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Abstract

We consider a one-dimensional transient cookie random walk. It is known from a previous
paper [3] that a cookie random walk (Xn) has positive or zero speed according to some
positive parameter α > 1 or ≤ 1. In this article, we give the exact rate of growth of (Xn)

in the zero speed regime, namely: for 0 < α < 1, Xn/n
α+1

2 converges in law to a Mittag-
Leffler distribution whereas for α = 1, Xn(log n)/n converges in probability to some positive
constant .
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1 Introduction

Let us pick a strictly positive integer M . An M -cookie random walk (also called multi-excited
random walk) is a walk on Z which has a bias to the right upon its M first visits at a given site
and evolves like a symmetric random walk afterwards. This model was introduced by Zerner
[20] as a generalization, in the one-dimensional setting, of the model of the excited random
walk studied by Benjamini and Wilson [4]. In this paper, we consider the case where the initial
cookie environment is spatially homogeneous. Formally, let (Ω,P) be some probability space
and choose a vector p̄ = (p1, . . . , pM ) such that pi ∈ [12 , 1) for all i = 1, . . . , M . We say that pi

represents the strength of the ith cookie at a given site. Then, an (M, p̄)-cookie random walk
(Xn, n ∈ N) is a nearest neighbour random walk, starting from 0, with transition probabilities:

P{Xn+1 = Xn + 1 |X0, . . . , Xn} =

{
pj if j = ♯{0 ≤ i ≤ n, Xi = Xn} ≤ M ,
1
2 otherwise.

In particular, the future position Xn+1 of the walk after time n depends on the whole trajectory
X0, X1, . . . , Xn. Therefore, X is not, except in degenerated cases, a Markov process. The cookie
random walk is a rich stochastic model. Depending on the cookie environment (M, p̄), the
process can either be transient or recurrent. Precisely, Zerner [20] (who considered an even
more general setting) proved, in our case, that if we define

α = α(M, p̄)
def
=

M∑

i=1

(2pi − 1) − 1, (1.1)

• if α ≤ 0, the cookie random walk is recurrent,

• if α > 0, the cookie random walk is transient towards +∞.

Thus, a 1-cookie random walk is always recurrent but, for two or more cookies, the walk can
either be transient or recurrent. Zerner also proved that the limiting velocity of the walk is well
defined. That is, there exists a deterministic constant v = v(M, p̄) ≥ 0 such that

lim
n→∞

Xn

n
= v almost surely.

However, we may have v = 0. Indeed, when there are at most two cookies per site, Zerner proved
that v is always zero. On the other hand, Mountford et al. [11] showed that it is possible to
have v > 0 if the number of cookies is large enough. In a previous paper [3], the authors showed
that, in fact, the strict positivity of the speed depends on the position of α with respect to 1:

• if α ≤ 1, then v = 0,

• if α > 1, then v > 0.

In particular, a positive speed may be obtained with just three cookies per site. The aim of this
paper is to find the exact rate of growth of a transient cookie random walk in zero speed regime.
In this perspective, numerical simulations of Antal and Redner [2] indicate that, for a transient
2-cookies random walk, the expectation of Xn is of order nν , for some constant ν ∈ (1

2 , 1)
depending on the strength of the cookies. We shall prove that, more generally, ν = α+1

2 .
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Figure 1: Simulation of the 100000 first steps of a cookie random walk with M = 3 and p1 =
p2 = p3 = 3

4 (i.e. α = 1
2 and ν = 3

4).

Theorem 1.1. Let X be a (M, p̄)-cookie random walk and let α be defined by (1.1). Then, when
the walk is transient with zero speed, i.e. when 0 < α ≤ 1,

• If α < 1, setting ν = 1+α
2 ,

Xn

nν

law−→
n→∞

(Sν)
−ν

where Sν is a positive strictly stable random variable with index ν i.e with Laplace transform
E[e−λSν ] = e−cλν

for some c > 0.

• If α = 1, there exists a constant c > 0 such that

log n

n
Xn

prob.−→
n→∞

c.

These results also hold with supi≤n Xi and infi≥n Xi in place of Xn.

In fact, we shall prove this theorem by proving that the hitting times of the walk Tn = inf{k ≥
0, Xk = n} satisfy 




Tn

n1/ν

law−→
n→∞

Sν if ν < 1,

Tn
n log n

prob.−→
n→∞

c > 0 if ν = 1.

Theorem 1.1 bears many likenesses to the famous result of Kesten et al. [9] concerning the rate
of transience of a one-dimensional random walk in random environment. Indeed, following the
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method initiated in [3], we can reduce the study of the walk to that of an auxiliary Markov
process Z. In our setting, Z is a branching process with migration. By comparison, Kesten et
al. obtained the rates of transience of the random walk in random environment via the study
of an associated branching process in random environment. However, the process Z considered
here and the process introduced in [9] have quite dissimilar behaviours and the methods used
for their study are fairly different.

The remainder of this paper is organized as follow. In the next section, we recall the construction
of the associated process Z described in [3] as well as some important results concerning this
process. In section 3, we study the tail distribution of the return time to zero of the process
Z. Section 4 is devoted to estimating the tail distribution of the total progeny of the branching
process over an excursion away from 0. The proof of this result is based on technical estimates
whose proofs are given in section 5. Once all these results obtained, the proof of the main
theorem is quite straightforward and is finally given in the last section.

2 The process Z

In the rest of this paper, X will denote an (M, p̄)-cookie random walk. We will also always
assume that we are in the transient regime and that the speed of the walk is zero, that is

0 < α ≤ 1.

Recall the definition of the hitting times of the walk:

Tn
def
= inf{k ≥ 0, Xk = n}.

We now introduce a Markov process Z closely connected with these hitting times. Indeed, we
can summarize Proposition 2.2 and equation (2.3) of [3] as follows:

Proposition 2.1. There exist a Markov process (Zn, n ∈ N) starting from 0 and a sequence of
random variables (Kn, n ≥ 0) converging in law towards a finite random variable K such that,
for each n

Tn
law
= n + 2

n∑

k=0

Zk + Kn.

Therefore, a careful study of Z will enable us to obtain precise estimates on the distribution of
the hitting times. Let us now recall the construction of the process Z described in [3].

For each i = 1, 2, . . ., let Bi be a Bernoulli random variable with distribution

P{Bi = 1} = 1 − P{Bi = 0} =

{
pi if 1 ≤ i ≤ M ,
1
2 if i > M .

We define the random variables A0, A1, . . . , AM−1 by

Aj
def
= ♯{1 ≤ i ≤ kj , Bi = 0} where kj

def
= inf

(
i ≥ 1,

i∑

l=1

Bl = j + 1
)
. (2.1)
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Therefore, Aj represents the number of ”failures” before having j + 1 ”successes” along the
sequence of coin tossing (Bi). It is to be noted that the random variables Aj admit some
exponential moments:

E[sAj ] < ∞ for all s ∈ [0, 2). (2.2)

According to Lemma 3.3 of [3], we also have

E[AM−1] = 2
M∑

i=1

(1 − pi) = M − 1 − α. (2.3)

Let (ξi, i ∈ N
∗) be a sequence of i.i.d. geometric random variables with parameter 1

2 (i.e. with
mean 1), independent of the Aj . The process Z mentioned above is a Markov process with
transition probabilities given by

P
{
Zn+1 = j |Zn = i

}
= P

{
1l{i≤M−1}Ai + 1l{i>M−1}

(
AM−1 +

i−M+1∑

k=1

ξk

)
= j

}
. (2.4)

As usual, we will use the notation Px to describe the law of the process starting from x ∈ N and
Ex the associated expectation, with the conventions P = P0 and E = E0. Let us notice that Z
may be interpreted as a branching process with random migration, that is, a branching process
which allows both immigration and emigration components.

• If Zn = i ∈ {M, M + 1, . . .}, then Zn+1 has the law of
∑i−M+1

k=1 ξk + AM−1, i.e. M − 1
particles emigrate from the system and the remaining particles reproduce according to a
geometrical law with parameter 1

2 and there is also an immigration of AM−1 new particles.

• If Zn = i ∈ {0, . . . , M − 1}, then Zn+1 has the same law as Ai, i.e. all the i particles
emigrate the system and Ai new particles immigrate.

We conclude this section by collecting some important results concerning this branching process.
We start with a monotonicity result.

Lemma 2.2 (Stochastic monotonicity w.r.t. the environment and the starting point). Let
p̂ = (p̂1, . . . , p̂M ) denote another cookie environment and let Ẑ denote the associated branching
process. Assume further that p̂i ≤ pi for all i. Let also 0 ≤ x ≤ x̂. Then, the process Z starting
from x ( i.e. under Px) is stochastically dominated by the process Ẑ starting from x̂ ( i.e. under
Pbx).

Proof. We first prove the monotonicity of Z with respect to its starting point. To this end, we
simply notice, from the definition of the random variables Ai, that A0 ≤ A1 ≤ . . . ≤ AM−1.
Since all the quantities in the definition of Z are positive, it is now immediate that, given x ≤ y,
the random variable Z1 under Px is stochastically dominated by Z1 under Py. The stochastic
domination for the processes follows by induction.

Let Âi denote the random variables associated with the cookie environment p̂. It is clear from
the definition (2.1) that Ai ≤ Âi. We deduce that Z1 under Px is stochastically dominated by
Ẑ1 under Px and therefore also by Ẑ1 under Pbx for any x̂ ≥ x. As before, we conclude the proof
by induction.
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Let us recall that we made the assumption that pi < 1 for all i. This implies

Px{Z1 = y} > 0 for all x, y ≥ 0. (2.5)

Therefore, Z is an irreducible and aperiodic Markov chain. Moreover, for any k ≥ M − 1,

E[Zn+1 − Zn |Zn = k] = E[AM−1] − M + 1 = −α. (2.6)

Since we assume that α > 0, a simple martingale argument now shows that Z is recurrent.
In fact, more is known: according to section 2 of [3], the process Z is positive recurrent and
therefore converges in law, independently of its starting point, towards a non-degenerate random
variable Z∞ whose law is the unique invariant probability for Z.

The study of Z∞ was undertaken in [3]. In particular, Proposition 3.6 of [3] gives the asymptotic

behaviour of the generating function G(s)
def
= E[sZ∞ ] as s increases to 1:

1 − G(s) ∼
s→1−

{
C(1 − s)α if α ∈ (0, 1)
C(1 − s)| log(1 − s)| if α = 1,

(2.7)

where C = C(p̄) > 0 is a constant, the notation f ∼ g meaning f = g(1 + o(1)).

We may use this estimate, via a Tauberian theorem, to obtain the asymptotics of the tail
distribution of Z∞ as stated in Corollary 3.8 of [3]. However, there is a mistake in the statement
of this corollary because (2.7) does not ensure, when α = 1, the regular variation of P{Z∞ > x}.
The correct statement given below follows directly from (2.7) using Corollary 8.1.7 of [5].

Proposition 2.3 (Rectification of Corollary 3.8 of [3]). There exists c = c(p̄) > 0 such that,

P{Z∞ > x} ∼
x→∞

c/xα when α ∈ (0, 1),
∫ x

0
P{Z∞ > u}du ∼

x→∞
c log x when α = 1.

The result given above when α = 1 is weaker than that for the case α < 1. Still, in view
of Lemma 2.2, it is straightforward that Z∞ is also stochastically monotone in p̄. Therefore,
the estimate of Proposition 2.3 when α < 1 gives an upper bound for the decay of the tail
distribution of Z∞ in the case α = 1. Indeed, given an environment p̄ with α(p̄) = 1, for any
β < 1, we can construct an environment p̂ with α(p̂) = β such that p̂i ≤ pi for all i. Therefore,
when α = 1, we deduce

lim
x→∞

xβP{Z∞ > x} = 0 for all β < 1. (2.8)

Remark 2.4. In fact, when α = 1, the stronger statement P{Z∞ > x} ∼ c/x holds. According
to the remark following corollary 8.1.7 of [5], it suffices to show that 1−G(s) = C(1−s)| log(1−
s)| + C ′(1 − s) + o(1 − s). This improved version of the estimate (2.7) can be obtained by a
slight modification of the proof of Proposition 3.8 of [3] (namely a higher order in the Taylor
expansion). However, we shall only use, in the remainder of this paper, the weaker results stated
in (2.8) and Proposition 2.3.

816



Now let σ denote the first return time to 0,

σ
def
= inf{n ≥ 1, Zn = 0}.

The process Z is a positive recurrent Markov chain so that E[σ] < ∞. Moreover, using the well
known expression of the invariant measure (c.f. Theorem 1.7.5 of [12]), we have, for any non
negative function f ,

E

[
σ−1∑

i=0

f(Zi)

]
= E[σ]E[f(Z∞)]. (2.9)

In particular, we get the following corollary which will be useful:

Corollary 2.5. We have, for β ≥ 0,

E

[
σ−1∑

i=0

Zβ
i

] {
< ∞ if β < α,
= ∞ if β ≥ α.

Proof. In view of (2.9), we just need to show that

E
[
Zβ
∞

]
=

{
< ∞ if β < α,
= ∞ if β ≥ α.

This result, when α < 1, is a direct consequence of Proposition 2.3. In the case α = 1, it follows
from (2.8) that E[Zβ

∞] < ∞ for any β < 1 whereas, using Proposition 2.3, E[Z∞] =
∫ ∞
0 P{Z∞ >

u}du = ∞.

3 The return time to zero

We have already stated that Z is a positive recurrent Markov chain, thus the return time σ to
zero has finite expectation. We now strengthen this result by giving the asymptotic of the tail
distribution of σ in the case α < 1. The aim of this section is to show:

Proposition 3.1. Assume that α ∈ (0, 1). Then, for any starting point x ≥ 1, there exists
c = c(x) > 0 such that

Px{σ > n} ∼
n→∞

c

nα+1
.

Notice that we do not allow the cookie environment to be such that α = 1 nor the starting point
x to be 0. In fact, these assumptions could be dropped but it would unnecessarily complicate
the proof of the Proposition which is technical enough already. Nevertheless, Proposition 3.1
still yields the following corollary valid for all α ∈ (0, 1] with initial starting point 0:

Corollary 3.2. Assume that α ∈ (0, 1], then

E[σβ] < ∞ for all 0 ≤ β < α + 1.
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Proof. Lemma 2.2 implies that σ, the first return to 0 for Z, is also monotonic with respect to
the cookie environment and the initial starting point. In particular, when α < 1, we get

P{σ > n} ≤ P1{σ > n} ∼ c

nα+1

and therefore E[σβ] < ∞ for all 0 ≤ β < α + 1. The case α = 1 is deduced from the case
α < 1, as for (2.8), by approximation, using the monotonicity property with respect to the
environment.

The method used in the proof of the proposition is classical and based on the study of probability
generating functions. Proposition 3.1 was first proved by Vatutin [13] who considered a branching
process with exactly one emigrant at each generation. This result was later generalized for
branching processes with more than one emigrant by Vinokurov [15] and also by Kaverin [8].
However, in our setting, we deal with a branching process with migration, that is, where both
immigration and emigration are allowed. More recently, Yanev and Yanev proved similar results
for such a class of processes, under the assumption that, either there is at most one emigrant
per generation [18] or that immigration dominates emigration [17] (in our setting, this would
correspond to α < 0).

For the process Z, the emigration component dominates the immigration component and this
leads to some additional technical difficulties. Although there is a vast literature on the subject
(see the authoritative survey of Vatutin and Zubkov [14] for additional references), we did not find
a proof of Proposition 3.1 in our setting. We shall therefore provide here a complete argument
but we invite the reader to look in the references mentioned above for additional details.

Recall the definition of the random variables Ai and ξi defined in section 2. We introduce, for
s ∈ [0, 1],

F (s)
def
= E[sξ1 ] =

1

2 − s
,

δ(s)
def
= (2 − s)M−1E[sAM−1 ],

Hk(s)
def
= (2 − s)M−1−kE[sAM−1 ] − E[sAk ] for 1 ≤ k ≤ M − 2.

Let Fj(s)
def
= F ◦ . . . ◦ F (s) stand for the j-fold of F (with the convention F0 = Id). We also

define by induction {
γ0(s)

def
= 1,

γn+1(s)
def
= δ(Fn(s))γn(s).

We use the abbreviated notations Fj
def
= Fj(0), γn

def
= γn(0). We start with a simple lemma.

Lemma 3.3. (a) Fn = 1 − 1
n+1 .

(b) Hk(1 − s) = −H ′
k(1)s + O(s2) when s → 0 for all 1 ≤ k ≤ M − 2.

(c) δ(1 − s) = 1 + αs + O(s2) when s → 0.

(d) γn ∼∞ c1n
α with c1 > 0.
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Proof. Assertion (a) is straightforward. According to (2.2), the functions Hk are analytic on
(0, 2) and (b) follows from a Taylor expansion near 1. Similarly, (c) follows from a Taylor
expansion near 1 of the function δ combined with (2.3). Finally, γn can be expressed in the form

γn =
n−1∏

j=0

δ(Fj) ∼
n→∞

c2

n∏

j=1

(
1 +

α

j

)
∼

n→∞
c1n

α,

which yields (d).

Let Z̃ stand for the process Z absorbed at 0:

Z̃n
def
= Zn1l{n≤inf(k≥0, Zk=0)}.

We also define, for x ≥ 1 and s ∈ [0, 1],

Jx(s)
def
=

∞∑

i=0

Px{Z̃i 6= 0}si, (3.1)

Gn,x(s)
def
= Ex[s

eZn ],

and for 1 ≤ k ≤ M − 2,

gk,x(s)
def
=

∞∑

i=0

Px{Z̃i = k}si+1.

Lemma 3.4. For any 1 ≤ k ≤ M − 2, we have

(a) supx≥1 gk,x(1) < ∞.

(b) for all x ≥ 1, g′k,x(1) < ∞.

Proof. The value gx,k(1) represents the expected number of visits to site k before hitting 0 for
the process Z starting from x. Thus, an easy application of the Markov property yields

gk,x(1) =
Px{Z visits k before 0}

Pk{Z visits 0 before returning to k} <
1

Pk{Z1 = 0} < ∞.

This proves (a). We now introduce the return times σk
def
= inf(n ≥ 1, Zn = k). In view of the

Markov property, we have

g′k,x(1) = gk,x(1) + Ex

[ ∞∑

n=1

n1l{ eZn=k}

]

= gk,x(1) +
∞∑

i=1

Px{σk = i, σk < σ}Ek

[ ∞∑

n=0

(i + n)1l{ eZn=k}

]

= gk,x(1) + Ex[σk1l{σk<σ}]gk,k(1) + Px{σk < σ}Ek

[ ∞∑

n=0

n1l{ eZn=k}

]
.
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Since Z is a positive recurrent Markov process, we have Ex[σk1l{σk<σ}] ≤ Ex[σ] < ∞. Thus, it

simply remains to show that Ek

[ ∑∞
n=0 n1l{ eZn=k}

]
< ∞. Using the Markov property, as above,

but considering now the partial sums, we get, for any N ≥ 1,

Ek

[
N∑

n=1

n1l{ eZn=k}

]
=

N∑

i=1

Pk{σk = i, σk < σ}Ek

[
N−i∑

n=0

(i + n)1l{ eZn=k}

]

≤ Ek

[
σk1l{σk<σ}

]
gk,k(1) + Pk{σk < σ}Ek

[
N∑

n=1

n1l{ eZn=k}

]
.

Since Pk{σk < σ} ≤ Pk{Z1 6= 0} < 1 (c.f. (2.5)), we deduce that

Ek

[
N∑

n=1

n1l{ eZn=k}

]
≤

Ek

[
σk1l{σk<σ}

]
gk,k(1)

1 − Pk{σk < σ} < ∞.

and we conclude the proof by letting N tend to +∞.

Lemma 3.5. The function Jx defined by (3.1) may be expressed in the form

Jx(s) = Ĵx(s) +
M−2∑

k=1

J̃k,x(s) for s ∈ [0, 1),

where

Ĵx(s)
def
=

∑∞
n=0 γn(1 − (Fn)x)sn

(1 − s)
∑∞

n=0 γnsn
and J̃k,x(s)

def
=

gk,x(s)
∑∞

n=0 γnHk(Fn)sn

(1 − s)
∑∞

n=0 γnsn
.

Proof. From the definition (2.4) of the branching process Z, we get, for n ≥ 0,

Gn+1,x(s) = Ex

[
E eZn

[s
eZ1 ]

]

= Px{Z̃n = 0} +
M−2∑

k=1

Px{Z̃n = k}E[sAk ] +
∞∑

k=M−1

Px{Z̃n = k}E[sξ]k−(M−1)E[sAM−1 ]

=

(
1−E[sAM−1 ]

E[sξ]M−1

)
Px{Z̃n = 0}−

M−2∑

k=1

Px{Z̃n = k}Hk(s) +
E[sAM−1 ]

E[sξ]M−1

∞∑

k=0

Px{Z̃n = k}E[sξ]k.

Since E[sξ] = F (s) and Gn,x(0) = Px{Z̃n = 0}, using the notation introduced in the beginning
of the section, the last equality may be rewritten

Gn+1,x(s) = δ(s)Gn,x(F (s)) + (1 − δ(s))Gn,x(0) −
M−2∑

k=1

Px{Z̃n = k}Hk(s).

Iterating this equation then setting s = 0 and using the relation G0,x(Fn+1) = (Fn+1)
x, we

deduce that, for any n ≥ 0,

Gn+1,x(0) =
n∑

i=0

(1−δ(Fi))γiGn−i,x(0) + γn+1(Fn+1)
x −

M−2∑

k=1

n∑

i=0

Px{Z̃n−i = k}γiHk(Fi). (3.2)
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Notice also that Px{Z̃n 6= 0} = 1 − Gn,x(0). In view of (3.2) and making use of the relation
(1 − δ(Fi))γi = γi − γi+1, we find, for all n ≥ 0 (with the convention

∑−1
0 = 0)

Px{Z̃n 6= 0} = γn(1 − (Fn)x) +
n−1∑

i=0

(γi − γi+1)Px{Z̃n−1−i 6= 0}

+
M−2∑

k=1

n−1∑

i=0

Px{Z̃n−1−i = k}γiHk(Fi).

Therefore, summing over n, for s < 1,

Jx(s) =
∞∑

n=0

Px{Z̃n 6= 0}sn

=
∞∑

n=0

γn(1 − (Fn)x)sn +
∞∑

n=0

n∑

i=0

(γi − γi+1)Px{Z̃n−i 6= 0}sn+1

+
M−2∑

k=1

∞∑

n=0

n∑

i=0

Px{Z̃n−i = k}γiHk(Fi)s
n+1

=
∞∑

n=0

γn(1 − (Fn)x)sn + Jx(s)
∞∑

n=0

(γn − γn+1)s
n+1 +

M−2∑

k=1

gk,x(s)
∞∑

n=0

γnHk(Fn)sn.

We conclude the proof noticing that
∑∞

n=0(γn − γn+1)s
n+1 = (s − 1)

∑∞
n=0 γnsn + 1.

Proof of Proposition 3.1. Recall that the parameter α is such that 0 < α < 1. Fix x ≥ 1 and
1 ≤ k ≤ M − 2. In view of (d) of Lemma 3.3, we have

γ1 + . . . + γn ∼
n→∞

c1

α + 1
nα+1.

Therefore, Corollary 1.7.3 of [5] implies

∞∑

n=0

γnsn ∼
s→1−

c1Γ(α + 1)

(1 − s)α+1
(3.3)

Using the same arguments, we also deduce that

∞∑

n=0

γnHk(Fn)sn ∼
s→1−

−c1H
′
k(1)Γ(α)

(1 − s)α
.

These two equivalences show that J̃k,x(1)
def
= lims→1− J̃k,x(s) is finite. More precisely, we get

J̃k,x(1) = −gk,x(1)H ′
k(1)

α
,

so that we may write

J̃k,x(1) − J̃k,x(s)

1 − s
=

(
gk,x(1) − gk,x(s)

1 − s

)
J̃k,x(s)

gk,x(s)
+

gk,x(1)B̃k(s)

(1 − s)2
∑∞

n=0 γnsn
(3.4)
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with the notation

B̃k(s)
def
=

H ′
k(1)

α
(s − 1)

∞∑

n=0

γnsn −
∞∑

n=0

γnHk(Fn)sn.

The first term on the r.h.s. of (3.4) converges towards −g′k(1)H ′
k(1)/α as s tends to 1 (this

quantity is finite thanks to Lemma 3.4). Making use of the relation γn+1 = δ(Fn)γn, we can also
rewrite B̃k in the form

B̃k(s) =
∞∑

n=1

γn−1

[
H ′

k(1)

α
(1 − δ(Fn−1)) − δ(Fn−1)Hk(Fn)

]
sn − H ′

k(1)

α
− Hk(0).

With the help of Lemma 3.3, it is easily checked that

γn−1

[
H ′

k(1)

α
(1 − δ(Fn−1)) − δ(Fn−1)Hk(Fn)

]
= O

(
1

n2−α

)
.

Since α < 1, we conclude that

B̃k(1) = lim
s→1−

B̃k(s) is finite. (3.5)

Thus, combining (3.3), (3.4) and (3.5), as s → 1−,

J̃k,x(1) − J̃k,x(s)

1 − s
=

gk,x(1)B̃k(1)

c1Γ(α + 1)
(1 − s)α−1 + o

(
(1 − s)α−1

)
. (3.6)

We can deal with Ĵx in exactly the same way. We now find Ĵx(1) = x
α and setting

B̂x(1)
def
=

∞∑

n=1

γn−1

[x

α
(δ(Fn−1) − 1) − δ(Fn−1)(1 − (Fn)x)

]
+

x

α
− 1, (3.7)

we also find that, as s → 1−,

Ĵx(1) − Ĵx(s)

1 − s
=

B̂x(1)

c1Γ(α + 1)
(1 − s)α−1 + o

(
(1 − s)α−1

)
. (3.8)

Putting together (3.6) and (3.8) and using Lemma 3.5, we obtain

Jx(1) − Jx(s)

1 − s
= Cx(1 − s)α−1 + o

(
(1 − s)α−1

)
(3.9)

with

Cx
def
=

1

c1Γ(α + 1)

(
B̂x(1) +

M−2∑

k=1

gk,x(1)B̃k(1)

)
. (3.10)

Since x 6= 0, we have Px{Z̃n 6= 0} = Px{σ > n} and, from the definition of Jx, we deduce

∞∑

n=0

( ∞∑

k=n+1

Px{σ > k}
)
sn =

Jx(1) − Jx(s)

1 − s
. (3.11)

822



Combining (3.9) and (3.11), we get

∞∑

n=0

( ∞∑

k=n+1

Px{σ > k}
)
sn = Cx(1 − s)α−1 + o

(
(1 − s)α−1

)
.

This shows in particular that Cx ≥ 0. Furthermore, Karamata’s Tauberian Theorem for power
series (c.f. Corollary 1.7.3 of [5]) implies

n∑

r=1

( ∞∑

k=r

Px{σ > k}
)

=
Cx

Γ(2 − α)
n1−α + o(n1−α).

Making use of two successive monotone density theorems (c.f. for instance Theorem 1.7.2 of
[5]), we conclude that

Px{σ > k} =
Cxα

Γ(1 − α)
k−α−1 + o(k−α−1).

It remains to prove that Cx 6= 0. To this end, we first notice that, for x, y ≥ 0, we have
Py{Z1 = x} > 0 and

Py{σ > n} ≥ Py{Z1 = x}Px{σ > n − 1}.
Thus, Cy ≥ Py{Z1 = x}Cx so it suffices to show that Cx is not zero for some x. In view of (a)
of Lemma 3.4, the quantity

M−2∑

k=1

gk,x(1)B̃k(1)

is bounded in x. Looking at the expression of Cx given in (3.10), it just remains to prove that
B̂x(1) can be arbitrarily large. In view of (3.7), we can write

B̂x(1) = xS(x) +
x

α
− 1

where

S(x)
def
=

∞∑

n=1

γn−1

[
1

α
(δ(Fn−1) − 1) − δ(Fn−1)

(1 − (Fn)x)

x

]
.

But for each fixed n, the function

x → δ(Fn−1)
(1 − (Fn)x)

x

decreases to 0 as x tends to infinity, so the monotone convergence theorem yields

S(x) ↑
x→∞

∞∑

n=1

γn−1

α
(δ(Fn−1) − 1) ∼ c3

∞∑

n=1

1

n1−α
= +∞.

Thus, B̂x(1) tends to infinity as x goes to infinity, which completes the proof of the proposition.

823



Remark 3.6. The study of the tail distribution of the return time is the key to obtaining condi-
tional limit theorems for the branching process, see for instance [8; 13; 15; 18]. Indeed, following
Vatutin’s scheme [13] and using Proposition 3.1, it can now be proved that Zn/n conditioned on
not hitting 0 before time n converges in law towards an exponential distribution. Precisely, when
α < 1, for each x = 1, 2, . . . and r ∈ R+,

lim
n→∞

Px

{
Zn

n
≤ r | σ > n

}
= 1 − e−r.

It is to be noted that this result is exactly the same as that obtained for a classical critical Galton-
Watson process ( i.e. when there is no migration). Although, in our setting, the return time to
zero has a finite expectation, which is not the case for the critical Galton-Watson process, the
behaviours of both processes, conditionally on their non-extinction, are still quite similar.

4 Total progeny over an excursion

The aim of this section is to study the distribution of the total progeny of the branching process
Z over an excursion away from 0. We will constantly use the notation

ν
def
=

α + 1

2
.

In particular, ν ranges through (1
2 , 1]. The main result of this section is the key to the proof of

Theorem 1.1 and states as follows.

Proposition 4.1. For α ∈ (0, 1], there exists a constant c = c(p̄) > 0 such that

P

{
σ−1∑

k=0

Zk > x

}
∼

x→∞
c/xν .

Let us first give an informal explanation for this polynomial decay with exponent ν. In view
of Remark 3.6, we can expect the shape of a large excursion away from zero of the process Z
to be quite similar to that of a Galton-Watson process. Indeed, if H denotes the height of an
excursion of Z (and σ denotes the length of the excursion), numerical simulations show that, just
as in the case of a classical branching process without migration, H ≈ σ and the total progeny∑σ−1

k=0 Zk is of the same order as Hσ. Since the decay of the tail distribution of σ is polynomial
with exponent α + 1, the tail distribution of

∑σ−1
k=0 Zk should then decrease with exponent α+1

2 .
In a way, this proposition tells us that the shape of an excursion is very ”squared”.

Although there is a vast literature on the subject of branching processes, it seems that there
has not been much attention given to the total progeny of the process. Moreover, the classical
machinery of generating functions and analytic methods, often used as a rule in the study of
branching processes seems, in our setting, inadequate for the study of the total progeny.

The proof of Proposition 4.1 uses a somewhat different approach and is mainly based on a
martingale argument. The idea of the proof is fairly simple but, unfortunately, since we are
dealing with a discrete time model, a lot of additional technical difficulties appear and the
complete argument is quite lengthy. For the sake of clarity, we shall first provide the skeleton
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of the proof of the proposition, while postponing the proof of the technical estimates to section
5.2.

Let us also note that, although we shall only study the particular branching process associated
with the cookie random walk, the method presented here could be used to deal with a more
general class of branching processes with migration.

We start with an easy lemma stating that P{∑σ−1
k=0 Zk > x} cannot decrease much faster than

1
xν .

Lemma 4.2. For any β > ν, we have

E

[( σ−1∑

k=0

Zk

)β
]

= ∞.

Proof. When α = ν = 1, the result is a direct consequence of Corollary 2.5 of section 2. We now
assume α < 1. Hölder’s inequality gives

σ−1∑

n=0

Zα
n ≤ σ1−α

( σ−1∑

n=0

Zn

)α
.

Taking the expectation and applying again Hölder’s inequality, we obtain, for ε > 0 small enough

E

[
σ−1∑

n=0

Zα
n

]
≤ E[σ1+α−ε]

1
p E

[( σ−1∑

n=0

Zn

)αq
] 1

q

,

with p = 1+α−ε
1−α and αq = 1+α−ε

2−ε/α . Moreover, Corollary 2.5 states that E[
∑σ−1

n=0 Zα
n ] = ∞ and,

thanks to Corollary 3.2, E[σ1+α−ε] < ∞. Therefore,

E

[( σ−1∑

n=0

Zn

)αq
]

= E

[( σ−1∑

n=0

Zn

)ν+ε′
]

= ∞.

This result is valid for any ε′ small enough and completes the proof of the lemma.

Proof of Proposition 4.1. In view of the Tauberian theorem stated in Corollary 8.1.7 of [5], it
suffices to show that

E
[
1 − e−λ

Pσ−1
k=0

Zk

]
=

λ→0+

{
Cλν + o(λν) if α ∈ (0, 1),
Cλ log λ + C ′λ + o(λ) if α = 1,

(4.1)

where C > 0 and C ′ ∈ R. Let us stress that, according to the remark following the corollary,
we do need, in the case α = 1, the second order expansion of the Laplace transform in order to
apply the Tauberian theorem.

The main idea is to construct a martingale in the following way. Let Kν denote the modified
Bessel function of second kind with parameter ν. For λ > 0, we define

φλ(x)
def
= (

√
λx)νKν(

√
λx), for x > 0. (4.2)
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We shall give some important properties of φλ in section 5.1. For the time being, we simply
recall that φλ is an analytic, positive, decreasing function on (0,∞) such that φλ and φ′

λ are
continuous at 0 with

φλ(0) = 2ν−1Γ(ν) and φ′
λ(0) = 0. (4.3)

Our main interest in φλ is that it satisfies the following differential equation, for x > 0:

− λxφλ(x) − αφ′
λ(x) + xφ′′

λ(x) = 0. (4.4)

Now let (Fn, n ≥ 0) denote the natural filtration of the branching process Z i.e. Fn
def
= σ(Zk, 0 ≤

k ≤ n) and define, for n ≥ 0 and λ > 0,

Wn
def
= φλ(Zn)e−λ

Pn−1
k=0

Zk . (4.5)

Setting
µ(n)

def
= E[Wn − Wn+1 | Fn], (4.6)

it is clear that the process

Yn
def
= Wn +

n−1∑

k=0

µ(k)

is an F-martingale. Furthermore, this martingale has bounded increments since

|Yn+1 − Yn| ≤ |Wn+1 − Wn| + |µ(n)| ≤ 4||φλ||∞.

Therefore, the use of the optional sampling theorem is legitimate with any stopping time with
finite mean. In particular, applying the optional sampling theorem with the first return time to
0, we get

φλ(0)E[e−λ
Pσ−1

k=0
Zk ] = φλ(0) − E[

σ−1∑

k=0

µ(k)],

which we may be rewritten, using φλ(0) = 2ν−1Γ(ν), in the form:

E[1 − e−λ
Pσ−1

k=0
Zk ] =

1

2ν−1Γ(ν)
E[

σ−1∑

k=0

µ(k)]. (4.7)

The proof of Proposition 4.1 now relies on a careful study of the expectation of
∑σ−1

k=0 µ(k). To
this end, we shall decompose µ into several terms using a Taylor expansion of φλ. We first need
the following lemma:

Lemma 4.3.

(a) There exists a function f1 with f1(x) = 0 for all x ≥ M − 1 such that

E[Zn+1 − Zn | Fn] = −α + f1(Zn).

(b) There exists a function f2 with f2(x) = f2(M − 1) for all x ≥ M − 1 such that

E[(Zn+1 − Zn)2 | Fn] = 2Zn + 2f2(Zn).

826



(c) For p ∈ N, there exists a constant Dp such that

E[|Zn+1 − Zn|p | Fn] ≤ Dp(Z
p/2
n + 1l{Zn=0}).

Proof. Assertion (a) is just a rewriting of equation (2.6). Recall the notations introduced in
section 2. Recall in particular that E[AM−1] = M − 1 − α. Thus, for j ≥ M − 1, we have

E[(Zn+1 − Zn)2 | Zn = j] = E
[(

AM−1 + ξ1 + . . . + ξj−M+1 − j
)2]

= E
[(

α + (AM−1 − E[AM−1]) +

j−M+1∑

k=1

(ξk − E[ξk])
)2]

= α2 + Var(AM−1) + (j − M + 1)Var(ξ1)

= 2Zn + α2 + Var(AM−1) − 2(M − 1).

This proves (b). When p is an even integer, we have E[|Zn+1−Zn|p | Fn] = E[(Zn+1−Zn)p | Fn]
and assertion (c) can be proved by developing (Zn+1−Zn)p in the same manner as for (b). Finally,
when p is an odd integer, Hölder’s inequality gives

E[|Zn+1 − Zn|p | Zn = j > 0] ≤ E[|Zn+1 − Zn|p+1 | Zn = j > 0]
p

p+1 ≤ D
p

p+1

p+1Z
p
2
n .

Continuation of the proof of Proposition 4.1. For n ∈ [1, σ − 2], the random variables Zn and
Zn+1 are both non zero and, since φλ is infinitely differentiable on (0,∞), a Taylor expansion
yields

φλ(Zn+1) = φλ(Zn) + φ′
λ(Zn)(Zn+1 − Zn) + rn,

where rn is given by Taylor’s integral remainder formula

rn
def
= (Zn+1 − Zn)2

∫ 1

0
(1 − t)φ′′

λ(Zn + t(Zn+1 − Zn))dt.

Setting

θn
def
= rn − 1

2
φ′′

λ(Zn)(Zn+1 − Zn)2

= (Zn+1 − Zn)2
∫ 1

0
(1 − t)(φ′′

λ(Zn + t(Zn+1 − Zn)) − φ′′
λ(Zn))dt, (4.8)

we get

φλ(Zn+1) = φλ(Zn) + φ′
λ(Zn)(Zn+1 − Zn) +

1

2
φ′′

λ(Zn)(Zn+1 − Zn)2 + θn. (4.9)

When n = σ−1, equation (4.9) is a priori incorrect because then Zn+1 = 0. However, according
to (4.3) and (4.4), the functions φλ(t), φ′

λ(t) and tφ′′
λ(t) have finite limits as t tends to 0+, thus

(4.9) still holds when n = σ − 1. Therefore, for any n ∈ [1, σ − 1],

E[eλZnφλ(Zn) − φλ(Zn+1) | Fn] =

(eλZn − 1)φλ(Zn) − φ′
λ(Zn)E[Zn+1 − Zn | Fn] − 1

2
φ′′

λ(Zn)E[(Zn+1 − Zn)2 | Fn] − E[θn | Fn].
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In view of (a) and (b) of Lemma 4.3 and recalling the differential equation (4.4) satisfied by φλ,
the r.h.s. of the previous equality may be rewritten

(eλZn − 1 − λZn)φλ(Zn) − φ′
λ(Zn)f1(Zn) − φ′′

λ(Zn)f2(Zn) − E[θn | Fn].

On the other hand, in view of (4.5) and (4.6), we have

µ(n) = e−λ
Pn

k=0 ZkE[eλZnφλ(Zn) − φλ(Zn+1) | Fn]. (4.10)

Thus, for each n ∈ [1, σ − 1], we may decompose µ(n) in the form

µ(n) = µ1(n) + µ2(n) + µ3(n) + µ4(n), (4.11)

where

µ1(n)
def
= e−λ

Pn
k=0 Zk(eλZn − 1 − λZn)φλ(Zn)

µ2(n)
def
= −e−λ

Pn
k=0 Zkφ′

λ(Zn)f1(Zn)

µ3(n)
def
= −e−λ

Pn
k=0 Zkφ′′

λ(Zn)f2(Zn)

µ4(n)
def
= −e−λ

Pn
k=0 ZkE[θn | Fn].

In particular, we can rewrite (4.7) in the form

E[1 − e−λ
Pσ−1

k=0
Zk ] =

1

2ν−1Γ(ν)

(
E

[
µ(0)

]
+

4∑

i=1

E
[ σ−1∑

n=1

µi(n)
])

. (4.12)

Note that we have to treat µ(0) separately since (4.11) does not hold for n = 0. We now state
the main estimates:

Lemma 4.4. There exist ε > 0 and eight finite constants (Ci, C
′
i, i = 0, 2, 3, 4) such that, as λ

tends to 0+,

(a) E [µ(0)] =

{
C0λ

ν + O(λ) if α ∈ (0, 1)
C0λ log λ + C ′

0λ + o(λ) if α = 1,

(b) E
[∑σ−1

n=1 µ1(n)
]

= o(λ) for α ∈ (0, 1],

(c) E
[∑σ−1

n=1 µ2(n)
]

=

{
C2λ

ν + o(λν+ε) if α ∈ (0, 1)
C2λ log λ + C ′

2λ + o(λ) if α = 1,

(d) E
[∑σ−1

n=1 µ3(n)
]

=

{
C3λ

ν + o(λν+ε) if α ∈ (0, 1)
C3λ log λ + C ′

3λ + o(λ) if α = 1,

(e) E
[∑σ−1

n=1 µ4(n)
]

=

{
C4λ

ν + o(λν+ε) if α ∈ (0, 1)
C ′

4λ + o(λ) if α = 1.

Notice that the remainder term θn in the Taylor expansion of φλ(Zn) is not really an error term
since, according to (e) of the lemma, its contribution is not negligible in the case α < 1. We
postpone the long and technical proof of these estimates until section 5.2 and complete the proof
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of Proposition 4.1. In view of (4.12), using the previous lemma, we deduce that there exist two
constants C, C ′ such that

E
[
1 − e−λ

Pσ−1
k=0

Zk

]
=

{
Cλν + o(λν+ε) if α ∈ (0, 1),
Cλ log λ + C ′λ + o(λ) if α = 1.

(4.13)

with

C
def
=

{
21−νΓ(ν)−1(C0 + C2 + C3 + C4) when α < 1,
21−νΓ(ν)−1(C0 + C2 + C3) when α = 1.

It simply remains to check that the constant C is not zero. Indeed, suppose that C = 0. We
first assume α = 1. Then, from (4.13),

E
[
1 − e−λ

Pσ−1
k=0

Zk

]
= C ′λ + o(λ)

which implies E[
∑σ−1

k=0 Zk] < ∞ and contradicts Corollary 2.5. Similarly, when α ∈ (0, 1) and
C = 0, we get from (4.13),

E
[
1 − e−λ

Pσ−1
k=0

Zk

]
= o(λν+ε).

This implies, for any 0 < ε′ < ε, that

E

[( σ−1∑

n=0

Zn

)ν+ε′
]

< ∞

which contradicts Lemma 4.2. Therefore, C cannot be zero and the proposition is proved.

5 Technical estimates

5.1 Some properties of modified Bessel functions

We now collect some properties of modified Bessel functions. All the results cited here are
gathered from [1] (section 9.6 and 9.7), [10] (section 5.7), [16] (section 7) and [6] (section 2). For
η ∈ R, the modified Bessel function of the first kind Iη is defined by

Iη(x)
def
=

(x

2

)η
∞∑

k=0

(x/2)2k

Γ(k + 1)Γ(k + 1 + η)

and the modified Bessel function of the second kind Kη is given by the formula

Kη(x)
def
=

{
π
2

I−η(x)−Iη(x)
sin πη for η ∈ R − Z,

limη′→η Kη′(x) for η ∈ Z.

We are particularly interested in

Fη(x)
def
= xηKη(x) for x > 0.

Thus, the function φλ defined in (4.2) may be expressed in the form

φλ(x) = Fν(
√

λx). (5.1)
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Fact 5.1. For η ≥ 0, the function Fη is analytic, positive and strictly decreasing on (0,∞).
Moreover

1. Behaviour at 0

(a) If η > 0, the function Fη is defined by continuity at 0 with Fη(0) = 2η−1Γ(η).

(b) If η = 0, then F0(x) = − log x + log 2 − γ + o(1) as x → 0+ where γ denotes Euler’s
constant.

2. Behaviour at infinity

Fη(x) ∼
x→∞

xη

√
π

2x
e−x.

In particular, for every η > 0, there exists cη ∈ R such that

∀x ≥ 0 Fη(x) ≤ cηe
−x/2. (5.2)

3. Formula for the derivative

F ′
η(x) = −x2η−1F1−η(x). (5.3)

In particular, Fη solves the differential equation

xF ′′
η (x) − (2η − 1)F ′

η(x) − xFη(x) = 0.

Concerning the function φλ, in view of (5.1), we deduce

Fact 5.2. For each λ > 0, the function φλ is analytic, positive and strictly decreasing on (0,∞).
Moreover,

(a) φλ is continuous and differentiable at 0 with φλ(0) = 2ν−1Γ(ν) and φ′
λ(0) = 0.

(b) For x > 0, we have

φ′
λ(x) = −λνxαF1−ν(

√
λx),

φ′′
λ(x) = λFν(

√
λx) − αλνxα−1F1−ν(

√
λx).

In particular, φλ solves the differential equation

−λxφλ(x) − αφ′
λ(x) + xφ′′

λ(x) = 0.

5.2 Proof of Lemma 4.4

The proof of Lemma 4.4 is tedious but requires only elementary methods. We shall treat, in
separate subsections the assertions (a) - (e) when α < 1 and explain, in a last subsection, how
to deal with the case α = 1.

We will use the following result extensively throughout the proof of Lemma 4.4.

Lemma 5.3. There exists ε > 0 such that

E
[
σ(1 − e−λ

Pσ−1
k=0

Zk)
]

= o(λε) as λ → 0+.
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Proof. Let β < α ≤ 1, the function x → xβ is concave, thus

E

[
(
σ−1∑

k=0

Zk)
β

]
≤ E

[
σ−1∑

k=0

Zβ
k

]
def
= c4 < ∞,

where we used Corollary 2.5 to conclude on the finiteness of c4. From Markov’s inequality, we

deduce that P
{∑σ−1

k=0 Zk > x
}
≤ c4

xβ for all x ≥ 0. Therefore,

E
[
1 − e−λ

Pσ−1
k=0

Zk

]
≤ (1 − e−λx) + P

{ σ−1∑

k=0

Zk > x

}
≤ λx +

c4

xβ
.

Choosing x = λ
− 1

β+1 and setting β′ def
= β

β+1 , we deduce

E
[
1 − e−λ

Pσ−1
k=0

Zk

]
≤ (1 + c4)λ

β′
.

According to Corollary 3.2, for δ < α, we have E[σ1+δ] < ∞, so Hölder’s inequality gives

E
[
σ(1 − e−λ

Pσ−1
k=0

Zk)
]

≤ E[σ1+δ]
1

1+δ E
[
(1 − e−λ

Pσ−1
k=0

Zk)
1+δ

δ

] δ
1+δ

≤ E[σ1+δ]
1

1+δ E
[
1 − e−λ

Pσ−1
k=0

Zk

] δ
1+δ ≤ c5λ

β′δ
1+δ ,

which completes the proof of the lemma.

5.2.1 Proof of (a) of Lemma 4.4 when α < 1

Using the expression of µ(0) given by (4.10) and the relation (5.3) between F ′
ν and F1−ν , we

have

E[µ(0)] = E[Fν(0) − Fν(
√

λZ1)] = −E

[∫ √
λZ1

0
F ′

ν(x)dx

]
= λνE

[∫ Z1

0
yαF1−ν(

√
λy)dy

]
.

Thus, using the dominated convergence theorem,

lim
λ→0

1

λν
E[µ(0)] = E

[∫ Z1

0
yαF1−ν(0)dy

]
=

F1−ν(0)

1 + α
E[Z1+α

1 ]
def
= C0 < ∞.

Furthermore, using again (5.3), we get

∣∣∣
1

λν
E[µ(0)] − C0

∣∣∣ = E

[∫ Z1

0
yα

(
F1−ν(0) − F1−ν(

√
λy)

)
dy

]

= E

[∫ Z1

0
yα

∫ √
λy

0
x−αFν(x)dxdy

]

≤ ||Fν ||∞
1 − α

λ
1−α

2 E

[∫ Z1

0
ydy

]
=

||Fν ||∞E[Z2
1 ]

2(1 − α)
λ

1−α
2 .

Therefore, we obtain
E[µ(0)] = C0λ

ν + O(λ)

which proves (a) of Lemma 4.4.
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5.2.2 Proof of (b) of Lemma 4.4 when α < 1

Recall that

µ1(n) = e−λ
Pn

k=0 Zk(eλZn − 1 − λZn)φλ(Zn) = e−λ
Pn

k=0 Zk(eλZn − 1 − λZn)Fν(
√

λZn).

Thus, µ1(n) is positive and

µ1(n) ≤ (1 − e−λZn − λZne−λZn)Fν(
√

λZn).

Moreover, for any y > 0, we have 1 − e−y − ye−y ≤ min(1, y2), thus

µ1(n) ≤ (1 − e−λZn − λZne−λZn)Fν(
√

λZn)

(
1l{Zn>−3 log λ√

λ
} + 1l{Zn≤−3 log λ√

λ
}

)

≤ Fν(
√

λZn)1l{Zn>−3 log λ√
λ

} + ||Fν ||∞λ2Z2
n1l{Zn≤−3 log λ√

λ
}

≤ Fν(−3 log λ) + ||Fν ||∞λ2Z2
n1l{Zn≤−3 log λ√

λ
},

where we used the fact that Fν is decreasing for the last inequality. In view of (5.2), we also

have Fν(−3 log λ) ≤ cνλ
3
2 and therefore

E

[
σ−1∑

n=1

µ1(n)

]
≤ λ

3
2 cνE[σ] + λ2||Fν ||∞E

[
σ−1∑

n=1

Z2
n1l{Zn≤−3 log λ√

λ
}

]
. (5.4)

On the one hand, according to (2.9), we have

E

[
σ−1∑

n=1

Z2
n1l{Zn≤−3 log λ√

λ
}

]
= E

[
Z2
∞1l{Z∞≤−3 log λ√

λ
}

]
E[σ]. (5.5)

On the other hand, Proposition 2.3 states that P{Z∞ ≥ x} ∼ c
xα as x tends to infinity, thus

E
[
Z2
∞1l{Z∞≤x}

]
∼

x→∞
−x2P{Z∞ ≥ x + 1} + 2

x∑

k=1

kP{Z∞ ≥ k} ∼
x→∞

cα

2 − α
x2−α.

This estimate and (5.5) yield

λ2E

[
σ−1∑

n=1

Z2
n1l{Zn≤−3 log λ√

λ
}

]
∼

λ→0+
c6λ

1+ α
2 | log λ|2−α. (5.6)

Combining (5.4) and (5.6), we finally obtain

E

[
σ−1∑

n=1

µ1(n)

]
= o(λ),

which proves (b) of Lemma 4.4.
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5.2.3 Proof of (c) of Lemma 4.4 when α < 1

Recall that

µ2(n) = −e−λ
Pn

k=0 Zkφ′
λ(Zn)f1(Zn) = λνZα

n F1−ν(
√

λZn)f1(Zn)e−λ
Pn

k=0 Zk .

Since f1(x) = 0 for x ≥ M − 1 (c.f. Lemma 4.3), the quantity |µ2(n)|/λν is smaller than
Mα||f1||∞||F1−ν ||∞. Thus, using the dominated convergence theorem, we get

lim
λ→0

1

λν
E

[
σ−1∑

n=1

µ2(n)

]
= E

[
σ−1∑

n=1

Zα
n F1−ν(0)f1(Zn)

]
def
= C2 ∈ R.

It remains to prove that, for ε > 0 small enough, as λ → 0+

∣∣∣
1

λν
E

[
σ−1∑

n=1

µ2(n)

]
− C2

∣∣∣ = o(λε). (5.7)

We can rewrite the l.h.s. of (5.7) in the form

∣∣∣E
[

σ−1∑

n=1

Zα
n f1(Zn)(F1−ν(0) − F1−ν(

√
λZn))

]

+ E

[
σ−1∑

n=1

Zα
n f1(Zn)F1−ν(

√
λZn)(1 − e−λ

Pn
k=0 Zk)

] ∣∣∣. (5.8)

On the one hand, the first term is bounded by

E

[
σ−1∑

n=1

Zα
n |f1(Zn)|(F1−ν(0) − F1−ν(

√
λZn))

]
≤ Mα||f1||∞E[σ]

∫ √
λM

0
|F ′

1−ν(x)|dx

≤ Mα||f1||∞E[σ]||Fν ||∞
∫ √

λM

0
x1−2νdx

≤ c7λ
1−ν ,

where we used formula (5.3) for the expression of F ′
1−ν for the second inequality. On the other

hand the second term of (5.8) is bounded by

E

[
σ−1∑

n=1

Zα
n |f1(Zn)|F1−ν(

√
λZn)(1−e−λ

Pn
k=0 Zk)

]
≤Mα||f1||∞||F1−ν ||∞E

[
σ(1−e−λ

Pσ−1
k=0

Zk)
]

≤ c8λ
ε (5.9)

where we used Lemma 5.3 for the last inequality. Putting the pieces together, we conclude that
(5.7) holds for ε > 0 small enough.
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5.2.4 Proof of (d) of Lemma 4.4 when α < 1

Recall that

µ3(n) = −e−λ
Pn

k=0 Zkφ′′
λ(Zn)f2(Zn)

= −e−λ
Pn

k=0 Zkf2(Zn)
(
λFν(

√
λZn) − αλνZα−1

n F1−ν(
√

λZn)
)

.

Note that, since α ≤ 1, we have Zα−1
n ≤ 1 when Zn 6= 0. The quantities f2(Zn), Fν(

√
λZn) and

F1−ν(
√

λZn)) are also bounded, so we check, using the dominated convergence theorem, that

lim
λ→0

1

λν
E

[
σ−1∑

n=1

µ3(n)

]
= αE

[
σ−1∑

n=1

Zα−1
n F1−ν(0)f2(Zn)

]
def
= C3 ∈ R.

Furthermore we have

1

λν
E

[
σ−1∑

n=1

µ3(n)

]
− C3 = −λ1−νE

[
σ−1∑

n=1

e−λ
Pn

k=0 Zkf2(Zn)Fν(
√

λZn)

]
(5.10)

−αE

[
σ−1∑

n=1

Zα−1
n f2(Zn)

(
F1−ν(0) − F1−ν(

√
λZn)

)]

−αE

[
σ−1∑

n=1

Zα−1
n f2(Zn)F1−ν(

√
λZn)

(
1 − e−λ

Pn
k=0 Zk

)]
.

The first term is clearly bounded by c9λ
1−ν . We turn our attention to the second term. In view

of (5.3), we have

F1−ν(0) − F1−ν(
√

λZn) =

∫ √
λZn

0
x1−2νFν(x)dx ≤ ||Fν ||∞

2 − 2ν
λ1−νZ2−2ν

n =
||Fν ||∞
1 − α

λ1−νZ1−α
n ,

where we used 2 − 2ν = 1 − α for the last equality. Therefore,

∣∣∣E
[

σ−1∑

n=1

Zα−1
n f2(Zn)(F1−ν(0) − F1−ν(

√
λZn))

] ∣∣∣ ≤ ||Fν ||∞||f2||∞
1 − α

λ1−νE

[
σ−1∑

n=1

1

]

=
||Fν ||∞||f2||∞E[σ]

1 − α
λ1−ν .

As for the third term of (5.10), with the help of Lemma 5.3, we find

∣∣∣E
[

σ−1∑

n=1

Zα−1
n f2(Zn)F1−ν(

√
λZn)(1−e−λ

Pn
k=0 Zk)

]∣∣∣ ≤ ||f2||∞||F1−ν ||∞E
[
σ(1−e−λ

Pσ−1
k=0

Zk)
]

≤ c10λ
ε.

Putting the pieces together, we conclude that

E

[
σ−1∑

n=1

µ3(n)

]
= C3λ

ν + o(λν+ε).
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5.2.5 Proof of (e) of Lemma 4.4 when α < 1

Recall that
µ4(n) = −e−λ

Pn
k=0 ZkE[θn | Fn]. (5.11)

This term turns out to be the most difficult to deal with. The main reason is that we must now
deal with Zn and Zn+1 simultaneously. We first need the next lemma stating that Zn+1 cannot
be too ”far” from Zn.

Lemma 5.4. There exist two constants K1, K2 > 0 such that for all n ≥ 0,

(a) P{Zn+1 ≤ 1
2Zn | Fn} ≤ K1e

−K2Zn,

(b) P{Zn+1 ≥ 2Zn | Fn} ≤ K1e
−K2Zn.

Proof. This lemma follows from large deviation estimates. Indeed, with the notation of section
2, in view of Cramér’s theorem (c.f. Theorem 2.2.3 of [7]), we have, for any j ≥ M − 1,

P
{

Zn+1 ≤ 1

2
Zn |Zn = j

}
= P

{
AM−1 + ξ1 + . . . + ξj−M+1 ≤ j

2

}

≤ P
{

ξ1 + . . . + ξj−M+1 ≤ j

2

}
≤ K1e

−K2j ,

where we used the fact that (ξi) is a sequence of i.i.d geometric random variables with mean 1.
Similarly, recalling that AM−1 admits exponential moments of order β < 2, we also deduce, for
j ≥ M − 1, with possibly extended values of K1 and K2 that

P
{

Zn+1 ≥ 2Zn |Zn = j
}

= P
{

AM−1 + ξ1 + . . . + ξj−M+1 ≥ 2j
}

≤ P
{

AM−1 ≥ j

2

}
+ P

{
ξ1 + . . . + ξj−M+1 ≥ 3j

2

}
≤ K1e

−K2j .

Throughout this section, we use the notation, for t ∈ [0, 1] and n ∈ N,

Vn,t
def
= Zn + t(Zn+1 − Zn).

In particular Vn,t ∈ [Zn, Zn+1] (with the convention that for a > b, [a, b] means [b, a]). With this
notation, we can rewrite the expression of θn given in (4.8) in the form

θn = (Zn+1 − Zn)2
∫ 1

0
(1 − t)

(
φ′′

λ(Vn,t) − φ′′
λ(Zn)

)
dt.

Using the expression of φ′
λ and φ′′

λ stated in Fact (5.2), we get

E[θn | Fn] =

∫ 1

0
(1 − t)(I1

n(t) + I2
n(t))dt, (5.12)

with

I1
n(t)

def
= λE

[
(Zn+1 − Zn)2

(
Fν(

√
λVn,t) − Fν(

√
λZn)

) ∣∣∣ Fn

]
,

I2
n(t)

def
= −αλνE

[
(Zn+1 − Zn)2

(
V α−1

n,t F1−ν(
√

λVn,t) − Zα−1
n F1−ν(

√
λZn)

) ∣∣∣ Fn

]
.
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Notice that the interchanging of
∫

and E is correct since we have the upper bounds

∣∣∣(1 − t)(Zn+1 − Zn)2
(
Fν(

√
λVn,t) − Fν(

√
λZn)

)∣∣∣ ≤ 2||Fν ||∞(Zn+1 − Zn)2

and

∣∣∣(1 − t)(Zn+1 − Zn)2
(
V α−1

n,t F1−ν(
√

λVn,t) − Zα−1
n F1−ν(

√
λZn)

)∣∣∣

≤ (Zn+1 − Zn)2||F1−ν ||∞Zα−1
n ((1 − t)α−1 + 1),

which are both integrable. We want to estimate

E

[
σ−1∑

n=1

µ4(n)

]
= E

[
σ−1∑

n=1

e−λ
Pn

k=0 Zk

∫ 1

0
(1 − t)I1

n(t)dt

]

+ E

[
σ−1∑

n=1

e−λ
Pn

k=0 Zk

∫ 1

0
(1 − t)I2

n(t)dt

]
.

We deal with each term separately.

Dealing with I1: We prove that the contribution of this term is negligible, i.e.

∣∣∣E
[

σ−1∑

n=1

e−λ
Pn

k=0 Zk

∫ 1

0
(1 − t)I1

n(t)dt

] ∣∣∣ ≤ c11λ
ν+ε. (5.13)

To this end, we first notice that

|I1
n(t)| ≤ λ

3
2 E

[
|Zn+1 − Zn|3 max

x∈[Zn,Zn+1]
|F ′

ν(
√

λx)|
∣∣∣ Fn

]

= λ
3
2 E

[
|Zn+1 − Zn|3 max

x∈[Zn,Zn+1]
(
√

λx)αF1−ν(
√

λx)
∣∣∣ Fn

]

≤ c1−νλ
3
2 E

[
|Zn+1 − Zn|3 max

x∈[Zn,Zn+1]
(
√

λx)αe−
√

λx
2

∣∣∣ Fn

]
, (5.14)

where we used (5.2) to find c1−ν such that F1−ν(x) ≤ c1−νe
−x/2. We now split (5.14) according

to whether

(a)
1

2
Zn ≤ Zn+1 ≤ 2Zn or (b) Zn+1 <

1

2
Zn or Zn+1 > 2Zn.

One the one hand, Lemma 4.3 states that

E [|Zn+1 − Zn|p | Fn] ≤ DpZ
p
2
n for all p ∈ N and Zn 6= 0.
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Hence, for 1 ≤ n ≤ σ − 1, we get

E

[
|Zn+1 − Zn|3 max

x∈[Zn,Zn+1]
(
√

λx)αe−
√

λx
2 1l{ 1

2
Zn≤Zn+1≤2Zn}

∣∣∣ Fn

]

≤ E

[
|Zn+1 − Zn|3 max

x∈[ 1
2
Zn,2Zn]

(
√

λx)αe−
√

λx
2 1l{ 1

2
Zn≤Zn+1≤2Zn}

∣∣∣ Fn

]

≤ E
[
|Zn+1 − Zn|3(2

√
λZn)αe−

1
4

√
λZn

∣∣∣ Fn

]

≤ c12Z
3
2
n (

√
λZn)αe−

1
4

√
λZn

= c12λ
3α−6

8 Z
3α
4

n (
√

λZn)
6+α

4 e−
1
4

√
λZn

≤ c13λ
3α−6

8 Z
3α
4

n ,

(5.15)

where we used the fact that the function x
6+α

4 e−
x
4 is bounded on R+ for the last inequality. On

the other hand,

E

[
|Zn+1 − Zn|3 max

x∈[Zn,Zn+1]
(
√

λx)αe−
√

λx
2 1l{Zn+1< 1

2
Zn or Zn+1>2Zn}

∣∣∣ Fn

]

≤ E

[
|Zn+1 − Zn|3 max

x≥0
(
√

λx)αe−
√

λx
2 1l{Zn+1< 1

2
Zn or Zn+1>2Zn}

∣∣∣ Fn

]

≤ c14E
[
|Zn+1 − Zn|6 | Fn

]1/2
P

{
Zn+1 <

1

2
Zn or Zn+1 > 2Zn

∣∣∣ Fn

} 1
2

≤ c15Z
3
2
n e−

K2
2

Zn

≤ c16.

(5.16)

Combining (5.14), (5.15) and (5.16), we get

|I1
n(t)| ≤ c1−νc16λ

3
2 + c1−νc13λ

3α+6
8 Z

3α
4

n ≤ c17λ
ν+ 2−α

8 Z
3α
4

n .

And therefore

∣∣∣E
[

σ−1∑

n=1

e−λ
Pn

k=0 Zk

∫ 1

0
(1 − t)I1

n(t)dt

] ∣∣∣ ≤ c17λ
ν+ 2−α

8 E

[
σ−1∑

n=1

Z
3α
4

n

]
.

Corollary 2.5 states that E[
∑σ−1

n=1 Z
3α
4

n ] is finite so the proof of (5.13) is complete.

Dealing with I2: It remains to prove that

E

[
σ−1∑

n=1

e−λ
Pn

k=0 Zk

∫ 1

0
(1 − t)I2

n(t)dt

]
= C4λ

ν + o(λν+ε). (5.17)

To this end, we write
I2
n(t) = −αλν(J1

n(t) + J2
n(t) + J3

n(t)), (5.18)
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with

J1
n(t)

def
= E

[
(Zn+1 − Zn)2(F1−ν(

√
λVn,t)) − F1−ν(

√
λZn))Zα−1

n | Fn

]
,

J2
n(t)

def
= E

[
(Zn+1 − Zn)2(V α−1

n,t − Zα−1
n )(F1−ν(

√
λVn,t) − F1−ν(0)) | Fn

]
,

J3
n(t)

def
= F1−ν(0)E

[
(Zn+1 − Zn)2(V α−1

n,t − Zα−1
n ) | Fn

]
.

Again, we shall study each term separately. In view of (5.17) and (5.18), the proof of (e) of
Lemma 4.4, when α < 1, will finally be complete once we establish the following three estimates:

E

[
σ−1∑

n=1

e−λ
Pn

k=0 Zk

∫ 1

0
(1 − t)J1

n(t)dt

]
= O(λ

1−α
4 ), (5.19)

E

[
σ−1∑

n=1

e−λ
Pn

k=0 Zk

∫ 1

0
(1 − t)J2

n(t)dt

]
= o(λε), (5.20)

E

[
σ−1∑

n=1

e−λ
Pn

k=0 Zk

∫ 1

0
(1 − t)J3

n(t)dt

]
= C4 + o(λε). (5.21)

Proof of (5.19): Using a technique similar to that used for I1, we split J1 into two different
terms according to whether

(a)
1

2
Zn ≤ Zn+1 (b) Zn+1 <

1

2
Zn.

For the first case (a), we write, for 1 ≤ n ≤ σ − 1, recalling that Vn,t ∈ [Zn, Zn+1],

∣∣∣E
[
(Zn+1 − Zn)2

(
F1−ν(

√
λVn,t) − F1−ν(

√
λZn)

)
Zα−1

n 1l{ 1
2
Zn≤Zn+1}

∣∣∣ Fn

] ∣∣∣

≤ λ
1
2 E

[
|Zn+1 − Zn|3Zα−1

n max
x≥ 1

2
Zn

|F ′
1−ν(

√
λx)|

∣∣∣ Fn

]

= λ
1
2 E

[
|Zn+1 − Zn|3 | Fn

]
Zα−1

n max
x≥ 1

2
Zn

(
(
√

λx)−αFν(
√

λx)
)

≤ c18λ
1
2 E

[
|Zn+1 − Zn|3 | Fn

]
Zα−1

n max
x≥ 1

2
Zn

(
(
√

λx)−αe−
√

λx
2

)

= c18λ
1
2 E

[
|Zn+1 − Zn|3 | Fn

]
Z−1

n (
1

2

√
λ)−αe−

1
4

√
λZn

≤ c19Z
1
2
n λ

1−α
2 e−

1
4

√
λZn

= c19λ
1−α

4 Z
α
2
n

(
(
√

λZn)
1−α

2 e−
1
4

√
λZn

)

≤ c20λ
1−α

4 Z
α
2
n ,

(5.22)

where we used (c) of Lemma 4.3 to get an upper bound for the conditional expectation.
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For the second case (b), noticing that Vn,t ≥ (1 − t)Zn and keeping in mind Lemma 5.4, we get

E
[
(Zn+1 − Zn)2

(
F1−ν(

√
λVn,t) − F1−ν(

√
λZn)

)
Zα−1

n 1l{Zn+1< 1
2
Zn}

∣∣∣ Fn

]

≤ c21λ
1
2 E

[
|Zn+1 − Zn|3Zα−1

n 1l{Zn+1< 1
2
Zn} | Fn

]
max

x≥(1−t)Zn

(
(
√

λx)−αe−
√

λx
2

)

≤ c22λ
1
2 E

[
Zα+2

n 1l{Zn+1< 1
2
Zn} | Fn

]
λ−α

2 (1 − t)−αZ−α
n

= c22λ
1−α

2 Z2
nP

{
Zn+1 <

1

2
Zn | Fn

}
(1 − t)−α

≤ c23λ
1−α

2 Z2
ne−K2Zn(1 − t)−α

≤ c24λ
1−α

2 (1 − t)−α.

(5.23)

Combining (5.22) and (5.23), we deduce that, for 1 ≤ n ≤ σ − 1,

∫ 1

0
(1 − t)|J1

n(t)|dt ≤ c25λ
1−α

4 Z
α
2
n .

Moreover, according to Corollary 2.5, we have E
[∑σ−1

n=1 Z
α
2
n

]
< ∞, therefore

∣∣∣E
[

σ−1∑

n=1

e−λ
Pn

k=0 Zk

∫ 1

0
(1 − t)J1

n(t)dt

] ∣∣∣ ≤ E

[
σ−1∑

n=1

∫ 1

0
(1 − t)|J1

n(t)|dt

]
≤ c26λ

1−α
4 (5.24)

which yields (5.19).

Proof of (5.20): We write

J2
n(t) = E[Rn(t) | Fn]

with
Rn(t)

def
= (Zn+1 − Zn)2

(
V α−1

n,t − Zα−1
n

) (
F1−ν(

√
λVn,t) − F1−ν(0)

)
.

Again, we split the expression of J2
n according to three cases:

J2
n(t) = E[Rn(t)1l{Zn+1< 1

2
Zn} | Fn] + E[Rn(t)1l{ 1

2
Zn≤Zn+1≤2Zn} | Fn]

+E[Rn(t)1l{Zn+1>2Zn} | Fn]. (5.25)

We do not detail the case Zn+1 < 1
2Zn which may be treated with the same method used in

(5.23) and yields a similar bound which does not depend on Zn:

E[Rn(t)1l{Zn+1< 1
2
Zn} | Fn] ≤ c27λ

1−α
2 (1 − t)−α.

In particular, this estimate gives:

∣∣∣∣∣E
[

σ−1∑

n=1

e−λ
Pn

k=0 Zk

∫ 1

0
(1 − t)E[Rn(t)1l{Zn+1< Zn

2
} | Fn]dt

]∣∣∣∣∣ ≤ c28λ
1−α

2 . (5.26)
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In order to deal with the second term on the r.h.s. of (5.25), we write

|E[Rn(t)1l{ 1
2
Zn≤Zn+1≤2Zn} | Fn]|

=
∣∣∣E

[
(Zn+1 − Zn)2(V α−1

n,t − Zα−1
n )(F1−ν(

√
λVn,t) − F1−ν(0))1l{ 1

2
Zn≤Zn+1≤2Zn} | Fn

]∣∣∣

≤ c29E

[
|Zn+1 − Zn|3 max

x≥Zn
2

xα−2

∫ 2
√

λZn

0
|F ′

1−ν(y)|dy
∣∣∣ Fn

]

≤ c30E
[
|Zn+1 − Zn|3 | Fn

]
max
x≥Zn

2

xα−2

∫ 2
√

λZn

0
y−αdy

≤ c31λ
1−α

2 Z
1
2
n .

According to Corollary 2.5, when 1
2 < α < 1, we have E

[∑σ−1
n=1 Z

1/2
n

]
< ∞. In this case, we get

∣∣∣∣∣E
[

σ−1∑

n=1

e−λ
Pn

k=0 Zk

∫ 1

0
(1 − t)E[Rn(t)1l{ 1

2
Zn≤Zn+1≤2Zn} | Fn]dt

]∣∣∣∣∣ ≤ c32λ
1−α

2 . (5.27)

When 0 < α ≤ 1
2 , the function x

2−3α
4 e−x is bounded on R+, so

e−λZn

∫ 1

0
(1 − t)|E[Rn(t)1l{ 1

2
Zn≤Zn+1≤2Zn} | Fn]|dt ≤ c31λ

1−α
2 Z

1
2
n e−λZn

= c31λ
α
4 Z

3α
4

n

(
(λZn)

2−3α
4 e−λZn

)

≤ c33λ
α
4 Z

3α
4

n .

Therefore, when α ≤ 1
2 , the estimate (5.27) still holds by changing λ

1−α
2 to λ

α
4 . Hence, for every

α ∈ (0, 1), we can find ε > 0 such that

∣∣∣∣∣E
[

σ−1∑

n=1

e−λ
Pn

k=0 Zk

∫ 1

0
(1 − t)E[Rn(t)1l{ 1

2
Zn≤Zn+1≤2Zn} | Fn]dt

]∣∣∣∣∣ ≤ c34λ
ε. (5.28)

It remains to give the upper bound for the last term on the r.h.s. of (5.25). We have

E
[
Rn(t)1l{Zn+1≥2Zn}

∣∣∣ Fn

]
= E

[
Rn(t)1l

{2Zn≤Zn+1≤λ− 1
4 }

∣∣∣ Fn

]

+E
[
Rn(t)1l

{Zn+1>max(λ− 1
4 ,2Zn)}

∣∣∣ Fn

]
.

On the one hand, when Zn 6= 0 and Zn+1 6= 0, we have |V α−1
n,t −Zα−1

n | ≤ 2 thus, for 1 ≤ n ≤ σ−1,
we get
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∣∣∣E
[
Rn(t)1l

{2Zn≤Zn+1≤λ− 1
4 }

∣∣∣ Fn

]∣∣∣

=
∣∣∣E

[
(Zn+1 − Zn)2

(
V α−1

n,t − Zα−1
n

)(
F1−ν(

√
λVn,t) − F1−ν(0)

)
1l
{2Zn<Zn+1≤λ− 1

4 }

∣∣∣ Fn

] ∣∣∣

≤ 2E
[
(Zn+1 − Zn)2

( ∫ √
λZn+1

0
x−αFν(x)dx

)
1l
{2Zn<Zn+1≤λ− 1

4 }
| Fn

]

≤ c35E
[
(Zn+1 − Zn)2

( ∫ λ
1
4

0
x−αdx

)
1l{Zn+1>2Zn} | Fn

]

≤ c36λ
1−α

4 E
[
(Zn+1 − Zn)21l{Zn+1>2Zn} | Fn

]

≤ c36λ
1−α

4 E
[
(Zn+1 − Zn)4 | Fn

] 1
2
P

{
Zn+1 > 2Zn | Fn

} 1
2

≤ c37λ
1−α

4 ,

where we used (c) of Lemma 4.3 and Lemma 5.4 for the last inequality. On the other hand,

∣∣∣E
[
Rn(t)1l

{Zn+1>max(λ− 1
4 ,2Zn)}

∣∣∣ Fn

]∣∣∣

=
∣∣∣E

[
(Zn+1 − Zn)2(V α−1

n,t − Zα−1
n )

(
F1−ν(

√
λVn,t) − F1−ν(0)

)
1l
{Zn+1>max(λ− 1

4 ,2Zn)}
| Fn

]∣∣∣

≤ 2||F1−ν ||∞E
[
(Zn+1 − Zn)21l

{Zn+1>max(λ− 1
4 ,2Zn)}

| Fn

]

≤ c38E
[
(Zn+1 − Zn)41l{Zn+1>2Zn} | Fn

] 1
2
P

{
Zn+1 > λ− 1

4 | Fn

} 1
2
.

≤ c38E
[
(Zn+1 − Zn)8 | Fn

] 1
4
P

{
Zn+1 > 2Zn | Fn

} 1
4
P

{
Zn+1 > λ− 1

4 | Fn

} 1
2
.

≤ c39Zne−
K2
4

ZnP
{

Zn+1 > λ− 1
4 | Fn

} 1
2

≤ c39Zne−
K2
4

ZnE[Zn+1 | Fn]
1
2 λ

1
8

≤ c39Zne−
K2
4

Zn(Zn + c40)
1
2 λ

1
8

≤ c41λ
1
8 .

These two bounds yield

∣∣∣∣∣E
[

σ−1∑

n=1

e−λ
Pn

k=0 Zk

∫ 1

0
(1 − t)E[Rn(t)1l{Zn+1>2Zn} | Fn]dt

]∣∣∣∣∣ ≤ c42λ
β (5.29)

with β = min(1−α
4 , 1

8). Combining (5.26), (5.28) and (5.29), we finally obtain (5.20).

Proof of (5.21): Recall that

J3
n(t)

def
= F1−ν(0)E

[
(Zn+1 − Zn)2(V α−1

n,t − Zα−1
n ) | Fn

]
.
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In particular, J3
n(t) does not depend on λ. We want to show that there exist C4 ∈ R and ε > 0

such that

E

[
σ−1∑

n=1

e−λ
Pn

k=0 Zk

∫ 1

0
(1 − t)J3

n(t)dt

]
= C4 + o(λε). (5.30)

We must first check that

E

[
σ−1∑

n=1

∫ 1

0
(1 − t)|J3

n(t)|dt

]
< ∞.

This may be done, using the same method as before by distinguishing two cases:

(a) Zn+1 ≥ 1

2
Zn (b) Zn+1 <

1

2
Zn.

Since the arguments are very similar to those provided above, we feel free to skip the details.
We find, for 1 ≤ n ≤ σ − 1,

∫ 1

0
(1 − t)|J3

n(t)|dt ≤ c43Z
α− 1

2
n + c44 ≤ c45Z

α
2
n .

Since E
[∑σ−1

n=1 Z
α
2
n

]
< ∞, with the help of the dominated convergence theorem, we get

lim
λ→0

E

[
σ−1∑

n=1

e−λ
Pn

k=0 Zk

∫ 1

0
(1 − t)J3

n(t)dt

]
= E

[
σ−1∑

n=1

∫ 1

0
(1 − t)J3

n(t)dt

]
def
= C4 ∈ R.

Furthermore we have
∣∣∣∣∣E

[
σ−1∑

n=1

e−λ
Pn

k=0 Zk

∫ 1

0
(1 − t)J3

n(t)dt

]
− C4

∣∣∣∣∣ =

∣∣∣∣∣E
[

σ−1∑

n=1

(1 − e−λ
Pn

k=0 Zk)

∫ 1

0
(1 − t)J3

n(t)dt

]∣∣∣∣∣

≤ c45E

[
(1 − e−λ

Pσ−1
k=0

Zk)
σ−1∑

n=1

Z
α
2
n

]
.

Using Hölder’s inequality, we get

E

[
(1 − e−λ

Pσ−1
k=0

Zk)
σ−1∑

n=1

Z
α
2
n

]
≤ E

[
(1 − e−λ

Pσ−1
k=0

Zk)σ
1
3 (

σ−1∑

n=1

Z
3α
4

n )
2
3

]

≤ E
[
(1 − e−λ

Pσ−1
k=0

Zk)3σ
] 1

3
E

[
σ−1∑

n=1

Z
3α
4

n

] 2
3

≤ c46E
[
(1 − e−λ

Pσ−1
k=0

Zk)σ
] 1

3

≤ c47λ
ε

where we used Lemma 5.3 for the last inequality. This yields (5.21) and completes, at last, the
proof of (e) of Lemma 4.4 when α ∈ (0, 1).
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5.2.6 Proof of Lemma 4.4 when α = 1

The proof of the lemma when α = 1 is quite similar to that of the case α < 1. Giving a complete
proof would be lengthy and redundant. We shall therefore provide only the arguments which
differ from the case α < 1.

For α = 1, the main difference from the previous case comes from the fact that the function
F1−ν = F0 is not bounded near 0 anymore, a property that was extensively used in the course
of the proof when α < 1. To overcome this new difficulty, we introduce the function G defined
by

G(x)
def
= F0(x) + F1(x) log x for x > 0. (5.31)

Using the properties of F0 and F1 stated in section 5.1, we easily check that the function G
satisfies

(1) G(0)
def
= limx→0+ G(x) = log 2 − γ (where γ denotes Euler’s constant).

(2) There exists cG > 0 such that G(x) ≤ cGe−x/2 for all x ≥ 0.

(3) G′(x) = −xF0(x) log x, so G′(0) = 0.

(4) There exists cG′ > 0 such that |G′(x)| ≤ cG′
√

xe−x/2 for all x ≥ 0.

Thus, each time we encounter F0(x) in the study of µk(n), we will write G(x) − F1(x) log x
instead. Let us also notice that F1 and F ′

1 are also bounded on [0,∞).

We now point out, for each assertion (a) - (e) of Lemma 4.4, the modification required to handle
the case α = 1.

Assertion (a): E[µ(0)] = C0λ log λ + C ′
0λ + o(λ)

As in section 5.2.1, we have

E[µ(0)] = λE

[∫ Z1

0
xF0(

√
λx)dx

]

= λE

[∫ Z1

0
xG(

√
λx)dx

]
− λE

[∫ Z1

0
xF1(

√
λx) log(

√
λx)dx

]

= λE

[∫ Z1

0
x

(
G(

√
λx) − F1(

√
λx) log x

)
dx

]
− 1

2
λ log λE

[∫ Z1

0
xF1(

√
λx)dx

]

and by dominated convergence,

lim
λ→0

E

[∫ Z1

0
x

(
G(

√
λx) − F1(

√
λx) log x

)
dx

]
= E

[∫ Z1

0
x
(
G(0) − F1(0) log x

)
dx

]
.

Furthermore, using the fact that F ′
1 is bounded, we get

E

[∫ Z1

0
xF1(

√
λx)dx

]
=

F1(0)

2
E[Z2

1 ] + O(
√

λ)

843



so that
E[µ(0)] = C0λ log λ + C ′

0λ + o(λ).

Assertion (b): E[
∑σ−1

n=1 µ1(n)] = o(λ)

The beginning of the proof is the same as in the case α < 1. We get

0 ≤ E

[
σ−1∑

n=1

µ1(n)

]
≤ λ

3
2 cνE[σ] + λ2||Fν ||∞E[σ]E

[
Z2
∞1l{Z∞≤−3 log λ√

λ
}

]
.

According to (2.8), there exists c48 > 0 such that P{Z∞ > x} ≤ c48√
x
. Thus

E
[
Z2
∞1l{Z∞≤x}

]
∼

x→∞
−x2P{Z∞ ≥ x + 1} + 2

x∑

k=1

kP{Z∞ ≥ k} ≤
x→∞

c49x
3/2,

and therefore,

λ2E

[
Z2
∞1l{Z∞≤−3 log λ√

λ
}

]
≤ c50λ

5
4 | log λ| 32

for λ sufficiently small. We conclude that

E

[
σ−1∑

n=1

µ1(n)

]
= o(λ).

Assertion (c): E[
∑σ−1

n=1 µ2(n)] = C2λ log λ + C ′
2λ + o(λ)

Using the definition of G, we now have

µ2(n) = λZnF0(
√

λZn)f1(Zn)e−λ
Pn

k=0 Zk

= λZnf1(Zn)e−λ
Pn

k=0 Zk

[(
G(

√
λZn) − F1(

√
λZn) log Zn

)
− 1

2
log λF1(

√
λZn)

]
.

Since f1(x) is equal to 0 for x ≥ M − 1, we get the following (finite) limit

lim
λ→0

E

[
σ−1∑

n=1

Znf1(Zn)e−λ
Pn

k=0 Zk

(
G(

√
λZn) − F1(

√
λZn) log Zn

)]
=

E

[
σ−1∑

n=1

Znf1(Zn)
(
G(0) − F1(0) log Zn

)]
.

Using the same idea as in (5.8), using also Lemma 5.3 and the fact that F ′
1 is bounded, we

deduce that

E

[
σ−1∑

n=1

Znf1(Zn)e−λ
Pn

k=0 ZkF1(
√

λZn))

]
= E

[
σ−1∑

n=1

Znf1(Zn)F1(0)

]
+ o(λε)
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which completes the proof of the assertion.

Assertion (d): E[
∑σ−1

n=1 µ3(n)] = C3λ log λ + C ′
3λ + o(λ)

As in (c), this assertion will be proved as soon as we establish that

lim
λ→0

E

[
σ−1∑

n=1

f2(Zn)e−λ
Pn

k=0 Zk

(
G(

√
λZn) − F1(

√
λZn)(log Zn + 1)

)]
=

E

[
σ−1∑

n=1

f2(Zn)
(
G(0) − F1(0)(log Zn + 1)

)]
(5.32)

and that

E

[
σ−1∑

n=1

f2(Zn)e−λ
Pn

k=0 ZkF1(
√

λZn))

]
= E

[
σ−1∑

n=1

f2(Zn)F1(0)

]
+ o(λε). (5.33)

Since the functions f2, G and F1 are bounded and E[log Z∞1l{Z∞ 6=0}] is finite, equation (5.32)
follows from the dominated convergence theorem. Concerning the second assertion, we first
rewrite equation (5.33) in the form:

E

[
σ−1∑

n=1

f2(Zn)(1 − e−λ
Pn

k=0 Zk)F1(
√

λZn))

]
+ E

[
σ−1∑

n=1

f2(Zn)(F1(0) − F1(
√

λZn))

]
= o(λε).

We prove that the first term is o(λε) using the same method as in (5.9). Concerning the second
term, we write, with the help of (2.9),

∣∣∣E
[

σ−1∑

n=1

f2(Zn)(F1(0) − F1(
√

λZn))

] ∣∣∣

≤ E[σ]E
[
|f2(Z∞)|(F1(0) − F1(

√
λZ∞))(1l{Z∞<λ−1/3} + 1l{Z∞≥λ−1/3})

]

≤ E[σ]||f2||∞
(
λ1/6||F ′

1||∞ + 2||F1||∞P{Z∞ > λ−1/3}
)

≤ c51λ
1/6,

using (2.8) with β = 1/2 for the last inequality.

Assertion (e): E[
∑σ−1

n=1 µ4(n)] = C ′
4λ + o(λ)

It is worth noticing that, when α = 1, the contribution of this remainder term is negligible
compared to (a), (c), and (d) and does not affect the value of the constant in Proposition 4.1.
This differs from the case α < 1. Recall that

µ4(n) = −e−λ
Pn

k=0 ZkE[θn | Fn],

where θn is given by (4.8). Recall also the notation Vn,t
def
= Zn + t(Zn+1 −Zn). Just as in (5.12),

we write

E[θn | Fn] =

∫ 1

0
(1 − t)(I1

n(t) + I2
n(t))dt,
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with

I1
n(t)

def
= λE

[
(Zn+1 − Zn)2

(
F1(

√
λVn,t) − F1(

√
λZn)

) ∣∣ Fn

]

I2
n(t)

def
= −λE

[
(Zn+1 − Zn)2(F0(

√
λVn,t) − F0(

√
λZn))

∣∣ Fn

]
,

As in (5.14), we have

|I1
n(t)| ≤ λ

3
2 E

[
|Zn+1 − Zn|3 max

x∈[Zn,Zn+1]

√
λxF0(

√
λx)

∣∣ Fn

]
.

In view of the relation

F0(
√

λx) = G(
√

λx) − F1(
√

λx) log x − 1

2
F1(

√
λx) log λ,

and with similar techniques to those used in the case α < 1, we deduce

∣∣∣E
[

σ−1∑

n=1

e−λ
Pn

k=0 Zk

∫ 1

0
(1 − t)I1

n(t)dt

] ∣∣∣ ≤ c52λ
9
8 | log λ| = o(λ). (5.34)

It remains to estimate I2
n(t) which we now decompose into four terms:

I2
n(t) = −λ(J̃1

n(t) + J̃2
n(t) + J̃3

n(t) + J̃4
n(t)),

with

J̃1
n(t)

def
= E

[
(Zn+1 − Zn)2(G(

√
λVn,t) − G(

√
λZn)) | Fn

]

J̃2
n(t)

def
= −1

2
log λE

[
(Zn+1 − Zn)2(F1(

√
λVn,t) − F1(

√
λZn)) | Fn

]

J̃3
n(t)

def
= −E

[
(Zn+1 − Zn)2 log Zn(F1(

√
λVn,t) − F1(

√
λZn)) | Fn

]

J̃4
n(t)

def
= −E

[
(Zn+1 − Zn)2(log Vn,t − log Zn)F1(

√
λVn,t) | Fn

]
.

We can obtain an upper bound of order λεZ1−ε
n for J̃1

n(t) by considering again three cases:

(1)
1

2
Zn < Zn+1 < 2Zn (2) Zn+1 ≤ 1

2
Zn (3) Zn+1 ≥ 2Zn.

For (1), we use |G′(x)| ≤ cG′
√

xe−x/2 for all x ≥ 0. We deal with (2) combining Lemma 5.4
and the fact that G′ is bounded. Finally, the case of (3) may be treated by similar methods to
those used for dealing with J2

n(t) in he proof of (e) when α < 1 (i.e. we separate into two terms
according to whether Zn+1 ≤ λ−1/4 or not).

Keeping in mind that F1 is bounded and that |F ′
1(x)| = xF0(x) ≤ c53

√
xe−x, the same method

enables us to deal with J̃2
n(t) and J̃3

n(t). Combining these estimates, we get

E

[
σ−1∑

n=1

e−λ
Pn

k=0 Zk

∫ 1

0
(1 − t)

(
J̃1

n(t) + J̃2
n(t) + J̃3

n(t)
)

dt

]
= o(λε)
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for ε > 0 small enough. Therefore, it simply remains to prove that

lim
λ→0+

E

[
σ−1∑

n=1

e−λ
Pn

k=0 Zk

∫ 1

0
(1 − t)J̃4

n(t)dt

]
(5.35)

exists and is finite. In view of the dominated convergence theorem, it suffices to show that

E

[
σ−1∑

n=1

∫ 1

0
(1 − t)E

[
(Zn+1 − Zn)2| log Vn,t − log Zn|

∣∣∣ Fn

]
dt

]
< ∞. (5.36)

We consider separately the cases Zn+1 > Zn and Zn+1 ≤ Zn. On the one hand, using the
inequality log(1 + x) ≤ x, we get

E
[
1l{Zn+1>Zn}(Zn+1 − Zn)2| log Vn,t − log Zn|

∣∣∣ Fn

]

= E
[
1l{Zn+1>Zn}(Zn+1 − Zn)2 log

(
1 +

t(Zn+1 − Zn)

Zn

) ∣∣∣ Fn

]
≤ t

√
Zn.

On the other hand, we find

E
[
1l{Zn+1≤Zn}(Zn+1 − Zn)2| log Vn,t − log Zn|

∣∣∣ Fn

]

= E
[
1l{Zn+1≤Zn}(Zn+1 − Zn)2 log

(
1 +

t(Zn − Zn+1)

Zn − t(Zn − Zn+1)

) ∣∣∣ Fn

]
≤ t

1 − t

√
Zn.

Since E[
∑σ−1

n=1

√
Zn] is finite, we deduce (5.36) and the proof of assertion (e) follows.

6 Proof of Theorem 1.1

Recall that X stands for the (M, p̄)-cookie random walk and Z stands for its associated branching
process. We define the sequence of return times (σn)n≥0 by

{
σ0

def
= 0,

σn+1
def
= inf{k > σn , Zk = 0}.

In particular, σ1 = σ with the notation of the previous sections. We write

σn∑

k=0

Zk =

σ1−1∑

k=σ0

Zk + . . . +

σn−1∑

k=σn−1

Zk.

The random variables (
∑σi+1−1

k=σi
Zk , i ∈ N) are i.i.d. In view of Proposition 4.1, the characteri-

zation of the domains of attraction to a stable law (c.f. Section 8.3 of [5]) implies





Pσn
k=0

Zk

n1/ν

law−→
n→∞

Sν when α ∈ (0, 1),
Pσn

k=0
Zk

n log n

prob−→
n→∞

c when α = 1.
(6.1)
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where Sν denotes a positive, strictly stable law with index ν and where c is a strictly positive
constant. Let us note that (6.1) may also be deduce directly from the convergence of the Laplace
transform of 1

n1/ν

∑σ
k=0 Zk (resp. log n

n

∑σ
k=0 Zk) using (4.1).

Moreover, the random variables (σn+1 − σn , n ∈ N) are i.i.d. with finite expectation E[σ], thus

σn

n

a.s.−→
n→∞

E[σ]. (6.2)

The combination of (6.1) and (6.2) easily gives





Pn
k=0 Zk

n1/ν

law−→
n→∞

E[σ]−
1
ν Sν when α ∈ (0, 1),

Pn
k=0 Zk

n log n

prob−→
n→∞

cE[σ]−1 when α = 1.

Concerning the hitting times of the cookie random walk Tn = inf{k ≥ 0 , Xk = n}, making use
of Proposition 2.1, we now deduce that





Tn

n1/ν

law−→
n→∞

2E[σ]−
1
ν Sν when α ∈ (0, 1),

Tn
n log n

prob−→
n→∞

2cE[σ]−1 when α = 1.

Since Tn is the inverse of supk≤n Xk, we conclude that





1
nν supk≤n Xk

law−→
n→∞

2−νE[σ]S−ν
ν when α ∈ (0, 1),

log n
n supk≤n Xk

prob−→
n→∞

(2c)−1E[σ] when α = 1.

This completes the proof of the theorem for supk≤n Xk. It remains to prove that this result also
holds for Xn and for infk≥n Xk. We need the following lemma.

Lemma 6.1. Let X be a transient cookie random walk. There exists a function f : N 7→ R+

with limK→+∞ f(K) = 0 such that, for every n ∈ N,

P{n − inf
i≥Tn

Xi > K} ≤ f(K).

Proof. The proof of this lemma is very similar to that of Lemma 4.1 of [3]. For n ∈ N, let
ωX,n = (ωX,n(i, x))i≥1,x∈Z denote the random cookie environment at time Tn ”viewed from the
particle”, i.e. the environment obtained at time Tn and shifted by n. With this notation,
ωX,n(i, x) denotes the strength of the ith cookies at site x:

ωX,n(i, x) =

{
pj if j = i + ♯{0 ≤ k < Tn, Xk = x + n} ≤ M,
1
2 otherwise.

Since the cookie random walk X has not visited the half line [n,∞) before time Tn, the cookie
environment ωX,n on [0,∞) is the same as the initial cookie environment, that is, for x ≥ 0,

ωX,n(i, x) =

{
pi if 1 ≤ i ≤ M,
1
2 otherwise.

(6.3)
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Given a cookie environment ω, we denote by Pω a probability under which X is a cookie random
walk starting from 0 in the cookie environment ω. Therefore, with these notations,

P{n − inf
i≥Tn

Xi > K} ≤ E
[
PωX,n{X visits −K at least once}

]
. (6.4)

Consider now the deterministic (but non-homogeneous) cookie environment ωp̄,+ obtained from
the classical homogeneous (M, p̄) environment by removing all the cookies situated on (−∞,−1]:

{
ωp̄,+(i, x) = 1

2 , for all x < 0 and i ≥ 1,
ωp̄,+(i, x) = pi, for all x ≥ 0 and i ≥ 1 (with the convention pi = 1

2 for i ≥ M).

According to (6.3), the random cookie environment ωX,n is almost surely larger than the envi-
ronment ωp̄,+ for the canonical partial order, i.e.

ωX,n(i, x) ≥ ωp̄,+(i, x) for all i ≥ 1, x ∈ Z, almost surely.

The monotonicity result of Zerner stated in Lemma 15 of [19] yields

PωX,n{X visits − K at least once} ≤ Pωp̄,+{X visits − K at least once} almost surely.

Combining this with (6.4), we get

P{n − inf
i≥Tn

Xi > K} ≤ Pωp̄,+{X visits − K at least once}. (6.5)

This upper bound does not depend on n. Moreover, it is shown in the proof of Lemma 4.1 of
[3] that the walk in the cookie environment ωp̄,+ is transient which implies, in particular,

Pωp̄,+{X visits − K at least once} −→
K→∞

0.

We now complete the proof of Theorem 1.1. Let n, r, p ∈ N, using {Tr+p ≤ n} = {supk≤n Xk ≥
r + p}, we get

{sup
k≤n

Xk < r} ⊂ { inf
k≥n

Xk < r} ⊂ {sup
k≤n

Xk < r + p} ∪ { inf
k≥Tr+p

Xk < r}.

Taking the probability of these sets, we obtain

P{sup
k≤n

Xk < r} ≤ P{ inf
k≥n

Xk < r} ≤ P{sup
k≤n

Xk < r + p} + P{ inf
k≥Tr+p

Xk < r}.

But, using Lemma 6.1, we have

P{ inf
k≥Tr+p

Xk < r} = P{r + p − inf
k≥Tr+p

Xk > p} ≤ f(p) −→
p→∞

0.

Choosing x ≥ 0 and r = ⌊xnν⌋ and p = ⌊log n⌋, we get, for α < 1, as n tends to infinity,

lim
n→∞

P

{
infk≥n Xk

nν
< x

}
= lim

n→∞
P

{
supk≤n Xk

nν
< x

}
.

Of course, the same method also works when α = 1. This proves Theorem 1.1 for infk≥n Xk.
Finally, the result for Xn follows from

inf
k≥n

Xk ≤ Xn ≤ sup
k≤n

Xk.
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