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1. Introduction

1.1. General overview

The once-reinforced random walk (ORRW) belongs to the large class of self-
interacting random walks, whose future evolution depends on its past history.
The study of these processes is usually difficult and basic properties such as
recurrence and transience are hard to obtain. One of the most famous example
of self-interacting random walks is the linearly edge-reinforced random walk
introduced by Coppersmith and Diaconis [4] in the eighties, for which recurrence
and transience were only recently proved in a series of papers, see [1, 12, 14, 6].

Even though the definition of ORRW, introduced in 1990 by Davis [5], is
simple, it turns out that its study does not seem easier than that of the linearly
reinforced RW, and results on graphs with loops are very rare. In this model, the
current weight of an edge is 1 if it has never been crossed and 1 + δ otherwise,
with δ > 0. It has been conjectured by Sidoravicius that ORRW is recurrent on
Zd for d ∈ {1, 2} and undergoes a phase transition for d ≥ 3, being recurrent
when the parameter δ is large and transient when it is small. These questions
on Zd, d ≥ 2, are completely open. Until recently, it was not even clear whether
this weak reinforcement procedure could indeed change the nature of the walk,
so that ORRW could be recurrent on a graph which is transient for simple
random walk, as soon as the parameter δ is large enough. The first example
of such phase transition was provided in [9] on a particular class of trees with
polynomial growth, which is in contrast with the result of Durrett, Kesten and
Limic [8] who showed that the ORRW is transient on regular trees for any δ > 0
(later generalized to any supercritical tree by Collevecchio [2]). More recently,
the complete picture on trees has been given in [3]: the critical parameter of
ORRW on a locally finite tree is equal to its branching-ruin number, which is
defined in [3] as a polynomial regime of the branching number (see [10]).

As already mentioned, results on graphs with loops are very rare. Sellke [15]
first investigated the case of the ladder Z × {1, ..., L}, with L ≥ 3, and proved
that the ORRW is almost surely recurrent on this graph for all δ ∈ (0, 1/(L−2)).
The proof is a simple consequence of a general (and nice) martingale argument,
but it does not really face the difficulty of possible drift pushing the walk toward
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infinity, which can in principle happen in the presence of loops in the graph. In
an unpublished paper, Vervoort [16] announced a more difficult result, namely
that the ORRW is recurrent on the ladder for all large enough reinforcement
parameter δ. Unfortunately, his proof was never published and the preprint [16]
is unpolished, with gaps and mistakes. The general strategy of [16] was to show
that the mean drift of the walk, each time it exits its present range, is almost
balanced. The reason being that for large enough δ, all possible exit edges are
equally likely to be chosen. Thus, at least at first order, there should be equal
probability to get a drift δ to the right (when the exit edge is an horizontal edge
oriented to the left) as an opposite drift (when this edge is oriented to the right).
However, an important ingredient, which was missing in [16], is to show first
that the ORRW cannot travel a large distance before exiting its present range.
Indeed the first order approximation of uniformity for the choice of the exit edge
is only valid when the edges taken into consideration are not too far one from
each other. One difficulty then is to obtain an estimate, which is uniform over
all the possible ranges (or finite subgraphs of Z × Γ). We prove such general
result here, which might be of independent interest, with the help of electrical
network techniques. Details can be found in our Proposition 2.6 below.

Furthermore, we improve the lower bound on δ, and obtain a polynomial
bound in the height of the ladder, instead of an exponential one, which was
implicit in [16]. For this purpose, one needs to adapt the notion of walls from
[16], to ensure their existence with a probability 1/2, instead of an exponentially
small (in the size of Γ) one. We also analyze the fluctuations of the range of the
walk and provide a shape theorem. Finally we show that the successive return
times to the origin have finite expectation.

1.2. Model and results

Let us define a nearest-neighbor random walk (Xn)n≥0 as a ORRW on a (nonempty,
locally finite and undirected) graph G, with reinforcement parameter δ ≥ 0.
First, the current weight of an edge is defined as follows: at time n, an edge has
conductance 1 if it has never been crossed (regardless of any orientation of the
edges) and conductance 1 + δ otherwise. For any n ≥ 0, let En be the set of
non-oriented edges crossed up to time n, that is

En := {{x, y} : x, y ∈ G and there exists 1 ≤ k ≤ n, such that {Xk−1, Xk} = {x, y}} .(1.1)

At time n ∈ N, if Xn = x ∈ G, then the walk jumps to a neighbor y of x with
conditional probability

P [Xn+1 = y | Fn] =
δ1{{x, y} ∈ En}+ 1∑

z:z∼x (δ1{{x, z} ∈ En}+ 1)
, (1.2)

where (Fn)n≥0 is the natural filtration generated by the walk, i.e. Fn = σ(X0, . . . , Xn).
Our first result is the following:
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Theorem 1.1. There exists a constant C > 0, such that for any finite con-
nected graph Γ, the once-reinforced random walk on Z × Γ is recurrent for any
reinforcement parameter δ ≥ C|Γ|40.

Note that here by recurrent we mean that almost surely every site is visited
infinitely often.

Our second result is a shape theorem. Denote by Rn the graph whose vertex
set is {X0, . . . , Xn}, the set of visited sites up to time n, and whose edges are
those crossed by the walk up to this time. Let t(n) be the first time when the
number of vertices in this graph equals (2|Γ|+ 1)n.

Theorem 1.2. There exists a constant C > 0, such that for any finite connected
graph Γ and any δ ≥ C|Γ|40, the following holds: almost surely for all n large
enough, there exists xn ∈ Z, such that

{xn−n+n1/δ1/8

, . . . , xn+n−n1/δ1/8

}×Γ ⊆ Rt(n) ⊆ {xn−n−n1/δ1/8

, . . . , xn+n+n1/δ1/8

}×Γ,

where inclusions here are meant as inclusion of graphs.

Remark 1.3. We do not expect that the center of the cluster xn could be taken
to be zero. Indeed for the ORRW on Z (i.e. when Γ is reduced to a single vertex),
explicit computations show that, for any ε > 0, xn/n < −1/2+ε infinitely often
and xn/n > 1/2− ε infinitely often.

Remark 1.4. Concerning the exponent δ−1/8, it is far from being optimal. Our
proof would allow to replace the constant 1/8 by any other constant smaller
than 1/4, at the cost of imposing larger δ. But we do not believe that this
would be optimal neither. In fact we expect that the correct order of the fluc-

tuations is precisely in n
1+o(1)
ρ , with ρ the asymptotical mean drift per level:

ρ := limx→+∞ E(Dx), where Dx equals δ times the number of edges between
level x and x+1 which are crossed for the first time from left to right minus the
number of those edges crossed for the first time in the other direction. But here
the main issue would be to show that the above limit actually exists. On the
other hand, our proofs in this paper show that if the limit indeed exists, then
it is larger than δ, up to lower order terms (and in particular it is positive for
large δ). We also suspect that ρ should be equivalent to cδ, for some constant
c ≥ 1, when δ goes to infinity.

Note that contrarily to Theorem 1.1, Theorem 1.2 does not hold for the simple
random walk (which corresponds to the case when δ = 0). In this direction, we
also show at the end of the paper that the successive return times to the origin
have finite expectation.

1.3. Organization of the paper

The paper is organized as follows. In Section 2, we prove general estimates
on random walks on networks where conductances take only two values: δ on
a finite subgraph A of Z × Γ and one elsewhere. Our main results there are
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estimates, which are uniform on A, on the time spent on certain level sets, that
is subsets of the form {i} × Γ. This section can be read independently of the
rest of the paper, and might be interesting on its own. Then in Section 3, we
define a notion of wall, that extends the one from Vervoort’s paper [16]. The
interest of this new definition is to obtain bounds of polynomial order (in the
size of |Γ|) in all our results. In section 4 we gather the results proved so far to
obtain gambler’s ruin type estimates. These estimates are then used in Section
5 to prove Theorems 1.1, and 1.2, and in Section 6 to prove that the successive
return times to the origin have finite expectation.

2. Random walks on sub-graphs of G = Z × Γ.

This section gathers some results concerning (reversible) random walks on sub-
graphs of Z × Γ where Γ is a finite graph. In particular, we study the position
where such a walk exits a given sub-graph. As such, the section does not deal
specifically with once-reinforced random walk but the results obtained here will
play a crucial role during the proof of the main theorems. We also believe that
some estimates such as Proposition 2.9 may be found of independent interest.

2.1. Notation

A graph G = (V,E) is a collection of vertices V and edges E. By a small abuse
of notation, we shall sometimes identify a graph and its set of vertices when the
associated edge set is unambiguous. An undirected edge between two vertices x
and y is denoted by {x, y}, while a directed edge is denoted by (x, y). We write
x ∼ y when {x, y} ∈ E and we say in this case that x and y are neighbors.
All the graphs considered here are assumed to be non-empty and locally finite,
meaning that all vertices have only finitely many neighbors. If e = (x, y) is a
directed edge, we call x the tail and also denote it by e−, and y the head and
denote it by e+. We write ~E for the set of directed edges of G.

Given two vertices x and y, we denote by d(x, y) their graph distance in G.
For a subgraph A ⊆ G, we denote by dA(x, y) the induced (also called intrinsic)
distance, i.e. the minimal number of edges needed to be crossed to go from x to
y while staying inside A. In particular, we have dG = d.

Given a subgraph A = (VA, EA) ⊆ G, we define

∂eA := {e ∈ ~E : e− ∈ VA, {e−, e+} /∈ EA} (2.1)

∂vA := {v ∈ VA : ∃e ∈ ∂eA with e− = v}. (2.2)

In words, ∂eA is the set of directed edges of G which do not belong to A as an
undirected edge but whose tail belongs to A. Notice that the head of a directed
edge e ∈ ∂eA may, or may not, be in A. The set ∂vA is the set of tails of the
edges in ∂eA, or equivalently the set of vertices adjacent to an edge outside A.

In this paper, we consider cylinder graphs of the form G = Z × Γ. In this
case, if a ∈ G, we will denote by ā and al the respective projections on Z and
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Γ so that
a := (ā, al).

Finally, for z ∈ Z, we denote by {z} × Γ the sub-graph of G isomorphic to Γ
with edge set consisting of all edges with both endpoints in {z} × Γ. We call
this sub-graph the level set z.

2.2. Reversible RW and electrical networks

We recall here some standard results on random walks and electrical networks
which we will use repeatedly in the paper. We refer the reader to [7] and [11]
for a comprehensive and thorough presentation of the theory.

A network is a graph G = (V,E), endowed with a map c : E → (0,∞). The
value c(e) of an edge e is called its weight or conductance, and its reciprocal
r(e) := 1/c(e) is called its resistance. A random walk on a network (V,E, c) is
the Markov chain which moves only to neighbors of its current position, choosing
it with a probability proportional to the weight of the edge traversed. We denote
the law of the chain starting from a ∈ V by Pa. This process is reversible with
respect to the measure π defined by π(x) :=

∑
y∼x c({x, y}). Given a subset of

vertices V0 ⊆ V , a map h : V → R is said to be harmonic on V0 if it satisfies:

h(x) =
1

π(x)

∑
y∼x

c({x, y})h(y) for any x ∈ V0.

Given a vertex a ∈ V and a subset Z ⊆ V \{a}, a voltage v is a function which
is harmonic outside {a} ∪ Z, and vanishes on Z. Given a voltage function, we
define the associated current function i on the oriented edges by

i(x, y) := c({x, y})[v(x)− v(y)]. (Ohm’s law)

Then, i is a flow from {a} to Z, which means an anti-symmetric function on

the set of oriented edges ~E such that∑
y∼x

i(x, y) = 0 for all x ∈ V \ {a} ∪ Z. (Kirchoff’s node’s law)

The strength of the flow is defined by ‖i‖ :=
∑
y∼a i(a, y) = −

∑
z∈Z

∑
y∼z i(z, y).

We say that we have a unit current flowing from a to Z when ‖i‖ = 1, and
one defines similarly a unit flow.

Given a random walk (Sn)n≥0, the hitting time of a set of vertices B ⊆ V is
defined by

HB := min{n ≥ 0 : Sn ∈ B},

whereas the first return time is defined by

H+
B := min{n ≥ 1 : Sn ∈ B}.
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To simplify notations, we just write Hb (resp H+
b ) when B = {b}. Similarly,

when G is of the form Z × Γ, we also use the notation Hr := H{r}×Γ for the
hitting time of the level set r ∈ Z.

The effective conductance C(a ↔ Z) between a vertex a and a subset
Z ⊆ V is defined by the formula

C(a↔ Z) := π(a)Pa[HZ < H+
a ]. (2.3)

Its reciprocal is called the effective resistance between a and Z and is de-
noted by R(a ↔ Z). It follows from the maximum principle that there exists
a unique unit current flowing from a to Z. The corresponding voltage is the
unique function that is harmonic outside of {a}∪Z, vanishes on Z, and satisfies
v(a) = R(a↔ Z).

We recall three important results which we will need in later sections.

Proposition 2.1 (Current as edge crossings, Prop. 2.2 in [11]). Let G be
a finite connected network. Consider the random walk starting at some vertex
a and let Z be a subset of vertices not containing a. For x ∼ y, let Nxy be the
number of crossings of the directed edge (x, y) by the walk before it hits Z. We
have Ea[Nxy −Nyx] = i(x, y), where i is the unit current flowing from a to Z.

As a consequence of this proposition (c.f. Exercice 2.37 of [11]), if i is a unit
current from a to Z, then necessarily

|i(x, y)| ≤ 1 for all x ∼ y. (2.4)

Given a flow j on an electrical network, the energy dissipated by the flow is
defined by

E(j) :=
1

2

∑
e∈~E

r(e)j2(e)

The following result characterizes the current among all flows on a network.

Proposition 2.2 (Thomson’s principle, p. 35 in [11]). The unit current i
has minimal energy among all unit flows:

E(j) > E(i) = R(a↔ Z) for any unit flow j 6= i.

We say that a flow j has a cycle if there exist oriented edges e1, . . . en with
e+
i = e−i+1 and e+

n = e−1 and j(ei) > 0 for all i ∈ {1, . . . , n}. It follows from
Thomson’s principle that a current i cannot have a cycle because we could
otherwise decrease its energy by removing from it a small flow with support on
the cycle. Another immediate consequence of Thomson’s principle is that the
effective conductance/resistance is a monotone function of the conductances on
the edges.

Proposition 2.3 (Rayleigh’s Monotonicity Principle, p. 36 in [11]). Let
G be a finite connected graph with two conductances assignments, c and c′ such
that c ≤ c′. Let a be a vertex and Z a subset of vertices not containing a. We
have Cc(a↔ Z) ≤ Cc′(a↔ Z).
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We end this section with the remarkable Commute-Time Identity, which
relates the hitting times between two points of a graph and the effective resis-
tance between these two points.

Proposition 2.4 (Commute-Time Identity, Corollary 2.21 in [11]). Let G
be a finite connected network and let a and z be two vertices of G. The commute
time between a and z is

Ea [Hz] + Ez [Ha] = R(a↔ z)×

(∑
x∈V

π(x)

)
.

2.3. The exit edge for a random walk on a sub-graph of G = Z × Γ

By definition, the once-reinforced random walk behaves as a usual random walk
as long as it stays inside its trace. More precisely, assume that at some time n, the
ORRW has crossed exactly all the edges of a sub-graph A ⊆ G (in particular
Sn ∈ A). Then, from time n and until it exits the sub-graph A, the ORRW
behaves as the random walk on the electrical network G with conductances
given by

c(e) := 1 + δ1{e∈A}. (2.5)

In particular, when δ is large, the probability to choose a non-reinforced edge
is small. Thus, informally, one can visualize the walk as “bumping” on the
boundary of its trace many times before exiting, and so it should “mix” a
little more than the usual random walk. This remark leads to a key idea which
originates from Vervoort [16]: when δ is large, the distribution of the exit edge
gets close (locally, in some sense) to the uniform measure on the boundary ∂eA.

In this subsection, we give two results in this direction that concern the
distribution of the exit edge. They are stated in term of the random walk on the
electrical network (2.5) but they translate readily to the ORRW as explained
above. The first result states that two edges on the boundary which are not too
far away have approximately the same probability to be chosen as the next exit
edge.

Proposition 2.5. Let A be a finite connected sub-graph of a graph G. Fix δ > 0
and consider the electrical network on G with conductances c(e) := 1+ δ1{e∈A}.
Let (Sn)n≥0 denotes a random walk on this electrical network and define σ as
the first time the walk exits the sub-graph A:

σ := inf{n ≥ 1 : (Sn−1, Sn) ∈ ∂eA}. (2.6)

For any f1, f2 ∈ ∂eA, and for any a ∈ A, we have

|Pa[(Sσ−1, Sσ) = f1]− Pa[(Sσ−1, Sσ) = f2]| ≤ dA(f−1 , f
−
2 )

1 + δ
. (2.7)

Proof. Consider the finite connected graph A∆ whose vertex set is A ∪ {∆},
with ∆ an additional cemetery vertex, and whose edge set consists of all the
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original edges in A plus, for each e ∈ ∂eA, one additional edge between e− and
∆. The edges inside A are assigned weight 1 + δ whereas the edges adjacent
to ∆ are assigned unit weight. Note that this construction may create multiple
edges between some vertex in A and ∆.

Let f1, f2 ∈ ∂eA with tails x1 = f−1 and x2 = f−2 . By construction, the law
of S up to time σ, matches the law of the random walk on the network A∆, up
to the hitting time of ∆. Thus, according to Proposition 2.1 and using Ohm’s
law, for any a ∈ A, we have

Pa[(Sσ−1, Sσ) = fi] = i(fi) = c(fi)
(
v(xi)− v(∆)

)
= v(xi),

where v is the voltage at xi when a unit current i flows from a to ∆. By
definition there exists a path of length dA(x1, x2) inside A going from x1 to x2

and composed of edges with conductance 1 + δ. Applying Ohm’s law along this
path and using (2.4), we find that

|v(x1)− v(x2)| ≤ dA(x1, x2)

1 + δ
,

and the result follows.

The proposition above is fairly general since it does not make any assumption
on the graph G (it need not be of cylinder type). However, as time increases, so
does the size of the boundary of the trace of the walk. Thus, without additional
information on the distribution of the exit probabilities, the bound (2.7) applied
to the ORRW becomes mostly useless when the number of possible exit edges
becomes much larger than δ .

In order to keep (2.7) relevant, we need to control the number of exit edges
which have a non negligible probability of being chosen and show that they are
o(δ). This estimate which is missing from Vervoort’s paper is the purpose of the
next proposition. Unlike Proposition 2.5, it is specific to cylinder graphs.

Proposition 2.6. Let A be a finite connected sub-graph of G = Z × Γ where
Γ is a finite connected graph. Fix δ > 0 and consider the random walk S on
the electrical network G with conductances c(e) := 1 + δ1{e∈A}. Fix a ∈ A and
suppose that there exist d integers {s1, s2, . . . , sd} and r such that

1. ā < s1 < · · · < sd < r.
2. For each i ∈ {1, . . . , d}, there exist x ∈ ∂vA with x̄ = si (there is an exit

edge at each level).

Recall that σ defined by (2.6) denotes the first time the walk exits the sub-graph
A and that Hr denotes the first time it reaches level r. We have

Pa
(
Hr < σ

)
≤ 5 exp

(
− 1

44|Γ|3

(
d2

1 + δ

) 1
3

)
(2.8)

The proposition above tells us that the random walk on the network (2.5)
cannot travel too far away horizontally without exiting its trace. More precisely,
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the number of incomplete levels it can cross before exiting is (at most) of order√
δ. This means that, for the ORRW, only the exit edges belonging to the nearest√
δ incomplete levels have to be taken into account. But then, there are no more

than |Γ|2
√
δ � δ such exit edges (because the underlying graph G is a cylinder).

Thus, we are now in the case where we can use Proposition 2.5 to control the
exit probabilities.

Let us also remark that the ratio d2/(1 + δ) in (2.8) is not surprising because
the walk on any sub-graph A of G = Z × Γ is diffusive. Thus, we can expect
that it spends a time of order d2 inside a slice of diameter d. On the other
hand, each time the walk visits a site on the boundary of A, it has a probability
proportional to 1/(1 + δ) to exit it at the next step. This heuristic is simple
but making it rigorous is challenging because the upper bound (2.8) needs to
hold uniformly on all possible sub-graph A. The proof we present here is rather
convoluted and will by carried out at the end of the next subsection.

2.4. Proof of Proposition 2.6

In this section, we need to consider random walks on different graphs. In order
to distinguish between these processes, we will use super-script that refer to the
underlying graph. For instance, given a sub-graph A of G, probabilities relating
to a random walk on A will be denoted by PA(·) whereas we will keep the usual
notation P(·) for a random walk on the whole graph G.

In everything that follows, Γ denotes a finite connected graph. We start with
a simple lemma which bounds the return time to a given vertex on the same
level as the starting position for the simple random walk on Z× Γ.

Lemma 2.7. Consider the simple random walk on G = Z × Γ. Let a, b ∈ G
such that ā = b̄. Recall that Hb denotes the hitting time of vertex b. We have

Pa
(
Hb ≤ 46|Γ|6

)
≥ 1

2
.

Recall that, for a subgraph A ⊂ G, ∂vA, defined in (2.2), denotes the set
of vertices of A which are adjacent to an edge outside A. Since we can couple
the simple random walk on G and the simple random walk restricted on A so
that they coincide until they reach a vertex of ∂vA, the previous lemma directly
entails

Corollary 2.8. Let A be a sub-graph of G = Z×Γ. Consider the simple random
walk on A, i.e. on the network G with conductances c(e) = 1{e∈A}. For any
a ∈ A such that ∂vA contains at least one vertex at level ā, we have

PAa
(
H∂vA ≤ 46|Γ|6

)
≥ 1

2
.

Proof of Lemma 2.7. Without loss of generality, we can assume that ā = b̄ = 0.
Fix L = 44|Γ|3 and consider the graph GL := [|−L,L|]×Γ on which we put unit
conductances (i.e. we are considering the SRW on the graph). Noticing that the
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number of oriented edges in GL is bounded by (2L + 1)|Γ|(|Γ| − 1) + 4L|Γ| ≤
4L|Γ|2, Proposition 2.4 (the commute-time identity) shows that

EGLa (Hb) ≤ 4L|Γ|2RGL(a↔ b).

Furthermore, the effective resistance between a and b is bounded by the graph
distance between those two vertices. This may be checked, for instance, from
Rayleigh’s monotonicity principle (Proposition 2.3) by putting null conduc-
tances everywhere except on a geodesic path between the two vertices. Since
a and b are on the same level, we deduce that EGLa (Hb) ≤ 4L|Γ|3. Set T :=
42L|Γ|3 = 46|Γ|6. Using Markov’s inequality, we find that

PGLa (Hb ≤ T ) ≥ 3

4
.

On the other hand, if S denotes a simple random on Z starting from 0, an
application of the reflection principle shows that

P
(

max
k≤T
|Sk| ≥ L

)
= P

(
max
k≤T
|Sk| ≥ 4

√
T
)
≤ 4P

(
ST ≥ 4

√
T
)
≤ 4

E[S2
T ]

(4
√
T )2

=
1

4

Thus, the previous inequality shows that the probability that the simple random
walk on GL starting from a hits level L or −L before time T is at most 1/4. But,
until this happens, the random walks on G and on GL coincide so we conclude
that

Pa (Hb ≤ T ) ≥ PGLa (Hb ≤ T < H−L ∧HL) ≥ PGLa (Hb ≤ T )− 1

4
≥ 1

2
.

Proposition 2.9. Let A be a finite connected sub-graph of G = Z × Γ. Fix
a ∈ A, and d ≥ 1. Let S = {s1, s2, . . . , sd} and r be integers such that

ā < s1 < s2 < . . . < sd < r, and A ∩ ({r} × Γ) 6= ∅.

Consider the simple random walk S on A started from a. Recall that Hr denotes
the hitting time of the level set at r. This stopping time is a.s. finite since A is
finite and has a vertex at level r. Let LrS be the total time spent on the levels of
S before reaching level r:

LrS := |{n ≤ Hr : S̄n ∈ S}|

We have

PAa
(
LrS < k

)
≤ |Γ|

√
8k

d
for any k ≥ 1.

Proof. We construct a modified electrical network Ã in the following way. First,
we put unit conductances on each edge of A. Then, we glue all vertices of A
at the final height r together and call the resulting vertex b. We also fix η > 0
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rs3s2s1

G

b

a

z

A
a

η

Fig 1. Example of a modified graph Ã on G = Z × {1, 2, 3, 4} with d = 3. The mod-
ification are marked in red. The fat edges have conductance 1 whereas the thin edges
adjacent to z have conductance η.

and create a new vertex z connected by an edge of conductance η > 0 to every
vertices x ∈ A such that x̄ ∈ S (c.f. figure 1 for an illustration). Consider now
a unit current i flowing from a to {b, z}. Let

i(b) :=
∑
x∼b

i(x, b),

be the total current flowing into the sink vertex b. For k = 1, . . . , d, let also

ik :=
∑

x∈A : x̄=sk

i(x, z),

denotes the total current flowing from level sk to z. From a probabilistic point
of view, i(b) is the probability that the walk on the electrical network Ã started
from a hits b before hitting z. Similarly, ik is the probability that the walk hits
z before b while exiting through one of the edges added at level sk. We now
show that

ik ≥
(d− k + 1)ηi(b)

|Γ|2
for any k = 1, . . . , d. (2.9)

To do so, we will need the following lemma which provides a decomposition of
a flow without cycle on arbitrary graphs.

Lemma 2.10. Consider a finite connected graph A and fix three vertices a, b, z ∈
A. Let i be a flow from a to {b, z} such that

1. For all x ∈ A, we have i(a, x) ≥ 0 (source) and i(z, x) ≤ 0 and i(b, x) ≤ 0
(sinks).

2. the flow i does not have any cycle.

Then, there exist a flow j on A from a to b such that

(a) j(x, b) = i(x, b) for any x ∈ A. Therefore, j is a flow of total strength
‖j‖ = j(b) = i(b) ≤ ‖i‖.

(b) j(x, z) = 0 for all x ∈ A (nothing flows in z).
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(c) For any x, y ∈ A, i(x, y)j(x, y) ≥ 0 (the flows i and j have the same
direction).

(d) For any x, y ∈ A, |j(x, y)| ≤ |i(x, y)|.
(e) For any x, y ∈ A, |j(x, y)| ≤ ‖j‖ = i(b).

(here and below, we use the convention that, for any flow, j(x, y) = 0 if x and
y are not neighbors).

We postpone the proof of the lemma to finish that of the proposition. Fix
k ∈ {1, . . . , d} and 0 < ε < 1. Since the current i fulfills assumptions 1. and 2.
of the lemma, we can consider the flow j as above and use it to create a new
unit flow ik,ε from a to {b, z} where some of the original current flowing into b
is diverted toward z by going through the edges of conductance η added at level
sk. More precisely, we set, for x, y ∈ A− {z},

ik,ε(x, y) :=

{
i(x, y) if both x̄ ≤ sk and ȳ ≤ sk
i(x, y)− εj(x, y) if either x̄ > sk or ȳ > sk,

and

ik,ε(x, z) := −ik,ε(z, x) :=


i(x, z) if x̄ 6= sk.

i(x, z) + εj(x, ~x) if x̄ = sk where ~x is the right neighbour of x

at level sk + 1 provided the edge {x, ~x} exists.

It is clear that ik,ε satisfies the flow property. In words, the flow ik,ε coincides
with i for levels below or equal to sk and coincides with i − εj for levels above
sk + 1. In order to maintain the flow node’s law, the missing flow going through
the cut-set of horizontal edges between levels sk and sk + 1 is re-routed through
the edges at level sk that link to z. Let E(i) (resp. E(ik,ε)) denotes the energy
dissipated by i (resp. ik,ε). We estimate

∆ := E(ik,ε)− E(i)

=
1

2

∑
x,y∈A

x̄>sk or ȳ>sk

[(
i(x, y)− εj(x, y)

)2 − i(x, y)2
]

+
1

η

∑
x∈A : x̄=sk

[(
i(x, z) + εj(x, ~x)

)2 − i(x, z)2
]

(2.10)

Here the factor 1
η corresponds to the resistance of the added edges. Thanks to

properties (c) and (d) of the lemma, each term in the first sum is non-positive
so we can upper bound this sum by keeping only the terms corresponding to
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edges of the form (x, ~x) where x̄ = sl for some k ≤ ` ≤ d:

1

2

∑
x,y∈A

x̄>sk or ȳ>sk

[(
i(x, y)− εj(x, y)

)2 − i(x, y)2
]
≤

d∑
`=k

∑
x∈A
x̄=s`

[(
i(x, ~x)− εj(x, ~x)

)2 − i(x, ~x)2
]

= −2ε

d∑
`=k

∑
x∈A
x̄=s`

i(x, ~x)j(x, ~x) +O(ε2).

Now, since the flow j has strength i(b) and there are at most |Γ| edges in the
cutset of edges linking level s` to s` + 1, there must exist some x ∈ A with

x̄ = s` such that |i(x, ~x)| ≥ |j(x, ~x)| ≥ i(b)
|Γ| . Thus, we deduce that

1

2

∑
x,y∈A

x̄>sk or ȳ>sk

[(
i(x, y)− εj(x, y)

)2 − i(x, y)2
]
≤ −2ε(d− k + 1)i(b)2

|Γ|2
+O(ε2).

(2.11)
On the other hand, using the fact that i(x, z) ≥ 0 and property (e), the second
term in (2.10) can be upper bounded by:

1

η

∑
x∈A : x̄=sk

[(
i(x, z) + εj(x, ~x)

)2 − i(x, z)2
]

=
2ε

η

∑
x∈A : x̄=sk

i(x, z)j(x, ~x) +O(ε2)

≤ 2εi(b)

η

∑
x∈A : x̄=sk

i(x, z) +O(ε2).

=
2εi(b)ik

η
+O(ε2). (2.12)

According to Thomson’s principle, the unit current has minimal energy among
all unit flows hence ∆(ε) ≥ 0 for all ε. Combining (2.10), (2.11) and (2.12), we
conclude that

−2ε(d− k + 1)i(b)2

|Γ|2
+

2εi(b)ik
η

+O(ε2) ≥ 0

which finally yields (2.9) by letting ε tend to 0.
The remaining of the proof is rather straightforward. First, we sum (2.9) for

k = 1, . . . , d. Since i is a unit current, we find that

1 = i(b) +

d∑
k=1

ik ≥
d∑
k=1

ik ≥
ηi(b)

|Γ|2
d∑
k=1

(d− k + 1) ≥ ηi(b)d2

2|Γ|2
,

and therefore, recalling the probabilistic interpretation of i(b), we have proved
that

PÃa
(
the random walk on Ã hits b before z

)
≤ 2|Γ|2

ηd2
. (2.13)



D. Kious, B. Schapira and A. Singh/Once reinforced random walk on Z× Γ 14

Let us now consider the natural coupling of the random walks X (resp. X̃)
starting from a on the electrical networks A (resp. Ã) such that both walks
coincide until X̃ hits {z, b}. More precisely, we construct both walks by first
tossing a (biaised) coin at each step to decide whether X̃ exits by an edge
of conductance η when the coin gives a ”head” (and such an edge exist) and
otherwise move the two walks together. Recall that LrS is the total time spent
over the vertices at levels belonging to S before hitting level r (i.e. hitting b).
Furthermore, the vertices corresponding to levels in S are, by construction, the
vertices that share an edge of conductance η with z. Thus, we have

PAa
(
LS < k

)
≤ PÃa

(
X̃ hits b before z

)
+P
(
there is a “head” in the first k coin throws

)
.

(2.14)
Note that, each time X̃ is on a vertex that has an edge of conductance η, there
is a probability at most η

1+η that the associated coin returns ”head” (because

there is also at least one adjacent edge with unit conductance). Thus, we get

P
(
there is a“head” in the first k coin throws

)
≤ 1− (1− η

1 + η
)k ≤ ηk. (2.15)

Combining (2.13), (2.14) and (2.15) and choosing η =
√

2|Γ|
d
√
k

, we conclude that

PAa
(
LrS < k

)
≤ 2|Γ|2

ηd2
+ ηk =

√
8k|Γ|
d

,

which completes the proof of the proposition.

Proof of Lemma 2.10. First, let us notice that we can discard all the edges e
on which i(e) = 0, keeping only the connected component of A that contains
{a, b, z}. This is because j will also be zero on edges where i is zero. We now
assume that i is non-zero on all edges of A. Then, the flow i induces an oriented
graph structure on A so we can speak of “outgoing” and “incoming” edges from
a vertex. We are going to construct j starting from {b, z} and going backward
with respect to the graph orientation. At each step of the exploration process,
we keep track of a partition of the vertices into inactive, active and completed
vertices where

• An active vertex has the flow j defined on some outgoing edges but on no
incoming edge.

• An inactive vertex is such that the flow j is not yet defined on any adjacent
edge.

• A completed vertex is such that the flow j is already defined on all its
adjacent edges.

To begin, we fix j = 0 on all edges adjacent to z and j = i on all edges adjacent
to b. This is possible because there is no edge (with non-zero flow) between
z and b thanks to assumption 1. Hence j satisfies (a) and (b). Now, we set
{completed} = {b, z} and {active} = {neighbours of b and z} while all other
vertices are inactive. We show that, at each step, we can transform an active
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vertex into a complete one (possibly turning inactive vertices into active ones in
the process) while constructing a flow j which, restricted to the set of completed
vertices, still satisfies all the required conditions of the lemma.

Indeed, suppose that we have performed some steps of our exploration process
and have our sets of active, inactive and completed vertices. We claim that there
must exist an active vertex x such that j is already defined on all of its outgoing
edges. Indeed, if this was not the case, we could start from any active vertex
and then recursively construct a path that follows the graph orientation and on
which j is not defined. But then, such a path is either infinite or contains cycles.
As A is finite, this path has cycles, which contradicts the initial assumption
that i has no cycle. So, let x be such a vertex. The flow j already defined on the
sub-graph spanned by the completed vertices has strength i(b). In particular,
the sum of j on the outgoing edges of x is at most i(b). It is also smaller, by
construction, than the sum of i on the incoming edges of x. Thus, it is now clear
that we can fix j on the incoming edges of x in such way that (c), (d), (e) hold
true. There are several ways to do it. For instance, we can set j(z, x) := αi(z, x)
for any incoming edge (z, x) where α is the ratio of the total outgoing j-flow over
the total incoming i-flow. Finally, we move x to the set of completed vertices and
activate all its adjacent currently inactive vertices. This complete the induction
step and the proof of the lemma.

Remark 2.11. Under the hypotheses of Lemma 2.10, the function i− j is also
a flow which satisfies all the properties (a) - (e) when exchanging the roles of b
and z. In particular, any flow i that satisfies the hypotheses of the lemma can
be written as the superposition of two flows jb and jz such that

(a) i = jb + jz.
(b) jb is a flow from a to b and no flow enters nor exits z.
(c) jz is a flow from a to z and no flow enters nor exits b.
(d) The flows i, jb and jz have the same sign on all edges.

As already noticed during the proof of the lemma, this decomposition is not, in
general, unique. In particular, when i is a current, the flows jb and jz need not
be currents themselves.

Proposition 2.9 shows that the time spent on any d distinct level sets is of
order (at least) d2 which is the correct diffusive scaling for the random walk
on a sub-graph A of Z× Γ but it provides only a polynomially decaying upper
bound. However, it is not difficult to bootstrap the previous result to get an
exponential upper bound which is still homogeneous in d/

√
k.

Corollary 2.12. Under the assumptions of Proposition 2.9, we have, for any
k, d ≥ 1,

PAa
(
LrS < k

)
≤ 3 exp

(
− d

16|Γ|
√
k

)
.

Proof. Let c := 2e
√

8|Γ| and ` := d
c
√
k

. We split the set {s1, . . . , sd} in b`c
groups, each containing at least bd/`c consecutive levels. Thus, in order for the
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local time LrS to be smaller than k, it has to be smaller than this value on each
group. Making use of the Markov property at the time of first entrance in each
group and applying repeatedly Proposition 2.9, we find that

PAa
(
LrS < k

)
≤

(√
8k|Γ|
bd/`c

)b`c
≤

(√
8k|Γ|
c
√
k

2

)`−1

= e
− d

c
√
k

+1 ≤ 3e
− d

16|Γ|
√
k .

We can now complete the proof of Proposition 2.6.

Proof of Proposition 2.6. Set c := 46|Γ|6 which is the constant appearing in
Corollary 2.8. Let S := {x1, . . . , xd} and define by induction the sequence of
stopping time (Ti)i≥0 by T0 = 0, and

Ti+1 := inf{n > Ti + c : S̄n ∈ S} for i ≥ 1,

with the usual convention that inf ∅ = +∞. Let Ei be the event that the walk
does not cross any edge of ∂eA during the time interval [Ti, Ti+1 − 1]:

Ei := {Ti <∞ and there does not exist n ∈ [Ti, Ti+1) such that (Sn, Sn+1) ∈ ∂eA}.

We can couple the random walk on the electrical network (2.5) with the simple
random walk on the subgraph A up to time σ (the time when the walk on the
electrical network leaves A). Thus, we deduce that, for any fixed n,

Pa
(
Hr < σ

)
≤ Pa

(
Hr < σ and Hr < Tn

)
+ Pa

(
Tn ≤ σ

)
≤ PAa

(
Hr < Tn

)
+ Pa

(
n−1⋂
i=1

Ei

)
. (2.16)

On the one hand, before time Tn, the simple random walk on A cannot visit
levels of S more than cn times. Therefore, according to Corollary 2.12, we have

PAa
(
Hr < Tn

)
≤ PAa

(
LrS < cn

)
≤ 3 exp

(
− d

16|Γ|
√
cn

)
. (2.17)

On the other hand. Each time the walk on the electrical network (2.5) visits a
site of ∂vA, there is, at least one adjacent exit edge so it has probability at least

1
1+|Γ|(δ+1) to cross an edge of ∂eA at the next step. Combining this fact with

Corollary 2.8 and using the strong Markov property, we deduce that,

PAa
(
Ei
∣∣E1, . . . , Ei−1

)
≤ 1− 1

2(1 + |Γ|(δ + 1))
≤ 1− 1

4|Γ|(δ + 1)

which implies,

Pa

(
n−1⋂
i=1

Ei

)
≤
(

1− 1

4|Γ|(δ + 1)

)n−1

≤ exp

(
− n

8|Γ|(δ + 1)

)
(2.18)
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Thus, combining (2.16), (2.17), (2.18), we find that

Pa
(
Hr < σ

)
≤ 3 exp

(
− d

16|Γ|
√
cn

)
+ exp

(
− n

8|Γ|(δ + 1)

)
. (2.19)

Finally, setting n = bxc with x = d2/3(1+δ)2/3

8|Γ|2 and recalling the exact value of c,

we conclude that

Pa
(
Hr < σ

)
≤ 3 exp

(
− d

16|Γ|
√
cx

)
+ 2 exp

(
− x

8|Γ|(δ + 1)

)
= 5 exp

(
− 1

44|Γ|3

(
d2

1 + δ

) 1
3

)
.

2.5. Auxiliary results

Proposition 2.6 gives a stretched exponential upper bound for the probability of
crossing d levels without exiting a reinforced sub-graph. However, this bound is
meaningful only for d� δ1/2 (i.e. when the probability goes to 0). In the next
section, we will need a bound of this same probability in the regime d ≈ δ1/4

(when the probability goes to 1). But one can still use the corollary 2.12, and
adapt the proof of Proposition 2.6 to cover our needs. Note that it will be
convenient now to state the results with a site a on the right of level 0, and to
consider the hitting time of level 0 instead of level r, but of course this is strictly
equivalent to the previous formulation.

Lemma 2.13. Let d ≥ 1, and A be a connected subgraph of {0, . . . , d}×Γ, such
that for any i ∈ {0, . . . , d} there is at least one site at level i in ∂vA, and let
a ∈ A, with a = d. Define the random walk S and the exit time σ from A, as in
Proposition 2.6. There exist positive constants c and C (not depending on any
parameter), such that for any d ≥ C|Γ|8, and d3/2 ≤ δ ≤ (2d)5,

Pa[σ < H0] ≥ c · d
3/2

|Γ|6δ
.

Proof. Let
L := |{0 ≤ n < H0 ∧ σ : Sn ∈ ∂vA}|,

be the time spent on ∂vA before time H0 ∧ σ. Set N = d3/2|Γ| and L :=
N/(47|Γ|6), and note that the hypothesis on d implies that L ≥ 1, at least for
C large enough (not depending on any parameter). Then decompose

Pa(H0 ≤ σ) ≤ Pa(H0 ≤ N ∧ σ) + Pa(σ ∧H0 > N, L ≤ L) + Pa(L > L).
(2.20)

Note that the random walk S can be coupled with the simple random walk on
A (which by definition never exits A), in such a way that they coincide up to
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the time σ. Therefore the first probability on the right-hand side of (2.20) can
be bounded using Corollary 2.12, and we get, for C large enough,

Pa(H0 ≤ N ∧ σ) ≤ PAa (H0 ≤ N) ≤ 3 exp(− d1/4

16|Γ|3/2
) ≤ 1

6
· d3/2

48|Γ|6δ
. (2.21)

Using now, as in the proof of Proposition 2.6, that each time the process is on
a vertex of ∂vA, it has probability at least 1

1+|Γ|(1+δ) to exit A, we get

Pa(L > L) ≤
(

1− 1

1 + |Γ|(1 + δ)

)L
≤ 1− d3/2

2 · 47|Γ|5(1 + |Γ|(1 + δ))
≤ 1− d3/2

3 · 47|Γ|6δ
,

(2.22)

using for the second inequality that (1 − ε)n ≥ 1 − nε/2, when ε ≤ 1/(2n)
together with the hypothesis on d and δ, and using for the last one that C is
large enough. Finally, Corollary 2.8 and the fact that A does not contain any
level set show that, under the event {σ ∧ H0 ≥ N}, L is stochastically larger
than a Binomial random variable with number of trials N/(46|Γ|6) = 4L, and
probability of success 1/2. Then, again Hoeffding’s inequality yields, choosing
C large enough,

Pa[H0 ∧ σ ≥ N, L ≤ L] ≤ exp(−L
2

) ≤ exp(−2
d3/2

48|Γ|5
) ≤ 1

6
· d3/2

48|Γ|6δ
. (2.23)

The lemma follows from (2.20), (2.21), (2.22), and (2.23), choosing c = 4−8.

As a consequence we obtain the following result.

Corollary 2.14. Under the setting of Lemma 2.13, one has for some constant
C ′ > 0,

Pa
[
S̄σ = d+ 1 | σ < H0

]
≤ C ′ · |Γ|

5

d3/4
.

Proof. Denote by eσ the random exit edge (Sσ−1, Sσ), and let F be the set of
horizontal edges in ∂eA whose tail is on level d and head on level d + 1. Now
fix some f ∈ F , and denote by E(f) the set of edges in ∂eA, whose tail is at
(intrinsic) distance smaller than d3/4/|Γ|2 from f− in A. We claim that E(f)
contains at least d3/4/(2|Γ|3) edges. To see this, fix any non intersecting path in
A of length d3/4/|Γ|2 starting from f−. The fact that any level set contains at
least one site in ∂vA, and that the diameter in Γ is bounded by |Γ| − 1, imply
that to every 2|Γ| consecutive vertices in the path one can associate in a one to
one way an edge in ∂eA whose tail is at distance smaller than |Γ| − 1 from this
path, and this yields our claim on the size of E(f). Now Proposition 2.5 implies
that for any e ∈ E(f), one has

|Pa(eσ = f)− Pa(eσ = e)| ≤ d3/4

|Γ|2|(1 + δ)
.



D. Kious, B. Schapira and A. Singh/Once reinforced random walk on Z× Γ 19

Likewise, by conditioning first on the position of the walk at time H0, we also
have

|Pa(eσ = f,H0 < σ)− Pa(eσ = e,H0 < σ)| ≤ d3/4

|Γ|2|(1 + δ)
.

Therefore, by triangle inequality,

|Pa(eσ = f, σ < H0)− Pa(eσ = e, σ < H0)| ≤ 2
d3/4

|Γ|2|(1 + δ)
.

Combining this with the result of Lemma 2.13, we obtain

|Pa(eσ = f | σ < H0)− Pa(eσ = e | σ < H0)| ≤ 2
|Γ|4

cd3/4
.

As a consequence, one has either Pa(eσ = f | σ < H0) ≤ (4/c) · |Γ|4d−3/4, or

1 ≥
∑

e∈E(f)

Pa(eσ = e | σ < H0) ≥ d3/4

2|Γ|3

(
Pa(eσ = f | σ < H0)− 2

|Γ|4

cd3/4

)

≥ d3/4

4|Γ|3
Pa(eσ = f | σ < H0).

The result follows since F contains at most |Γ| edges.

3. D-walls

In this section we consider the ORRW on G = Z×Γ, which we recall we denote
by (Xn)n≥0. We also recall that its range Rn (which we will also sometimes
write as R(n)) is the graph consisting of all vertices visited up to time n and
all edges crossed by the walk up to this time (in one or the other direction).

We define now the notion of D-wall created by the ORRW, which extends
the definition of walls used by Vervoort in [16] (the latter being just 1-walls).
The reason of this new definition is that we want to ensure the typical spacing
between two consecutive walls being of polynomial order in the size of Γ (instead
of exponential order when using the simpler notion of wall from [16]).

Given positive integers x and D, we say that level x begins a D-wall if the
walk S visits a complete level set on the right of x before reaching level x+D:

there exists y ∈ {x, x+ 1, . . . , x+D − 1} such that {y} × Γ ⊂ R(Hx+D).

To simplify the discussion below, we use the convention that x also begins a D-
wall when Hx+D =∞. The usefulness of D-walls will appear more clearly later.
The basic idea is that they enable us to control the intrinsic distance within the
range in order to match pairs of (non-reinforced) oriented edges with opposite
direction that are close together. Then Propositions 2.5 and 2.6 show that the
sum of their contributions to the drift part in the martingale that will be defined
later in (4.1) is negligible, ensuring recurrence. First, we must check that these
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walls occur often enough, at least when D is suitably chosen as a function of δ.
This is precisely the purpose of the next proposition, which is the main result
of this section (let us stress for ease of the reading that D will later be taken to
be of order δ1/4).

Proposition 3.1. There exist a constant C > 0, such that for any D ≥ C|Γ|10,
and D3/2 ≤ δ ≤ D5, one has for any x ≥ 0, almost surely on the event {Hx <
∞},

P[x begins a D-wall | FHx ] ≥ 1

2
.

We first need an intermediate lemma, which follows from the results proved
in Subsection 2.5.

Lemma 3.2. Consider the ORRW (Xn)n≥0, starting from some vertex at level
smaller than 0. Assume that at some time n0 < Hd+1, one has X̄n0 = d, and
that none of the level sets i, with 0 ≤ i ≤ d, is contained in Rn0

. Assume further
that the hypotheses on d, δ and |Γ| from Lemma 2.13 are satisfied. Let

σ1 := inf{n ≥ n0 : (Xn−1, Xn) ∈ ∂eRn−1, 1 ≤ X̄n−1 ≤ d, and 1 ≤ X̄n ≤ d},

and
σ2 := inf{n ≥ n0 : X̄n = d+ 1} = Hd+1.

Then with the same constant C ′ > 0 as in Corollary 2.14, one has

P[σ2 < σ1 | Fn0
] ≤ C ′|Γ|5

d3/4
.

Proof. Define (H0,i)i≥0, and (Hd,i)i≥0 recursively by Hd,0 = 0, and for i ≥ 0,

H0,i := inf{n ≥ Hd,i : X̄n = 0},

and
Hd,i+1 := inf{n ≥ H0,i : X̄n = d}.

Then the Markov property and Corollary 2.14 give

P[σ2 < σ1 | Fn0
] =

∑
i≥0

P[Hd,i < σ2 < σ1 ∧Hd,i+1 | Fn0
]

=
∑
i≥0

P[Hd,i < σ2 ∧ σ1 < H0,i, S̄σ2∧σ1
= d+ 1 | Fn0

]

≤ C ′|Γ|5

d3/4

∑
i≥0

P[Hd,i < σ2 ∧ σ1 < H0,i | Fn0
] ≤ C ′|Γ|5

d3/4
.

We are now in position to give the proof of Proposition 3.1.
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Proof of Proposition 3.1. Denote by τ the first time when a level set in {x, . . . , x+
D−1}×Γ is covered, and set for k ≥ 0, τk := Hx+k+bD/2c. Then for each k ≥ 0,
define (τk,i)i≥0 and (σk,i)i≥0 by τk,0 := τk, and for any i ≥ 0,

σk,i := inf{t > τk,i : (Xt−1, Xt) ∈ ∂eRt−1 and x+ 1 ≤ X̄t−1 ≤ x+ k + bD/2c},
τk,i+1 := inf{σk,i ≤ t < τk+1 : X̄t = x+ k + bD/2c}.

Note that {τk,i+1 =∞} ∩ {τk+1 <∞} = {σk,i = τk+1 <∞}. Finally, define

N(k) = inf{i ≥ 1 : τk,i =∞} =

∞∑
i=0

1{τk,i <∞}.

For each k ≥ 0, the random variable N(k) counts how many times X starts from
k, and crosses a new edge with tail at a level between x+ 1 and x+ k+ bD/2c,
before τk+1.

Now, letting d = bD/2c, Lemma 3.2 implies that for any k, i ≥ 0, almost
surely,

P[τk,i+1 =∞ | Fτk,i ]1{τk,i < τ} ≤ C ′|Γ|5

d3/4
≤ 1

10|Γ|2
,

using the hypothesis that D ≥ C|Γ|10, and choosing C large enough, for the
last inequality. Hence, if no level set is covered by time τk+1, N(k) stochas-
tically dominates a geometric random variable with parameter 1/(10|Γ|2). On
the other hand, by definition, the number of edges in {x, . . . , x + D − 1} × Γ,
which are crossed before time Hx+D is larger Σ := N(1) + · · ·+N(bD/2c). The
above discussion shows that on the event {τ > Hx+D}, this sum stochastically
dominates the sum of bD/2c, i.i.d. Geometric random variables with parameter
1/(10|Γ|2). Thus it follows from Bernstein’s inequality that with probability at
least 1/2, Σ is larger than 5|Γ|2bD/2c. However, the latter quantity is always
larger than the total number of edges on {x, . . . , x+D} × Γ, leading to a con-
tradiction. We conclude that with probability at least 1/2, one has τ < HD, as
wanted.

Remark 3.3. Proposition 3.1 shows the existence of D-walls at typical distance
of order a constant, when D is a power of δ, and δ is polynomially large with
respect to |Γ|. However, if one does not care about polynomial bounds, a much
simpler argument gives a weaker exponential bound. Indeed it is easy to check
that with a probability of order exp(−|Γ|3), a level set is entirely covered before
the next level is discovered, in other words that a 1-wall begins.
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4. Gambler’s ruin type estimates

4.1. A martingale

We consider now {Xn}n≥0 the ORRW on Z × Γ starting from some vertex at
level 0. We then define the process

Mn := X̄n + δ ·
n−1∑
k=0

(X̄k+1 − X̄k) 1{{Xk, Xk+1} /∈ Ek}, (4.1)

where Ek, defined in (1.1), is the set of edges crossed by time k. The following
fact was observed by Vervoort [16]1.

Lemma 4.1. The process (Mn)n≥0 is an (Fn)n≥0-martingale.

Proof. Assume that, at time n ∈ N, we have Xn = s = (x, γ) ∈ Z × Γ. If
Sn+1 ∈ {x}×Γ, thenMn+1 = Mn. Thus, to compute the conditional expectation
of Mn+1 −Mn, we only need to consider the cases when Xn+1 = (x − 1, γ) or
Xn+1 = (x + 1, γ). Denoting e1 = {s, (x + 1, γ)} and e2 = {s, (x − 1, γ)}, we
obtain

E [Mn+1 −Mn| Fn] =
(1 + δ1{e1 ∈ En})(1 + δ1{e1 /∈ En}) + (1 + δ1{e2 ∈ En})(−1− δ1{e2 /∈ En})∑

z:z∼s
(δ1{{s, z} ∈ En}+ 1)

= 0.

Therefore, (Mn)n is a martingale.

4.2. Gambler’s ruin estimates

Here we prove gambler’s ruin type estimates for the (horizontal coordinate of
the) ORRW on Z× Γ. These will be our main tools for the proofs of Theorems
1.1 and 1.2. We first present a relatively simple form of the result, Proposition
4.2, which will be sufficient for the proof of Theorem 1.1 and Proposition 6.1.
Then we will give a slightly more precise and more effective version, Proposition
4.5, which is needed for the proof of Theorem 1.2. But first let us introduce some
new notation. For x ≥ 0, let

Hx,0 := inf{n ≥ Hx : X̄n = 0},

be the first return time to level 0 after time Hx. Here is our first result:

Proposition 4.2. There exists a constant C > 0, such that for any δ ≥ C|Γ|40,
almost surely for any x large enough, on the event {Hx <∞},

P[H2x < Hx,0 | FHx ] ≤ 1

210
.

1similar martingales related to other reinforcement schemes were also previously con-
structed by Davis [5].
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Remark 4.3. The exact value of the constant in the upper bound does not have
any serious meaning, the only reason for the choice of 2−10 is for convenience
for the proof of Proposition 6.1.

Proof. Fix some x > 0, and assume that Hx is finite. Then consider (σn)n≥0,
the successive times of visit of new edges after Hx. Formally σ0 = Hx, and for
n ≥ 1,

σn := inf{k > σn−1 : {Xk−1, Xk} /∈ Rk−1}.

Then set An := Rσn , which we recall we consider as a subgraph of G, where
the edges are those traversed by the walk, and let

Dn :=

n∑
k=1

(X̄σk − X̄σk−1)1(σk ≤ n),

be the total drift accumulated after Hx and before time n. For simplicity write
also τx := Hx,0 ∧H2x. Applying the optional stopping time theorem, and using
Lemma 4.1, we get

2x · P[H2x < Hx,0 | FHx ] + δ E[Dτx | FHx ] = x. (4.2)

Thus it amounts to estimate the expected value of the total drift accumulated
at time τx.

To this end, we will bound the expected drift at each visit of a new edge.
When both the tail and the head of the edge are on the same level, then the drift
is zero, so nontrivial contributions only come from horizontal edges. Informally
we need to show that the walk has at least as much chance (to the leading
order) to exit An through a directed edge e = (v, w) oriented positively, i.e.
such that w̄ = v̄ + 1, as through an edge oriented in the other direction. This
holds actually only up to small error terms which are of sub-linear order in δ.
Fortunately the latter are compensated by a strong drift equal to δ accumulated
each time the process arrives at a new level for the first time, which on the event
{H2x < Hx,0} happens exactly x times.

To be more precise, from now on, and in the whole section, we fix D = bδ1/4c.
Since we assume δ ≥ C|Γ|40, we have also D ≥ C1/4|Γ|10, so that by taking large
enough C one can apply the result of Proposition 3.1.

Now let z be the smallest positive integer such that z begins a D-wall, with
the notation of Section 3, and let D0 := z +D. Since D0 is almost surely finite
(as a consequence of Proposition 3.1), we can assume that x is larger than D0,
by taking larger x if necessary.

Next, for n ≥ 0, let

E+
n = {e = (v, w) ∈ ∂eAn : w̄ = v̄ + 1 and v̄ ∈ {D0, . . . , 2x− 2}} ,

and

E−n := {e = (v, w) ∈ ∂eAn : w̄ = v̄ − 1 and v̄ ∈ {D0, . . . , 2x− 1}} .
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Then we define an injective map ϕn : E−n → E+
n as follows. If e ∈ E−n , with

e− = (y, γ), we let ϕn(e) be the edge in E+
n , such that ϕn(e)− = (y′, γ), with

the largest possible y′ smaller than or equal to y. Such an edge necessarily
exists as soon as there exists a D-wall on the left of e, which we assumed.
Moreover, if z is the largest integer beginning a D-wall with z + D ≤ y, and
z′ is the smallest integer beginning a D-wall, which is larger than y, then one
has dAn(e−, ϕn(e)−) ≤ |Γ|(z′ + D − z), using again that the diameter in Γ is
bounded by |Γ| − 1. Note that a D-wall on the right of y might not have been
yet discovered at time σn. In this case one can just define z′ as the maximal
level reached at time σn, and the same bound for dAn(e−, ϕn(e)−) holds. We
also set Dn(e) := (z′ +D − z), with the above notation. Then we define a new
intrinsic distance between vertices: given some subgraph A ⊂ G = Z × Γ, and
for any v, w ∈ A, we let

d̃A(v, w) := #{i : v̄ ∧ w̄ ≤ i ≤ v̄ ∨ w̄, and level i is not contained in A}.

Next we define

Gn := E−n ∩ {e : d̃An(e−, Xσn) ≤ δβ and Dn(e) ≤ δα},

with α and β some constants satisfying 1/4 < α < 1/2 < β < 1, and α+β ≤ 7/8.
We also denote by en := (Xσn−1, Xσn), the n-th visited (directed) edge after
time Hx. Then set for n ≥ 0,

In := 1(σn = HXσn
),

the indicator function that a new level is discovered at time σn. One has, on the
event {σn < τx},

E
[
(Dσn+1

−Dσn)1({σn+1 ≤ τx}) | Fσn
]

≥ P [In+1 = 1, σn+1 ≤ τx | Fσn ]− P
[
ē+
n+1 = ē−n+1 − 1 ∈ {0, . . . , D0 − 1} | Fσn

]
−P[Dn(en+1) > δα | Fσn ]− P[d̃An(e−n+1, Sσn) > δβ | Fσn ]

−
∑
e∈Gn

(P [en+1 = e | Fσn ]− P [en+1 = ϕn(e) | Fσn ]) . (4.3)

The last sum above can be bounded using Proposition 2.5, which gives∑
e∈Gn

|P [en+1 = e | Fσn ]− P [en+1 = ϕn(e) | Fσn ] | ≤ 2|Γ|2 · δα+β−1,

since the number of edges in Gn is bounded by 2|Γ|δβ , and for any e ∈ Gn,
one has by the above discussion dAn(e−, ϕn(e)−) ≤ |Γ|δα. Moreover, the total
number of edges between levels 1 and 2x is bounded by 2x|Γ|2. Thus∑
n≥0

∑
e∈Gn

|P [en+1 = e | Fσn ]−P [en+1 = ϕn(e) | Fσn ] |1(σn < τx) ≤ 4x|Γ|4 δα+β−1.

(4.4)
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Likewise the number of edges oriented negatively between levels 0 and x0 is
bounded by |Γ|x0. Thus∑
n≥0

P
[
ē+
n+1 = ē−n+1 − 1 ∈ {0, . . . , D0 − 1} | Fσn

]
1(σn < τx) ≤ |Γ|D0. (4.5)

Using Proposition 2.6, and the hypothesis δ ≥ C|Γ|40, we obtain similarly by
taking larger C if necessary,∑

n≥0

P[d̃An(e−n+1, Sσn) > δβ | Fσn ]1(σn < τx) ≤ x · δ−1.

For the last remaining term in (4.3), let us denote by Lx and Lx,2x the sum
of the distances between two consecutive D-walls whose distance exceeds δα,
respectively between levels 0 and x and between levels x and 2x. First one has

E
[∑
n≥0

P[Dn(en+1) > δα | Fσn ]1(σn < τx)
∣∣∣FHx] ≤ |Γ|2 (Lx + E[Lx,2x | FHx ]) .

(4.6)
Moreover, Proposition 3.1 shows that the distance between two consecutive D-
walls is stochastically dominated by a geometric random variable with parameter
1/2, times D. Using that geometric random variables have exponential tail, we
get that almost surely, for all x large enough,

Lx ≤ x · δ−1 and E[Lx,2x | FHx ] ≤ x · δ−1. (4.7)

On the other hand∑
n≥0

P[In+1 = 1, σn+1 ≤ τx | FHx ] ≥ x · P[H2x < Hx,0 | FHx ], (4.8)

simply because on the event {H2x < Hx,0} the walk arrives exactly x times at
a new level for the first time.

Therefore, it follows from (4.3), (4.4), (4.5), (4.6), (4.7), and (4.8) that almost
surely for all x large enough,

E[Dτx | FHx ] ≥ x · P[H2x < Hx,0 | FHx ]− 8x |Γ|4 δα+β−1 − |Γ|D0.

Together with (4.2), it implies

P[H2x < Hx,0 | FHx ] ≤ 1

2 + δ
+ 8|Γ|4 δα+β−1 +

|Γ|D0

x
.

Then Proposition 4.2 follows, since α + β ≤ 7/8 and δ ≥ C|Γ|40, and thus by
choosing C large enough, one can make the sum of the two first terms on the
righthand side smaller than 2−11, and similarly for the last term by choosing x
large enough.
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Now we present a stronger form of Proposition 4.2, which requires some
more notation. For x ≥ 0, we let Lx be the sum of the distances between
two consecutive D-walls on the left of x, whose distance exceeds δα, with α ∈
(1/4, 1/3). Recall also that we fixed the value of D as D = bδ1/4c. The next
lemma will be needed.

Lemma 4.4. Consider the event Ex := {Lx ≤ x
δ }. Then for δ large enough,

one has for all x ≥ 1,

P(Ex) ≥ 1− exp(− x

2δ5/4
).

Proof. Recall that Proposition 3.1 shows that the distance between two consecu-
tive D-walls is stochastically dominated by D·g, with g a geometric random vari-
able with parameter 1/2. Moreover, between levels 0 and x, there are certainly
less than x integers beginning a D-wall. Therefore Lx is stochastically bounded
by the sum of x independent random variables distributed as D · g1(g ≥ δα− 1

4 ).
Then the result follows from Chebyshev’s exponential inequality.

We recall also some notation from the proof of Proposition 4.2. If z is the
first positive integer beginning a D-wall, we define D0 := z + D. Note that
for any x ≥ 0, the event {x ≥ D0δ} is FHx -measurable. Now one can state
the refined gambler’s ruin estimate necessary to prove Theorem 1.2. It will be
assumed here and in the rest of the paper, that integer parts have to be taken
when needed (in particular in the statement of the proposition below (1 + ε)x
should be understood as its integer part).

Proposition 4.5. Let α ∈ (1/4, 1/2) and β ∈ (1/2, 1) be fixed. There exists a
constant C > 0, such that for any δ ≥ C|Γ|40, and any ε ∈ (0, 1), almost surely
on the event {Hx <∞} ∩ {x ≥ D0δ} ∩ Ex,

P[H(1+ε)x < Hx,0 | FHx ] ≤ 10|Γ|4δα+β

1 + εδ
.

We omit the proof of this proposition, since it follows directly from the proof
of Proposition 4.2.

5. Proofs of Theorems 1.1 and 1.2

We start by proving Theorem 1.1.

Proof of Theorem 1.1. Proposition 4.2 shows that, almost surely, each time
the process arrives at a new level of the form 2k (resp.−2k), for k large enough,
the probability that it goes back to the origin before arriving at level 2k+1 (resp.
−2k+1) is lower bounded by a positive constant, independently of the past.
Thus the largest level set visited before returning to the origin is stochastically
bounded by the exponential of a geometric random variable, and in particular is
almost surely finite. Since the ORRW cannot stay confined forever in any finite
subgraph, this shows that it returns almost surely infinitely many times to level
0, concluding the proof.
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We now turn to the proof of Theorem 1.2.

Proof of Theorem 1.2. Define

H∗n := inf{k ≥ 0 : {n− 1, n} × Γ ⊆ Rk}.

It amounts to prove that almost surely for all n large enough, one has

H∗n < H
n+nδ

−1/8 , (5.1)

We use Proposition 4.5, with ε := 1/δη, and η = 1
8 + 1

100 . We next fix α and β
such that α+β ≤ 3

4 + 1
100 . Then Proposition 4.5 shows that for δ ≥ C|Γ|40, with

C some large constant, one has almost surely on the event {Hx < ∞} ∩ {x ≥
D0δ} ∩ Ex,

P[H(1+ε)x < Hx,0 | FHx ] ≤ 10|Γ|4

δ
1
8−

1
50

≤ 1

2
, (5.2)

taking larger C if necessary for the last inequality. Notice moreover, that the
environment on the left of the starting position at time 0 plays no role in the
proof of the proposition: it could be anything this would not change the argu-
ment nor any of the constants appearing there. Therefore, taking the origin of
the space to be the position of the walk at time Hn, the time origin to be Hn,
and then applying (5.2), one deduces that for each n, almost surely, on the event
{Hn+x <∞} ∩ {x ≥ δD0(n)} ∩ Ex(n),

P[Hn+(1+ε)x < Hn+x,n | FHn+x ] ≤ 1

2
, (5.3)

with D0(n) and Ex(n) defined analogously as D0 and Ex, but concerning the
D-walls between levels n and n+ x, and

Hn+x,n := inf{t > Hn+x : X̄t = n}.

Now define z0 := n1/δη , and for i ≥ 1, set zi := (1 + ε)iz0. Let also

N :=
9

δη log(1 + ε)
log n,

and

Ẽ(n) =

N⋂
i=0

Ezi(n).

In particular zN ≤ n10/δη . Then define for i ≥ 0,

εi := 1{Hn+zi,n < Hn+zi+1
},

and for t ≥ 0,

τn(t) := inf

{
k ≥ 0 :

k∑
i=0

εi1{Hn+zi <∞} ≥ t

}
.
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Next introduce the martingale (Mk)k≥0 (with respect to the filtration (FHn+zk
)k≥0),

defined by

Mk :=

k∑
i=0

(
εi − P(εi = 1 | FHn+zi

)
)
1{Hn+zi <∞}.

Equation (5.3) implies that for any i = 0, . . . , N , almost surely on the event
Ezi(n) ∩ {Hn+zi <∞} ∩ {z0 ≥ D0(n)δ},

P(εi = 1 | FHn+zi
) ≥ 1

2
.

Using also that log(1 + ε) ≤ ε, we obtain N ≥ 9 log n (recalling that ε = 1/δη).
Therefore one can fix a small constant κ > 0, such that, at least for δ large
enough, one has (N −2κ log n)2/(8N) ≥ α log n, for some α > 1. Then Azuma’s
inequality gives that almost surely on the event {z0 ≥ D0(n)δ},

P
(
τn(κ log n) > N, Ẽ(n), Hn+zN <∞ | FHn+z0

)
≤ P

(
MN ≤ κ log n− N

2

)
≤ e−

(N−2κ logn)2

8N

≤ n−α.

Recall now Lemma 4.4 and that the distribution of D0(n) has an exponential
tail. Together with the above estimate, and Borel-Cantelli’s lemma, they imply
that almost surely z0 ≥ D0(n)δ, for all n large enough, and

almost surely for all n large enough, if Hn+n10/δη is finite, then τn(κ log n) ≤ N .
(5.4)

In other words, almost surely for n large enough the walk makes at least κ log n
returns from level n+ n1/δη to level n, before hitting level n+ n10/δη .

At each of these returns, and for every k ∈ {0, . . . ,K}, with K := [n1/δη/2],
it has some positive probability independently of the past, say at least p (with
p a positive constant depending only on δ and |Γ|) to cover entirely {n + 2k −
1, n+ 2k}×Γ, before exiting this subgraph. Moreover, this holds independently
for any k, and for every excursion. Now to simplify the discussion below, given
some time T > 0, let us say that k is T -good when {n+ 2k − 1, n+ 2k} × Γ, is
covered before time T , and otherwise that it is T -bad. Write also zn(i) := zτn(i),
for i ≥ 0. Note that, using (5.4), all that remains to be done to prove (5.1) is to
show that

almost surely, 0 is Hn+zn(κ logn)-good, for all n large enough, (5.5)

since, at least for δ large enough, one has 10/δη ≤ 1/δ1/8, by definition of η.
The discussion above shows that if

T0 := Hn+zn(κ2 logn),
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then any k ∈ {0, . . . ,K}, is T0-good with probability at least

pn := 1− (1− p)κ2 logn ≥ 1− n−
κp
2 .

Let K ′ := [nκp/4], and M := 8/(κp). Since the number of integers k ≤ K ′

which are T0-bad is stochastically bounded by a Binomial random variable with
parameters K ′ and K ′−2, standard estimates show that

P(#{k ≤ K ′ : k is T0-bad} ≥M) ≤ n−2.

Therefore almost surely, for all n large enough the number of integers k ≤ K ′

which are T0-bad is bounded by M . Now for k ∈ {0, . . . ,K ′}, set

d(k) := inf{` ≥ 0 : k + ` is T0-bad}.

When the number of T0-bad integers is smaller than M , for at least one of them
d(k) ≥ K ′/M . Denote by k1 the smallest of them. Then let M ′ be the number of
T0-bad integers smaller than or equal to k1, and denote them by kM ′ < · · · < k1.
Note that one can assume that kM ′ = 0, as otherwise there is nothing more to
prove.

Let
T1 := Hn+zn(κ2 (1+ 1

M′ ) logn).

Note that between times T0 and T1 there are at least (κ/2M ′) log n excursions
between levels n + n1/δη and n. Note moreover, that if d(k1) ≥ K ′/M , then
between levels n + 2k1 and n + 2k1 + N ′/M , the horizontal coordinate of the
ORRW behaves as a simple random walk on Z. Now we recall some basic fact on
the local time at the origin for this process. If we denote by Lm the time spent
at the origin, when the simple random walk (starting from the origin) first hits
±m, then Lm is distributed as a Geometric random variable with parameter
1/m (since whenever the random walk is in ±1, gambler’s ruin estimate shows
that it has probability exactly 1/m to hit ±m before the origin). In particular

P(Lm ≤
√
m) ≤ c√

m
,

for some constant c > 0. As a consequence for each of the excursions between
times T0 and T1, the number of returns to level n + 2k1 (after a jump to level
n+ 2k1 + 1) is larger than

√
K ′/M with probability at least q := 1− c

√
M/K ′.

Therefore in total the number of returns to level n+ 2k1 between times T0 and
T1 stochastically dominates

√
K ′/M ·B, with B = B( κ

2M ′ log n, q) (a Binomial
random variable with parameters (κ/2M ′) log n and q). One has

P(B = 0) = (1− q) κ
2M′ logn ≤ e−c

′(logn)2

,

for some constant c′ > 0. Thus almost surely for n large enough, B ≥ 1, and
there are at least

√
K ′/M returns to level n + 2k1 between times T0 and T1.

Using then again that at each of these returns (and independently for each of
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them) the probability to cover {n + 2k1 − 1, n + 2k1} × Γ is larger than p, we
deduce that

almost surely, for n large enough k1 is T1-good.

Then one can just iterate this argument. More precisely, for i = 2, . . . ,M ′, one
defines

Ti := Hn+zn(κ2 (1+ i
M′ ) logn),

and using repeatedly the above argument, one shows inductively that

almost surely, for n large enough, ki is Ti-good, for all i = 1, . . . ,M ′,

proving well (5.5), since we recall that kM ′ = 0. This concludes the proof of
Theorem 1.2.

6. Finiteness of the expected return times

We prove here that the successive return times to the origin (after an excursion
on the right of it) have finite expectation. To be more precise, define (τi)i≥1 and
(τ+
i )i≥0 by τ0 = 0 and for i ≥ 0,

τ+
i := inf{t > τi : Xt > 0}, and τi+1 := inf{t > τ+

i : Xt = 0}.

Proposition 6.1. There exists a constant C > 0, such that for any δ ≥ C|Γ|40,
one has E[τi] <∞, for all i ≥ 1.

Remark 6.2. Recall that the one-dimensional simple random walk is null re-
current, meaning that its successive return times to the origin have infinite
expectation. Here the situation is intermediate between positive and null recur-
rence, since with Theorem 1.2 one can see that E[τi+1− τi] diverges when i goes
to infinity.

Proof of Proposition 6.1. First note that by symmetry, it suffices to show that
for all i ≥ 0, E[τi+1 − τ+

i ] is finite. Write Mi := sup{Xt : t ≤ τi}, for the
maximal level reached before time τi, when i ≥ 1, with the convention M0 = 1.
We will use Proposition 4.2, but one has to take care that the result holds
only for x large enough. Indeed, the proof reveals that there are two conditions
that x should satisfy. First the event Ex should hold, with the notation from
Lemma 4.4, and secondly x should be larger than 211|Γ|x0, where x0 is random,
but by Proposition 3.1, we know that it is stochastically dominated by δ1/4

times a geometric random variable with parameter 1/2. Write Ẽx for the event
when these two conditions are satisfied, and note two things: first it is FHx-

measurable, and by Lemma 4.4 one has P(Ẽx) ≥ 1−exp(−cx), for some constant

c > 0 (depending only on |Γ| and δ). Note that defining Ẽ+
x := ∩y≥xẼx, we also

get by a union bound that P(Ẽ+
x ) ≥ 1− C exp(−cx), for some constant C > 0.
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Now fix some i ≥ 1. The proof of Proposition 4.2 and the previous discussion,
show that for all n ≥ 1, and for some constant C > 0,

P (Mi+1 ≥ 2nMi) ≤ P
(
Mi+1 ≥ 2nMi, Ẽ2n−1Mi

)
+ P(Ẽc2n−1Mi

)

≤ 1

210
P
(
Mi+1 ≥ 2n−1Mi

)
+ P((Ẽ+

2n−1)c)

≤ 1

210
P
(
Mi+1 ≥ 2n−1Mi

)
+ C exp(−c2n−1),

using that Mi ≥ 1 at the second line. By induction we obtain that for all n ≥ 1,

P (Mi+1 ≥ 2nMi) ≤ C · 2−10n, (6.1)

for some possibly different constant C > 0 (still depending on δ). Then by
Cauchy-Schwarz,

E[τi+1 − τ+
i ] ≤

∑
n≥1

E[(τi+1 − τ+
i )1(2n−1Mi ≤Mi+1 ≤ 2nMi)]

≤ C ·
∑
n≥1

1

25n
E[(τi+1 − τ+

i )21(Mi+1 ≤ 2nMi)]
1/2. (6.2)

Now by definition on the event {Mi+1 ≤ 2nMi}, one has τi+1 ≤ τ̃i+1, where
τ̃i+1 is the first time after τ+

i when the walk reaches either level 0 or level 2nMi.
Therefore, almost surely

E[(τi+1 − τ+
i )21(Mi+1 ≤ 2nMi)] ≤ E[(τ̃i+1 − τ+

i )2]. (6.3)

Next, for any time t satisfying τ+
i < t < τ̃i+1, one of the two following cases may

hold. Either all edges between levels 0 and 2nMi have already been discovered,
in which case it is standard that the hitting time of level 0 or 2nMi is bounded
by a constant (depending on Γ) times 24nM2

i . If not, at least one edge has not
been crossed yet. In this case, a basic coupling with the simple random walk
shows that the second moment of H∂vRt ∧ H0 ∧ H2nMi

is also bounded by a
constant times 24nM2

i . But the process will cross a new edge after a geometric
number of visits to ∂vRt. Thus in any case, the second moment of the time
needed to either cross one new edge, or hit level 0 or level 2nMi is bounded by a
constant times 24nM2

i . Since the total number of edges between these two levels
is bounded by |Γ|22nMi, using (6.3), we get the bound

E[(τi+1 − τ+
i )21(Mi+1 ≤ 2nMi)] ≤ C · 26n E[M3

i ],

for some constant C (that depends on δ and Γ). Injecting this in (6.2), we get

E[τi+1 − τ+
i ] ≤ C · E[M3

i ]1/2.

Finally applying (6.1) again, we deduce that the third moment of Mi is finite.
Using then symmetry with respect to level 0, concludes the proof.
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