢]).

(ii) Compute E(e%), E(¢e®) and E(e*”), with a € R.

(iii) Let b > 0. Let n be a Gaussian .47(0, 1) random variable, independent of . Prove
that E(e%”) = E(e*7), where \ := (2b)1/2,

Solution. (i) We have E(¢*) = 3, E(|¢]) = (2)V/2.

(ii) We have E(e%) = e*/2 E(£e%) = ae®’/?. As for E(e%"), it is seen that E(e*”) = oo if
a > 1, whereas E(e") = (1 — 2a)*/?if a < L.

(iii) By conditioning on &, we habe, by (ii), E(e*7|¢) = €€/, which is nothing else but

e’ Taking expectation on both sides gives the desired conclusion. O

'We will see that P({ > x) < Je~ /2,



Exercice 3. Let &, &, &, --- be real-valued random variables. Assume that for each n, &,
is Gaussian A (u,, 02), with u, € R and o, > 0, and that &, — ¢ in law. Prove that £ is

n

Gaussian.

Solution. For any random variable £, we denote its characteristic function by . By assump-
tion, ¢, (t) = exp(ipnt — %tz) converges pointwise to @g(t). So exp(—éﬁ) — |pe(t)] for any
t € R. As a consequence, 02 — 02 > 0 (the possibility that o2 — 0o is excluded as 1g—g} is
not a characteristic function, being discontinuous at point 0).

Suppose that (y,) is unbounded. Then there exists a subsequence (uy,,) tending to +o0o
(or to —oo, but the argument will be identical). Let a € R. The distribution function F¢ of &
being non-decreasing, we can find b > a which is a point of continuity of F¢. Hence

Fila) < Fe(b) = Jim P(&,, <D) < .
as for large k, P(&,, < b) < P(&, < pn,) = 3. So Fe(a) < 3 for all a € R, which is absurd
because Fy is a distribution function and its limit at 400 is 1.

The sequence (i) is thus bounded. Let p € R and v € R be limits along subsequences,
then e = ¢! for all t € R, which is possible only if 1 = v. So the sequence (u,) converges,
to a limit, denoted by o € R. Since o,, — o, we have ¢¢(t) = exp(iut — %2t2). In other words,
¢ is Gaussian A (u, 0?). O

Exercice 4. Let &, &, &, --- be random variables. Assume that for any n, , is Gaussian
N (n, 02), where p, € R and o, > 0, and that &, — £ in probability. Prove that &, converges

n

in LP, for all p € [1, c0).

Solution. We use what we have proved in the previous exercise. For a € R, we have

a%i)
5 )
Since el”l < e 477, we have, for all a > 0, sup,, E(e?"!) < co. A fortiori, sup, E(|&,[P*!) < oo;

E(e") = exp (aptn +

hence sup,, E( |£, — £[P™) < oo. This implies that (|§, — £|P) is uniformly integrable. Since
&, — €|P — 0 in probability, the convergence takes place also in L.

Exercice 5. Let (£, 7, 0) be an R3-valued Gaussian random vector. Assume E(§) = E(n) =
E(én) =0, ¢ :=E(§?) > 0 and o7 := E(?) > 0.

(i) Prove that E(6|&, n) =E(0]&) + E(0|n) — E(6).

(ii) Prove that E(£|&n) = 0.

(iii) Prove that E(0|&n) = E(0).
Solution. (i) Let a € R and b € R. Tt is clear that (&, n, 8 —a& —bn), being a linear transform

of the Gaussian random variable (£, 7, #), is also a Gaussian random variable. So 6 — a& — bn
and (&, n) are independent if and only if Cov(8 — a& — bn, £) = Cov(d — a& — bn, n) = 0.
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We have Cov(f —a& —bn, £) = Cov(§, 0) —aoZ, and Cov(f — a& —bn, n) = Cov(n, ) —bo;.
Choosing from now on a := Cov(§, 0)/0¢ and b:= Cov(n, 0)/07, it is seen that 6 — a& — bn is

independent of (£, ). Accordingly,

E@& 1) = E@—a&—bn|&n)+al+bn
= E(0 —a& —bn) + al + by = E(0) + a& + bn.

On the other hand, § — a¢ is independent of &: indeed, (£, 6 —af) is a Gaussian random vector,
with Cov(&, 0 — a&) = 0; hence E(0 &) = E(0 — a&|€) + a& = E(0 — a&) + a& = E(0) + a&.
Similarly, E(0|n) = E(0) + bn. As a consequence,

E(O[&, n) = E(0) + a& + by = E(0[&) + E(@ | n) — E(9).

(ii) Let A € o(¢n). By definition, there exists a Borel set B C R such that A = {w :
E(w)n(w) € B}. So 14 = 15(&n).

Since (&, n) is a centered Gaussian random vector, it is distributed as (=&, —n). Thus
E[§15(&n)] = E[(—§)1s((=&)(—n)] = —E[{15(¢n)], ie., E[€15(¢n)] = 0. In other words,
E(£14) =0, VA € 0(£n), which means that E(£|£n) = 0.

(iii) We have E(6[&n) = E(0 —a& —bn[&n) +aE({|&n) +0E(n [ &n). By (i), E(¢|£{n) = 0;
similarly, E(n|&n) = 0. Tt follows that E(0|&n) = E(0 — a& — bn|&n). We have seen that
0 — a& — by is independent of (£, n); so E(6 — a& — bn|E&n) = E(0 — a& — bn) = E(#), which
yields the desired identity. [

Exercice 6. Let (&, K > 0, n > 0) be a collection of i.i.d. Gaussian .4#7(0, 1) random
variables. For all n > 0, we define the process (X, (t), t € [0, 1]) with ¢t — X,,(¢) being affine
on each of the intervals [55, 2], 0 <4 < 2"—1, in the following way X,(0) := 0, Xo(1) := &0,
and by induction, for n > 1,

21 21

Xn(Q—n) = Xn_1(2—n), 0<i<2m 1
2j+1 2)+1 §2j+1.n . et
Xo(=5) = X ) F o 05727~ L

Prove that for all n > 0, (X,(£),0 < k < 2") is a centered Gaussian vector such that

EXn(£)Xn(35)] = 2 Ao, for 0 < k, £ <27,

Solution. We prove by induction in n. The case n = 0 is trivial. Assume that the desired
conclusion holds for n — 1. It is clear that (Xn(2%), 0 < k < 2") is a Gaussian random
vector (which is obviously centered), being a linear function of independent Gaussian vectors
(Xn,l(zn%), 0<k<2"Y) and (&, 0 < k < 27). It remains to check the covariance. We

distinguish two possible situations.



First situation: there is at least an even number among k and /¢, say k = 2k;. In this
case, X,(£) = Xn_1(52%r), and the desired identity Cov(X,_1(2%), Xp—1(5)) = 2= A & is

on—1/ on on on on
trivial by the induction hypothesis if ¢ is even; if, however, ¢ is odd, say ¢ = 2{; + 1, then

Xo(£) = 1 X1 (555) + 2 X0 (B + Q(fﬁ‘)/g; since &, is independent of X,_1(5217), we

obtain:

cov(xn(ﬁn), Xn(£)>

2
k1 ly

1
= = Cov(Xn_1(2n71), Xn—1(2n,1

k1
X

on—1 ’

) + 5 v (X )

1A Qfl_l) + %( kLA glﬂ) = 2% A 2% as desired.

Second (and last) situation: both k and ¢ odd numbers, say k = 2k;+1 and ¢ = 2¢; + 1. In
this case, we have X, (&) = 1 X,,_1(525) + 2 X,— 1(k1f1)+2(§’j1’3/2 and X, (&) = %Xn—1(%)+

on—1
X (BH) + % Since &, and &, are independent of (X,,_1(¢), t € [0, 1]), we have, by

on—1

which, by the induction hypothesis, is %(zf

the induction hypothesis,

k /! 1 Ik I 1, ke l+1

—), Xa(= ) —(— NAN—)+ - (— N ——

271)’ (2n) 4(2n—1 2n—1)+4(2n—1 on—1 )

1 k41 0 1 ki+1 El—l—l

Cov (Xn(

It is then easily checked that the sum of the five terms on the right-hand side is indeed k = N\ o o

By induction, we conclude that Cov[X,(£)X, ()] = 2= A 5. []

Exercice 7. Let (B}", t € [0, 1]), for m > 0, be a sequence of independent Brownian motions
defined on [0, 1]. Let
B:=B",+ > B t>0

0<m<|t]
Prove that (By, t > 0) is Brownian motion.

Solution. Clearly, the trajectories of B are a.s. continuous. It is easily checked that B is a

centered Gaussian process with covariance Cov(B;, Bs) =t A s for all s > 0 and ¢ > 0. O

Exercice 8. Prove that ¢ (R;, R), the Borel o-field of C (R, R), coincides with o(X, t > 0),
the o-field generated by the process of projections (X, ¢t > 0).

Solution. For all ¢ > 0, X, is continuous, thus measurable with respect to ¢’ (R,R). Conse-
quently, o(X;, t > 0) C € (R4, R).

Conversely, for all wy € C(Ry,R), 6,(w, Wo) = Sup,co njng IW(t) — wo(t)] is o(Xy, t > 0)-
measurable, and so is d(w, wg). Le F' be a closed subset of C(R,,R), and let (w,,) be a sequence

that is dense in F' (because the space is separable), then

F={weCRR): dw,F)=0} ={we C(R:,R): i%fd(w,wn) = 0},
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which is an element of o(X;, t > 0). Hence, €(Ry,R) C o(X, t > 0).

It is also possible to directly prove that all the open sets are o(X;, ¢ > 0)-measurable,
by means of the following property?: if a metric space is separable, then all opens sets are
countable unions of open balls. O
Exercice 9. Let T :=inf{t > 0: B, = 1} (with inf @ := 00). Prove that® P(T' < c0) > 1.
Solution. Let ¢t > 0. We have P(T' < o0) > P(T < t) > P(B; > 1). Since P(B; > 1) —
when ¢ — 0o, we obtain: P(T < c0) > 3.

D N

Exercice 10. (i) Prove that (—By, t > 0) is Brownian motion.

(ii) (Scaling) Prove that for any a > 0, (= Bg, t > 0) is Brownian motion.

Solution. Both are centered Gaussian processes with covariance s At and with a.s. continuous

trajectories. Il

Exercice 11. (i) Let £ := fol B, dt. Determine the law of &.
(ii) Let n := f02 B, dt. Determine E(Bj |n).
(iii) Prove that B; — Bs is independent of o(Bs, s € [0, 1]).
(iv) Let Z; := o(Bs, s € [0, 1]). Determine E(Bs |.%;) and E(B2 | F;).

Solution. (i) By definition, ¢ is the a.s. limit of &, := 27" 21221 B;/on, and a fortiori, the
weak limit. For each n, §, is Gaussian (because Brownian motion is a Gaussian process). By
Exercice 4, ¢ is Gaussian, with E(¢) = lim,,_,o, E(,) and Var(§) = lim,,_,», Var(&,).

Since E(§,) = 0, ¥n, we have E(§) = 0.

Since Var(¢,) =272 37 Zjil(%ﬂ AL)— fol fol(s At)dsdt = g, we have Var(¢) = 3.

Conclusion : £ is Gaussian .47 (0, 3).

(ii) Let « € R and b € R. Exactly as in (i), we see that aB; + bn is Gaussian, and centered;

in other words, (Bj, 77) is a centered Gaussian random vector. Moreover, E(B;) = 0 = E(n),

E(B?) = 1, E(n?) = , and E(Byn) is, by Fubini’s theorem (why?), fo (B1B;) dt =
3
f02(1 At)dt = 2. Hence (Bj, n) has the Gaussian law W((g) : (é %) ).
2 3
In particular, E(B; |n) = E]E(g%) n=11.
(iii) Let n > 1, and let (sq, ---, s,) € [0, 1]”. Then (B; — Ba, Bs,, -+, By,) is a centered

Gaussian random vector. Since Cov(B7; — By, Bs,) = Cov(By, Bs,) —Cov(Bs, Bs,) = s;—s; =0

3

for all @ < n, an important property (which one?) of Gaussian random vectors tells us that

2Let G be an open set, and let D be a countable set that is dense, then for all x € G, there exist zp € D
and n, > 1 sufficiently large such that € B(xp, ni) C G. Thus G = UgegB(zp, i) The family
{B(zp, 7-), = € G} is countable, being a subset of {B(z, +), z € D, n > 1}.

3Laterlon we will see that T' < 0o a.s.



B; — B, is independent of (B, -+, Bs, ). This implies that B; — By is independent of
o(Bs, s € [0, 1]).

(iv) Exactly as in the previous question, we see that Bs — Bj is indepenfent of %#;. In
particular, E(Bs | %#1) = E(Bs— By | #1)+E(B; | #1) = E(Bs;—B;)+ By = By, et E(BZ | %) =
E((Bs — B,)?|.Z)) + 2B\E(Bs | %) — B> = E((Bs — B,)?) + 2B? — B? = 4 + B2. 0

Exercice 12. (i) Prove or disprove: for all ¢ > 0, [] B2ds has the same distribution as
£2 [ B2ds.
(ii) Prove or disprove: the processes (f; B2ds, t > 0) and (¢ fol B2?ds, t > 0) have the

same distribution.

Solution. (i) The answer is yes, by the scaling property.
(ii) The answer is no: the trajectories of the second process are a.s. C*°, whereas those of
the first are a.s. not C2. Il

Exercice 13. Let T be a random variable having the exponential law of parameter 1,
independent of B. Determine the law of Br.

Solution. The measurability of By is clear if we work in the canonical space of Brownian

motion. Let us compute its characteristic function.

Let z € R. We have E[¢*B7 | T| = ¢ **T/2 50 E[e*Br] = E[e *T/?] = 52z In other words,
By has density (1/v/2)e~ V217l (“two-sided exponential law” of parameter v/2). O

Exercice 14. (i) Prove that [, Z=ds is a.s. well defined.
(ii) Let B, := By — fot % ds. Prove that (f;, t > 0) is Brownian motion.

Solution. (i) By Fubini—Tonelli, ]E(fo1 |Be|ds) = fol E(|2])ds = cfol s 1/2ds < oo, where
¢ :=E(|By]) < oco. A fortiori, fol B,

2:|ds < 0o a.s. Consequently, fol % ds is a.s. well defined.
[One can also directly prove that fol %ds is a.s. well defined by means of the Holder

continuity of B.]

(ii) Exactly as in (i), we see that for all ¢ > 0, X; := fg Bs ds is well defined a.s. So
a.s., the process (X;, t > 0) is well defined (why?), with continuous trajectories, and so is
(B, := B, — X;, t > 0).

As in a previous exercise, we see that for all n and all real numbers ay, - -, a,, Y.y @i,
is centered Gaussian. As a consequence, 3 is a centered Gaussian process.

It remains to check the covariance. Let ¢ > s > 0. We have E(X;B;) = s+ slog(%) (why?),
E(X,B;) = s and E(X,X;) = 25+ slog(%). Hence E(5,3,) = E(B:B,) — E(X;B,) — E(X,B;) +
E(X;X,) = s as desired. Consequently, 4 is Brownian motion. O

Exercice 15. Prove that [ |B,|ds = oo a.s.



Solution. Let X, := fot |B,|ds, t > 0. By scaling, for all ¢ > 0, X, is distributed as t3/2X.
For all z > 0, we have P{X, > 2} > P{X; > 2} = P{X; > g5} which converges to
P{X; > 0} =1 when ¢t — oo. Since this holds for all x > 0, we get X, = 00 a.s. O

Exercice 16. Let 7' :=inf{t > 0: |B;| = 1} (with inf @ := c0).
(i) Prove that T' < oo a.s.
(ii) Prove that 7" and 1{p,—1} are independent.

Solution. (i) For all ¢ > 0, we have P(T' < 00) > P(T' <t) > P{B; > 1} U{B; < —1}) =
P(B, > 1)+ P(B; < —1) = 2P(B; > 1). Since P(B, > 1) — 1 when ¢ — oo, we get
P(T < o0) > 1. In other words, T' < 0o a.s.

(ii) For bounded Borel function f : R, — R and by symmetry of Brownian motion
(replacing B by —B), we have E[f(T) 1ip,=13] = E[f(T) 1{p,=—1}]; hence

E[f(T) 1(pyn] = 5EIf(T)] = B(Br = DE[f(T)],

the last identity following from the fact that P(By = 1) = i (taking f = 1 in the previ-
ous identity). Similarly, E[f(T)1{p,=—1}] = P(T" = —1)E[f(Br)]. This yields the desired

independence. [

Exercice 17. Let B := (B, t € [0, 1]) be Brownian motion defined on [0, 1]. For all ¢ € [0, 1],
let

F = o(Bs, s€[0,1]),

Y, = FNVo(B)=c({C; Ce ZForCeao(B)}).

(i) Let 0 < s <t < 1. Prove that

E[(B, — B.) | %] = -—>

(B1 — Bs).

— S

(ii) Consider the process 5 := (B, t € [0, 1]) defined by

" B, — B,

615 = Bt —/ ! dS, t € [O, 1]
0 1 — S

Prove that for 0 < s <t <1, E(5;|¥;) = Bs a.s.

Solution. (i) Write

t—s 1—1¢ t—s
B, — B, = B, — B, B, — B,) —
K 1—5( ! )+1—S( K ) 1—s

(By — By).



Clearly, =2 (B; — B;) is %,-measurable. We now prove that X := i—:g (B;—B,)— =2 (B1—B,)
is 1ndependent of ¢¥,. It suffices to prove that for all n and all 0 < 51 < --- < s, < s, X is

independent of (le, -+, By, By).
Since (X, Bs,, -+, Bs,, B1) is a Gaussian vector, it suffices to check that Cov(X, Bs,) =
COV(X By) =0, Vi. We have Cov(X, By,) = 1=% (si —5;) — =2 (s;—s;) = 0 and Cov(X, B;) =

Lt—s)—+2(1—t) =0, as desired.
So X is independent of ¥, : we have E[X |¥4;] = E[X]| = 0. As a consequence, E[(B; —
B,)|¥9.] = =2 (B, — B,).

ii) [The integral ! Bi=B: (5 is a.s. well defined by the local Hélder continuity of Brownian
0 1-s

lfs

sample paths.]
Let 1 >t > s > 0. By (i), E[B,|%] = B, + =2 (B, — B,),and E[(B, — B,)|¥9.] =

By — B, — = (B — B,) = %; (By — Bs) for v > s. By Fubini’s theorem (of which the
application is easily justified),
"E[(B, — ° Bu
El5: 9] = E[B:/|%] —
9] = Epg) - [ ORI, [R5
t—s b1 u * B — B,
= B By — By) — B, — B — _
ot 1= BB /Sl—ul—s(l o) du /0 = 0
which is nothing else but f;. OJ

Exercice 18. Let %, := 0(Bs, s € [0, 1]), and let a € R. Let Q be the probability measure
on .7, defined by Q(A) :=E(e?®1=% 1,4), A € #,. Define v, := B, — at, t € [0, 1]. Prove that
(7, t € [0, 1]) is Brownian motion under Q.

Solution. The trajectories of v are P-continuous and thus also Q-continuous (the two prob-
abilities being equivalent on .%7). It remains to check that for 0 :=ty < t; < --- < ¢, <1,

B, — B, -+, By, — By, By, are independent Gaussian random variables under Q. We

n—17
consider the characteristic function. Let (xq, -+, x,) € R". Then
EQ[eizﬁzlwk(vt;@—vtkﬂ)] = E[ea31_§+i22:1mk(Btk_Btkﬂ)]

2 n 0o .
— o T iaX ko wk(te—ty—1) E[ea(Bl—Btn)+Zk:1(wk+a)(3tk —sz_l)]
M)

which is

2
o e wk i th1) 0% (-t ARy Y (et ) b S # )

This implies (i) the desired independence under Q, and (ii) that the law of 7, — 74, , under
Q is Gaussian A7(0, t, — tx_1). O



Tsinghua University 2017-2018
“Advanced Probability” (Part III: Brownian motion)

Ezercise sheet #111.2:

Brownian motion and the Markov property

Exercice 1. Let @4 C %, ---, @, C ¥ be m-systems, satisfying € € 7, Vi. Assume
P(A;N---NA,) =P(A)---P(A,), VA; € <.

Then o(4), - -+, o(4,) are independent.

Solution. Fix Ay € o, ---, A, € o,. Consider

%1 = {Cl < 0‘(2{1) : ]P)(Cl N AQ N---N An) = ]P(Cl) ]P)(Ag) . P(An)}

It is easily checked by definition that .#) is a A-system?, whereas by assumption, @4 C .4,
et o7 is a mw-system. So by the m-A theorem, .#) = o(%); in other words,

P(Cl N AQ n---N An) = P(Cl)P(AQ) .. P(A,J, VC, € O'(e%), VAQ S %, BRI VAn € Jan
To continue, let us fix C € o(4), Az € 9, -+, A, € o, and consider
.ﬂg = {CQ c 0'(%) : P(Ol NCyN Ag N---N An) = P(Cl) P(OQ) ]P(Ag) .. P(An)}

Again, .4, is a A\-system, and we have proved in the previous step that it contains the m-system

ty. Hence Mo = o(oty). Iterating the procedure, we arrive at:
P(CiN---NC,) =P(Cy)---P(C), VCy € o(h), -, VC, € a(y),
which means that o(), - -+, o(<,) are independent. O

Exercice 2. (i) (Time reversal) Fix a > 0. Prove that (B, — B,_, t € [0, a]) is Brownian
motion on [0, al.
(i) (Time inversion) Prove that X := (X, t > 0) defined by X, :=¢ By (for ¢ > 0) and

Xp := 0 is Brownian motion.

Solution. In both situations, it is easily checked that the process is centered Gaussian with

covariance s At. For time reversal, the continuity of trajectories is obvious. For time inversion,

4The assumption Q € o7 is used here to guarantee ) € .
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one may feel that there could be a continuity problem at 0: this however, does not cause
any trouble because X is, according to Kolmogorov’s criterion, undistinguishable to Brownian

motion. O

Exercice 3. Prove that there exists a constant a > 0 (that does not depend on w) such that

inf;e(o,2) By has the same distribution as ainfc(o 1) B;.

Solution. By scaling, inf,c(g o) B; has the same distribution as 21/2 infep, 1) B ]

Exercice 4. (Brownian bridge) Let b, = B, — tB;, t € [0, 1]. It is a centered Gaussian
process with a.s. continuous trajectories and with covariance (s At) — st. We call b a Brownian
bridge.

(i) The process (b, t € [0, 1]) is independent of the random variable B;.

(ii) If b is a Brownian bridge, so is (bi_, t € [0, 1]).

(iii) If b is a Brownian bridge, then B; = (1 + ¢)by/(14+), t > 0, is Brownian motion. Note
that by = (1 — ) By

Solution. (i) Let 0 <t; <ty <---<t, <1. Then (b, ---, by,, By) is a Gaussian random
vector, with Cov(by,, By) = Cov(By,, B1) — Cov(t; By, By) =t; —t; = 0, Vi. So a property of
Gaussian vectors tells us that (b, --- , by, ) is independent of B;.

(ii)—(iii) By checking covariance. O

Exercice 5. Prove that

lim — =0, a.s.
Hint: Use time inversion.

Solution. By continuity, lim; .oy B; = 0, a.s., which yields the desired conclusion by time

inversion. ]

Exercice 6. Let (t,),>1 be a sequence of positive real numbers decreasing towards 0. Prove

that a.s., By, > 0 for infinitely many n, and B,;, < 0 for infinitely many n.

Solution. Let A4, := {B,, > 0}. We have P(A,) = 3, Vn, so P(limsup,,_,,, A,) = lim,_, |
P(UpspnAx) > limsup,,_, . P(4,) = 5. On the other hand, by Blumenthal’s 0-1 law, we know
that P(lim sup,,_,, A,) is either 0 or 1; so P(limsup,,_, ., A,) = 1. In other words, a.s., By, >0
for infinitely many n.

By considering —B which is also Brownian motion, we see that a.s., B;, < 0 for infinitely

many n. [

. t 1/2 . . .
Exercice 7. Prove that when ¢t — oo, ([) e ds)'/*"”” — eVl in law, where N is a Gaussian

0
(0, 1) random variable.



Solution. By scaling, for any fixed ¢ > 0, ( f Bs ds)V/t""* is distributed as

1 1/t1/2 lo 1 1
1/2 gt 1/2
(t/o ot/ ?Bu du) = exp ( /2 t1/2 IOg/ t/2B, du) _

The continuity of trajectories of B implies that tl%log fl 2By qy — SUpP,cp,1] Bu a.s., so
exp(i‘i% + i3 log fl H2Bu qu) — exp(SUp,,eo.1] Bu) a8

As a consequence, fo B ds) /1 exp(sup,e(oq) Bu) in law; the limit is distributed as
eV (by the reflection principle). O
Exercice 8. (i) Prove that 0 < sup;5,(|B;| —t) < 0o a.s. and that 0 < sup,- ‘1 1 < 00 as.

(ii) Prove that sup;sq(|B;| —t) and (sup;s |1 ;i) have the same distribution.

Hint: Use the scaling property.

(iii) Prove that for any p > 0, E{[sup,>,(|B;| — t)]’} < oo.

(iv) Prove that there exists a constant C' < oo such that for any non-negative random
variable T’ (not necessarily a stopping time!), E(|Br|) < C [E(T)]"/2.

Hint: Write, for any a > 0, |Br| = (|Br| — aT') + aT', and prove that E(|By| — aT) <

o Elsupyo(|Bi| = 1)].
B

Solution. (i) It suffices to recall that 8t — 0 a.s. for t — oo and that limsup,_, T = 00
a.s..

(ii) Let 2 > 0. We have P{sup;»((B; —t) < o} = P{B, —t < z, V¢t > 0}. By scaling, the
probability is

= P{z'’B,, —t <z, Vt >0}
= P{xl/ng—sa:<x, Vs >0}
B
= P{— <22 Vs>0
{1+S x ) S— }7

from which the desired identity in law follows.

(iii) By (ii), it suffices to check E{[sup; ﬁtt]%} < 00.

By the reflection principle, E{[sup;c(o, ) Bi]*} < oo. By symmetry, E{[sup;cj 1(—B:)]*} <
00. So B{[supcpo, 1 |Bi|]*} < oo. A fortiori, E{[sup;co 1 1+t]?p} < o0.

It remains to check E{[sup,-, ‘ﬁt]zf)} < 00. We have seen that E{[sup,c(y 1) |B[]*"} < oo.
By inversion of time, this yields E{[sup,s; 2%} < co. A fortiori, E{[sup,s, ﬁftl]%} < o0.

(iv) We assume 0 < E(T) < oo (because otherwise, there is nothing to prove).

By scaling, E(|Br| — aT) = E(|Bar| — aT) = LE(|Ber| — a®T), which is obviously
bounded by L E[sup,s(|B;| — t)].

E(|Br|) < £ + aE(T), with K := E[sup,>,(|B:| — )] € (0, 00). Since this holds for all

a > 0, we take a := [-£]Y/2 to see that E(|Byr|) < 2 [K E(T)]/2. O
E(T)



Exercice 9. Let S; := supyjy Bs, t > 0. Prove that S, — 5 is distributed as max{|N| —
IN|, 0}, where N and N are independant Gaussian .4 (0, 1) random variables.

Solution. Put 8, := Bsy1 — By, s > 0. By the Markov property, 8 is Brownian motion,
independent of %, a fortiori of (S, By).

Write S, := SUDgejo Bs- Then sup,ep o Bs = Sy + By; hence S = max{51, Sy + B;}. In
other words, Sy — S; = max{0, S; — (S; — By)}. Since S; and S; — B; are independent (see
the previous paragraph), both having the law of |B;| (by the reflection principle, the desired

identity in law follows. ]

Exercice 10. Let dy :=inf{t > 1: B, =0} and ¢; :=sup{t <1: B, = 0}.
(i) Is d; a stopping time?

(ii) Determine the law of dy, and the law of g¢;.

Solution. (i) Fix ¢t > 0. Let us check {d; <t} € %#.
Ift <1, then {d; <t} =@ € F. If t > 1, we have

{dlgt}:{ inf |BS|:0}E%.

s€[1,tNQ

Conclusion: d; is a stopping time.

(ii) Let ¢t > 1. Applying the Markov property at time 1, we get
P{d, <t} = / P{B; € dz} P{T_, <t—1}.

Let N and N be independent Gaussian .4°(0, 1) random variables. We know that T, is

distributed as ]f[—z Hence

2

N
P{d, < t} :P(m <t- 1).
As consequence, (d; — 1)'/? has the standard Cauchy distribution. In other words,

11
P(d; € dt) = — ——=U

————dt.
7 t(t —1)1/2

Let us now study the law of g;. For all t € [0, 1),

P(gy <t) = /OO P{B, € de}P{T , >1—t}

tN?2
= P(W“‘t)
1

P(—l N (N/N)2 < t>.



Thus ¢; is distributed as where C' is a standard Cauchy random variable. We have

1+C2 ’

1 o<ty
P(g; € dt) = — ———= dt.
(gl ) (1 . t)1/2
We say that g, has the Arcsine law, because P(g; < t) = 2 arcsin(t!/?).
Observe that we could have determined the law of g; from the law of d; by means of the
scaling property: {g; < t} = {d; > 1}, where d; := inf{s >t : By, = 0} has the same law as
td;. O

Exercice 11. Define T} := inf{t > 0: B, = 1} and 7 := inf{t > T} : B, = 0}.
(i) Is 7 a stopping time?
(ii) Determine the law of 7.
Solution. (i) Let us first prove that for any finite stopping time 7' > 0, 7 = inf{t > T : B, =

0} is a stopping time. This was proved in the previous exercise when T is a constant. If T

takes countably many values, say (t,), then

(r<t}— U{T:tn}ﬂ{ inf |B|_0}e£a,

se|t ﬂ
n:tn <t [tn11NQ

which means 7 is a stopping time.

In the general case, for all n, let

<T<EELY
k=0

which is a non-increasing stopping times tending to 7. By what we have just proved, 7, :=

inf{t > T, : B, =0} is a stopping time; hence

{Tgt}:({Tgt}ﬂ{BT:O})U<{T§t}ﬂ{BT7é0}ﬂG{Tn§t}>,

which is an element of .%;. As a conclusion, 7 is a stopping time.
(ii) By the strong Markov property, 7 is distributed as T3 +Tv,1, where 7", is an independent
copy of T7. So 7 is distributed as 15, thus also as 47;. The density of 7 is

2 2
P(T € dt) = (ﬁ)1/2 exXp < — g) dt,

for ¢ > 0. O]
Exercice 12. (i) Study convergence in probability of M (quand t — o).
(ii) Study a.s. convergence of %.



Solution. (i) By scaling, for all fixed ¢ > 0, log(1 + B?) has the same distribution as log(1 +

tB?). Since By # 0 a.s., we have losUHB]) 1 as. So UFBD 1 ip law. The limit being a

logt logt
log(1+B?)

gt~ 1 in probability.

constant, the convergence holds also in probability. Conclusion:

(ii) If % converged a.s., it would converge a.s. to 1. But {t : B; = 0} is a.s.
log(1+B%)

B does not

converge a.s. O]

unbounded, which makes it impossible to converge a.s. to 1. Conclusion:

Exercice 13. Prove, without using inversion of time (but using instead the law of large

numbers and the reflection principle), that % — 0 a.s. when t — oo.

Solution. By the strong law of large numbers, % — 0 a.s. for n — oo. It remains to check
L SUD;epnnt1) | Br — Bnl = 0 as.

Let ¢ > 0. Let Ay, := {supsep, ni1) | Br — Bn| > n°}. We have P(A,) = P(supyep, 1y | Bs| >
n®) < 2P(sup,epp,1) Bs > n°). By the reflection principle, sup,c(o 1) Bs is distributed as [B;]|.
So P(A4,) < 2P(|Bi| > n) = 4P(B; > n°) < 2exp(—2%"), which yields 3, P(A4,) <
co. By the Borel-Cantelli lemma, limsup,, ., n™°sup;e, i1y |[Br — Bal < 1 as. A fortiori,

%supte[n’nﬂ] |B; — B,| — 0 a.s. O

Exercice 14. The aim of this exercise is to prove T' < oo a.s., where T := inf{t > 0: B, =
(1+1)Y?} (inf @ := c0).

Ken says : Since T is .%y-measurable, we know from the Blumenthal 0-1 law that P{T" <
oo} is either 0 or 1. But P{T < oo} > P{B; >22} > 0,50 T < ¢ a.s.

What do you think of Ken’s argument?

Solution. Ken’s argument is wrong, because T is not %, -measurable. As a matter of fact,
whenever t > 0, T is not .#;-measurable.

To prove T' < oo a.s., it suffices to recall that lim sup,_, If—/’; = 00 a.s. 0

Exercice 15. (i) Prove that [~ sin®*(B,) dt = oo a.s.

(ii) More generally, prove that if f : R — R is continuous which is not identically 0, then
I° fA(By) dt = 00 aus.
Solution. (i) We define inductively two sequences of stopping times (7;);>; and (7;);>1 as
follows: 7 := 0, T; := inf{t > 7, : |By| = 1} and 7,4y := inf{t > T; : B, = 0} for i >
1. The strong Markov property tells us that fgz sin?(B,)dt, i > 1, are ii.d. In particular,
> st fTT sin’(By) dt = oo a.s. A fortiori, [ BEdt >, fTT sin?(B;) dt = oo a.s.

_(ii) Same argument as in (i), replacing inf{t > 7, :_\Bt| = 1} by inf{t > 7, : |By| = a},
where a > 0 is such that f?(x) € (0, a). O

Exercice 16. (This exercise is not part of the examination program.) Let 2 = {t > 0 :

B; = 0}. Prove that a.s., 2 is closed, unbounded, with no isolated point.

6



Solution. That % is a closed set comes from the continuity of ¢ — B;. We have also seen in
the class that 2 is a.s. unbounded. It remains to show that 2 has a.s. no isolated point.
For t > 0, let 7, := inf{s >t : B, = 0} which is a stopping time. Clearly, 7, < co a.s., and
B,, = 0. The strong Markov property telles us that 7; is not an isolated zero point of B. So
a.s. for all r € Q,, 7, is not an isolated zero point.
Let t € Z2\{7,, r € Q. }. It suffices to show that ¢ is not an isolated zero point. Consider
a rational sequence (r,) 11 t. Clearly, r,, <7, <t. So 7, — t; thus t is not an isolated zero

point.? [

Exercice 17. (i) Let [a,b] and [c,d] be disjoint intervals of R,. Prove that sup,ei,y Bs #
SUPsefeq Bs a.s.

(ii) Prove that a.s., each local maximum of B is a strict local maximum.

(iii) Prove that a.s., the set of times at which B realises local maxima is countable and

dense in R, .

Solution. (i) Let b < c. By the Markov property, sup,e.q Bs — B is independent of
(Be, suPseqp Bs), and is distributed as (d — c)'/2|N|, with N denoting a standard Gaussian
A (0, 1) random variable. Since P(N = z) = 0 for all z € R, we obtain the desired result.

(ii) By (i), a.s. for all non-negative rationals a < b < ¢ < d, sup;c(, ;) Bs # SuDse(e,q Bs- If
B had a non strict local maximum, there would be two disjoint closed intervals with rational
extremity points, on which B would have the same maximal value, which is impossible.

(iii) Let M denote the set of times at which B realises the local minima. Consider the
mapping:

[a,b] — inf {t >a: B, = sup BS},

s€(a,b]
for all rationals 0 < a < b. According to (i), the image of this mapping contains M a.s., so M
is a.s. countable.
Since a.s. there exists no interval on which B is monotone (because B is nowhere differen-
tiable), B admits a local maximum on each interval with rational extremity points: M is a.s.
dense. OJ

Exercice 18. (i) Let a > 0 and let T, := inf{t > 0 : B; = a}. Recall that E[fe 7] =
e~V 'YX > (. Prove that P(T), < t) < exp(—g—i), for all ¢ > 0.

(ii) Prove that if ¢ is a Gaussian .47(0, 1) random variable, then P(§ > z) <
Yz > 0.

—x2/2
e /2,

D=

Solution. (i) Let A > 0. We have P(T}, < t) = P(e T > e M) < M E(e o) = eM—al2V)'?,

°It is known in analysis (see page 72 of the book by Hewitt, E. and Stromberg, K.: Real and Abstract
Analysis. Springer, New York, 1969) that a closed set with no isolated point is uncountable. So % is a.s.
uncountable.



Choosing \ := % yields the desired inequality.
(ii) Let Sy := supyep, 1) Bs- By (i), we have, for all a > 0, P(S; > a) =P(T, < 1) < e @'/,
According to the reflection principle, S; has the law of the modulus of a standard Gaussian

random variable: the desired conclusion follows immediately. 0

Exercice 19. (i) Prove that for all ¢ > 0 and all € > 0, P{sup,c(g 4 [Bs| < e} > 0.
(ii) Prove that there exists ¢ € (0, oo) such that P{sup,cp 1;|Bs| < e} > e~/< Ve € (0, 1].
(iii) Prove that for all t > 0 and all z > 0, P{sup,¢(o 4 |Bs| > } > 0.

Solution. (i) By scaling, P{sup,c(y 4 |Bs| < e} = P{sup¢, i) |Bs| < 2}. So it suffices to
check that for all a > 0, P{sup,cy , [Bs| <2} > 0.

Let T* := inf{t > 0: |B;] = 1}. Let 6 > 0 be such that p := P{T* > ¢} > 0. By symmetry,
P{T* > 9, By = 1} = P{T* > 4, Bp- = —1} = £ > 0. It follows from the strong Markov
property that P{sup,c(o . |Bs| <2} > (§)" >0, where N := [§].

(ii) Already proved in (i).

(iii) We have P{sup,c(o 4 |Bs| > 2} > P{B; > 2} = P{B; > 7z} > 0, as B, is a standard

Gaussian random variable. O

Exercice 20. (Law of the iterated logarithm) (This exercise is not part of the ezamina-
tion program.) Let Sy := supyc( 4 Bs, and let h(t) := (2tloglog )12,

(i) Let ¢ > 0. Prove that ) P{S;.., > (1 +¢)h(t,)} < oo, where t,, = (1 +¢)". Prove
that limsup,_, h() <1, as.

(ii) Prove that
SUDselo,1) | Bs|

lim su <1, a.s.
e Ty <
(iii) Let 6 > 1, and let s, = 6™. Prove that for all a € (0, (1—$)"/?), we have 3. P{B,, —
Bs, , > ah(s,)} = co. Prove that limsup,_, h(t) > a — i3, as.
(iv) Prove that
: B,
limsup — =1, a.s.

(v) Let Xy(t) := |By|, Xa(t) := S, and X3(t) := supsep, |Bs|. What can you say about
lim sup,_, h( fort=1,2,0u3?

(vi) What can you say about liminf; o, 24 an | And about limsup,

Solution. (i) Let A, :={S;,,, > (1 +¢)h(t,)}. We have

Bt ?
[2t loglog(1/t)]1/2 *

P(A,) = IP’(]B1| > [2(1+¢) loglogtn}1/2> < 2exp ( —(1+¢) loglogtn>,

as P(N > ) < e /2 for all > 0. Hence Y. P(A,) < co. By the Borel-Cantelli lemma, there
exists A € .7 with P(A) = 1 such that for all w € A, Ing = ny(w) < oo,

n>ng = S, < (1+e)2t,loglogt,)"/?.

8



Therefore, for t € [t,, tpi1],
S; < Sy < (1+¢€)(2t,loglogt,)? < (14 ¢)(2tloglogt)'/?,

which implies lim sup,_, % < 1+ ¢, a.s. It suffices now to let ¢ — 0 along a sequence of

rational numbers to reach the desired conclusion.

SUPs¢|o,t] (_BS) < 1
— )

(ii) Since — B is also Brownian motion, it follows from (i) that limsup,_, . 6]

a.s. The desired result follows.
(iii) Let E, :={Bs, — Bs,_, > ah(s,)}. The events (F,) are independent. Furthermore,

2loglog s,
P(E,) = P<Bl >Oé(1_—9,1)1/2)

1 1 ( a?log log Sn)
exp( — ———>"
(2m)172 a2(loglog s,) /(1 — §-1)]1/2 P -0 )
which yields Y P(E,) = oo (because a < (1 — §71)1/2). By the Borel-Cantelli lemma, there
exists £ € % with P(F) = 1 such that for all w € E,

B,, — B,, , > a(2s, loglog s,)"/?, for infinitely many n.

On the other hand, by (ii), a.s. for all sufficiently large n,
2
1B, || < 2(25,_1loglog s,_1)"? < g7 (25, loglog s,)"/% .
The desired inequality follows.
(iv) By (iii), limsup,_, ., % > 1 a.s., which, together with (i), implies the desired result.
(v) The “limsup” expression is 1 a.s. (for all 7).
(vi) By symmetry, liminf, o, 25 = —1 a.s.

0]
By

By inversion of time, limsup,_,, Giloalog(1/)1 2 = 1 as. 0J

Exercice 21. Let (P;):>o denote the semi-group of Brownian motion. Prove that if f € Cj
(continuous function satisfying lim,o f(x) = 0), then P,f € Cy, ¥Vt > 0, and limy o Pf = f

uniformly on R.

Solution. Let ¢ > 0. We have
1 2
(Ptf)(x)zwéf(x+tl/2z)e 2 dz.

By the dominated convergence theorem (because f is bounded and continuous), we have
P, f e Cy.
Let us prove that lim; o P, f = f uniformly on R. Write

(Pf)(w) — () = (273)1 . /R o f (o 4 72) - f(2)] de.

9



(The dominated convergence theorem allows us immediately to see that P,f — f pointwise.)
Let ¢ > 0. Since f is bounded, there exists M > 0 such that f|z|>M e 2| f|los dz < &. For
|z| < M, as f is uniformly continuous on R, there exists § > 0 such that for ¢ < §, we have
supp,<y | f(z + t1%2) — f(z)| < e, Vo € R. Consequently, for all t < 8, |P,f(z) — f(z)] <

@fﬁ—l—gSQe,VxeR O

Exercice 22. Prove that if f € C? (C? function with compact support), then

. (Bf)() = fle) 1,
1%1 . _Ef (x), z € R.

Solution. Write
(Pf)(x) = flx) 1 /“f@+f”@+f@—f”@—2ﬂ@ 22/
- 1/2 ¢

dz.
t t

We let ¢ — 0. Since f € C?, we have Hatt! Patf (et P2) -2/ () _, 22 f"(x), and there exists a

t
constant K < oo such that for all ¢ < 1, f(”tl/zz)”(f*tlmz)ﬁf

the assumption that f is of compact support). Since z%e
dominated convergence theorem that (P‘f)(?_f(m) — (2751/2 I 2" () e 12y = T (z). O

@) < K22 (we use, moreover,

—2*/2 ig integrable, it follows from the

Exercice 23. Let f be a bounded Borel function on R, and let u(t,z) := (P.f)(z) (for t > 0

and x € R). Prove that
ou 10%

ot 2022
Solution. Fix ¢t > 0 and z € R. We have

u(t, x) = W /Rf(r) tl% exp ( _(r ;tm)2> o

Since f is bounded, we can use the dominated convergence theorem to take the partial deriva-

t>0, reR.

tive (with respect to t) under the integral sign:

ou(t, x) (r —z)? (r —x)?
ot (27) 1/2 / flr t3/2 21572 > P ( T o )dr‘

Similarly, thanks again to the boundedness of f and to the dominated convergence theorem,

we can take the second partial derivative (with respect to z) under the integral sign, to see

that
O?u(t, x)

3:1:72 - 27r11/2 /f<r)tl%(_%+(rz—2x)2> eXp<—%)dr.

It is readily observed that 24 - (Lx) _ : %. O

10



Tsinghua University 2017-2018
“Advanced Probability” (Part III: Brownian motion)

Ezercise sheet #111.3:

Brownian motion and martingales

Exercice 1. Let a > 0, and let T := inf{t > 0 : |B;| = a}. Prove that T has the same

. . . 2
distribution as 2

SUPse(o, 1) B
Solution. Let t > 0. Then P(T, < t) = P(sup,c) 4 |Bs| > a), which, by scaling, equals to
P(t'/? sup, 0,1 1Bul > a). As such, T, and W have the same distribution function:

they have the same law. O

Exercice 2. Let £ and 7 be integrable random variables. Let &4 C .% be a sigma-algebra.
(i) Prove that E(¢|¥9) <E(n|¥), a.s., if and only if E({14) < E(n1ly) for all A € 9.
(ii) Prove that E((|¥) =E(n|¥), a.s., if and only if E(£14) =E(nl,) for all A € 4.

Solution. (i) Without loss of generality, we may assume & = 0 (otherwise, we replace n by
1+ &). We need to prove that E(n|¥4) >0 as. & E(nly) >0, VA€ Y.

“=” Assume E(n|¥) > 0 a.s. Then for all A € ¢4, we have, by the definition of condi-
tional expectation, E(n14) = E[14E(n|%)], which is non-negative because by assumption,
E(n|¥) >0 as.

“<” Assume E(nly) >0,VA€ Y.

Write 6 := E(n|¥) which is ¢4-mesurable. Let B := {w : #(w) < 0} € 4. By assumption,
E(nlp) > 0. We observe that E(nlg) = E[E(nlp|¥)] =E[15E(n|¥)] = E[150] ; as such,
saying that E(nlg) > 0 is equivalent to saying that E[156] > 0. Since 1560 < 0, this is
possible only if 130 =0 a.s., i.e., # > 0 a.s.

(ii) It is a consequence of (i), by considering the pair (—¢, —n) in place of (=&, —n). O

Exercice 3. Let (X, n > 0) be a sequence of real-valued random variables and let X, be
a real-valued random variable. Prove that X, — X, in L' (when n — oo) if and only if

X, = X in probability and (X,,, n > 0) is uniformly integrable.

Solution. “«<” Without loss of generality, we may assume X, = 0 (otherwise, we consider

X, — X in place of X;, by observing that (X,, — X, t > 0) is also uniformly integrable).
Let ¢ > 0. We fix a > 0 sufficiently large such that E(|.X,|1{x,/>a}) < €, ¥n > 0. Then

E([Xn]) = E(1Xn] Le<ixui<ap) + E([Xnl Lixo>a)) + E(1Xn| 1qix,|<c)) < aP(|Xn] > ) +2 + .



Letting n — oo, and since X,, — 0 in probability, we get limsup,,_,. E(|X,|) < 2e, which
yields X; — 0 in L! because € > 0 can be as small as possible.

“=” Assume that X,, — X, in L'.

Convergence in probability follows immediately from convergence in L. To prove that
(Xn, n > 0) is uniformly integrable, it suffices to check (a) sup, >, E(|X,|) < oo ; (b) for all
€ > 0, there exists 6 > 0 such that VB € .7, P(B) < 0 = sup,>, E(|X,|15) <.

Condition (a) is a straightforward consequence of convergence in L!. Let us check condition
(b). Let B € .#. We have E(|X,,|15) < E(|Xx|15) + E(|X,, — Xs|). Let € > 0. There exists
ng < oo such that E(|X,, — X«|) < 5, ¥n > ng. On the other hand, there exists § > 0
sufficiently small such that if P(B) <, then E(|X«|15) < §, and maxXo<,<pn, E(| X[ 15) < €.
Hence sup,,»oE(| X,| 15) < ¢ for all B with P(B) < §: condition (b) is satisfied. O

Exercice 4. Let (X, t > 0) be a family of of real-valued random variables and let X, be
a real-valued random variable. Prove that if X; — X in probability (when ¢t — 00) and if
(X, t > 0) is uniformly integrable, then X; — X, in L'.

Prove that the converse is, in general, not true.

Solution. The first part is proved using exactly the same argument as in the previous,
replacing everywhere n by t.

To see the converse is not true in general, it suffices to consider an example of (X, ¢ € [0, 1])
that is not uniformly integrable, and let X; := 0 for ¢ > 1. Then X; — 0 in L' but (X, t > 0)

is not uniformly integrable. O

Exercice 5. Let S and T be stopping times.

(i) Prove that %#g C .

(ii) Prove that both SAT and SV T are stopping times, and Fg r = FsN.Fr. Moreover,
{S<T} € Zspr, {S=T} € Fspr, {S <T} € Fgar.

(iii) Prove that S + T is a stopping time. [Hint: both S and T are .Fg,r-measurable.]
Solution. (i) Let A € Zg. Then AN{T <t} =(AnN{S <t})n{T <t} e .Z.

(ii) We have {SAT <t} ={S<t}u{Tr<t}e FZand {SVT <t} ={S <t} n{T <
t} € F.

By (i), #sar C Fs N Fr. Conversely, if A € Fg N Fr, then

AN{SAT <t} = (AN{S <t UAN{T < 1}) € Fi;

thus A € Zg,r. Consequently, Fg r = Fg N Fr.
Finally, {S <T}n{T <t} ={S <t} n{T <t} n{SAt <T At} € %, because S At and

T At being Fgp-measurable and % ,,-measurable respectively, are .%#;-measurable. Hence



{S < T} is Zp-measurable. Similarly, {S < T} N{S <t} ={S <t} nN{SAt<T At} € F#,
which yields {S < T} € .Zg. Therefore, {S < T} € FsN.Fr = Fsnr.

By exchanging S and T, we have, {T' < S} € Fgor. Hence {S =T} ={S <T}nN{T <
St € Forr,and {S < T} ={S <TI{S =T} € Fsrr.

(iii) Since S and T are Zg,p-measurable, so is S+ T. We have {S+T <t} ={S+T <
tyN{SVT <t} € %, because {S+ T <t} € Fgyr. O

Exercice 6. Let T be a stopping time. Then

=k
T, = ZQn l{k o< k}—}-(—i—oo) l{T 0o}
k=0

is a non-increasing sequence of stopping times such that 7, (w) | T'(w) for all w € Q.

Solution. Clearly, (T,,) decreases pointwise to T'. It suffices to check that each T, is a stopping
time. Since T, is .#pr-measurable, and since T,, > T, we have {T,, < t} = {1, <t} N{T <
t} € F;, because {T,, <t} € Fr. O

Exercice 7. Let T Be a stopping time. Let (X;, t > 0) is an R%valued adapted right-
continuous (or left-continuous) process.

(i) Let Y : Q — R?. Prove that Y 1rcoo) is Fr-measurable if and only if V¢, Y 1ip<y is
F-measurable.

(ii) Prove that for any ¢, the mapping [0, t] x Q — R? defined by (s, w) — X,(w) is
AB([0, t]) ® F-measurable, where HB([0, t]) denotes the Borel o-field of [0, t].

iii) Prove that X7 1i7oo0y is #p-measurable.
{ }

Solution. (i) It suffices to observe that for all A € B(R?) with 0 ¢ A, {Y 1i7<y € A} =
{Y e A}n{T <t}.
(ii) We first assume that (X5, s > 0) is right-continuous. For any n > 1, let

X(") = Xt/\(Lns/:Lj—O—l)t, S € [0, t]

Then X" (w) = X,(w) by the right-continuity of the trajectories. For any A € %(R?),

{(s,w): s€0, ], X" (w) € A}

n

L_J< k— 1)t k:t) {X%GA}>U<{t}x{XteA}>

€ B([0, t]) @ F;.

o

Hence (s,w) — Xs(w) on [0, t] x 2 is A(|0, t]) ® F;-measurable.
The proof is similar if (X, s > 0) is left-continuous; it suffices to consider instead X .=
X |ns/t]t.



(iii) We apply (i) to Y = Xp lipcw); so it suffices to check that for all ¢, Y 1ip<yy =
Xrae Lir<yy is F-measurable.

Note that Xp,; is the composition of the following two mappings:

(Q, %) — ([0, xQ, B0, t]) ® F)
w — (T(w)At, w)

and
([Oat] X Qa ‘@([07 t]) ® yf/) — (Rd7 %(Rd))
(s,w) +— X (w)
both of which are measurable. So X7, as well as Xrn¢ Lir<y, are F-measurable. O

Exercice 8. Let (X;, t > 0) be a submartingale. Prove that for all ¢ > 0, we have
U0 B X)) < o0

Solution. Since (X, , t > 0) is a submartingale, we have E(X[) < E(X;") for s <t. On the
other hand, E(X,) > E(X,), which implies sup,¢o 4 E(|X,|) < 2E(X;") — E(X)) < oo. O

Exercice 9. Let (B;,t > 0) be Brownian motion, and let (.%;) be its canonical filtration.
Then the following processes are martingales:

(i) (Bi,t > 0).

(i) (B2 —t,t > 0).

(iii) For any 0 € R, (eaBt’gt, t>0).

Solution. (i) For any ¢, E(|B;|) < co and B; is .#;-measurable. Let ¢t > s > 0. Since B; — By
is independent of .%,, we have E(B, — B, | %) = E(B, — Bs), which vanishes because B, — By
has the Gaussian A7(0, t — s) law. So E(B; | %) = Bs a.s.

(ii) For any ¢, E(B?) < oo and B? is .%;-measurable. Let ¢t > s, E(B? — t|.%,) = E[(B; —
By + By)*| Z,)] —t, and for all x € R, E[(B; — B, + )% = Var(B; — B,) + 2> =t — s + 22, s0
we get E(B —t| %) =t —s+ B> —t=B?—s as.

(iii) For any ¢, E(egBt*%t) < o0 and /P51 i Fi-measurable. Let ¢ > s. We have
E[eeBt—% |.7,] = 0B 2t—5)o0Bs— 0t _ 9B~ s 0
Exercice 10. Let (X;, t > 0) be a process with independent increments, and let (.%;) be its
canonical filtration.

(i) If for all ¢, E(|X,|) < oo, then X, := X, — E(X,) is a martingale.

(i) If for all ¢, E(X2) < 0o, then Y, := X2 — E(X2) is a martingale.

(iii) Let 0 € R. If E(e?X) < oo for all £ > 0, then (Z := —pe

Fpxp b2 0) is a martingale.



Solution. Similar to the solution to the previous exercise. U

Exercice 11. Let X := (X;, t > 0) be a martingale such that sup,., E(]X;|) < ooc.

(i) Prove that for all ¢ > 0, E(X;F|.%;) converges (when n — o0) a.s. to a real-valued
random variable, denoted by «y .

(ii) Prove that (o4, t > 0) is a martingale.

(iii) Prove that X is the difference of two non-negative martingales.

Solution. (i) Fix t > 0. Let &, := E(X;| | %#,).

For m > n > t, & = B{[E(X,u | Z)]* | Zi} < B{E(X| Fo) | i} = B{X3| B} = .
So the sequence (&,)n>: is a.s. non-decreasing. In particular, it converges a.s., whose limit is
denoted by .

By the monotone convergence theorem, E(a;) = lim,, . T E(&,). We observe that E(&,) =
E(X,7) < sup;5oE(|X¢|), which implies E(oy) < sup;soE(|X;|) < oo. In particular, a; < oo
a.s.

(ii) We have seen that for any ¢, oy is integrable, and is clearly .%;-measurable (being the
pointwise limit of .%;-measurable random variables). Let us check the characteristic identity.

Let s < t, and let A € Z,. Since oy is the limit of the non-decreasing sequence (&,),
it follows from the monotone convergence theorem that E(a;14) = lim,, o T E(&,14). For
n > t, we have E(§,14) = E(X;14), thus E(ay 14) = lim, o T E(X;F14). Similarly,
E(as1la) = lim, o T E(X,14). It follows that E(a;14) = E(as14). Since A € Z; is
arbitrary, we deduce that E(ay | %) = a5 a.s.

[We note that for question (i) and (ii), it suffices to have a submartingale X satisfying
sup,>o B(X;") < o0.]

(iii) By considering —X in place of X, we see that E(X, | .%#;) converges a.s. (when n —
o0) to a limit, denoted by f;, and that (5;, t > 0) is a non-negative martingale. We have
Xy =ap— B, Vt > 0. Il

Exercice 12. Let £ be a real-valued random variable. Let X; := P(¢ < t|.%;). Prove that
(Xy, t > 0) is a submartingale.

Solution. Let 0 < s < t. Let us check that E(X; |.%;) > X a.s.

By definition, X; > P(¢ < s|.%;); so E[X; | %] > E[P(& < s| %) | Fs] =P < s| %) =
Xs. 0J
Exercice 13. Let (X;, ¢ > 0) be a submartingale. Prove that sup,»,E(X;") < oo if and only
if sup,so E(|Xy|) < oo.

Solution. “«<” Obvious.



“=" Suppose sup,soE(X;") < oo. Since |X;| = 2X;" — X; and E(X,;) > E(X,), we have
supy>o E(| Xy]) < 2sup,s E(X;") — E(Xo) < o0. O

Exercice 14. Let (X;, ¢ > 0) be a martingale. If there exists ¢ € L*(P) such that for all
t >0, E(¢| %) = X, as., we say that (X, t > 0) is closed by &.

Prove that a right-continuous martingale is closed if and only if it is uniformly integrable.

Solution. If X is closed by ¢, then X; = E({| %) is uniformly integrable.
Conversely, we assume that X is right-continuous and uniformly integrable. Then X; —
X as. and in L', with X; = E(X |.%). By definition, this means X is closed by Xo. O

Exercice 15. (Discrete backwards submartingales) Let (%,, n < 0) be a sequence of
sub-o-fields of .7 satisfying %, C Z,1 for all n < 0. Let (X,, n < 0) be such that Vn,
X, is Z,-measurable et integrable, and that E(X,;|.%,) > X, as. We call (X,,,n <0) a
backward submartingale.

(i) Let a < b. Let U,(X; a, b) be the number of up-crossings along [a, b] by X, -+, X_1,
Xo. Prove that E[U,(X; a, b)] < HE0=al],

(ii) Prove that X,, — X, a.s. when n — —o0.

(iii) Assume from now on that inf,<oE(X,) > —oc. Prove that X,, - X_ in L'.

Hint: Only uniform integrability needs proved. By considering X, — E(X, |.%,), you can
argue that X, may be assumed to take values in (—oo, 0].

(iv) Prove that X_o < E(X(|.%_&) a.s., where Z_ :=(),cq Fn-

(v) (P. Lévy) Let £ be a real-valued random variable with E(|¢]) < oo. Prove that
E(| Z,) = E(¢]|F_w) as. and in L', as n — —oo.
Solution. (i) It follows from the usual inequality for the number of up-crossings.

E[(Xo—a)"]
b—a

Uso(X; a, b) denotes the number of up-crossings along the interval [a, b] by (X,, n < 0). A
fortiori, U (X a, b) < 0o a.s.; hence P(Uy (X a, b) < 0o, Va < b rationals) = 1. This yields

the a.s. existence of lim,,_,_-, X,,.

(ii) By (i) and the monotone convergence theorem, E[Uy(X; a, b)] < , where

(iii) In view of a.s. convergence proved in (ii), it only remains to prove that (X,, n <0) is
uniformly integrable. Since (E[X|.%,], n < 0) is uniformly integrable, it suffices, for the proof
of convergence in L', to verify that the submartingale (X,, — E[X, | #,], n < 0) is uniformly
integrable. As such, we can assume, without loss of generality, that X,, <0 for all n <0.

When n — —oo, E(X,,) - A = inf,,.(E(X,,) €] — 00,0]. Let ¢ > 0. There exists N < oo
such that E(X_y) — A < ¢, and a fortiori E(X_y) —E(X,,) <¢e,Vn <0. Let a > 0. We have,



forn < —N,

E[| X0 1gx,5a} ] —E[ X, 1(x,<—a} ]

~-E(X,) +E[ X, 1{Xn27a}]

-E(X,) +E[X_n l{Xana}]

—E(X,) + E(X_n) —E[X n1{x,< a}]

< e+ E[X N 1gx, e} )-

IN

—E(Xn)

By the Markov inequality, P(|X,| > a) <
that E[ | X_n|1{x,/>a) | < €. Then

. Hence we can choose a so large

sup B[[Xo|1{x,50) | < 2e.
n<—N
On the other hand, we can choose a sufficiently large such that E[ | X,,| 1{x,|sa} | < € forn =0,
—1, .-+, —N. Consequently, (X, n < 0) is uniformly integrable (and E(|X_|) < 00).
(iv) Since X,, < E(X(|.%,), we have, for all A € .#_, (A is, a fortiori, an element of .%#,),

E[X, 14] <E[X(14].

Since X,, — X_, in L', by letting n — —oo, we get E[X_, 14] < E[X14]. Since X_, is .Z,-
measurable (for all n < 0) hence (.%_,)-measurable, this implies that X ., < E(Xy|%_),
a.s.

(v) Let X,, := E(¢].%,), n < 0, which is a backward martingale. By (ii) and (iii),
X, =+ X_o as. and in L', where

X—oo = E[XO | g—oo] - E[E<§ | 90) | y—oo] = ]E[f | g—oo]a a.s.,
as desired. |

Exercice 16. Let (X}, ¢t > 0) be a continuous and non-negative martingale. Let T := inf{¢ >
0: X; =0} (with inf @ := 00). Prove that a.s. on {T' < oo}, we have X;, =0, Vt > T.

Solution. Fix n > 1. We apply the optional sampling theorem to the uniformly inte-
grable martingale (Xyr,, ¢ > 0) and to the pair of stopping times 7" and T + ¢, to see that
E(X4tan | F1r) = Xpan. Let n — oco. By the conditional Fatou’s lemma, E(Xp, | F7) <
Xrp, hence E(X7ys Lircooy | Fr) < Xr 1ircoey = 0. This is possible only if Xpy¢ 1ipcsy = 0
a.s., i.e., Xpiy =0 a.s. on {T < oo}.

Summarizing: a.s. on {T' < oo}, we have X7, = 0, Vt € Ry NQ. The continuity of X tells

us that we can remove the restriction ¢ € Q. O



Exercice 17. Let (X;, t > 0) be a right-continuous submartingale, and let S and 7" be
bounded stopping times. Prove that

E(XT | 3—55') Z XT/\Sa a.s.

Solution. We have

E[Xr|Fs] = E[Xraslir<sy | Fs] +E[Xpvs Lirssy | Fs]
= Xras Lip<sy + Lirs sy E[Xpvs | Fs)

> Xras Lir<sy + Lir>5y Xs = Xrps,

as desired. O

Exercice 18. Let (X;, t > 0) be a right-continuous martingale. Let T be a stopping time.
(i) Prove that (Xras, t > 0) is a right-continuous martingale.
(ii) Prove that if (X;, ¢ > 0) is uniformly integrable, then so is (Xpas, ¢ > 0).

Solution. (i) The right-continuity of the trajectories is obvious. Let us prove that (Xpa, t >
0) is a martingale with respect to (.%;).

For t > 0, it is clear that E(|X7x:|) < 0o (a consequence of the optional sampling theorem)
and that X, is Z;-measurable (being %7 -measurable). Let ¢ > s > 0. Applying the
previous exercise gives E(Xrpa | ) = X(rans, which is Xy,

(ii) If (X, ¢t > 0) is uniformly integrable, then the optional sampling theorem says that
Xrpt = B(Xoo | Frae), which yields the uniform integrability of (Xz.¢, t > 0) by recalling that
for any integrable random variable &, (E(¢|¥), 4 C % o-field) is uniformly integrable. [

Exercice 19. Let (X}, t > 0) be a non-negative and right-continuous supermartingale. Recall
that X; — X a.s. in this case. Prove that if E(X) = E(Xj), then (X;, ¢ > 0) is a uniformly

integrable martingale.

Solution. By the conditional Fatou’s lemma, E(X,, |- %) < X; a.s. Taking expectation on
both sides gives E(X) < E(X;) which is < E(X,) because X is a supermartingale. By
assumption, E(X.) = E(Xj), which is possible only if E(X, |.%#) = X} a.s., i.e., only if is a

uniformly integrable martingale. 0J

Exercice 20. Let X = (Xt t > 0) be a non-negative continuous submartingale. We write
St = SUDPyepp, 4 Xs, © 2 0.

(i) Prove that for all A > 0 and all ¢t > 0, AP(S; > 2)) < E[ Xy 1x,50]-
We can use the following inequality: for all @ > 0, aP(S; > a) < E[X; 1(g,54] (this fol-
lows from the maximal inequality for discrete-time submartingales and the continuity of the

trajectories).



(ii) Prove that 3 E[S,] <1+ E[X,log, X;], wher log, x := logmax(z, 1).
(iii) Let (Y, t > 0) be a continuous and uniformly integrable martingale. We assume that

E[|Ys| log, [Ys|] < 0o. Prove that sup,., |Y;| is integrable.
Solution. (i) For all @ > 0, aP(S; > a) < E[ X, 1{g,>4}]. So

20P(S, > 2)) < E[Xi 1gszon] < E[X; Lixon] + ELX Tix<n, s200]
< E[Xt 1{Xt>>\}] + /\]P)(St > 2/\),

from which the desired inequality follows.
(ii) We have
1 oo o0
SE[S] = / P(S, > 2)dA < 1 + / P(S, > 21) dA
0

1

< 1+/ E[A X, 1ix,50]) dA.
1

By Fubini’s theorem, the last integral equals E[flxt AX x> dA] = E[X, log, X, ]. We
obtain the desired result.

(iii) By assumption, Y; = E(Y, | %#;). Since x — |z|log, |z| =: ¢(z) is convex, Jensen’s
inequality says that ¢(V;) < E[¢(Ys)|-%]; hence sup,so E[o(Y:)] < E[¢o(Y)] < 0o. By (ii)
(applied to X, := |Yy|, t > 0, which is a non-negative submartingale), §E(supgo 4 |Vs|) <
1+ Ele(Ys)] < 1+E[p(Ys)]. It follows from the monotone convergence theorem that
E(supysg Vi) < 2+ 2E[(Yao) ] < o0. m

Exercice 21. For any martingale X := (X;, t > 0), we say that it is square-integrable if
E(X?) < 0o, ¥t > 0, and that it is bounded in L? if sup,., E(X?) < oo.

(i) Prove that if X is a right-continuous martingale and is bounded in L? then it is
uniformly integrable, with E(sup,sq X7?) < oco.

(ii) Let X and Y be right-continuous martingales that are bounded in L?. Let S and T be
stopping times. Prove that E(XsYr) = E(XgarYsar)-

(iii) Let X and Y be right-continuous and square-integrable martingales. Let S and T" be
bounded stopping times. Prove that E(XsYr) = E(XgarYsar)-

Solution. (i) That E(sup,s( X?) < co is a consequence of Doob’s inequality. In particular,
E(sup;sg | X¢|) < 0o ; a fortiori, X is uniformly integrable.
(ii) Since |Xg| < sup,sq | Xy|, we have E(XE) < oo. Similarly, E(Y7) < oo. Hence by the
Cauchy—Schwarz inequality, E(| XsY7r|) < oc.
Applying the optional sampling theorem to the uniformly integral martingale Y gives
E(XsYr 1is<ry |-Fs) = Xslys<ry EYrvs| Fs)
= Xglis<r}Ys

= XsarYsar 1{s<r},



from which it follows that

E(XsYr Lis<ry) = E(XsarYsar Lis<ry).

On the other hand, XsY7r 1¢s>7y = XoarYsar 1{s>7y. Hence

E(XsYr 1ig>7y) = E(XgarYoar Liss1y).
Consequently, E( XsY7) = E(XgarYsar)-
(iii) The same proof as in (ii), except in two places:
e to justify the integrability of XgYr, let a > 0 be such that S < a, then E(X3) <
E(sup,ep,q Xa) < 4E(X7) < 00, and similarly, E(YZ) < oo, so E(|XsY7|) < 00 ;
e to justify E(Yrys|-Zs) = Ys, we apply the optional sampling theorem to Y and to the
pair of bounded stopping times 7'V S and S. O

Exercice 22. Let S < T be bounded stopping times. Prove that E[(Br — Bs)?] = E(B%) —
E(B%) =E(T - S).
Solution. Since S and T are bounded, Doob’s inequality implies that E(B?) < oo and that
E(B2%) < co. We have

E[(Br — Bs)’] = E(BS)+E(B}) — 2E[E(BsBr| Zs)]

= E(B3) + E(Bp) — 2E[ BsE(Br | s)],
because Bg is .Zg)-measurable. Applying the optional sample theorem to B and to the pair
of bounded stopping times S and 7" yields E(Br | #5) = Bg, which, in turn, implies that
E[(Br — Bs)*] = E(B3) + E(B7) — 2E[ Bg] = E(B7) — E(B3).

We now apply the optional sample theorem to (BZ — ¢, t > 0) and to the pair of bounded
stopping times T and 0, to see that E(B% — T') = 0; thus E(B%) = E(T). Similarly, E(B%) =
E(S). Hence E(B%) — E(B%) =E(T — 9). O]
Exercice 23. (i) Let (X, t > 0) be a non-negative and continuous martingale such that

X; = 0, as. (t — 00). Prove that for all z > 0, P(sup,5q X; > z| %) = 1A 22, as.

(ii) Let B be Brownian motion. Determine the law of sup,o(B; — t).
Solution. (i) Let T :=inf{t > 0: X; > x} which is a stopping time. Clearly, (X¢\r, t > 0)
is a continuous martingale, and is uniformly integrable (because |X;ar| < x 4+ Xj), closed by
Xr (with the notation X, := 0). By the optional sampling theorem, E(Xr |.%;) = X,. We
observe that
E[Xr| P = E[X7 ey | Fol + E[Xoo Lir—oo) | F0]
= E[(l‘ V Xo) 1{T<oo} | ﬁo]
= (I’ \/Xo)]P[T < 00 | ﬁo],

10



which yields

]P)[T<OO|§0]:

It suffices then to remark that {T" < oo} = {sup,>o X; > z}.

(ii) Let X, := e*P~) which is a continuous martingale. Since a.s. 2t — 0 (t — o0), we
have By —t = (Bt — 1)t — —o0, a.s., and thus X; — 0 a.s. By (i), P{sup;5o X; > 2} = 1A L,
z > 0, which means P{sup,¢(B; —t) > a} = e?*, a > 0. In other words, sup,.o(B; —t) has

1

the exponential law of parameter 2 (i.e., with mean 3). O

Exercice 24. Let v #0,a>0and b > 0. Let T, :=inf{t >0: B, +~yt =x}, x = —a or b.
Compute P(T_, > Ty).

Hint: You can use the martingale (e=27(Be+78) ¢ > ().

_ _ 2
Solution. Consider the martingale (X; := e TB=2t > 0). Since e 2yBint, 20" (N o) <

e2(@+b) we see that (X1, ,at, t > 0) is a continuous and bounded martingale, closed by Xr, ,.

Applying the optional sample theorem to this uniformly integrable martingale, we obtain:
1 = E[e*QWBTa,b*Q’YQTa,b]

= E[¥" Lz, <)) + Ele ™" Lz, om)]
= M M P(T_>Ty) +e " P(T_, > Tp),

which yields® P(T_, > T}) = mo=1 O

e2va_g—27vb "

Exercice 25. (First Wald identity) Let T" be a stopping time such that E(T") < co. Prove
that Br is integrable and that E(Br) = 0.

Solution. Both (Bir, t > 0) and (B2, —t AT, t > 0) are continuous martingales, with
E(B% ;) =E(t AT) < E(T); hence sup, E(B% ;) < E(T) < oo. Consequently, (Biar, t > 0) is
a uniformly integrable martingale, closed by Br (in particular, By is integrable). Applying the
optional sampling theorem to this uniformly integrable martingale yields E(Br) = E(Boar) =
0. [

Exercice 26. (Second Wald identity) Let T be a stopping time such that E(7) < oo.
Prove that By has a finite second moment and that E(B7) = E(T)).

Solution. By Doob’s inequality,

E [sup BfAT] <4supE [B},] <4E(T) < oo,

t>0 t>0

6Letting a — 0o, we see that P(T} < 0o) is 1 if v > 0, and is e*'® if 4 < 0, which is in agreement with the
previous exercise, because P(T}, < c0) = P{sup;>,(B; + 1) > b}.

11



so (B2.p, t > 0) is uniformly integrable. Since (¢t AT, t > 0) is also uniformly integrable (being
bounded by T), (B%; —t AT, t > 0) is a continuous and uniformly integrable martingale,
closed by B2 — T (in particular, By has a finite second moment). Applying the optional
sampling theorem to this uniformly integrable martingale yields E(B% — T) = 0. In other
words, E(B%) = E(T). O
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