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We consider a continuous-time vertex reinforced jump process
on a supercritical Galton–Watson tree. This process takes values in
the set of vertices of the tree and jumps to a neighboring vertex
with rate proportional to the local time at that vertex plus a con-
stant c. The walk is either transient or recurrent depending on this
parameter c. In this paper, we complete results previously obtained
by Davis and Volkov [Probab. Theory Related Fields 123 (2002) 281–
300, Probab. Theory Related Fields 128 (2004) 42–62] and Collevec-
chio [Ann. Probab. 34 (2006) 870–878, Electron. J. Probab. 14 (2009)
1936–1962] by proving that there is a unique (explicit) positive ccrit

such that the walk is recurrent for c≤ ccrit and transient for c > ccrit.

1. Introduction. The model of the continuous-time vertex reinforced
jump process (VRJP) introduced by Davis and Volkov [8] may be described
in the following way: let G be a locally finite graph and pick c > 0. Call
VRJP(c) a continuous-time process (X(t), t≥ 0) on the vertices of G, start-
ing at time 0 at some vertex v0 ∈ G and such that, if X is at a vertex
v ∈G at time t, then, conditionally on (X(s), s ≤ t), the process X jumps
to a neighbor u of v with rate

Lc(t, u)
def
= c+

∫ t

0
1{X(s)=u} ds.(1)

Equivalently, the walk stays at site v an exponential time of parameter
∑

u∼v Lc(t, u) and then jumps to a neighbor u with a probability propor-
tional to Lc(t, u).

The case G = Z was investigated by Davis and Volkov [8] who proved
that, for any c > 0, the VRJP(c) is recurrent and the proportion of time
spent at each site converges jointly to some nondegenerate distribution. In
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a subsequent article [9], the same authors studied the VRJP on more general
graphs. They showed that when G is a tree, the walk can either be recurrent
or transient. For a regular b-ary tree (more generally, a tree satisfying a so-
called L-property), they proved the existence of two constants

0< cr(b)≤ ct(b)(2)

such that:

• For c < cr, the VRJP(c) visits every vertex infinitely often a.s.
• For c > ct, the VRJP(c) visits every vertex only a finite number of time

a.s.

Although they did not prove that cr = ct, the computation of the bound ct
obtained in [9] already implies that the VRJP(1) is transient on a 4-ary tree.
More recently, Collevecchio [5, 6] showed that the VRJP(1) on a 3-ary tree
is also transient with positive speed (and a C.L.T. holds) and asked whether
this result also holds for a VRJP(1) on a binary tree.

The main result of this paper states that, for almost every realization
of an infinite supercritical Galton–Watson tree with mean offspring distri-
bution b, one has ct(b) = cr(b) and recurrence occurs at the critical value.
In fact, recalling Lyons–Pemantle’s criterion for recurrence/transience of
a random walk in random environment (RWRE) on a Galton–Watson tree
(see Theorem 3 of [11]), Theorem 1.1 states that the phase transition of
a VRJP(c) is exactly the same as that of a discrete-time random walk in an
i.i.d. random environment where the law of the environment is given by the
random variable mc(∞) defined below.

Concerning the discrete-time model of the linearly edge reinforced ran-
dom walk (LERRW), de Finetti’s theorem implies that any LERRW on an
acyclic graph may be seen as a RWRE in a Dirichlet environment. How-
ever, the non-exchangeability of the increments of a VRJP forbids a direct
interpretation of the process in terms of a time change of a RWRE and we
do not have a convincing argument why the VRJP should have the same
phase transition as a RWRE (see Davis and Dean [7] for a study of the
relations between these models in the one-dimensional case). For example,
using Theorem 1.5 of [2], one can check that, on a regular tree, the random
walk in the random environment defined by mc(∞) always has a positive
speed when it is transient. Does this result somehow imply that a transient
VRJP always has positive speed?

Theorem 1.1. For c > 0, let mc(∞) denote a random variable on (0,∞)
with density

P{mc(∞) ∈ dx} def
=

c exp(−(c(x− 1))2/2x)√
2πx3

dx.(3)
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Define

µ(c)
def
= inf

a∈R
E[mc(∞)a] =

c√
2π

∫ ∞

0
x−1 exp

(

−(c(x− 1))2

2x

)

dx.(4)

Let T denote a Galton–Watson tree with mean 1 < b < ∞. On the event
that T is infinite, we have, for almost every realization of T:

• If bµ(c)≤ 1, the VRJP(c) on T visits every vertex infinitely often a.s.
• If bµ(c)> 1, the VRJP(c) on T visits every vertex only finitely many times

a.s.

For c= 1, we have 1/µ(1)≃ 1.095. Therefore the VRJP(1) is transient on
any regular b-ary tree with b≥ 2. Making a change of variable (see Appendix
of [9]), the function µ may be rewritten in the form

µ(c) =
1√
2π

∫ ∞

−∞

e−y
2/2

√

1 + y2/(4c2)
dy.

Thus, µ is continuous, strictly increasing on [0,∞) with lim0 µ = 0 and
lim∞ µ= 1 (see Figure 1). Denoting by µ−1 its inverse, we get the following.

Corollary 1.2. For any supercritical Galton–Watson tree with mean
1< b <∞, with the notation (2), we have, for almost every realization where
the tree is infinite,

ct(b) = cr(b) = µ−1(1/b).

In particular, the recurrence/transience phase transition for VRJP on the
class of Galton–Watson tree is monotonic w.r.t. the reinforcement parameter
c; that is, if the VRJP(c) is transient for some c > 0, then the VRJP(c̃) is
transient for any c̃≥ c.

Let us note that, although this monotonicity result w.r.t. the parameter c
seems quite natural, we do not know how to prove it without using the
explicit computation of µ to assert that this function is monotonic. More
generally, we do not know how to prove a similar result for an infinite graph
which contains loops.

2. Preliminary results. In this section, we recall some important results
concerning VRJP obtained by Davis and Volkov in [8, 9] which will play
a key role in the proof of Theorem 1.1. We start with the so-called restriction
principle for VRJP which follows from the lack of memory of the exponential
law.

Proposition 2.1 (Restriction principle; Davis, Volkov [9]). Let G be
a connected graph and let G1 be a connected subgraph with the property
that for any path starting in any v ∈ G \ G1 and ending in G1, the first
“port of entry” into G1 is uniquely determined. Assume moreover that on
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Fig. 1. Graph of the function µ.

each connected component of G \ G1, the VRJP(c) is recurrent. Then the
VRJP(c) on G starting at v ∈G1 restricted to G1 has the same law as the
VRJP(c) on the subgraph G1 starting from the same point.

We shall make intensive use of this result in the case where G is a rooted
tree and G1 is a subtree of G (e.g., the ball of radius N centered at the root).

2.1. VRJP on the graph {0,1}. In view of the restriction principle stated
above, many properties of the VRJP on an acyclic graph can be derived from

the study of the VRJP on the simpler graph G0
def
= {0,1}. A detailed analysis

of the VRJP on G0 is undertaken in [8]. Consider a VRJP(c) on G0, starting
at 0. For t≥ c, define the stopping time

ξ(t)
def
= inf{s > 0,Lc(s,0) = t}

and

Ac(t)
def
= Lc(ξ(t),1).(5)

The quantity Ac(t)− c corresponds to the time spent at site 1 before spend-
ing time t− c at site 0. The variable Ac(t) takes values in [c,∞) and has an
atom at c. More precisely, denoting by E(c) an exponential random variable
with parameter c, we have

P{Ac(t) = c}=P{the VRJP(c) does not jump before time t− c}
=P{E(c)> t− c}(6)

= e−c(t−c).

For t > c, the law of Ac(t) conditioned on {Ac(t)> c} is absolutely contin-
uous w.r.t. the Lebesgue measure, with strictly positive density on (c,∞).
Considering only the time spent at site 1 before the first return to site 0, we
get the lower bound:

P{Ac(t)≥ α|Ac(t)> c} ≥P{E(t)>α− c}= e−(α−c)t.(7)
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For t≥ c, define

mc(t)
def
=

Ac(t)

t
.

It is proved in [8] that the process (mc(t), t≥ c) is a positive martingale which
converges a.s. toward the random variable mc(∞) defined in Theorem 1.1.
The moments of mc(∞) can be computed explicitly using (3). For θ ∈R, we
get

E[mc(∞)θ] =

√

2

π
cec

2
Kθ−1/2(c

2)<∞,

where Kα(x) denotes the modified Bessel function of the second kind of
order α (cf. [1] for details on this class of special functions). Using Kα =K−α
and Kα ≤Kα′ for 0≤ α≤ α′, it follows that

min
θ∈R

E[mc(∞)θ] =E[
√

mc(∞)],(8)

which entails the second equality of (4).

2.2. VRJP on trees. Let T be a deterministic locally bounded tree rooted
at some vertex o. According to Theorem 3 of [9], any VRJP on T is either
recurrent (every vertex is visited infinitely often a.s.) or transient (every ver-
tex is visited only finitely many times a.s.). Moreover, we have the following
characterization of recurrence and transience in terms of the local time of
the walk at the root:

The VRJP(c) on T is recurrent ⇐⇒ lim
t→∞

Lc(t, o) =∞.(9)

Define, for t > c,

ξ(t)
def
= inf{s > 0,Lc(s, o) = t},

and let (v0 = o, v1, . . . , vn) be a nearest-neighbor self-avoiding path starting
from the root of T and ending at vn. For 0≤ k ≤ n, set

Zk
def
= Lc(ξ(t), vk).(10)

If T is a finite tree, then the VRJP(c) on T is recurrent. Applying the
restriction principle to the subgraph (v0 = o, v1, . . . , vn), it follows that the
process (Zk)0≤k≤n is a Markov chain starting from Z0 = t with transition
probabilities

P{Zk+1 ∈E|Z0, . . . ,Zk = x}=P{Ac(x) ∈E},(11)

where Ac is the random variable defined in (5). Let us note that Z takes
values in [c,∞) and that c is an absorbing point. Moreover, since (Ac(t)/t)t≥c
is a martingale starting from 1, the process Z is also a (positive) martingale.
Therefore, Zn converges a.s. as n tend to infinity and the limit is necessarily
equal to c a.s.
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3. Proof of Theorem 1.1. We first set some notation. Let T be the set
of all locally finite rooted trees. Given a tree T ∈ T , we denote its root by o.

For v ∈ T , we use the notation
←
v for the father of v and

→
v
1
,
→
v
2
, . . . for the

sons of v. We also denote by |v| the height of the vertex v in the tree (i.e.,
its graph distance from the root). For n≥ 0, Tn will stand for the subtree
of T of vertices of height smaller than or equal to n.

In the following, ν will always denote a probability measure on the non-
negative integers with finite mean b > 1 and Qν will denote the probability
measure on T under which the canonical r.v. T is a Galton–Watson tree
with offspring distribution ν.

For c > 0, we consider on the same (possibly enlarged) probability space
a process X = (X(t), t ≥ 0) and a collection of probability measures (PT,c,
T ∈ T ) called quenched laws such that X under PT,c is a VRJP(c) on T
with X(0) = o. The annealed probability is defined by

Pν,c
def
= PT,c ⊗Qν .

We say that X under Pν,c is a VRJP(c) on a Galton–Watson tree with
reproduction law ν. In the following, we shall omit the subscripts c, ν when
it does not lead to confusion.

3.1. Restriction to trees without leaves. The Harris decomposition of
a supercritical Galton–Watson tree states that conditionally on non-extinc-
tion, T under Qν can be generated in the following way:

• Generate a Galton–Watson tree Tg with no leaf called the backbone.
• Attach at each vertex v of Tg a random number Nv of i.i.d. subcritical

trees T1
l , . . . ,T

Nv

l .

See, for instance, [3] for a precise description of the laws of Nv, Tg and Tl.
Let us simply note that the expected number of children per vertex of Tg is
also equal to b. Consider now a VRJP(c) on T on the event that T is infinite.
The restriction principle applied with G= T and G1 = Tg implies that the
VRJP(c) on T is transient if and only if the VRJP(c) on Tg is transient.
Since the criterion for the transience/recurrence of the walk of Theorem 1.1
only depends on b, it suffices to prove the result for trees without leaves. In
the sequel, we will always assume that this is the case, that is,

ν(0) = 0.

3.2. Proof of recurrence when bµ(c)< 1. In [9], Davis and Volkov proved
that a VRJP(1) is recurrent when b ≤ 1.04. In fact, their argument shows
recurrence whenever bµ(c)< 1 by simply fine-tuning some parameters. We
provide below a sketch of the proof and we refer the reader to [9] for further
details.

Consider a VRJP(1) on the nonnegative integers {0,1, . . .} and denote
by σn the first time the walk reaches level n. It is proved in the Appendix
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of [9] that, for any a > 1,

P{L1(σn,0)< an} ≤ (E[
√

m1(∞)]a1/2)n.(12)

Adapting the proof for any c > 0, it is immediate to check that, for any
VRJP(c) on the nonnegative integers,

P{Lc(σn,0)< an} ≤ (E[
√

mc(∞)]a1/2)n = (µ(c)a1/2)n.(13)

We now copy the argument of the proof of Theorem 5 of [9] using the
bound (13) in place of (12). Let T ∈ T be an infinite tree and let X denote
a VRJP(c) on T . Let Vn denote the number of vertices of T of height n and
set

Gn = Lc(inf{t > 0, |X(t)|= n}, o)
so that Gn − c is the total time spent by X at the root before reaching
a vertex of height n. Conditioning on the position of X when it reaches
level n and applying the restriction principle to the path connecting this
vertex to the root, we find, using (13),

PT {Gn < an} ≤ (µ(c)a1/2)nVn.(14)

Assume now that the tree T satisfies

lim inf
n→∞

V 1/n
n <µ(c)−1;

then (14) yields, taking a sufficiently close to 1,

PT {Gnk
< ank} ≤ (1− ε)nk

for some subsequence (nk) and some ε > 0. Letting k go to infinity, we get
that

lim
t→∞

Lc(t, o) =∞ PT -a.s.

Thus, the VRJP(c) on T is recurrent according to (9). We conclude the
proof for the VRJP(c) on the Galton–Watson tree T noticing that, when
bµ(c)< 1, we have for Qν -almost any tree T ∈ T ,

lim
n→∞

V 1/n
n = b < µ(c)−1.

3.3. The branching Markov chain F . Recall that we assume ν(0) = 0
so the tree T is infinite Qν-a.s. We introduce a branching Markov chain F
indexed by the vertices of T and taking values in [c,∞),

F
def
= (f(v), v ∈ T) ∈

⋃

T∈T

[c,∞]T .

More precisely, the population at time n is indexed by {v ∈ T, |v|= n} and
the set of positions of the particles of F at time n is

Fn
def
= (f(v), |v|= n).
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Thus, the genealogy of this branching Markov chain is chosen to be exactly
the Galton–Watson tree T. In particular, under the annealed probability P,
each particle v splits, after a unit of time, into a random number B of

particles
→
v
1
, . . . ,

→
v
B
where B is distributed as ν. In order to characterize F ,

it remains to specify the law of the position f(v) of the particles. We choose
the dynamics of F , conditionally on its genealogy T in the following way:

(a) For any n > 0, conditionally on (f(u), |u|< n), the random variables
(f(v), |v|= n) are independent.

(b) For any v 6= o, conditionally on (f(u), |u| < |v|), the random vari-

able f(v) is distributed as Ac(f(
←
v )) where Ac is defined by (5).

We use the notation Px0 for the annealed law where F starts with the initial
particle o being located at f(o) = x0. Note that, since the tree is infinite,
the Markov chain F never becomes extinct. However, recalling that c is an
absorbing point for Ac, it follows that if a particle v is located at f(v) = c,
then all its descendants are also located at c. Thus, we will say that the
process F dies out if there exists a time n such that all the particles at
time n are at position c. Otherwise, we say that the process survives.

Proposition 3.1. For any x≤ y, the process F under Px is stochasti-
cally dominated by F under Py.

Proof. Recalling (5), it is clear that Ac(x) ≤ Ac(y) for any c ≤ x ≤ y
and the result follows by induction. �

Proposition 3.2. Let x0 > 0 and N > 0 and let (XN (t), t≥ 0) denote
a VRJP(c) on the finite subtree TN = {v ∈ T, |v| ≤N}, with XN (0) = o. Set

ξN (x0)
def
= inf{s > 0,LN

c (s, o) = x0},
where LN is defined as in (1) for XN . Then, the collections of random vari-
ables (LN

c (ξN (x0), v), v ∈ TN) under P and (f(v), v ∈ TN ) under Px0 have
the same law.

Proof. Simply notice that since the TN is finite,XN is recurrent and ξN

is finite a.s. and apply the restriction principle for VRJP. �

The VRJPs X on T and XN on TN coincide up to the first time they
reach a site of height N ; therefore,

P{X reaches level N before spending time x0 − c at the origin}
= P{XN reaches level N before spending time x0 − c at the origin}
= Px0{the process F does not die out before time N}.
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Letting N and then x0 tend to infinity, and using (9), we get

P{X visits every vertex of T finitely many times}
(15)

= lim ↑
x0→∞

Px0{F survives}.

The next proposition extends the 0− 1 law proved in [9] for deterministic
trees to Galton–Watson trees.

Proposition 3.3 (0− 1 law for VRJP on Galton–Watson trees). Let T
be a Galton–Watson tree T without leaves and with mean b > 1. Then, for
any c > 0, the VRJP(c) X on T is either recurrent or transient under the
annealed law:

P{X visits every vertex of T finitely many times}
= 1− P{X visits every vertex of T infinitely often} ∈ {0,1}.

Proof. Since the 0 − 1 law holds for any deterministic tree, we just
need to show that the r.h.s. limit of (15) is either 0 or 1. Suppose that this
limit is nonzero. We can find x0 > c and α> 0 such that

Px0{F survives} ≥ α.

Given an interval I, let N I
k denote the number of particles in F located

inside I at time k, that is,

N I
k

def
= #{v ∈ T, |v|= k and f(v) ∈ I}.(16)

Since the particles in F evolve independently, conditionally on (f(v), |v| ≤ k),
the process (f(v), |v| ≥ k) has the same law as the union of #{v ∈ T, |v|= k}
independent branching Markov chains F starting from the positions Fk =
(f(v), |v|= k). Making use of the stochastic monotonicity of F w.r.t. the po-
sition of the initial particle (Proposition 3.1), we deduce that, for any ε > 0,
we can find m large enough such that, for any k and any x,

Px{F survives} ≥ Px{N [x0,∞)
k ≥m and F survives}

≥ Px{N [x0,∞)
k ≥m}(1− Px0{F dies out}m)

(17)
≥ Px{N [x0,∞)

k ≥m}(1− (1−α)m)

≥ Px{N [x0,∞)
k ≥m}(1− ε).

On the one hand, we have, for any y > c,

Px{f(v)> y for every v of height 1}=
∞
∑

b=1

ν(b)P{Ac(x)/x > y/x}b.
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Since the sequence Ac(x)/x converges as x→∞ toward a random variable
which has no atom at 0 (cf. Section 2.1), the previous equality implies

lim
x→∞

Px{f(v)> y for every v of height 1}= 1.

Using again the stochastic monotonicity of F w.r.t. its starting point, it
follows by induction that, for any fixed k,

lim
x→∞

Px{f(v)>x0 for every v ∈ T s.t. |v|= k}= 1.(18)

On the other hand, the tree T grows exponentially so that, for any m,

lim
k→∞

P{#{v ∈ T, |v|= k} ≥m}= 1.(19)

Combining (18) and (19), we deduce that, for any m, we can find k and x
large enough such that

Px{N [x0,∞)
k ≥m} ≥ 1− ε,(20)

which yields, using (17),

Px{F survives} ≥ (1− ε)2. �

3.4. Proof of transience when bµ(c)> 1. Let (Zn)n≥0 be a Markov chain
on [c,∞) with transition probabilities given by (11) and denote by Px the
probability under which Z starts from Z0 = x. Let T ∈ T and fix v ∈ T . It
follows from the definition of the branching Markov chain F that

Px{f(v) ∈E|T= T}=Px{Z|v| ∈E}.
Let us for the time being admit that, for some x0 > c, we have

lim inf
n→∞

Px0{Zn ≥ x0}1/n ≥ µ(c).(21)

Recalling that N
[x0,∞)
k denotes the number of particles of F located above

level x0 at time k, we find, when µ(c)b > 1, that for k0 large enough,

Ex0 [N
[x0,∞)
k0

] = Ex0

[

∑

|v|=k0

1{f(v)≥x0}

]

= E[#{v ∈ T, |v|= k0}]Px0{Zk0 ≥ x0}

= (bPx0{Zk0 ≥ x0}1/k0)k0

≥ 2.

Just as in the proof of Proposition 3.3, making use of the branching property
of F and keeping only the particles located above x0 at times k0n, n≥ 0, it

follows by induction that, under Px0 , the process (N
[x0,∞)
k0n

)n≥0 stochastically
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dominates a classical Galton–Watson process with reproduction law N
[x0,∞)
k0

.

Since Ex0 [N
[x0,∞)
k0

]≥ 2, this Galton–Watson process has probability α> 0 of
non-extinction, which implies

Px0{F survives} ≥ α.

We conclude using (15) and Proposition 3.3 that

P{X visits each vertex of T finitely many times}= 1.

It remains to prove (21) which is a consequence of

Lemma 3.4. Let (S(x), x ∈R) be a collection of real-valued random vari-
ables. Assume that the following hold:

(a) For any x < y, the random variable x+ S(x) is stochastically domi-
nated by y+ S(y).

(b) S(x) converges in law, as x tends to +∞, toward a random vari-
able S(∞) whose law is absolutely continuous w.r.t. the Lebesgue measure
and P{S(∞)> 0}> 0.

(c) The Laplace transform φ(λ)
def
= E[eλS(∞)] reaches its minimum at

some point ρ > 0 which belongs to the nonempty interior of its definition

domain D def
= {λ ∈R, φ(λ)<∞}.

Let Y = (Yn, n≥ 0) denote a real-valued Markov chain with transition kernel
P{Yn+1 ∈E|Yn = y}=P{S(y)+ y ∈E} and let τx be the first time Y enters
the interval (−∞, x). Denoting by Px the law of Y starting from x, we have,
for all x large enough,

lim
n→∞

Px{τx >n}1/n ≥ φ(ρ).(22)

We apply the lemma to the Markov chain Y defined by

Yn
def
= logZn.

According to (11), we have

P{Yn+1 ∈E|Yn = y}=P{S(y) + y ∈E}

with S(y)
def
= logmc(exp(y)) and S(∞)

def
= logmc(∞) where mc is the mar-

tingale of Section 2.1. On the one hand, assumption (a) holds since Ac(x)≤
Ac(y) for all x≤ y. On the other hand, the results of Davis and Volkov [8, 9]
recalled in Section 2.1 imply that assumptions (b),(c) also hold and

inf
λ∈R

E[eλS(∞)] = µ(c).

Thus, we conclude that, for x0 large enough,

lim inf
n→∞

Px0{Zn ≥ x0}1/n ≥ lim
n→∞

Plogx0

{

min
1≤i≤n

Yi ≥ logx0

}1/n
≥ µ(c).
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Proof of Lemma 3.4. Assumption (a) implies that for x < y, the
Markov chain Y under Px is stochastically dominated by Y under Py . Thus,
using the Markov property, we get that, for any n,m,

Px{τx > n+m} ≥Px{τx >n}Px{τx >m}.
The superadditivity of the sequence logPx{τx > n} now implies that the
limit in (22) exists. It remains to prove the lower bound for x large enough.

Set gx(t)
def
= P{S(x)> t} and g(t)

def
= P{S(∞)> t}. In view of assumption

(b), as x goes to +∞, gx converges uniformly toward g. Define

ĝx(t)
def
= inf

y≥x
gy(t).

For each x, the function ĝx is càdlàg, non-increasing, with limt→−∞ ĝx(t) = 1
and limt→+∞ ĝx(t) = 0. Thus, for each x, we can consider a random vari-

able Ŝ(x) such that P{Ŝ(x) > t} = ĝx(t). By construction, the sequence

of random variables Ŝ(x) is stochastically monotonic and converges in law

toward the random variable S(∞). Let Ŷ x denote a random walk with

step Ŝ(x), that is, Ŷ x
n+1 − Ŷ x

n
law
= Ŝ(x).

By construction, the random variable Ŝ(x) is stochastically dominated
by S(y) for any y ≥ x. Combining this fact and the stochastic monotonicity
of the Markov chain Y w.r.t. its starting point, it follows by induction that
the random walk Ŷ x started from x and killed when it enters the interval
(−∞, x) is stochastically dominated by Y under Px. In particular, denoting

by τ̂x0 the first time Ŷ x enters the interval (−∞,0), it follows that τ̂x0 un-

der P0 (i.e., the walk Ŷ x started from 0) is stochastically dominated by τx
under Px. Hence,

lim
n→∞

Px{τx > n}1/n ≥ lim inf
n→∞

P0{τ̂x0 > n}1/n.(23)

Let φ̂x(λ)
def
= E[eλŜ(x)] with definition domain D̂x

def
= {λ ∈ R, φ̂x(λ) < ∞}.

Since Ŝ(x) is stochastically dominated by S(∞), we have D ∩ [0,∞) ⊂
D̂x ∩ [0,∞). According to assumption (c), we can choose a > 0 such that

Ia
def
= [ρ− a, ρ+ a]⊂ D ∩ [0,∞). On Ia, as x goes to +∞, the functions φ̂x

converge uniformly toward φ. Making use of the strict convexity of a Laplace
transform, it follows that, for all x large enough, the function φ̂x verifies as-
sumption (c), that is, φ̂x reaches its minimum on D̂x at some point ρx ∈ Ia.
Moveover, we have

lim
x→∞

φ̂x(ρx) = φ(ρ).(24)

Applying now Theorem 1 of [4] to the random walk Ŷ x with step distribu-

tion Ŝ(x) gives

lim inf
n→∞

P0{τ̂x0 > n}1/n = φ̂x(ρx).(25)
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Combining (23) and (25), we get that

lim
n→∞

Px{τx >n}1/n ≥ φ̂x(ρx).(26)

Assumption (b) also implies that, for some ε, η > 0 small enough, there exists
x0 such that, for all x≥ x0, we have P{S(x) > ε} > η, thus P{Yn+1 > ε+
Yn|Yn = x}> η. In particular, for x > y > x0, the event E(x, y) = {Y enters
[x,∞) before entering (−∞, y)} has a strictly positive probability under Py .
Therefore, using again the Markov property and the stochastic monotonicity
of Y w.r.t. its starting point, we get

Py{τy > n} ≥Py{E(x, y)}Px{τx > n}
which yields

lim
n→∞

Py{τy > n}1/n ≥ lim
n→∞

Px{τx > n}1/n.(27)

Combining (24), (26) and (27), we conclude that, for y ≥ x0,

lim
n→∞

Py{τy >n}1/n ≥ lim
x→+∞

φ̂x(ρx) = φ(ρ).(28)
�

Remark 3.5. Suppose that the VRJP(c) is recurrent on T. Recall that ξ(t)
denotes the time where the local time of the walk at the origin reaches t− c.
We can express ξ(t) in terms of the branching Markov chain F and we get,
using that Et[Zn] = t for all n,

E[ξ(t)] = Et

[

∑

v∈T

(f(v)− c)

]

=

∞
∑

n=0

bnEt[Zn − c] =

∞
∑

n=0

bn(t− c) =∞(29)

for any t > c. In particular, denoting by ζo the first time the walk returns to
the root of the tree, it easily follows from (29), by conditioning on the time
the walk makes its first jump and applying the restriction principle, that
any recurrent VRJP on T is “null” recurrent in the sense that E[ζo] =∞.

3.5. The critical case bµ(c) = 1. The following proposition directly im-
plies that the VRJP(c) on a Galton–Watson tree is recurrent in the critical
case bµ(c) = 1 since we already know that recurrence occurs when bµ(c)< 1.

Proposition 3.6. Assume that the VRJP(c) is transient on some Gal-
ton–Watson tree T without leaves and with mean b > 1. Then, there exists
a Galton–Watson tree T̃ (with leaves) with mean 1 < b̃ < b such that the
VRJP(c) on T̃ is also transient on the event that T̃ is infinite.

The proof of Proposition 3.6 uses again the characterization of transience
in terms of the positive probability of survival of the associated branching
Markov chain F . Roughly speaking, we show that, conditionally on survival,
the number of particles of F not located at c grows exponentially with time.
This implies that the branching Markov chain on a small percolation of the
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original tree still survives with positive probability. Hence the VRJP on this
percolated tree is also transient.

In the following, we assume as before that the Galton–Watson tree T with
reproduction law ν has no leaves and has mean b > 1 so that it is infinite
and grows exponentially. Recall the definition of the branching Markov chain
F = (f(v), v ∈ T) constructed in Section 3.3. We denote by (Fn) the natural
filtration of F :

Fn
def
= σ(Tn, (f(v), v ∈ Tn)).

Lemma 3.7. Recall the definition of N I
n given in (16). Let E(x,k) be the

event

E(x,k) def
= {There exist infinitely many n such that N

[x,∞)
n ≥ k }.

For any starting point x0 > c, we have

E(x0,2) = {F survives} Px0-a.s.

Proof. The inclusion E(x0,2) ⊂ {F survives} is trivial. Let ε > 0 and
set, for k ≤ n,

Bk,n
def
= Ex0 [N

(c,∞)
n 1

{N
[c+ε,∞)
k

=0,N
[c+ε,∞)
k+1 =0,...,N

[c+ε,∞)
n−1 =0}

].

Recall that each particle v of F evolves independently and gives birth to
a random number B (with mean b) of children. Moreover, conditionally

on Fn, the positions f(
→
v
1
), . . . , f(

→
v
B
) of the children of a particle v at

time n (i.e., |v| = n) are i.i.d. and distributed as Ac(f(v)). Thus, in view
of (6), it follows that

E[N
(c,∞)
n+1 |Fn]≤ b(1− e−cε)N (c,∞)

n on the event {N (c+ε,∞)
n = 0}.

Choosing ε small enough such that b(1− e−cε)< 1/2, we get

Bk,n+1 = Ex0 [E[N
(c,∞)
n+1 |Fn]1{N [c+ε,∞)

k
=0,N

[c+ε,∞)
k+1 =0,...,N

[c+ε,∞)
n =0}

]

≤ 1
2Ex0 [N

(c,∞)
n 1

{N
[c+ε,∞)
k

=0,N
[c+ε,∞)
k+1 =0,...,N

[c+ε,∞)
n−1 =0}

]

≤ 1
2Bk,n,

which yields

Ex0

[(

∞
∑

n=k

N (c,∞)
n

)

1
{N

[c+ε,∞)
i =0 for all i≥k}

]

≤
∞
∑

n=k

Bk,n <∞.

Therefore, F dies out Px0-a.s. on the event {N [c+ε,∞)
i = 0 for all i≥ k}. Tak-

ing the limit as k goes to infinity, we obtain

E(c+ ε,1)⊃ {F survives} Px0-a.s.(30)
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Let now Un
def
= 1

{N
[x0,∞)
n ≥2}

. Using the stochastic monotonicity of Proposi-

tion 3.1 and the fact that ν[2,∞)> 0 (since b > 1) and (7), we find that

E[Un+1|Fn]≥ E[Un+11{N
[c+ε,∞)
n ≥1}

|Fn]

≥ 1
{N

[c+ε,∞)
n ≥1}

Ec+ε[U1]

≥ 1
{N

[c+ε,∞)
n ≥1}

Pc+ε

{

the initial particle o has at least two children

with f(
→
o
1
)≥ x0 and f(

→
o
2
)≥ x0

}

(31)

= 1
{N

[c+ε,∞)
n ≥1}

ν[2,∞)P{Ac(c+ ε)> x0}2

=C1
{N

[c+ε,∞)
n ≥1}

for some constant C > 0. Combining (30) and (31), we get

∞
∑

n=1

E[Un+1|Fn] =∞ on the event {F survives}.

A direct application of the conditional Borel–Cantelli Lemma (cf. [10]) yields

∞
∑

n=1

Un =∞ on the event {F survives}

which exactly means that E(x0,2)⊃ {F survives}. �

Proof of Proposition 3.6. Assume that the VRJP(c) on the Galton–
Watson tree T with reproduction law ν is transient. According to Proposi-
tion 3.3 and (15), we have

lim
x→∞

Px{F survives}= 1.

Define the (possibly infinite) Fn-stopping time

σx
def
= inf{k ≥ 1,N

[x,∞)
k ≥ 2}.

Using the result of the previous lemma, we get

lim
x→∞

lim
γ→∞

Px{σx ≤ γ}= lim
x→∞

Px{F survives}= 1.(32)

Let now T̃ be the tree obtained from T by removing independently each
vertex (and its descendants) with probability η > 0. The tree T̃ is again
a Galton–Watson tree with mean b̃ = b(1 − η) < b. We denote by F̃ the
restriction of F to T̃,

F̃
def
= (f(v), v ∈ T̃).

The restriction principle states that F̃ is the branching Markov chain as-
sociated with the VRJP(c) on T̃. Let M̃ be the number of particles in F̃
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located above x at time σx,

M̃
def
= #{v ∈ T̃, |v|= σx, f(v)> x}

(with the convention M̃ = 0 when σx =∞). We have

Ex[M̃ ]≥ Ex[M̃1{σx≤γ}1{Tγ=T̃γ}
]

≥ 2Px{σx ≤ γ and Tγ = T̃γ}
(33)

≥ 2(Px{σx ≤ γ}+Qν{Tγ = T̃γ} − 1)

≥ 2(Px{σx ≤ γ}+Qν{#Tγ ≤ b2γ}(1− η)b
2γ − 1).

Recalling that the distribution of offsprings ν has mean b, we get

lim
γ→∞

Qν{#Tγ ≤ b2γ}= 1.(34)

Combining (32), (33) and (34), we can choose x,γ large enough and η > 0
small enough such that

Ex[M̃ ]> 1.

Finally, using again the branching structure of F̃ and the stochastic mono-
tonicity of the process w.r.t. the position of the initial particle, it follows by
induction that the random variable #{v ∈ T̃, f(v)>x} under Px is stochas-
tically larger than the total progeny of a Galton–Watson process with re-
production law M̃ . Since E[M̃ ]> 1, this process is supercritical, hence

Px{F̃ survives} ≥ Px{#{v ∈ T̃, f(v)> x}=∞}> 0

which in turn implies that the VRJP(c) on the percolated tree T̃ is transient
on the event that T̃ is infinite. �
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Département de Mathématiques
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