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Chapter 4

Construction of Brownian motion

Observe what happens when sunbeams are admitted into a building and shed
light on its shadowy places. You will see a multitude of tiny particles mingling
in a multitude of ways. . . their dancing is an actual indication of underlying
movements of matter that are hidden from our sight. . . It originates with the
atoms which move of themselves. Then those small compound bodies that are
least removed from the impetus of the atoms are set in motion by the impact
of their invisible blows and in turn cannon against slightly larger bodies. So
the movement mounts up from the atoms and gradually emerges to the level of
our senses, so that those bodies are in motion that we see in sunbeams, moved
by blows that remain invisible.

Lucretius, De rerum natura (c. 60 BC).

Brownian motion lies in the intersection of several important families of random pro-

cesses (martingales, Markov processes, Gaussian processes), and is the fundamental example

in each theory. These notes give a brief introduction to Brownian motion, providing an

account of its basic properties.

The expression “Brownian motion” originates from the highly irregular movement

of pollen grains on the surface of water, observed by the Scottish botanist Robert Brown

in 1828. Subsequently, Bachelier (1900) and Einstein (1905) studied quantitatively this

irregular movement, in finance and in physics respectively. It is Wiener, in 1923, who

established the mathematical model of Brownian motion which we are going to study in

these notes. Many deep properties of Brownian motion were later discovered by Paul Lévy

(1939, 1948). Brownian motion has since become ubiquitous throughout Probability theory

and is a key object encountered in several areas of sciences. For example, in 1973, Black and

Scholes used Brownian motion to model options prices in financial mathematics and create

the formula now bearing their name, and for which Scholes was awarded the Nobel Prize in

Economics in 1997.
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2 Chapitre 4. Construction of Brownian motion

4.1. Warm-up: Gaussian law and Gaussian vectors

From now on, we let (Ω,F ,P) denote the ambient probability space on which all our random

variables/processes shall be defined except when explicitly specified otherwise. The main

distribution related to Brownian motion is the Gaussian law. We start by recalling well

known properties of the Gaussian law and its multidimensional counterparts, the Gaussian

vectors.

Let µ ∈ R and σ > 0. We say that ξ is a Gaussian random variable N (µ, σ2) if it

has density

P(ξ ∈ dx) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
dx, x ∈ R.

The characteristic function of ξ is given by the formula:

E[eitξ] = eµit−
σ2t2

2 , t ∈ R.

Clearly, η is Gaussian N (µ, σ2) if and only if η = σξ + µ, where ξ is N (0, 1). Also, if η̃ is

Gaussian N (µ̃, σ̃2) independent of η, then η + η′ is Gaussian N (µ+ µ′, σ2 + σ̃2).

Theorem 4.1. (Gaussian tail). If ξ is Gaussian N (0, 1), then for any x > 0,

1√
2π

(1

x
− 1

x3

)
e−x

2/2 ≤P(ξ > x) ≤ 1√
2π

1

x
e−x

2/2,

P(ξ > x) ≤ e−x
2/2.

Proof. Left as an exercise

Remark 4.2. 1. We have P(ξ > x) ∼ 1√
2π

1
x
e−x

2/2 as x→∞.

2. The upper bound e−x
2/2 is less precise than 1

(2π)1/2
1
x
e−x

2/2 but has the advantage of

being bounded on R+. It is useful when we do not need much precision.

Proposition 4.3 (Convergence of sequences of Gaussian random variable). Let (ξn)

be a sequence of random variables such that for any n, ξn is Gaussian N (µn, σ
2
n).

1. The convergence in distribution ξn → ξ holds if and only if µ := limn→∞ µn and

σ2 := limn→∞ σ
2
n both exist. Moreover, the limit ξ is Gaussian N (µ, σ2).

2. If ξn → ξ in probability, then the convergence also holds in Lp for any p ∈ [1,∞).

Proof. Left as an exercise
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Remark 4.4. The limit in Proposition 4.3 may be degenerated (i.e. σ2 = 0). In the

following, we consider the Dirac measure δµ at µ ∈ R as a Gaussian distribution N (µ, 0).

Definition 4.5 (Gaussian random vectors). We say that an n-dimensional random vari-

able ξ := (ξ1, · · · , ξn) is a Gaussian vector if any linear combination of its components is

Gaussian. We define its mean vector

µξ := (E[ξ1], . . . ,E[ξn]) ∈ Rn

and it covariance matrix Σξ as the n× n real matrix with coefficients

Σξ
i,j := Cov(ξi, ξj) = E[(ξi − E[ξi])(ξj − E[ξj])].

Remark 4.6. If (ξ1, · · · , ξn) is a Gaussian random vector, then each of its component is

a Gaussian random variable but the converse is wrong! Consider ξ1 ∼ N (0, 1) and B a

Rademacher random variable P(B = 1) = P(B = −1) = 1
2

independent of ξ. Then ξ1 and

ξ2 := Bξ1 are both Gaussians but (ξ1, ξ2) is not a Gaussian vector because ξ1 + ξ2 is not

Gaussian (there is an atom of weight 1/2 at 0).

Theorem 4.7. The law of a Gaussian vector ξ is uniquely determined by its mean vector

and covariance matrix. Its characteristic function is given by

(4.1) E [exp (i 〈x, ξ〉)] = exp

(
i 〈x, µξ〉 − 1

2
〈x,Σξx〉

)
x ∈ Rn.

where 〈·, ·〉 denote the usual inner product in Rn.

Proof. the random variable 〈x, ξ〉 is a linear combination of the components of ξ so it is,

by definition, a Gaussian random variable N (µ̃, σ̃2) hence E [exp (i 〈x, ξ〉)] = exp
(
iµ̃− σ̃2

2

)
.

Straightforward computations show that µ̃ := E[〈x, ξ〉] = 〈x, µξ〉 and σ2 := Var(〈x, ξ〉) =

〈x,Σξx〉. This proves (4.1) and shows at the same time that the characteristic function

(hence the law) of ξ is uniquely determined by the mean vector and covariance matrix.

Corollary 4.8. (i) Let ξ := (ξ1, . . . , ξn) be a Gaussian random vector. Then ξ1, . . . , ξn

are independent if and only if the covariance matrix of ξ is diagonal.

(ii) Let (ξ1, . . . , ξn, η1, . . . , ηm, θ1, · · · , θ`) be a Gaussian vector. Then the vectors (ξ1, . . . , ξn)

and (η1, . . . , ηm) are independent if and only if Cov(ξi, ηj) = 0, ∀i ≤ n, j ≤ m.
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4.2. Definition and construction of Brownian motion

A stochastic process is simply a collection of random variable X := (Xt, t ∈ T) where t is

called the time index and T is the set of times for which the process is defined. In previous

chapters, while studying Markov chain and Martingales, we have encountered discrete-time

processes where time is indexed by integers. By contrast, Brownian motion is a continuous

time process and the time index t will now range in (a subset of) R+ = [0,∞).

Definition 4.9. A real-valued process B = (Bt, t ≥ 0) is said to be Brownian motion if

it satisfies the following properties:

(i) For any n and any 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn, the random variables (Btn − Btn−1), · · · ,
(Bt2 −Bt1), Bt1 are independent.

(ii) For any t ≥ s ≥ 0, the random variable Bt −Bs is Gaussian N (0, t− s).

(iii) t 7→ Bt is continuous a.s.

(iv) B0 = 0 a.s.

Remark 4.10. A Brownian motion has independent and stationary increments. Stochastic

processes with this property are called Lévy processes.

Brownian motion is the most famous member of a class of processes called Gaussian

processes.

Definition 4.11. A stochastic process X := (Xt, t ∈ T) is a Gaussian process if

∀n, ∀(t1, · · · , tn) ∈ Tn, (Xt1 , · · · , Xtn) is a Gaussian vector.

We say that X is centered if E[Xt] = 0 for all t ∈ T.

Proposition 4.12. Let X = (Xt, t ≥ 0) be a process with continuous paths and X0 = 0 a.s.

The following assertions are equivalent:

1. X is a Brownian motion

2. X is centered Gaussian process with covariance

E[XsXt] = min{s, t} =: s ∧ t, for all s, t ≥ 0.
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Figure 4.1: Sample path of a standard Brownian motion.

Proof.

“⇒” Let 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn. By assumption, Xtn−Xtn−1 , · · · , Xt2−Xt1 , Xt1 = Xt1−X0

are independent Gaussian hence (Xt1 , Xt2−Xt1 , · · · , Xtn−Xtn−1) is a Gaussian random

vector, and so is (Xt1 , Xt2 , · · · , Xtn). Thus X is a Gaussian process which is obviously

centered.

Let us check the covariance of X. Let t ≥ s ≥ 0. We have E(XsXt) = E(Xs(Xt −
Xs)) + E(X2

s ). Since Xs and Xt −Xs are independent, we have E(Xs(Xt −Xs)) = 0,

whereas by Property (ii) of Brownian motion, E(X2
s ) = s. Hence E(XsXt) = s.

“⇐” Let t ≥ s ≥ 0. By assumption, Xt −Xs is a centered Gaussian, with variance E(Xt −
Xs)

2 = E(X2
t ) + E(X2

s )− 2E(XsXt) = t+ s− 2s = t− s. Thus, Property (ii) holds.

Let 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn. We know that (Xtn − Xtn−1 , · · · , Xt2 − Xt1 , Xt1) is

a Gaussian random vector, whose covariance matrix is diagonal: indeed, for j > i,

E[(Xtj−Xtj−1
)(Xti−Xti−1

)] = E(XtjXti)−E(Xtj−1
Xti)−E(XtjXti−1

)+E(Xtj−1
Xti−1

) =

ti− ti− ti−1 + ti−1 = 0. By Corollary 4.8 (i), the components of this Gaussian random

vector are independent hence Property (i) holds.
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Remark 4.13. Brownian motion, as defined by Definition 4.9 starts from B0 = 0 a.s. and is

usually called standard Brownian motion. More generally, it is useful to define Brownian

motion starting from an arbitrary position x ∈ R by considering the process B + x. This is

still a Gaussian process (but not centered anymore) and which still satisfies (i), (ii) and (iii)

of Definition 4.9.

The first thing we must check is that Definition 4.9 is not empty and that such a process

exists, which is not obvious.

Theorem 4.14 (Wiener, 1923). Brownian motion does exists.

Proof. (Lévy 1948). We start by constructing a Brownian motion defined for t ∈ [0, 1] as a

uniform limit of piece-wise linear Gaussian processes.

Let (ξk,n, 0 ≤ k ≤ 2n, n ≥ 0) be a family of i.i.d. Gaussian N (0, 1) random variables.

Let (Xn(t), t ∈ [0, 1], n ≥ 0) be the sequence of random processes defined by:

• for any n ≥ 0, t 7→ Xn(t) is affine on each interval of type [ k
2n
, k+1

2n
];

• X0(0) = 0, X0(1) = ξ0,0;

• Xn( 2j
2n

) = Xn−1( 2j
2n

), Xn(2j+1
2n

) = Xn−1(2j+1
2n

) +
ξ2j+1,n

2(n+1)/2 .

See Figure 4.2 for an illustration of this construction. It is easy (and left as an exercise) to

check that for any n ≥ 0, the family (Xn( k
2n

), 0 ≤ k ≤ 2n) is a centered Gaussian vector

with covariance matrix E[Xn( k
2n

)Xn( `
2n

)] = k
2n
∧ `

2n
.

Let n ≥ 0. We see that (Xn(t), t ∈ [0, 1]) is a centered Gaussian process because any

linear combination
∑m

i=1 aiXn(ti) is also a linear combination of (Xn( k
2n

), 0 ≤ k ≤ 2n).

Consider the event An := {supt∈[0,1] |Xn(t)−Xn−1(t)| > 2−n/4}. We have

P(An) = P
( 2n−1−1⋃

j=0

{
sup

t∈[ 2j
2n
, 2j+2

2n
]

|Xn(t)−Xn−1(t)| > 2−n/4
})

= P
( 2n−1−1⋃

j=0

{ |ξ2j+1,n|
2(n+1)/2

> 2−n/4
})
≤

2n−1−1∑

j=0

P
(
|ξ2j+1,n| > 2(n+2)/4

)
.

By symmetry and Theorem 4.1, P(|ξ2j+1,n| > 2(n+2)/4) ≤ 2 exp(−2n/2); so we have P(An) ≤
2n−1 exp(−2n/2), which implies that

∑
n P(An) < ∞. By the Borel-Cantelli lemma, there

exists an E ∈ F with P(E) = 1, such that for all ω ∈ E, supt∈[0,1] |Xn(t, ω)−Xn−1(t, ω)| ≤
2−n/4, ∀n ≥ n0(ω). [For ω /∈ E, we can define, for example, X(t, ω) := 0, ∀t ∈ [0, 1].] In
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X0(t)
X1(t)

X2(t)

X3(t)

X4(t)

Figure 4.2: Construction of Brownian motion by uniform approximation via linear interpo-
lation on dyadic intervals.

particular, ω-a.s., the function Xn(•, ω) converges uniformly on [0, 1] to a continuous limit

denoted by X(•, ω). By Proposition 4.3, the process X = (X(t), t ∈ [0, 1]) is a centered

Gaussian process with continuous paths and with X(0) = 0 a.s.

Let us check the covariance matrix of X. Let 0 ≤ s ≤ t ≤ 1 and n ≥ 0. There exists a

pair (k, `) with k ≤ ` such that s ∈ [ k
2n
, k+1

2n
] and t ∈ [ `

2n
, `+1

2n
]. Since Xn is affine on [ k

2n
, k+1

2n
],

we have Xn(s) = αXn( k
2n

) + (1 − α)Xn(k+1
2n

), where α := k + 1 − 2ns ∈ [0, 1]. Similarly,

Xn(t) = βXn( `
2n

) + (1− β)Xn( `+1
2n

), with β := `+ 1− 2nt ∈ [0, 1]. It follows that

E[Xn(s)Xn(t)] =
αβk

2n
+

(1− α)β((k + 1) ∧ `)
2n

+
α(1− β)k

2n
+

(1− α)(1− β)(k + 1)

2n
.

The expression on the right-hand side is, for n→∞,

αβk

2n
+

(1− α)βk

2n
+
α(1− β)k

2n
+

(1− α)(1− β)k

2n
+O(

1

2n
) ,

which is k
2n

+O( 1
2n

) = s+O( 1
2n

). Letting n→∞, and by Proposition 4.3 again, we obtain

E[X(s)X(t)] = s = s ∧ t. Consequently, (X(t), t ∈ [0, 1]) is a Brownian motion defined on

[0, 1].

To conclude, we extend our construction of Brownian motion from [0, 1] to [0,∞). To

do so, we consider a sequence (Bm
t , t ∈ [0, 1]), m ≥ 0 of independent Brownian motions on
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[0, 1] and we define

Bt := B
btc
t−btc +

∑

0≤m<btc

Bm
1 for t ≥ 0,

where btc denote the integer part of t. It is straightforward to check that B is a centered

Gaussian process with the required covariance hence it is a Brownian motion on [0,∞).

Remark 4.15. One can also define Brownian motion with time indexed by R as a centered

Gaussian process (Bt, t ∈ R) with B0 = 0 such that Bs − Bt is N (0, |t − s|) for any s, t.

Such a process may be constructed from two centered independent Brownian motions B−

and B+ on [0,∞) by setting:

Bt :=

{
B−−t if t < 0,

B+
t if t ≥ 0.

4.3. Regularization of sample paths

A probability space (Ω,F ,P) is said to be complete if F contains all P-negligible set,

meaning that any set included in a measurable set of null probability is itself measurable.

Given a probability space, we can always enrich its σ-field F to make it a complete proba-

bility space. Doing so does not change law of random variables defined on it while it helps

to prevent technical problems about measurability of sets.

From now on, we assume that our probability space (Ω,F ,P) is complete.

In the definition of Brownian motion, we required the trajectories of the process to be

continuous. However, one can ask if this assumption is necessary and whether Properties (i)

and (ii) of Definition 4.9 already characterize Brownian motion. To answer this question, we

need to introduce the notion of modification and indistinguishability of processes.

Definition 4.16. Let (Xt, t ∈ T) and (X̃t, t ∈ T) be processes indexed by the same set T.

We say that X̃ is a modification (or version) of X if

∀ t ∈ T, P[Xt = X̃t] = 1.

Since an (at most countable) intersection of set of full measure also has full measure, it

follows that, for any t1, t2, · · · , tn, the random vectors (X̃t1 , · · · , X̃tn) and (Xt1 , · · · , Xtn) have

the same distribution. In particular, if X is Brownian motion, then so is X̃. On the other

hand, the trajectories of X̃ may have a totally different behavior from those of X. It can

happen that the trajectories of X̃ are all continuous while those of X are all discontinuous:
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Example 4.17. Let Z be a random variable which has no atom (for example uniform on

[0, 1]). Define the processes (Xt, t ≥ 0) and (X̃t, t ≥ 0) by

Xt =

{
1 if t− Z ∈ Q,

0 otherwise
and X̃t = 0 for t ≥ 0.

Then X̃ is a modification of X which is a.s. continuous on [0,∞) while X is a.s. nowhere

continuous!

Definition 4.18. Two processes X and X̃ are indistinguishable if

P[∀ t ∈ T, Xt = X̃t] = 1.

Notice that, a priori, we know nothing about the measurability G := { ∀ t ∈ T, Xt = X̃t}
so the definition above requires it implicitly. But since our probability space is assumed to

be complete, this is equivalent to requiring that G contains a set of probability 1.

If X and X̃ are indistinguishable, then X̃ is obviously a modification of X. The notion

of indistinguishability, however, is stronger: two indistinguishable processes almost surely

have the same trajectories. For instance, assume that T = I is an interval of R, and that

the trajectories of X and X̃ are a.s. continuous1, then X̃ is a modification of X if and only

if X and X̃ are indistinguishable: indeed, if X̃ is a modification of X, then a.s. for all

t ∈ I ∩ Q, Xt = X̃t. By continuity, a.s. for all t ∈ I, Xt = X̃t, which means that X and X̃

are indistinguishable

Theorem 4.19. (Kolmogorov’s criterion). Let X = (Xt, t ∈ I) be a process indexed

by an interval I ⊂ R, taking values in a complete metric space (E, d). Suppose there exist

p > 0, ε > 0 and C > 0 such that

E[ d(Xs, Xt)
p] ≤ C |t− s|1+ε, ∀ s, t ∈ I.

Then there exists a modification X̃ of X whose trajectories are locally Hölder continuous for

exponent α, for any α ∈ (0, ε
p
), i.e., for all T > 0 and α ∈ (0, ε

p
), there exists Cα(T, ω) > 0

such that

d(X̃s(ω), X̃t(ω)) ≤ Cα(T, ω) |t− s|α, ∀ s, t ∈ I, s, t ≤ T.

In particular, there exists a continuous modification of X, which is unique in the sense of

indistinguishability
1One can relax the continuity assumption and assume, for instance ,that the trajectories are right con-

tinuous and with left limits (càdlàg). This is the standard assumption when working with non-continuous
stochastic processes.
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Proof. The uniqueness is clear from the discussions in the previous paragraph. For simplicity,

we assume I = [0, 1]. LetD = { k
2n
, n ∈ N and 0 ≤ k < 2n} denote the set of dyadic numbers.

This set is dense in [0, 1]. We shall first prove that X is almost surely uniformly continuous

on D. First, using Markov’s inequality, for a > 0 and s, t ∈ [0, 1], we have

(4.2) P{d(Xs, Xt) ≥ a} ≤ E[d(Xs, Xt)
p]

ap
≤ C |t− s|1+ε

ap
.

Applying this inequality to s = i−1
2n

and t = i
2n

and a = 2−nα gives

P{d(X(i−1)/2n , Xi/2n) ≥ 2−nα} ≤ C

2(1+ε−pα)n
, i = 1, 2, · · · , 2n.

Thus, by union bound,

P{∃i ≤ 2n : d(X(i−1)/2n , Xi/2n) ≥ 2−nα} ≤ C

2(ε−pα)n
,

which is summable in n since pα < ε. Let

A := {∃n0, ∀n ≥ n0, ∀1 ≤ i ≤ 2n d(X(i−1)/2n , Xi/2n) < 2−nα}

By the Borel-Cantelli lemma, we have P (A) = 1. Consider now two dyadic numbers s, t ∈ D
with s ≤ t. Let q ≥ 0 be the largest integer satisfying t − s ≤ 2−q. Let k := b2qsc (so that

k ≤ b2qtc ≤ k + 1). We can find integers ` ≥ 0 and m ≥ 0, such that

s =
k

2q
+
εq+1

2q+1
+ · · ·+ εq+`

2q+`
,

t =
k

2q
+
ε̃q
2q

+
ε̃q+1

2q+1
+ · · ·+ ε̃q+m

2q+m
,

where εj, ε̃j ∈ {0, 1}. If we write

si =
k

2q
+
εq+1

2q+1
+ · · ·+ εq+i

2q+i
, 0 ≤ i ≤ `,

tj =
k

2q
+
ε̃q
2q

+
ε̃q+1

2q+1
+ · · ·+ ε̃q+j

2q+j
, 0 ≤ j ≤ m,

then for ω ∈ A,

d(Xs, Xt) = d(Xs` , Xtm)

≤ d(Xs0 , Xt0) +
∑̀

i=1

d(Xsi−1
, Xsi) +

m∑

j=1

d(Xtj−1
, Xtj)

≤ Kα(ω) 2−qα +
∑̀

i=1

Kα(ω) 2−(q+i)α +
m∑

j=1

Kα(ω) 2−(q+j)α,
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where

Kα(ω) := sup
n≥1

max
1≤i≤2n

d(X(i−1)/2n , Xi/2n)

2−nα

is finite by definition of A. hence, for ω ∈ A, we find that

d(Xs, Xt) ≤ 2Kα(ω)
∞∑

i=0

2−(q+i)α =
2Kα(ω)2−qα

1− 2−α
≤ 21+αKα(ω)

1− 2−α
(t− s)α,

because 2−(q+1) < t − s. Thus, a.s. the function t 7→ Xt(ω) is Hölder continuous on D and

a fortiori uniformly continuous on D. Since (E, d) is complete, this function a.s. admits an

unique continuous extension to I = [0, 1], and this extension is also Hölder continuous with

exponent α. More precisely, pick x0 ∈ E and define, for all t ∈ [0, 1],

X̃t(ω) :=

{
lims→t, s∈DXs(ω) if ω ∈ A,

x0 if ω /∈ A.

The trajectories of X̃ are Hölder continuous for exponent α. It remains to check that X̃ is

a modification of X. Let t ∈ [0, 1]. In view of (4.2), we have

lim
s→t

Xs = Xt, in probability.

On the other hand, by construction, X̃t is the a.s. limit of Xs when s → t and s ∈ D. By

uniqueness of the limit, we conclude that X̃t = Xt a.s.

Corollary 4.20. Let B = (Bt, t ≥ 0) be a process satisfying (i), (ii) and (iv) of Definition

4.9. Then B satisfy the assumption of Kolmogorov’s criterion. Thus, there exist a continuous

modification of B which is a Brownian motion and it is unique up to indistinguishability.

Moreover, any Brownian motion has trajectories that are locally Hölder for exponent 1
2
− ε,

for all ε ∈ (0, 1
2
).

Proof. Fix ε ∈ (0, 1
2
). Let t, s ≥ 0. Since Bt − Bs is Gaussian N (0, |t − s|), we have,

for all p > 0, E[ |Bt − Bs|p] = Cp (t − s)p/2, where Cp := E[ |N (0, 1)|p] < ∞. It suffices to

take p sufficiently large such that 1
2
− ε < (p/2)−1

p
to see that B admits a modification whose

trajectories are locally Hölder continuous for exponent 1
2
− ε.

Remark 4.21. Among Levy processes (i.e. processes with stationary and independent

increments), linear transforms of Brownian motions are the only random processes with

continuous trajectories: any Levy process X starting from 0 and with continuous paths can

be written in the form

Xt = σBt + µt for all t

where B is a standard Brownian motion and µ is called the drift of the process.
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It is natural to ask whether the trajectories of Brownian motion can be locally Hölder

continuous for exponent 1
2
. The answer is negative, which we will see later on. For the

moment, we prove the following result which will give us an interesting corollary.

Proposition 4.22. For any γ > 1/2, we have

P
[
∀ t ≥ 0 : lim sup

h→0+

|Bt+h −Bt|
hγ

=∞
]

= 1 .

Remark 4.23. It is possible to strengthen Proposition 4.22. As a matter of fact, Dvoretzky

(1963) proved the existence of a c > 0 such that a.s.,

∀ t ≥ 0, lim sup
h→0+

|Bt+h −Bt|√
h

≥ c.

Proof of Proposition 4.22. Let γ > 1/2. Since

{
∃t ≥ 0 : lim sup

h→0+

|Bt+h −Bt|
hγ

<∞
}
⊂

∞⋃

m=1

∞⋃

`=1

∞⋃

k=1

{
∃t ∈ [0,m] : |Bt+h−Bt| ≤ `hγ, ∀h ∈

(
0,

1

k

] }

it suffices to prove that for m ≥ 1, ` ≥ 1 and δ > 0,

P
{
∃ t ∈ [0,m] : |Bt+h −Bt| ≤ ` hγ, ∀h ∈ (0, δ]

}
= 0 .

Consider Ai,n := {∃ t ∈ [ i
n
, i+1

n
] : |Bt+h − Bt| ≤ ` hγ,∀h ∈ (0, δ] }. It suffices to check

that for all m ≥ 1, ` ≥ 1 and δ > 0, we have
∑nm−1

i=0 P(Ai,n)→ 0, n→∞.

Let K > 2 be an integer with (K − 2)(γ − 1
2
) > 1. Let n > n0 := bK/δc. If ω ∈ Ai,n,

and let t be as in the definition of Ai,n (attention: t depends on ω), then |B i+j
n
− Bt| ≤

`( i+j
n
− t)γ ≤ ` ( j

n
)γ as long as 0 < i+j

n
− t ≤ δ (a fortiori, if 2 ≤ j ≤ K) ; this implies

|B i+j
n
−B i+j−1

n
| ≤ 2` (K

n
)γ for 3 ≤ j ≤ K. Accordingly,

Ai,n ⊂
K⋂

j=3

{
|B i+j

n
−B i+j−1

n
| ≤ 2` (

K

n
)γ
}
.

The events on the right-hand side being independent, we obtain:

P(Ai,n) ≤
K∏

j=3

P
{
|B i+j

n
−B i+j−1

n
| ≤ 2` (

K

n
)γ
}
.

Since B i+j
n
−B i+j−1

n
is Gaussian N (0, 1

n
), and since2 P(|N (0, 1)| < x) ≤ ( 2

π
)1/2 x, ∀x > 0, we

have P(Ai,n) ≤∏K
j=3( 2

π
)1/2 2`Kγ

nγ−1/2 = c
n(γ−1/2)(K−2) , where c := [( 2

π
)1/2 2`Kγ]K−2. Consequently,∑nm−1

i=0 P(Ai,n) ≤ m c
n(γ−1/2)(K−2)−1 → 0, n→∞, as (K − 2)(γ − 1

2
) > 1.

2The density of N (0, 1) is bounded by 1
(2π)1/2

.
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Corollary 4.24 ((Paley, Wiener and Zygmund 1933)). Almost surely, the function

t 7→ Bt is nowhere differentiable.

Given an interval [a, b], a function f : [a, b]→ R is said to have bounded variation if

V (f) := sup
a=t0<...tn=b

n∑

i=1

|f(ti)− f(ti−1)| <∞

It is not difficult to show that a function f has bounded variation if and only it can be

decomposed as f = g − h where g and h are non-decreasing functions (exercise). Since a

non-decreasing function is differentiable almost everywhere, the same also holds true for any

function with bounded variation. Thus, we deduce from Corollary 4.24 that

Corollary 4.25. Almost surely, t 7→ Bt is not of finite variation on any interval [a, b].

We will give a refinement of this result later on and prove that Brownian motion has

finite (non-zero) quadratic variation.

4.4. The canonical process and the Wiener measure

In the theory of Markov chain, it is useful to consider the “canonical construction” of the

chain given by the process of canonical projections from the space of sequences EN , embedded

into a probability space with the σ-field generated by the cylinder sets. In this way, a Markov

chain can be though as a “random variable taking value in the set of sequence EN”. We

now do the same thing with Brownian motion which can be seen as random variable taking

value in the set of continuous functions.

Consider C(R+,R), the space of all real-valued functions on R+, endowed with the topol-

ogy of uniform convergence on compacts:

d(w, w̃) =
∞∑

n=1

dn(w, w̃) ∧ 1

2n
,

where dn(w, w̃) := supt∈[0,n] |w(t) − w̃(t)|. Then (C(R+,R), d) is a complete and separable

metric space. Let (Xt, t ≥ 0) denote the “canonical” process of projections:

Xt(w) := w(t), w ∈ C(R+,R).

The next result identifies the σ-field σ(Xt, t ≥ 0) generated by these projections (i.e., the

smallest σ-field making all Xt measurable) with the Borel σ-field C (R+, R) (i.e., the smallest

σ-field containing the topology induced by d). It solves measurability questions regarding

continuous random processes seen as “random function”.
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Lemma 4.26. We have σ(Xt, t ≥ 0) = C (R+, R).

Proof. For every t, the projection w→ Xt(w) is continuous hence measurable for C (R+, R).

This shows that σ(Xt) ⊂ C (R+, R) and therefore σ(Xt, t ≥ 0) ⊂ C (R+, R).

Conversely, we can write dn(w, w̃) = supt∈[0,n]∩Q |w(t)− w̃(t)| which shows that dn(w, ·) is

σ(Xt, t ≥ 0)-measurable and so is d(w, ·) as well. Let F be a closed subset of C(R+,R) and

let (wn) be a sequence that is dense in F (which exists since C(R+,R) is separable). Then,

F = {w ∈ C(R+,R) : d(F,w) = 0} = {w ∈ C(R+,R) : d(wn,w) = 0}

which shows that F is an element of σ(Xt, t ≥ 0). Hence C (R+, R) ⊂ σ(Xt, t ≥ 0).

Corollary 4.27. A mapping ϕ : (Ω,F) 7→ (C(R+,R),C (R+, R)) is measurable if and only

if Xt ◦ ϕ is measurable for every t.

Let Z = (Zt, t ∈ R+) be a continuous process defined on (Ω, F , P). Consider the

mapping ϕ

Ω −→ C(R+,R)

ω 7−→ ϕ(ω) = (t 7→ Zt(ω)),

which is measurable according to the previous corollary. We call the law (or: distribution)

of Z, the image-measure of P by ϕ. By the π-λ theorem, the law of Z is determined by

the finite-dimensional distributions (Zt1 , · · · , Ztn): indeed, two measures on C(R+,R) are

identical if they attribute same value to sets of type (Xt1(w), · · · , Xtn(w)) ∈ A, A ∈ B(Rn)

(Borel σ-field of Rn).

In the special case where Z is Brownian motion, this particular image-measure of Z is

denoted by W. It is a probability measure on C(R+,R) such that W{w : w(0) = 0} = 1,

and that for all n ≥ 1, 0 = t0 < t1 < t2 < · · · < tn and A ∈ B(Rn),

W
{

w : (Xt1(w), · · · , Xtn(w)) ∈ A
}

=

∫

A

1

(2π)n/2
√
t1(t2 − t1) · · · (tn − tn−1)

exp
(
− 1

2

n∑

k=1

(xk − xk−1)2

tk − tk−1

)
dx1 · · · dxn ,

with x0 := 0, because the integrand is the density function of the Gaussian random vector

(Zt1 , Zt2 , · · · , Ztn). This formula characterizes the probability measure W, and does not

depend on the choice of Brownian motion in the construction. We call W the Wiener

measure, and the process of projections (Xt, t ≥ 0) is the canonical process (of Brownian

motion). Summarizing, we have
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Theorem 4.28. There exists a unique probability measure (which is the Wiener measure)

on C(R+,R) under which the process of projections (Xt, t ≥ 0) is a Brownian motion.

The canonical process is useful for answering measurability questions about functionals

of Brownian motion. For example, if B is a Brownian motion, then, the following quantities

are clearly random variables: sup0≤s≤tBs,
∫ t

0
B2
s ds, inf{s ≤ t : Bs = Bt}, . . .

Let x ∈ R. Let Wx be the image-measure of W by the mapping w 7→ w + x. Clearly,

Wx{w : w(0) = x} = 1. The process of projections (Xt, t ≥ 0) under Wx is called Brownian

motion starting at X0 = x. It is a Lévy process whose trajectories are a.s. continuous,

X0 = x, a.s., such that ∀ t ≥ s, Xt−Xs is Gaussian N (0, t−s). It coincides with the notion

of Brownian motion starting from x in Remark 4.13.
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Chapter 5

The Markov property for Brownian
motion

In the previous chapter, we mainly studied Brownian motion as a Gaussian process. We

now study the Markov property of Brownian motion we will use it to obtain basic results

concerning the fluctuations of the trajectories. We leave out the martingale property which

will be studied in detail in the next chapter.

5.1. Elementary properties

In everything that follows, B = (Bt, t ≥ 0) denotes a standard Brownian motion.

Proposition 5.1. The following processes are Brownian motions:

1. Xt = −Bt (symmetry).

2. Xt = tB1/t, X0 = 0 (time inversion).

3. Xt = 1
a1/2

Bat for a > 0 fixed (scaling).

4. Xt = BT −BT−t, t ∈ [0, T ] for T > 0 fixed (time reversal).

Proof. It suffices to check, for each of the processes above, that X is a centered Gaussian

process with covariance s ∧ t. Only 2. needs some special care because the trajectories are

not necessarily continuous at 0. However, this does not cause any trouble because X is,

according to Kolmogorov’s criterion, indistinguishable to Brownian motion.

Example 5.2 (Brownian bridge). Define bt = Bt − tB1, t ∈ [0, 1]. It is a centered

Gaussian process with a.s. continuous trajectories and with covariance (s ∧ t)− st. We call

b a Brownian bridge. The following properties hold true

17
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1. The process (bt, t ∈ [0, 1]) is independent of the random variable B1.

2. If b is a Brownian bridge, then so is (b1−t, t ∈ [0, 1]).

3. If b is a Brownian bridge, then Bt = (1 + t)bt/(1+t), t ≥ 0, is Brownian motion. Note

that bt = (1− t)Bt/(1−t).

Example 5.3 (Law of large numbers). By continuity of the trajectories of Brownian

motion, we have limt→0+ Bt = 0, a.s., which, by time inversion, leads to:

lim
t→∞

Bt

t
= 0, a.s.

Notice that the weaker statement Bn
n
→
n→∞

0 a.s. for integer n’s is a direct application of the

usual strong law of large number (for centered Gaussian variables).

5.2. The simple Markov property

Recall that we are working on a complete probability space (Ω,F ,P). Similarly to the

discrete time setting, we call filtration a family (Ft, t ≥ 0) or sub σ-fields of F such that

Fs ⊂ Ft for any s ≤ t.

The process B = (Bt, t ≥ 0) is said to be adapted to the filtration (Ft, t ≥ 0) if Bt is

Ft-measurable for all t ≥ 0. Of course, B is adapted to its canonical filtration σ(Bs s ≤ t).

However, in the continuous-time setting, it is useful to consider the completed filtration

obtained by making Ft complete for all t ≥ 0 i.e.1.

Ft := σ(Bs, s ≤ t) ∨N

where N represents the null sets of F for P. Of course, B is still (Ft)-adapted. We also

define

F∞ :=
∨

t≥0

Ft.

Theorem 5.4 (Simple Markov property). Let s ≥ 0. The process (B̃t := Bt+s −Bs)t≥0

is a Brownian motion independent of Fs.

1The notation F ∨ G in the equation below denotes the smallest σ-field containing both F and G
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Proof. It is clear that B̃ is a centered Gaussian process with a.s. continuous trajectories and

with covariance

E(B̃tB̃t′) = E(Bt+sBt′+s)− E(Bt+sBs)− E(Bt′+sBs) + E(BsBs)

= (t+ s) ∧ (t′ + s)− s− s+ s = t ∧ t′.

Thus it is Brownian motion. We prove that it is independent of Fs. It suffices to show that

for 0 ≤ t1 < · · · < tn and 0 < s1 < · · · < sm ≤ s, the random vectors (B̃t1 , · · · , B̃tn) and

(Bs1 , · · · , Bsm) are independent. Since Cov(B̃ti , Bsj) = E[(Bs+ti − Bs)Bsj ] = 0 (because

s ≥ sj), and since (B̃t1 , · · · , B̃tn , Bs1 , · · · , Bsm) is a Gaussian random vector, we see that

(B̃t1 , · · · , B̃tn) and (Bs1 , · · · , Bsm) are independent.

Given the filtration (Ft)t≥0, we define another filtration (Ft+)t≥0 by setting

Ft+ :=
⋂

s>t

Fs.

Remark 5.5. 1. We have Ft ⊂ Ft+ . However, Ft+ gives access, not only to information

about the process at time t, but also enables an infinitesimally small peek into the

future. Thus, in general Ft+ may be strictly larger than Ft. For example, the event

{B has a right derivative at t} is in Ft+ but not necessarily in Ft+ (although it is the

case for Brownian motion because this event has null probability and our filtrations

are complete).

2. A filtration that satisfies Ft = Ft+ for all t is said to be right-continuous. Of course,

the filtration (Ft+) is right continuous since Ft++ = Ft+ . A filtration that is both

right-continuous and complete is said to satisfy the usual conditions.

We have the seemingly strengthening of the Markov property.

Proposition 5.6. Let s ≥ 0. The process (B̃t := Bt+s −Bs, )t≥0 is independent of Fs+.

Proof of Proposition 5.6. It suffices to check that for A ∈ Fs+ and 0 ≤ t1 < t2 < · · · < tn

and any continuous and bounded function F : Rn → R, we have

(5.1) E
[

1A F (B̃t1 , · · · , B̃tn)
]

= P(A)E
[
F (Bt1 , · · · , Btn)

]
.

Let ε > 0. By the Markov property, t 7→ Bt+s+ε − Bs+ε is independent of Fs+ε, and is,

a fortiori, independent of Fs+ . Hence

E
[

1A F (Bt1+s+ε −Bs+ε, · · · , Btn+s+ε −Bs+ε)
]

= P(A)E
[
F (Bt1 , · · · , Btn)

]
.
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Letting ε → 0, and by continuity of trajectories and the dominated convergence theorem,

we obtain (5.1).

Theorem 5.7 (Blumenthal 0–1 law). The σ-field F0+ is trivial, in the sense that

∀A ∈ F0+ , P(A) ∈ {0, 1}

Proof. By Proposition 5.6, F0+ is independent of σ(Bt, t ≥ 0), and thus also independent of

its completion F∞. Let A ∈ F0+ =
⋂
s>0 Fs. Then, A ∈ F∞ so it is independent of itself.

Thus, P(A) = P(A ∩ A) = P(A)P(A) which implies P(A) ∈ {0, 1}.

Remark 5.8. Since F0 is complete, Blumenthal’s 0–1 law state that F0+ = F0 = σ(N ).

More generally, it follows from the Markov property that Ft+ = Ft for all t ≥ 0 hence

Theorem 5.4 and Proposition 5.6 are, in fact, identical. In other words: the completed

filtration (Ft) of Brownian motion satisfies the usual conditions (i.e. it is right-

continuous).

Blumenthal 0–1 law allows us to derive important information about the typical trajectories

of Brownian motion.

• Let τ+ := inf{t > 0 : Bt > 0}. Then we have τ+ = 0, a.s. To prove this, we note that,

{τ+ = 0} =
⋂

n

{ sup
0≤u≤1/n

Bu > 0} ∈ F0+ .

Therefore, we have P(τ+ = 0) ∈ {0, 1}. On the other hand, for t > 0, P(τ+ ≤ t) ≥
P(Bt > 0) = 1

2
so that P(τ = 0) = limt→0+ P(τ+ ≤ t) ≥ 1

2
. Necessarily, P(τ+ = 0) = 1.

By symmetry, we also have τ− := inf{t > 0 : Bt > 0} = 0 a.s.

Fact. Brownian motion oscillate at 0: it takes positive and negative values

in any neighborhood of the origin. By continuity of the trajectories, the

set {s : Bs = 0} has an accumulation point at 0.

Using the Markov property, it follows that, Brownian motion oscillate around its posi-

tion at time t for any fixed t > 0.

• Using inversion of time (item (ii) of Proposition 5.1), we find that {t > 0 : Bt = 0}
is a.s. unbounded toward infinity. Let x > 0, from the scaling property of Brownian

motion, we get that

P
(

sup
s∈[0, t]

Bs > x
)

= P
(

sup
s∈[0, 1]

Bs >
x

t1/2

)
−→
t→∞

P
(

sup
s∈[0, 1]

Bs > 0
)
≥ P(τ+ = 0) = 1
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This means that sups≥0Bs = +∞, a.s. By symmetry, infs≥0Bs = −∞, a.s. (from

which we can recover that {t > 0 : Bt = 0} is a.s. unbounded).

Fact. Brownian motion is recurrent: Almost surely, for any x ∈ R and any

t ≥ 0, there exists s > t with Bs = x.

• Let (ti) be a decreasing sequence converging to 0. The events

A+ := {Bti > 0 for infinitely many i}, A+ := {Bti < 0 for infinitely many i}

both belong to F +
0 and have the same probability by symmetry. Furthermore P(A+ ∪

A−) = 1 because P(Bti = 0) = 0 for all ti. We conclude that P(A+) = P(A−) = 1. By

inversion of time, the same result holds for the sequence (1/ti).

Fact. Almost surely, Brownian motion take both positive and negative

values along any deterministic sequence that is either unbounded or has an

accumulation point a 0.

• Fix a constant K > 0, and let En := {√nB1/n > K}. Using Fatou’s Lemma, we have

P(lim supnEn) ≥ lim supn→∞ P(En) = P(B1 > K) > 0, so by Blumenthal’s 0–1 law,

P(lim supnEn) = 1. This holds for any K so we obtain that

lim sup
t→0+

Bt

t1/2
=∞, lim inf

t→0+

Bt

t1/2
= −∞, a.s.

(this result shows, in particular that the trajectories of B are not 1
2
-Hölder). By

inversion of time, a similar result hold holds true at infinity:

lim sup
t→∞

Bt

t1/2
=∞, lim inf

t→∞

Bt

t1/2
= −∞, a.s.

We will obtain more accurate results at the end of this chapter when we prove the law

of the iterated logarithm for Brownian motion.

5.3. The strong Markov property

Just as it is the case for Markov chains, we can strengthen the Markov property stated in the

previous section so that it can be used with random times. To do so, we need to introduce

the notion of continuous-time stopping times which, once again, is similar to the definition

in the discrete setting.
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Definition 5.9. A random variable T : Ω→ R+∪{∞} is called a stopping time with respect

to a filtration (Ft)≥0 if

{T ≤ t} ∈ Ft for any t ≥ 0.

The σ-field FT of “past events of T” is defined as

FT :=
{
A ∈ F∞ : ∀ t ≥ 0, A ∩ {T ≤ t} ∈ Ft

}
.

Remark 5.10. 1. It is easily checked that FT defined as above is indeed a σ-field.

2. {T ≤ t} ∈ Ft means that: If T occurs before time t, then it must be known by time

t. The σ-field FT contains all the events which are known at the time the stopping

occurs.

3. The constant time T = t is a stopping time.

4. Let a ∈ R. The return time Ta := inf{t > 0 : Bt = a} is a stopping time since

{Ta ≤ t} = {infs∈]0, t]∩Q |Bs − a| = 0} ∈ Ft.

5. If S, T are stopping times, then S ∧ T , S ∨ T and S + T are also stopping times.

6. If S ≤ T , then FS ⊂ FT .

7. The random variables T and BT 1{T<∞} are FT -measurable. Indeed, for the latter, it

suffices to observe that a.s.,

BT 1{T<∞} = lim
n→∞

∞∑

i=0

1{ i
2n
<T≤ i+1

2n
}B i

2n
,

and recall that Bs 1{s<T} and 1{T≤t} are FT -measurable.

Recall the construction of Brownian motion as the canonical projections from the set

of continuous functions embedded with the Wiener measure describe in Section 4.4. This

makes it possible to define a process B together with a collection of probability measures

(Px, x ∈ R) such that B under Px is a Brownian motion starting from x. In accordance with

our previous notation, we write P = P0. We also denote by Ex the expectation under Px
(with E = E0).

Theorem 5.11 (Strong Markov property). Let T be a stopping time. Let x ∈ R. Under

Px, conditionally on {T < ∞}, the process B̃ := (BT+t − BT , t ≥ 0) is Brownian motion

starting at 0, independent of FT .2

2We have only defined the process B̃ on {T < ∞}. Its values outside of this event do not matter so we

can set, for instance B̃ := 0 on {T =∞}.
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Proof. Suppose first T < ∞, Px-a.s. We are going to prove, for A ∈ FT , 0 ≤ t1 < · · · < tn

and F : Rn → R+ continuous and bounded, that

(5.2) Ex
[

1A F (B̃t1 , · · · , B̃tn)
]

= Px(A)E
[
F (Bt1 , · · · , Btn)

]
.

This will yield that B̃ is Brownian motion starting at 0 (by taking A = Ω), and that it is

independent of FT . First, observe that, by continuity of F and of the paths of B,

∞∑

k=0

1{ k−1
2m

<T≤ k
2m
}F (B k

2m
+t1
−B k

2m
, · · · , B k

2m
+tn
−B k

2m
)

converges a.s. (when m→∞) to F (B̃t1 , · · · , B̃tn). By dominated convergence,

Ex
[

1A F (B̃t1 , · · · , B̃tn)
]

= lim
m→∞

∞∑

k=0

Ex
[
1A1{ k−1

2m
<T≤ k

2m
}F (B k

2m
+t1
−B k

2m
, · · · , B k

2m
+tn
−B k

2m
)
]
.

For each k, A ∩ {k−1
2m

< T ≤ k
2m
} ∈ F k

2m
. By the Markov property,

Ex
[

1A F (B̃t1 , · · · , B̃tn)
]

= lim
m→∞

∞∑

k=0

Ex
[
1A1{ k−1

2m
<T≤ k

2m
}

]
E
[
F (Bt1 , · · · , Btn)

]
.

= Px(A)E
[
F (Bt1 , · · · , Btn)

]
,

from which (5.2) follows. When Px(T =∞) > 0, the same argument gives

Ex
[

1A∩{T<∞} F (B̃t1 , · · · , B̃tn)
]

= Px(A ∩ {T <∞})E
[
F (Bt1 , · · · , Btn)

]
,

and the desired result follows again.

Recall the definition of the return/hitting3 time to a:

(5.3) Ta := inf{t > 0 : Bt = a}.

We also define the running supremum process (St, t ≥ 0) by

(5.4) St := sup
s∈[0, t]

Bs t ≥ 0.

The processes (Ta, a ≥ 0) and (St, t ≥ 0) are inverse of each other in the sense that

{St ≤ a} = {∃s ≤ t, Bs = a} = {Ta ≤ t} for any a, t ≥ 0.

An exact formula for the probabilities of the event above can be obtained using the so-called

reflection principle which, in turn, is a simple consequence of the strong Markov property.

3Since Brownian motion is oscillating, the return and hitting are equal almost surely for any a.
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Figure 5.1: Illustration of the reflection principle: the blue Brownian motion is reflected (in
red) against the line y = a after time Ta.

Theorem 5.12 (Reflection principle). We have, for any a ≥ 0 and any b ≤ a,

(5.5) P(St ≥ a, Bt ≤ b) = P(Bt ≥ 2a− b).

The density of the pair (St, Bt) is

P(St ∈ da,Bt ∈ db) =
2(2a− b)√

2πt3
exp

(
−(2a− b)2

2t

)
1{a>0,b<a}dadb.

Proof. The idea of the proof it to mirror the trajectory of B after hitting level a and observe

that the resulting process is still a Brownian motion (c.f. Figure 5.1 for an illustration).

More precisely, recall that Ta <∞ a.s. because Brownian motion is recurrent. We have

P(St ≥ a, Bt ≤ b) = P(Ta ≤ t, Bt ≤ b) = P(Ta ≤ t, B̃t−Ta ≤ b− a),

where B̃s := Bs+Ta − BTa = Bs+Ta − a. So P(St ≥ a, Bt ≤ b) = P{(Ta, B̃) ∈ At}, where

At := {(s, w) ∈ R+ × C(R+, R) : s ≤ t, w(t − s) ≤ b − a} is measurable with respect to

B(R+)⊗ C (R+, R).

By the strong Markov property, B̃ is Brownian motion, independent of FTa , a fortiori

of Ta. In particular, (Ta, −B̃) has the same distribution as (Ta, B̃). Therefore, we conclude
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that

P(St ≥ a, Bt ≤ b) = P(Ta ≤ t, −B̃t−Ta ≤ b− a) = P(Ta ≤ t, Bt ≥ 2a− b) = P(Bt ≥ 2a− b)

because {Bt ≥ 2a − b} ⊂ {Ta ≤ t} whenever b ≤ a. The formula for the density of (Bt, St)

follows by differentiating both sides of (5.5).

Corollary 5.13. 1. For each t > 0, the random variables St and |Bt| have the same law.

2. For each a > 0, the random variables Ta and ( a
B1

)2 have the same law. The density is

given by the formula

(5.6) P(Ta ∈ dt) =
a√
2πt3

exp

(
−a

2

2t

)
1t>0 dt (Levy’s law).

Proof. To prove Part 1., we simply observe that

P(St ≥ a) = P(St ≥ a, Bt ≥ a) + P(St ≥ a, Bt ≤ a) = 2P(Bt ≥ a) = P(|Bt| ≥ a).

For Part 2., we combine 1. and the scaling property of Brownian motion to get that

P(Ta ≤ t) = P(St ≥ a) = P(|Bt| ≥ a) = P(
√
t|B1| ≥ a) = P(

a2

B2
1

≤ t).

This proves that Ta and ( a
B1

)2 have the same law. The formula for the density follows from

that of the Gaussian law.

Remark 5.14. 1. The identity in law between St and |Bt| is valid only for fixed t. The

processes (St, t ≥ 0) and (|Bt|, t ≥ 0) have very different behaviors (for example, the

former is non-decreasing while it is certainly not the case for the latter). Still, let us

mention a beautiful theorem of Levy which states that the processes (St − Bt, t ≥ 0)

and (|Bt|, t ≥ 0) have the same law (but the proof is out of the scope of these notes).

2. If T ′a is an independent copy of Ta, it follows the strong Markov property and Brownian

scaling that Ta+T
′
a
law
= T2a

law
= 4Ta. We say that the Levy distribution is strictly stable

with index 1
2
. The tail distribution of Ta satisfies

P(Ta > t) ∼
t→∞

√
2a√
πt

which shows, in particular, that E[Ta] = +∞ for any a > 0.

3. The process (Ta, a ≥ 0) is Levy process (i.e. with independent and stationary incre-

ments) which is non-decreasing. Such a process is called a subordinator.
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5.4. Additional paths properties

Proposition 5.15 (Uniqueness of local extrema). for any s < t, Brownian motion

attain its supremum on [s, t] at exactly once a.s.

Proof. Since Brownian motion is continuous, its supremum is attained on any compact set

[s, t] so we must prove that it is attained only once. By applying the simple Markov property

at time s, we can assume that s = 0. Now, if the maxima is reached (at least) twice on [0, t]

with positive probability, then there must exist r < t such that P(sup[0,r] B = sup[r,t] B) > 0

because

{
maxima of B on [0, t] reached twice

}
⊂

⋃

r∈]0,t[∩Q

{
sup
[0,r]

B = sup
[r,t]

B
}

Now, B̃ := (Bs+r − Br, s ≤ t − r) and B̂ := (Br−s − Br, s ≤ r) are independent Brownian

motions thanks to the Markov property (combined with time reversal for B̂). But then,

using Corollary 5.13 and the independence of B̃ and B̂, we get

P
(

sup
[0,r]

B = sup
[r,t]

B
)

= P
(

sup
[0,r]

B̂ = sup
[0,t−r]

B̃
)

= P
(
|B̂r| = |B̃t−r|

)
= 0

because the Gaussian law has no atom. Contradiction.

A random variable Z in [0, 1] follows the arcsine law if P(Z < x) = 2
π

arcsin
√
x or

equivalently, if its density is given by

P(Z ∈ dx) =
1

π
√
x(1− x)

1{x∈]0,1[}.

This distribution appears naturally in connection functionals of Brownian motion.

Theorem 5.16 (arcsine law for the supremum M). Let M denote the position where

B reaches its maximum over [0, 1] (which is well defined thanks to Proposition 5.15). M

follows the arcsine laws.

Theorem 5.17 (arcsine law for the last zero L). Let L denote the position of the last

zero of B on the interval [0, 1]. L follows the arcsine laws.

Remark 5.18. 1. There is a third famous arcsine law: the total time spend on the

positive half line by B before time 1 (i.e
∫ 1

0
1{Bs>0} ds) also follows the arcsine law.
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Figure 5.2: Left: last zero L and maximum M of a Brownian motion in [0, 1]. Right: density
of the arcsine law.

2. The arcsine density is minimum at 1
2

and explodes at 0 and 1. This tells us that,

typically (and somewhat surprisingly at first sight), L and M are more likely to be

close to 0 or 1 than to the middle of the interval. Also, L and M have symmetric

distribution on [0, 1] with is not obvious from their definition4.

Proof of the arcsine law for L. Fix t ∈]0, 1[ and set B̃s = Bs+t − Bt, which, as usual, is a

Brownian motion independent of Bt hence, with obvious notations

P(L < t) = P(Bt + B̃s 6= 0 for all s ∈ [0, 1− t])
= E

[
P
[
B̃s 6= −Bt for all s ∈ [0, 1− t]

∣∣Bt

]]

= E
[
P
[
B̃s 6= |Bt| for all s ∈ [0, 1− t]

∣∣Bt

]]
[symmetry]

= E
[
P
[
T̃Bt > 1− t

∣∣Bt

]]

= P
(
B2
t /B̃

2
1 > 1− t

)
[Corollary 5.13](5.7)

= P
(
B2

1/B̃
2
1 > (1− t)/t

)
[Brownian scaling]

= P
( B̃2

1

B̃2
1 +B2

1

< t
)

4The symmetry of the law of M can be proved directly using time reversal and symmetry of Brownian
motion. What about L ?
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SinceB1 and B̃1 are independent, the Gaussian vector (B1, B̃1) has density 1
2π

e−(x2+y2)/2 dx dy.

In polar coordinates (B1, B̃1) = (R cos Θ, R sin Θ), this density becomes 1
2π

e−r
2/21θ∈[0,2π[,r>0 dx dy.

In particular, θ is uniform in [0, 2π[ therefore we conclude that

P(L < t) = P(sin2 Θ < t) = P(| sin Θ| <
√
t) =

2

π
arcsin(

√
t).

Proof of the arcsine law for M . Fix t ∈]0, 1[. Let B̃s := Bt+s − Bt and B̂s := Bt−s − Bt.

Combining the Markov property and time reversal for Brownian motion, we see that (B̃s, s ≤
1− t) and (B̂s, s ≤ t) are independent Brownian motions starting from 0, thus

P(M < t) = P
(

sup
s∈[0,t]

Bs > sup
s∈[t,1]

Bs

)

= P
(

sup
s∈[0,t]

B̂s > sup
s∈[0,1−t]

B̃s

)

= P
(
|B̂t| > |B̃1−t|

)
[independence & Corollary 5.13]

= P
(
|B̂1|/|B̃1| >

√
1− t/

√
t
)

[Brownian scaling]

which is the same probability as in (5.7), hence M also follows the arcsine laws.

Theorem 5.19. Let Z = {t ≥ 0, Bt = 0} denote the set of zeros of B. Then Z is a.s. a

perfect set ( i.e closed and without isolated point) with zero Lebesgue measure.

Remark 5.20. 1. The usual example of (deterministic) perfect set is the cantor set ob-

tained by trisecting the unit interval recursively while removing at each step the center

interval.

2. A perfect set is necessarily uncountable (exercise) so the zeros of Brownian motion are

a.s. uncountable yet with null Lebesgue measure.

Proof of Theorem 5.19. The set Z is closed a.s. since it is the preimage of 0 by B which is

continuous. Let u ≥ 0 and let τu := inf{t ≥ u : Bt = 0} denote the first hitting time of

0 after time u. By continuity of Brownian paths, we have Bτu = 0. Moreover, the random

variable τu is a stopping time so, by the strong Markov property, (Bt+τq = Bt+τq−Bτq , t ≥ 0)

is a Brownian motion. Since we already know that the zeros of Brownian motion have an

accumulated point at 0, it follows that τq is not an isolated zero of B a.s. Thus, we can write

P(Z has an isolated zero) = P(∃(q, r) ∈ Q2
+ s.t. Z∩]q, r[= {τq})

≤
∑

q∈Q+

P(τq is an isolated zero) = 0
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Finally, we compute using Fubini’s Theorem

E[Lebesgue(Z)] = E
[∫ ∞

O

1{Bs=0} ds

]
=

∫ ∞

0

P(Bs = 0) ds = 0.

which proves that the Lebesgue measure of Z is a.s. zero.

Theorem 5.21 (Law of the iterated logarithm). Recall the notation St := sups≤tBs.

We have

lim sup
t→∞

Bt√
2t log log t

= lim sup
t→∞

St√
2t log log t

= 1 a.s.

Proof. The idea of the proof is to sample the Brownian motion at exponential times tn :=

αn and observe that, as α → ∞, the value of B at these times become asymptotically

independent which will allow us to use the Borel-Cantelli lemma to conclude.

Upper bound. Let h(x) :=
√

2t log log t. Let ε > 0 and α > 1 an consider the events

En := {Stn ≥ (1 + ε)h(tn)}.

Recalling that Stn and
√
tn|B1| have the same law and using the Gaussian tail upper bound

of Theorem 4.1, we get that

P(En) ≤ 2e−
(1+ε)2h(tn)2

2tn = 2e(1+ε)2 log logαn = C(α)n−(1+ε)2 .

Thus,
∑

n P(En) <∞ so the Borel-Cantelli lemmas entails that

lim sup
n→∞

Stn
h(tn)

≤ 1 + ε a.s.

Now, if tn−1 ≤ t < tn, because h and S are non-decreasing, we have

St
h(t)

≤ Stn
h(tn−1)

≤ Stn
h(tn)

h(tn)

h(tn−1)
.

Since h(tn)/h(tn−1) →
n→∞

√
α, we get, taking the limsup in the inequality above,

lim sup
t→∞

St
h(t)

≤ (1 + ε)
√
α a.s.

and the desired upper bound for St (and Bt) follow by taking ε → 0 and α → 1 (along a

countable sequence so that we can swap the limit with the a.s.). By symmetry, we obtain a

lower bound for the liminf of −Bn. Combining those results yields

(5.8) lim sup
t→∞

|Bt|
h(t)

≤ 1 a.s.
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Figure 5.3: Illustration of the law of the iterated logarithm. Simulation of 10 independent
Brownian motions up to time 106.

which we will need to prove the lower bound.

Lower bound. Consider now the events

Fn := {Btn −Btn−1 > (1− ε)h(tn)}

Since Brownian motion has independent increments, the events Fn are independent. Let us

compute:

P(Fn) = P(Btn −Btn−1 > (1− ε)h(tn))

= P(
√
tn − tn−1B1 > (1− ε)h(tn))

= P
(
B1 >

√
2α(1− ε)√
α− 1

√
log logαn

)

Setting δ :=
√
α(1−ε)√
α−1

and using the lower bound on the Gaussian tail (Theorem 4.1), it is easy

to check that P(Fn) ≥ n−δ
2+o(1). Thus, for any ε > 0 fixed, we have

∑
n P(Fn) =∞ provided

α is chosen large enough. Since the events Fn are independent, the second Borel-Cantelli

Lemma then asserts that Fn occurs for an infinite number of indexes n a.s. Moreover, on
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Fn, we have
Btn

h(tn)
≥ (1− ε)− |Btn−1|

h(tn)
= (1− ε)− |Btn−1|

h(tn−1)

h(tn−1)

h(tn)
.

We have h(tn−1)/h(tn)→ 1/
√
α. This limit together with (5.8) shows that

lim sup
t→∞

Bt

h(t)
≥ lim sup

n→∞

Btn

h(tn)
≥ (1− ε)− 1√

α
a.s.

We conclude the proof by letting first α→∞ then ε→ 0.

Remark 5.22. 1. By symmetry of Brownian motion, the previous theorem shows that

lim inf
t→∞

Bt√
2t log log t

= lim inf
t→∞

infs≤tBs√
2t log log t

= −1 a.s.

which, combined with the result for the lim sup directly imply that

lim sup
t→∞

|Bt|√
2t log log t

= lim sup
t→∞

sups≤t |Bs|√
2t log log t

= 1 a.s.

2. Using time inversion, we also obtain the law of the iterated logarithm for t→ 0+. For

instance, we have

lim sup
t→0+

Bt√
2t log log 1

t

= 1 a.s.

3. The law of the iterated logarithm is not as precise as it looks like. For example,

it does not tell us about the probability that the curve (2t log log t)1/2 is crossed by

Brownian motion at arbitrarily large time a.s. This question was answered by the

following integral criterion of Kolmogorov (also referred to sometimes as the Erdős–

Feller–Kolmogorov–Petrovski or EFKP integral test): if h : R→ R+ is non-decreasing,

then

P
(
Bt ≥

√
th(t), infinitely often

)
=

{
0

1
⇐⇒

∫ ∞

1

h(t)

t
e−

1
2
h2(t) dt

{
< +∞
= +∞

In particular, we see that the curve
√

2t log log t is crossed by Brownian motion infinitely

often.

4. Another question is about the lower limits of Brownian motion. Chung (1948) proved

that

lim inf
t→∞

√
log log t√

t
sup
s∈[0, t]

|Bs| =
π

2
√

2
a.s.
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Subsequently, Feller (1951) obtained a similar result for the range of Brownian motion:

lim inf
t→∞

√
log log t√

t

(
sup
s∈[0, t]

Bs − inf
s∈[0, t]

Bs

)
=

π√
2

a.s.

What happens if we replace sups∈[0, t] |Bs| by sups∈[0, t]Bs? Intuitively, as far as the lower

limits are concerned, it is clear that sups∈[0, t] Bs can be far smaller than sups∈[0, t] |Bs|:
this was confirmed by Hirsch (1965) who established the following criterion:

lim inf
t→∞

(log t)a√
t

sup
s∈[0, t]

Bs =

{
0 if a ≤ 1,

∞ if a > 1,
a.s.

5.5. Semi-group of Brownian motion

Recall that Px denotes the probability under which B is Brownian motion starting from x

with the convention P = P0
5. The simple Markov property says that under Px, the process

B̃ = (B̃t := Bt+s − Bs, t ≥ 0) is Brownian motion independent of Fs. We can state the

Markov property of Brownian motion in the following, more familiar way: conditionally on

Fs, the process B̂ = (B̂t := Bt+s, t ≥ 0) is Brownian motion starting at the (random)

position y = Bs:

Ex
[
F (B̂t1 , · · · , B̂tn) |Fs

]
= Ex

[
F (B̃t1 + y, · · · , B̃tn + y) |Fs

]

= E0

[
F (Bt1 + y, · · · , Btn + y)

]

= Ey
[
F (Bt1 , · · · , Btn)

]
,

with y := Bs. For t ≥ 0, we define the operator Pt : B(R,R+) 7→ B(R,R+) from the set of

non-negative Borel function to itself by

Ptf(x) := Ex[f(Bt)] =

∫

R

1

(2πt)1/2
exp

(
− (x− y)2

2t

)
f(y) dy. for x ∈ R.

5As already mentioned, we can work on the canonical space of Brownian motion, and define Wx to be the
image-measure of the Wiener measure W by the mapping w 7→ w + x. As such, the process of projections
(Xt, t ≥ 0) under Wx is Brownian motion with Wx(X0 = x) = 1.
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We call (Pt, t ≥ 0) the semi-group of B. Notice that,for any s, t ≥ 0, we have

Pt+sf(x) = Ex[f(Bt+s)]

= Ex[Ex[f(Bt+s) |Ft]]

= Ex[EBs [f(Bt)]] [Markov property at time s]

= Ex[Psf(Bt)]

= Pt(Psf)(x)

which establishes the semi-group property:

Pt ◦ Ps = Ps ◦ Pt = Pt+s for all s, t ≥ 0.

One can associate a semi-group to any Markov process. However, the semi-group of Brownian

motion enjoys several specials properties (which are left as exercises):

• Feller property: if f ∈ C0 (continuous, with lim|x|→∞ f(x) = 0), then Ptf ∈ C0, and

limt↓0 Ptf = f uniformly on R.

• Generator: if f ∈ C2
c (class C2 of compact support), then limt↓0

Ptf(x)−f(x)
t

= 1
2
f ′′(x).

• Relation with the heat equation: let u(t, x) := Ptf(x). We have u(0, x) = f(x).

If f is a bounded Borel function, then

∂u

∂t
=

1

2

∂2u

∂x2
.
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Chapter 6

Brownian motion and martingales

In this chapter, we study the martingale property of Brownian motion. To this end, we

will first define and give general results about continuous-time martingales which we will

subsequently apply to Brownian motion.

6.1. Continuous-time martingales

Let (Ω,F , (Ft)t≥0,P) denote a filtered probability space where, as usual, every σ-field is

assumed to be complete. We also assume in this section that:

• (Ft) satisfies the usual conditions (i.e is right-continuous).

In practice, we will consider the augmented canonical filtration of Brownian motion which

fulfills this assumption (c.f Remark 5.8). Continuous-time martingales are defined similarly

as in the discrete time setting.

Definition 6.1. A process (Xt, t ≥ 0) is a martingale [resp. supermartingale; sub-

martingale] with respect to (Ft)t≥0 if

(i) X is adapted to (Ft)t≥0.

(ii) ∀ t ≥ 0, E(|Xt|) <∞.

(iii) ∀ s < t, E(Xt |Fs) = Xs, a.s. [resp., ≤ Xs; ≥ Xs].

The following important example shows that several martingales may be constructed from

a process with independent increments.

Example 6.2. Suppose X = (Xt, t ≥ 0) is (Ft)-adapted and that Xt+s−Xs is independent

of Fs for all s, t ≥ 0.

35
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1. If for all t, E(|Xt|) <∞, then X̃t := Xt − E(Xt) is a martingale.

2. If for all t, E(X2
t ) <∞, then Yt := X̃2

t − E(X̃2
t ) is a martingale.

3. Let θ ∈ R. If E(eθXt) <∞ for all t ≥ 0, then Zt := eθXt

E[eθXt ]
is a martingale.

(the proof of these statements is left as exercises).

Most results obtained for discrete-time martingales in the first part of the course remain

valid for continuous-time martingales. In fact, we just need to assume some regularity of

the trajectories of the process (typically right continuity1) to leverage the results obtained

in the discrete setting and transfer them in continuous time via a discretization procedure.

Theorem 6.3 (Doob’s Lp inequality). Let p, q > 1 with 1
p

+ 1
q

= 1. Let (Xs) be a

right-continuous martingale. Then for any t ≥ 0,

(6.1)
∥∥∥ sup
s∈[0,t]

|Xs|
∥∥∥
p
≤ q ‖Xt‖p ,

As a consequence,

(6.2)
∥∥∥ sup
s≥0
|Xs|

∥∥∥
p
≤ q sup

s≥0
‖Xs‖p .

Proof. Let 0 ≤ t1 < t2 < · · · < tk = t. Then Yn := Xtn∧k is a discrete-time martingale. By

Doob’s Lp inequality for discrete-time martingales, we have
∥∥∥ max

0≤i≤k
|Xti|

∥∥∥
p
≤ q ‖Xt‖p .

Let D ⊂ [0, t] be a countable set containing t. Par the monotone convergence theorem,

taking increasingly larger finite sets that exhaust D,
∥∥∥ sup
s∈D
|Xs|

∥∥∥
p
≤ q ‖Xt‖p .

Since the trajectories of (Xs) is a.s. right-continuous, we have sups∈[0,t]∩D |Xs| = sups∈[0,t] |Xs|
a.s., which yields (6.1) and (6.2) again with the use of the monotone convergence theorem.

Theorem 6.4 (a.s. convergence). Let (Xt, t ≥ 0) be a right-continuous submartingale

such that

sup
t≥0

E(X+
t ) <∞.

Then, X∞ := limt→∞Xt exists a.s. and E(|X∞|) <∞.
1In fact, this regularity assumption is not restrictive because it can be proved that, under mild as-

sumptions, every (super/sub)martingale admits a modification that is càdlàg (and therefore unique up to
indistinguishability).
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Proof. (i) Let D ⊂ R+ be countable and dense. Let a < b and let Ht(a, b) denote the number

of up-crossings of (Xs, s ∈ [0, t] ∩D) over [a, b]. Then, just as in the previous proof, using

Doob’s up-crossing lemma for discrete martingales combined with the monotone convergence

theorem, we find that

E [Ht(a, b)] ≤
E[(Xt − a)+]

b− a ≤ 1

b− a
(

sup
s≥0

E(X+
s ) + |a|

)
.

Letting t→∞ and using again the monotone convergence theorem shows E[H∞(a, b)] <∞.

In particular, we get

P(for any a, b ∈ Q, H∞(a, b) <∞) = 1.

Just as in the discrete case, this fact implies that X∞ := limt→∞, t∈DXt exists a.s. But

because the paths of X are assumed to be right continuous and because D is dense, we must

also have X∞ = limt→∞Xt. Finally, by Fatou’s lemma,

E(|X∞|) ≤ lim inf
t→∞, t∈D

E(|Xt|) ≤ sup
s≥0

E(|Xs|) ≤ 2 sup
s≥0

E(X+
s )− E(X0) <∞

where we used that E(|Xs|) = 2E(X+
s ) − E(Xs) ≤ 2E(X+

s ) − E(X0) because X is a sub-

martingale.

Corollary 6.5. Let (Xt, t ≥ 0) be a non-negative, right-continuous supermartingale. Then

X∞ := limt→∞Xt exists a.s., and E(X∞) ≤ E(X0).

Theorem 6.6 (Lp convergence). Let p > 1. If (Xt, t ≥ 0) is a right-continuous martingale

satisfying

sup
t≥0

E(|Xt|p) <∞,

then Xt → X∞ a.s. and in Lp.

Proof. By Jensen’s inequality, supt≥0 E(|Xt|) < ∞. Therefore Theorem 6.4 tells us that

Xt → X∞ a.s. By Doob’s inequality, we also have E(supt≥0 |Xt|p) < ∞ so the dominated

convergence theorem implies that the convergence also holds in LP .

Theorem 6.7 (L1 convergence). Let (Xt, t ≥ 0) be a uniformly integrable and right-

continuous martingale. Then

(i) Xt → X∞ a.s. and in L1.

(ii) Xt = E(X∞ |Ft), a.s.
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Proof. (i) The uniform integrability implies that supt≥0 E(|Xt|) < ∞, which, thanks to

Theorem 6.4 shows that Xt converges a.s. to X∞ with E(X∞) < ∞. Furthermore, the

combination of uniform integrability and convergence a.s. (convergence in probability would

be sufficient) implies convergence in L1.

(ii) Let t ≥ s and A ∈ Fs. Then E(Xt 1A) = E(Xs 1A). We let t → ∞. The L1

convergence implies that E(X∞ 1A) = E(Xs 1A) for all A ∈ Fs. This exactly means that

Xs = E(X∞ |Fs), a.s.

Theorem 6.8 (Doob’s optional sampling theorem). Let (Xt, t ≥ 0) be a uniformly

integrable right-continuous martingale and let S ≤ T be stopping times. Then, we have

(6.3) E(XT |FS) = XS a.s.

In particular, E(XT ) = E(X0) = E(X∞).

Proof. We define

Sn :=
∞∑

k=0

k

2n
1{ k−1

2n
<S≤ k

2n
} + (+∞) 1{S=∞}

Tn :=
∞∑

k=0

k

2n
1{ k−1

2n
<T≤ k

2n
} + (+∞) 1{T=∞}.

(Sn) and (Tn) are non-increasing sequences of stopping times converging almost surely to

S and T . For any n, (Xi/2n , i ≥ 0) is a discrete-time (Fi/2n)-martingale and is uniformly

integrable. Moreover, Sn and Tn are stopping time for this filtrations and Sn ≤ Tn so the

optional sampling theorem for discrete time martingales shows that E(XTn |FSn) = XSn

Let A ∈ FS, we have S ≤ Sn so A ∈ FSn and therefore

(6.4) E(1AXTn) = E(1AXSn).

Now, since X has right continuous trajectories, we have XSn → XS and XTn → Xt a.s. Fur-

thermore, (XSn) is uniformly integrable because XSn = E(X∞ |FSn) thanks to the optional

sampling theorem for discrete time martingales. Thus, by the improved dominated conver-

gence theorem, we get E(1AXSn)→ E(1AXS). For the same reasons, E(1AXTn)→ E(1AXT ).

Combining these limits with (6.4) shows that

E(1AXT ) = E(1AXS) for all A ∈ FS,

which exactly means E(XT |FS) = XS.
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Theorem 6.9 (Doob’s optional sampling theorem 2). Let (Xt, t ≥ 0) be a right-

continuous martingale and let S ≤ T be stopping times. If T is bounded, then

E(XT |FS) = XS a.s.

In particular, E(XT ) = E(X0).

Proof. Let a > 0 be such that S ≤ T ≤ a. Then, the martingale (Xt∧a, t ≥ 0) is uniformly

integrable because Xt∧a = E[Xa |Ft∧a] and we can apply the previous theorem to this

martingale.

6.2. Brownian motion as a martingale

We now apply the results of the previous section to Brownian motion. Let (Bt, t ≥ 0) denote

a Brownian motion and let (Ft, t ≥ 0) denote it natural (completed) filtration. Since B is

a process with independent increments, Example 6.2 provides three Ft-martingales that are

associated with B:

1. (Bt, t ≥ 0) itself is a continuous martingale [natural martingale].

2. (B2
t − t, t ≥ 0) is a continuous martingale [quadratic martingale].

3. (eθBt−
θ2

2
t, t ≥ 0) for any θ ∈ R, is a continuous martingale [exponential martingale].

With the help of these martingales, we can compute several functionals of Brownian

motion and obtain new insight on the properties of its trajectories. Recall the notation

Ta := inf{t > 0, Bt = a} for a ∈ R.

Proposition 6.10. Let −a < 0 < b. We have

(6.5) P(T−a < Tb) =
b

a+ b

and

(6.6) E(T−a ∧ Tb) = ab.

Proof. Let τ := T−a ∧ Tb. This is a stopping time and the martingale (Bt∧τ , t ≥ 0) is

uniformly integrable because its absolute value is bounded by (−a) ∨ b. In particular this

martingale converges a.s. which implies that τ <∞ a.s. because Brownian motion does not



40 Chapitre 6. Brownian motion and martingales

converge a.s. (or simply use that B is a.s. unbounded). Applying the optional sampling

theorem, we get

0 = E(B0) = E(Bτ ) = −aP(T−a < Tb) + bP(Tb < Ta)

where we used that BT−a = −a and BTb = b because B has continuous paths. Formula (6.5)

follows from the equality P(Tb < T−a) = 1− P(T−a < Tb).

For the second equality, we use the quadratic martingale (B2
t − t, t ≥ 0). Let τn = τ ∧ n

which is a bounded stopping time so the optional sampling theorem (version 2) yields

0 = E(B0 − 0) = E(B2
τn − τ 2

n) = E(B2
τn)− E(τn).

We have τn → τ a.s. On the one hand, B2
τn ≤ a2 ∨ b2 so the dominated convergence

theorem gives E(B2
τn) → E(B2

τ ). On the other hand, the monotone convergence theorem

gives E(τn)→ E(τ) so we conclude that

E(τ) = E(B2
τ ) = a2P(T−a < Tb) + b2P(Tb < T−a) =

a2b

a+ b
+

b2a

a+ b
= ab

as desired.

Corollary 6.11. The random variable sups≤T−1
Bs has the same distribution as 1−U

U
where

U is a uniform random variable in ]0, 1[.

Proof. We simply notice that, according to the previous Proposition, for any b > 0, we have

P(sups≤T−1
Bs > b) = P(Tb < T−1) = 1

1+b
= P((1− U)/U > b).

Proposition 6.12. Let −a < 0 < b. We have, for all λ ≥ 0,

(6.7) E
[
e−λTb

]
= e−b

√
2λ

and

E
[
e−λ(T−a∧Tb)

]
=

cosh
(
a−b

2

√
2λ
)

cosh
(
a+b

2

√
2λ
)

Proof. Consider the exponential martingale Mt := eθBt−
θ2

2
t. We have θBt∧Tb− θ2

2
(t∧Tb) ≤ θb,

so Mt∧Tb is a continuous and bounded martingale, thus uniformly integrable, and M∞ =

eθa−
θ2

2
Tb since Tb <∞ a.s. By the optional sampling theorem, we deduce that

1 = E[M0] = E[MTb ] = E
[

eθb−
θ2

2
Tb
]

= eθbE[ e−
θ2

2
Ta
]
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and the formula for the Laplace transform of Tb follows from the change of variable λ = θ2/2.

We now compute the Laplace transform of τ := T−a ∧ Tb. Let θ ∈ R, and define

Mt := sinh(θ(Bt + a)) e−
θ2

2
t .

It is easy to check that (Mt, t ≥ 0) is again a continuous martingale. Also, Mt∧τ is bounded

hence uniformly integrable. Applying the optional sampling theorem, we get

sinh(θa) = E
[

sinh(θ(Bτ + a)) e−
θ2

2
τ
]

= sinh(θ(a+ b))E
[

e−
θ2

2
Tb 1{Tb<T−a}

]
.

Hence,

E
[
e−

θ2

2
Tb 1{Tb<T−a}

]
=

sinh(θa)

sinh(θ(a+ b))
.

Exchanging the roles of a and b (which amounts to replacing B by −B), we also obtain:

E
[

e−
θ2

2
T−a 1{Tb>T−a}

]
=

sinh(θb)

sinh(θ(a+ b))
.

So

E[e−
θ2

2
Ta,b ] = E

[
e−

θ2

2
Tb 1{Tb<T−a}

]
+E
[

e−
θ2

2
T−a 1{Tb>T−a}

]
=

sinh(θa) + sinh(θb)

sinh(θ(a+ b))
=

cosh( θ(a−b)
2

)

cosh( θ(a+b)
2

)
,

and the result follows again from the change of variable λ = θ2/2.

Remark 6.13. We already computed the law of Ta in Corollary 5.13. It is easy to check

that (6.7) is indeed the Laplace transform of the density given by (5.6).
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Chapter 7

Further properties of Brownian
motion

7.1. Donsker’s theorem and KMT’s invariance principle

The Central Limit Theorem tells us that a sum of i.i.d random variable, once centered and

correctly re-scaled converges to a Gaussian law provided these random variables have a finite

second moment. Thus, the Gaussian law appears as the “universal limit” for a large class of

random variables. Similarly, the same holds true for Brownian motion which may be thought

as a universal limit for random walks (with finite second moment).

Let (ξi, i ≥ 1) be a sequence of i.i.d. random variables with

c := E(ξ1) ∈ R and σ2 := Var(ξ) ∈ (0,∞).

Let S0 := 0 and Sn := ξ1 + · · · + ξn for n ≥ 1. We extend S into a continuous time process

(St, t ≥ 0) by linear interpolation:

S(t) := Sbtc + (t− btc)ξbtc+1

For any n, we define the re-scaled process

(7.1) Snt :=
Snt − cnt
σ
√
n

for t ∈ [0, 1].

Thus (Sn, n ≥ 1) defines a sequence of continuous stochastic processes. We consider the

metric space

(C([0, 1],R), ‖ · ‖∞)

of real-valued continuous functions, endowed with the topology of uniform convergence and

the corresponding Borel σ-field. According to Lemma 4.26, any continuous random process

43
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is measurable with respect to this σ-field so we can see the processes Sn as random functions

taking values in C([0, 1],R).

Theorem 7.1 (Donsker’s Theorem). The sequence of processes (Sn, n ≥ 1) converges in

distribution, in (C([0, 1],R), ‖ · ‖∞) toward a Brownian motion B = (Bt, t ∈ [0, 1])1.

This results implies, in particular, that Sn1 converge in law toward B1 because the projec-

tion f → f(1) is continuous for ‖ · ‖∞. Thus, we recover the Central Limit Theorem. More

generally, Donsker’s theorem implies the convergence of finite-dimensional marginals:

(Snt1 , . . . , S
n
tk

)
law−→

n→∞
(Bt1 , . . . , Btn).

However, Donsker’s theorem says much more than that: it is a functional CLT and it allows

us to obtain results out of reach of the usual CLT because we can now consider functionals

of the whole trajectory. To see this, let us first recall the so-called Portmanteau Theorem.2

Theorem 7.2 (Portmanteau). Let (Xn) and X be random variables taking values in a

metric space (E, d). The following statements are equivalent and characterize the convergence

in distribution of Xn to X.

1. E[F (Xn)]→ E[F (X)] for every bounded continuous function f .

2. E[F (Xn)]→ E[F (X)] for every bounded Lipschitz function f .

3. E[F (Xn)]→ E[F (X)] for every bounded measurable function f such that

P(F is discontinuous at X) = 0.

4. P(Xn ∈ A)→ P(X ∈ A) for any measurable A such that P(X ∈ ∂A) = 0.

5. lim supP(Xn ∈ C) ≤ P(X ∈ C) for any closed set C.

6. lim inf P(Xn ∈ O) ≥ P(X ∈ O) for any open set O.

In practice, functionals of trajectories are not always continuous for the topology of

uniform convergence. But thanks to Portmanteau theorem, they only need to be continuous

with probability 1 with respect to the limit law.

1Equivalently, the image law of Sn on C([0, 1],R) converges weakly to the Wiener measure.
2A proof of Donsker’s Theorem as well as Portmanteau’s Theorem can be found in Billingsley, “Conver-

gence of probability Measures” Wiley, 1999.
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Corollary 7.3. If the sequence (Xn) converges in distribution to X and if F is almost surely

continuous at X, then F (Xn) converges in distribution to F (X).

Proof. Fix a continuous bounded function G defined on the image space of F . Then G ◦ F
is a.s. continuous at X so item 3. of Portmanteau Theorem tells us that E[G(F (Xn))] →
E[G(F (X))]. Since this holds for any bounded continuous G, item 1. implies that F (Xn)

converges in distribution to F (X).

Combining Donsker’s Theorem together with Portmanteau’s Theorem, we can leverage

results obtained for Brownian motion and transpose them to random walks. We give here

some examples.

Proposition 7.4. Let Sn = ξ1 + . . . ξn denote a random walk with i.i.d. increments ξn which

are centered E(ξi) = 0 and with finite second moment E(ξ2) = σ2 > 0. We have

1

σ
√
n

sup
k≤n

Sk
law−→

n→∞
|N (0, 1)|(7.2)

1

σn
√
n

n∑

k=0

Sk
law−→

n→∞
N (0, 1/3)(7.3)

1

n
inf
{

0 ≤ k ≤ n : Sk = sup
[0,n]

S
}

law−→
n→∞

Arsine distribution.(7.4)

Proof. • We first prove the convergence for the supremum. Recalling notation (7.1), we

can write 1
σ
√
n

supk≤n Sk = F (Sn) where

F :
C([0, 1],R) → R

g 7→ sup[0,1] g.

Clearly, F is continuous for ‖·‖∞ so, according to Donsker’s theorem, F (Sn) converges

in distribution to supt∈[0,1]Bt which, as we have already seen, as the same law as |B1|.
This proves (7.2).

• We prove the convergence for the sum. We observe that, since Sn is the re-scaled linear

interpolation of the random walk S, we have

1

σn
√
n

n∑

k=0

Sk =

∫ 1

0

Sns ds +
S0 + Sn
2σn
√
n

The second term on the r.h.s of the equation above converges to 0 a.s. by the law

of large number so we just need to find the limit in law of the integral. Using that
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f →
∫ 1

0
f is continuous for ‖ · ‖∞, Donsker’s theorem tells us that

∫ 1

0
Sns ds converges

in law to Z :=
∫ 1

0
Bs ds. On the other hand, using a Riemann sum, we can write

Z = limn
1
n

∑n
i Bi/n which shows that Z is a centered Gaussian as a limit of centered

Gaussians. Moreover,

E(Z2) = lim
n→∞

E
[( 1

n

n∑

i=0

B i
n

)2]
= lim

n→∞
E
[( n−1∑

i=0

n− i
n

(B i+1
n
−B i

n
)
)2]

= lim
n→∞

n−1∑

i=0

(n− i)2

n2
E[(B i+1

n
−B i

n
)2] = lim

n→∞

n−1∑

i=0

(n− i)2

n3
=

1

3
,

and (7.3) follows.

• We prove the arcsine law. We now consider the functional

F (f) := inf
{
t ∈ [0, 1] : f(t) = sup

[0,1]

f
}
.

We have
1

n
inf
{

0 ≤ k ≤ n : Sk = sup
[0,n]

S
}

= F (Sn).

However, this time F is not continuous for ‖ · ‖∞. Consider for example fn(x) = x/n,

then fn → 0 uniformly on [0, 1] yet F (fn) = 1 and F (0) = 0. Still, it is not difficult

to show (and it is left as an exercice) that F is continuous at any f ∈ C([0, 1],R) such

that f attains it maximum at a single point over [0, 1]. According to Proposition 5.15,

this is a.s. the case for Brownian motion, so we can use Corollary 7.3 to conclude that

F (Sn) converges in distribution to F (B) and the result follows from the arcsine law

for the maximum of Brownian motion (Theorem 5.16).

Interestingly enough, it is also possible to use Donsker’s Theorem the other way around

i.e. prove a result for a particular random walk and then transfer it to Brownian motion.

For example, If S is the simple random walk on Z, it is easy to see that the process Yn :=

supk≤n Sk − Sn is a Markov chain that behave like |S| except at 0 where it sticks to 0 with

probability 1/2. However, the time spent at 0 is negligible because S is null recurrent. Using

Donsker’s theorem, we obtain a proof of a celebrated result from Lévy:

Theorem 7.5 (Lévy). If B is a Brownian motion, then the processes (|Bt|, t ≥ 0) and

(sups≤tBs −Bt, t ≥ 0) have the same law.
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Figure 7.1: Illustration of Theorem 7.5: the red curve has the same law as −|B|.

It is possible to strengthen the Donsker’s Theorem into an almost-sure invariance prin-

ciple, if we are allowed to redefine the random variables.

Theorem 7.6 (Komlós, Major and Tusnády (KMT), 1975). Let ξ be a random real-

valued random variable with E(ξ) = 0 and E(ξ2) = 1. There exist a probability space

(Ω̃, F̃ , P̃) on which we can construct an i.i.d. sequence (ξ̃i, i ≥ 1) distributed as ξ and

a Brownian motion (B̃t, t ∈ [0, 1]), such that, as n→∞,

sup
0≤s≤t

|S̃s − B̃s| = O(log t), P̃-a.s..

where S̃i := ξ̃1 + . . .+ ξ̃i is extended by linear interpolation for non-integer times.

The KMT strong invariance principle directly implies Donsker’s Theorem. It also enables

to prove finer results. For example, we deduce from the law of the iterated logarithm for

Brownian motion (Theorem 5.21) that, if S is a centered random walk with unit variance,

then

lim sup
n→∞

Sn
(2n log log n)1/2

= 1, a.s.,

This result is known as the Hartman–Wintner law of the iterated logarithm.
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7.2. Variations of Brownian motion

In Corollary 4.25, we saw that the trajectories of Brownian motion are a.s. not of bounded

variation on any interval. We now show that they have, however, deterministic quadratic

variation.

Theorem 7.7 (Lévy). Fix t > 0. Let Π := {0 = t0 < t1 < · · · < tp = t} be a sequence of

subdivisions of [0, t]. Write ‖Π‖ := max1≤i≤p(ti − ti−1). Then

lim
‖Π‖→0

p∑

i=1

(Bti −Bti−1
)2 = t, in L2(P).

Moreover, if the limit above is taken over a sequence satisfying Π1 ⊂ Π2 ⊂ · · · , then we also

have almost sure convergence.

Proof. Let us first prove L2 convergence. Define

Yi := (Bti −Bti−1
)2 − (ti − ti−1), 1 ≤ i ≤ p .

Then (Yi, 1 ≤ i ≤ p) are i.i.d. centered, with

E(Y 2
i ) = (ti − ti−1)2 E[(B2

1 − 1)2] = 2(ti − ti−1)2.

Accordingly, we get,

E
[( p∑

i=1

(Bti −Bti−1
)2 − t

)2 ]
= E

[( p∑

i=1

Yi

)2 ]

= 2

p∑

i=1

(ti − ti−1)2

≤ 2t‖Π‖ −→ 0.

This yields the L2(P) convergence.

We prove a.s. convergence only3 for the special case ti = tni := i
2n

, 0 ≤ i ≤ 2n. We have

seen that

E
[( 2n∑

i=1

Yi

)2 ]
≤ 2

2n∑

i=1

(tni − tni−1)2 =
1

2n−1
.

3The proof of a.s. convergence in the general case is more technical. We refer to Proposition II.2.12 in the
book of Revuz and Yor, “Continuous Martingales and Brownian Motion” (third edition), Springer, 1999.
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By Tchebychev’s inequality,

P
( ∣∣∣

2n∑

i=1

Yi

∣∣∣ > 1

n

)
≤ n2

2n−1
,

which is summable in n ≥ 1. By the Borel-Cantelli lemma, it follows that, ω-a.s., there

exists n0 = n0(ω) <∞ such that

∣∣∣
2n∑

i=1

Yi

∣∣∣ ≤ 1

n
, ∀n ≥ n0,

from which convergence a.s. follows.

Remark 7.8. The statement that “Brownian motion has quadratic variation” is formally

incorrect because it would require the almost-sure convergence stated in Theorem 7.7 to

hold true for any subdivision as the mesh goes to 0. However, this it is false without the

assumption that Π1 ⊂ Π2 ⊂ · · · . In fact, Lévy also showed that4

lim sup
‖Π‖→0

p∑

i=1

(Bti −Bti−1
)2 =∞, a.s.,

On the other hand, explosion can be avoided by taking a function that is slightly smaller

than x2: Taylor (1972) proved that

lim sup
‖Π‖→0

p∑

i=1

g(Bti −Bti−1
) = 2, a.s.,

where g(x) := x2

log∗ log∗ 1
|x|

with log∗ x := max{1, log x}.

Remark 7.9 (Ito calculus). Given a function f with bounded variation, we can define the

associated Stieltjes integral by

∫ t

0

h df := lim
‖Π‖→0

p∑

i=1

h(ti−1)
(
f(ti)− f(ti−1)

)
.

which is well-defined for any continuous function h. In particular, for f(x) = x, we recover

the Riemann integral5. We would like to do the same thing with a Brownian motion6.

4See p. 48 of the book of D. Freedman, “Brownian Motion and Diffusion”, Holden-Day, 1971.
5More generally, if f is differentiable, then

∫
hdf =

∫
h(x)f ′(x) dx.

6There are several motivations for defining a notion of “integration along a Brownian”. One of them
is to provide a framework for studying (stochastic) differential equation with an added white noise which,
informally, may be thought as the “derivative of Brownian motion”.



50 Chapitre 7. Further properties of Brownian motion

Unfortunately, we cannot directly replace f by B since the limit will not exist in general.

However, one can prove that, under mild assumptions we have convergence in L2 (and

therefore also in probability). For instance, if H is an adapted, continuous process, then we

can define

(7.5)

∫ t

0

H(s) dB(s) := lim
‖Π‖→0

p∑

i=1

H(ti−1)
(
B(ti)−B(ti−1)

)
for L2-convergence of r.v.

This definition is called Ito’s integral of Brownian motion and it is the building block

of Stochastic calculus. This notion of integration with respect to Brownian motion has

many nice properties. For instance, the integrated process is a Martingale: this is easily

understood from (7.5) by observing that, for each fixed subdivision Π, the right end side

is a discrete martingale (in p) which translates, in the limit, to a martingale (in t) for the

integral on the left hand side. Moreover, we have an isometry of L2 spaces:

E

[(∫ t

0

H(s) dB(s)

)2
]

= E
[∫ t

0

H2(s) ds

]
.

The reader interested in a rigorous exposition of Stochastic calculus can refer the Le Gall’s

excellent book: “Brownian motion, Martingale and Stochastic Calculus” Springer, 2016.

7.3. Multidimensional Brownian motion

In these lecture notes, we defined and studied one-dimensional Brownian motion but one

can also define Brownian motion in higher dimension:

Definition 7.10. Let d ≥ 1 and Let B := (Bt = (B
(1)
t , . . . , B

(d)
t ), t ≥ 0) be a process taking

values in Rd. We say that B is a d-dimensional Brownian motion if the 1-dimensional

processes B(1), . . . , B(d) are independent Brownian motions.

At first, it seems that the definition of Brownian motion depend on the choice of the

basis in Rd but this is not the case and the following proposition shows that d-dimensional

Brownian motion is isotropic.

Proposition 7.11. If U is an orthogonal matrix ( i.e. such that UUT = I), then UB is also

a d-dimensional Brownian motion.

Proof. The process UB is a Gaussian process so we just need to check the covariance matrix:

E[(UB)
(i)
s (UB)

(j)
t ] = (s ∧ t)1i=j which follows from the orthogonality of U .
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Figure 7.2: Trace of a Brownian motion in R2 up to time 106.

Remark 7.12. Brownian motion in dimension 2 is said to be conformally invariant: if

B is a planar Brownian motion and f is an holomorphic map, then f(B) is a time-change

of a Brownian motion. This result may be seen as a local extension of Proposition 7.11 and

can be proved using stochastic calculus.

Multidimensional Brownian motion inherits many properties of 1-dimensional Brownian

motion. For instance, the strong Markov property still holds true: If T is a finite stop-

ping time, then the process B̃ = BT+· − BT is a d-dimensional Brownian motion

independent of the (completed) σ-field FT .

Some path properties are also similar to that of one dimensional Brownian motion. For

example, the law of the iterated logarithm still holds true:

lim sup
t→∞

‖Bt‖
(2t log log t)1/2

= 1 , a.s.

where ‖ · ‖ denotes the usual euclidean norm. However, multidimensional Brownian motion

has some special properties that are not shared with one-dimensional Brownian motion. For

example, it is known that in dimension d ≥ 2, all points are polar, in the sense that

P(Bt = x, for some t > 0) = 0 for all x ∈ Rd.
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This means that, Brownian motion is not recurrent in dimension d ≥ 2. However, planar

Brownian motion is still neighbourhood-recurrent: any ball B(x, r) is visited at arbi-

trarily large time a.s., for any x ∈ R2 and any r > 0. So the trajectory of 2-dimensional

Brownian motion is dense in the plane. On the other hand, in dimension d ≥ 3 and higher,

Brownian motion is transient

(7.6) ‖Bt‖ −→
t→∞

+∞ a.s.

This phase transition for the behaviour of Brownian motion between dimension 2 and 3 is

analogous to Pólya’s phase transition for recurrence and transience of the simple random

walk in Zd.

Let us prove (7.6) in dimension d ≥ 3. Fix a > 0. We have, using the triangular

inequality,

P
(

inf
s∈[n,n+1]

‖Bs‖ < na
)
≤ P

(
‖Bn‖ < 2na

)
+ P

(
sup

s∈[n,n+1]

‖Bs −Bn‖ > na
)

= P
(
‖B1‖ < 2na−

1
2

)
+ P

(
sup
s∈[0,1]

‖Bs‖ > na
)

where we used scaling and the Markov property for the last line. On the one hand,

P
(
‖B1‖ < 2na−

1
2

)
≤ Cn(a− 1

2
)d

for some constant C, because the density of the density of the d-dimensional Gaussian

vector B1 is bounded hence we obtain an upper bound by considering the volume of the ball

B(0, 2na−
1
2 ). In particular, we see that, for a ∈]0, 1

2
− 1

d
[ (which is possible for d ≥ 3), then∑

n P
(
‖B1‖ < 2na−

1
2

)
<∞. On the other hand, we have

P
(

sup
s∈[0,1]

‖Bs‖ > na
)

= P
( d∑

i=1

sup
s∈[0,1]

(B(i)
s )2 > n2a

)

≤ dP
(

sup
s∈[0,1]

|B(1)
s | >

na√
d

)

≤ 2dP
(
B(1)
s >

na√
d

)

where we used that |B1| and sup[0,1]B have the same law for the last inequality. Thus, it is

now clear, using estimates on Gaussian tails that
∑

n P
(

sups∈[0,1] ‖Bs‖ > na
)
< ∞ for any

a > 0. Putting everything together, we conclude that, for d ≥ 3 and for a ∈]0, 1
2
− 1

d
[, by the

Borel-Cantelli Lemma, we have (7.6) and, furthermore

(7.7) lim
t→∞

‖Bt‖
na

= +∞ a.s.
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It is possible to improve this argument to show that (7.7) holds, in fact, for any a ∈ (0, 1
2
).

More precisely, Dvoretzky and Erdős (1951) proved that, for any b > 1/(d− 2), we have

(7.8) lim
t→∞

(log t)b‖Bt‖√
t

=∞ a.s.

Since ‖Bt‖ diverges to infinity, it makes sense to define the process of future infima: Jt :=

infs≥t ‖Bs‖, t ≥ 0. The lower limits of Jt are identical to those of ‖Bt‖: you can replace

‖Bt‖ by Jt in (7.8). Concerning the upper limits of Jt, Erdős and Taylor (1962) proved that

lim sup
t→∞

Jt√
2t log log t

= 1 a.s.

which is the same as the law of the iterated logarithm for ‖Bt‖.

7.4. For further reading

These lecture notes aim to provide an introduction to Brownian motion. For further reading,

the reader is advised to have a look at the following authoritative books on the subject:

• D. Revuz and M. Yor, “Continuous Martingales and Brownian Motion” (third edition),

Springer, 1999.

• P. Mörters and Y. Peres, “Brownian Motion”, Cambridge, 2010.

• J.-F. Le Gall, “Brownian motion, Martingales and Stochastic calculus”, Springer, 2016.


