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Abstract
We consider the model of the one-dimensional cookie random walk when the

initial cookie distribution is spatially uniform and the number of cookies per site
is �nite. We give a criterion to decide whether the limiting speed of the walk is
non-zero. In particular, we show that a positive speed may be obtained for just 3
cookies per site. We also prove a result on the continuity of the speed with respect
to the initial cookie distribution.
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1 Introduction
We consider the model of the multi-excited random walk, also called cookie random walk,
introduced by Zerner in [13] as a generalization of the model of the excited random
walk described by Benjamini and Wilson in [3] (see also Davis [4] for a continuous time
analogue). The aim of this paper is to study under which conditions the speed of a
cookie random walk is strictly positive. In dimension d ≥ 2, this problem was solved
by Kozma [7, 8], who proved that the speed is always non-zero. In the one-dimensional
case, the speed can either be zero or strictly positive. We give here a necessary and
su�cient condition to determine if the walk's speed is strictly positive when the initial
cookie environment is deterministic, spatially uniform and with a �nite number of cookies
per site. Let us start with an informal de�nition of such a process:

Let us put M ≥ 1 "cookies" at each site of Z and let us pick p1, p2, . . . , pM ∈ [1
2
, 1).

We say that pi represents the "strength" of the ith cookie at any given site. Then, a cookie
random walk X = (Xn)n≥0 is simply a nearest neighbour random walk, eating the cookies
it �nds along its path by behaving in the following way:

∗Address for both authors: Laboratoire de Probabilités et Modèles Aléatoires, Université Pierre et
Marie Curie, 175 rue du Chevaleret, 75013 Paris, France.
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• If Xn = x and there is no remaining cookie at site x, then X jumps at time n + 1
to x + 1 or x− 1 with equal probability 1

2
.

• If Xn = x and there remain the cookies with strengths pj, pj+1, . . . , pM at this site,
then X eats the cookie with attached strength pj (which therefore disappears from
this site) and then jumps at time n + 1 to x + 1 with probability pj and to x − 1
with probability 1− pj.

This model is a particular case of self-interacting random walk: the position of X at time
n + 1 depends not only of its position at time n but also on the number of previous visits
to its present site. Therefore, X is not a Markov process.

Let us now give a formal description of the general model. We de�ne the set of
cookie environments by Ω = [1

2
, 1]N

∗×Z. Thus, a cookie environment is of the form ω =
(ω(i, x))i≥1,x∈Z where ω(i, x) represents the strength of the ith cookie at site x. Given
x ∈ Z and ω ∈ Ω, a cookie random walk starting from x in the cookie environment ω is
a process (Xn)n≥0 on some probability space (Ω,F ,Pω,x) such that:




Pω,x{X0 = z} = 1,
Pω,x{|Xn+1 −Xn| = 1} = 1,
Pω,x{Xn+1 = Xn + 1 | X1, . . . , Xn} = ω(j, Xn) where j = ]{0 ≤ i ≤ n , Xi = Xn}.

In this paper, we restrict our attention to the set of environments Ωu
M ⊂ Ω which are

spatially uniform with at most M ≥ 1 cookies per site:

ω ∈ Ωu
M ⇐⇒





for all x ∈ Z and all i ≥ 1 ω(i, x) = ω(i, 0),
for all i > M ω(i, 0) = 1

2
,

for all i ≥ 1 ω(i, 0) < 1.

The last condition ω(i, 0) < 1 is introduced only to exclude some possible degenerate cases
but can be relaxed (see Remark 2.4). A cookie environment ω ∈ Ωu

M may be represented
by (M, p̄) where

p̄ = (p1, . . . , pM) = (ω(1, 0), . . . , ω(M, 0)).

In this case, we shall say that the associated cookie random walk is an (M, p̄)-cookie
random walk and we will use the notation P(M,p̄) instead of Pω.

The question of the recurrence or transience of a cookie random walk was solved by
Zerner in [13] for general cookie environments (even in the case where the initial cookie
environment may itself be random). In particular, he proved that, if X is an (M, p̄)-cookie
random walk, there is a phase transition according to the value of

α = α(M, p̄)
def
=

M∑
i=1

(2pi − 1)− 1. (1)

• If α ≤ 0 then the walk is recurrent i.e. lim sup Xn = − lim inf Xn = +∞ a.s.

• If α > 0 then X is transient toward +∞ i.e. lim Xn = +∞ a.s.
In particular, for M = 1, the cookie random walk is always recurrent for any choice of p̄.
However, as soon as M ≥ 2, the cookie random walk can either be transient or recurrent,
depending on p̄. Zerner [13] also proved that the speed of a (M, p̄)-cookie random walk
X is always well de�ned (but may or may not be zero). Precisely,
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• there exists a constant v(M, p̄) ≥ 0 such that

Xn

n
−→
n→∞

v(M, p̄) P(M,p̄)-almost surely.

• The speed is monotonic in p̄: if p̄ = (p1, . . . , pM) and q̄ = (q1, . . . , qM) are two cookie
environments such that pi ≤ qi for all i, then v(M, p̄) ≤ v(M, q̄).

• The speed of a (2, p̄)-cookie random walk is always 0.

The question of whether one can construct a (M, p̄)-cookie random walk with strictly
positive speed was a�rmatively answered by Mountford, Pimentel and Valle [9] who
considered the case where all the cookies have the same strength p ∈ [1

2
, 1) i.e. the cookie

vector p̄ has the form [p]M
def
= (p, . . . , p). They showed that:

• For any p ∈ (1
2
, 1), there exists an M0 such that for all M > M0 the speed of the

(M, [p]M)-cookie random walk is strictly positive.

• If M(2p− 1) < 2, then the speed of the (M, [p]M)-cookie random walk is zero.

They also conjectured that when M(2p− 1) > 2, the speed should be non-zero. The aim
of this paper is to prove that such is indeed the case.

Theorem 1.1. Let X denote a (M, p̄)-cookie random walk, then

lim
n→∞

Xn

n
= v(M, p̄) > 0 ⇐⇒ α(M, p̄) > 1

where α(M, p̄) is given by (1).

In particular, we see that a non-zero speed may be achieved for as few as 3 cookies
per site. Comparing this result with the transience/recurrence criteria, we have a second
order phase transition at the critical value α = 1. In fact, it is proved in [2] that, in the
zero speed case 0 < α < 1, the rate of transience of Xn is of order n

α+1
2 .

One would certainly like an explicit calculation of the limiting velocity in term of the
cookie environment (M, p̄) but this seems a challenging problem (one can still look at
Corollary 3.7 where we give an implicit formula for the speed). However, one can prove
that the speed is continuous in p̄ and has a positive right derivative at all its critical
points:

Theorem 1.2. • For each M , the speed v(M, p̄) is a continuous function of p̄ in Ωu
M .

• For any environment (M, p̄c) with α(M, p̄c) = 1, there exists a constant C > 0
(depending on (M, p̄c)) such that

lim
p̄→p̄c
p̄∈Ωu

M
α(p̄)>1

v(M, p̄)

α(M, p̄)− 1
= C.
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Figure 1: Simulation of the speed of a (3, [p]3)-cookie random walk.

In particular, for M ≥ 3, the (unique) critical value for an (M, [p]M)-cookie random
walk is pc = 1

M
+ 1

2
and the function v(p) is continuous, non-decreasing, zero for p ≤ pc,

and admits a �nite strictly positive right derivative at pc (see �gure 1).
The remainder of this paper is organized as follow. In the next section, we construct a

Markov process associated with the hitting time of the cookie random walk. The method
is similar to that used by Kesten, Kozlov and Spitzer [6] for the determination of the rates
of transience of a random walk in a one-dimensional random environment. It turns out
that, in our setting, the resulting process is a branching process with random migration.
The study of this process and of its stationary distribution is undertaken in Section 3.
This enables us to complete the proof of Theorem 1.1. Finally, the last section is dedicated
to the proof of Theorem 1.2.

2 An associated branching process with migration
In the remainder of this paper, X = (Xn)n≥0 will denote a (M, p̄)-cookie random walk.
Since the speed of a recurrent cookie random walk is zero, we shall also assume that we
are in the transient regime i.e.

α(M, p̄) =
M∑
i=1

(2pi − 1)− 1 > 0. (2)

For the sake of brevity, we simply write Px for P(M,p̄),x and P instead of P0 (the process
starting from 0). Let Tn stand for the hitting time of level n ≥ 0 by X:

Tn = inf(k ≥ 0 , Xk = n). (3)

For 0 ≤ k ≤ n, let Un
i denote the number of jumps of the cookie random walk from site i

to site i− 1 before reaching level n

Un
i = ]{0 ≤ k < Tn, Xk = i and Xk+1 = i− 1}.

4



Let Kn stand for the total time spent by X in the negative half-line up to time Tn

Kn = ]{0 ≤ k ≤ Tn, Xk < 0}.
A simple combinatorial argument readily yields

Tn = Kn − Un
0 + n + 2

n∑

k=0

Un
k .

Notice that, as n tends to in�nity, the random variable Kn increases toward K∞, the total
time spent by the cookie random walk in the negative half line. Similarly, Un

0 increases
toward U∞

0 , the total number of jumps from 0 to −1. Since X is transient, K∞ + U∞
0 is

almost-surely �nite and therefore

Tn ∼
n→∞

n + 2
n∑

k=0

Un
k . (4)

Let us now prove that, for each n, the reverse process (Un
n , Un

n−1, . . . , U
n
1 , Un

0 ) has the same
law as the n �rst steps of some branching process Z with random migration. We �rst
need to introduce some notations. Let (Bi)i≥1 denote a sequence of independent Bernoulli
random variables under P with distribution:

P{Bi = 1} = 1−P{Bi = 0} =

{
pi if i ≤ M ,
1
2

if i > M . (5)

For j ∈ N, de�ne
kj = min(k ≥ 1, ]{1 ≤ i ≤ k,Bi = 1} = j + 1)

and
Aj = ]{1 ≤ i ≤ kj, Bi = 0} = kj − j − 1.

We have the following easy lemma:

Lemma 2.1. • For any i, j ≥ 0, we have P{Aj = i} > 0.

• For all j ≥ M , we have

Aj
law
= AM−1 + ξ1 + . . . + ξj−M+1 (6)

where (ξi)i≥0 are i.i.d. random variables independent of AM−1 with geometrical
distribution starting from 0 and with parameter 1

2
i.e. P{ξ1 = i} = (1/2)i+1.

Proof. The �rst part of the lemma is a direct consequence of the assumption that p̄ is
such that pk < 1 for all k. To prove the second part, we simply notice that kM−1 ≥ M so
that, for j ≥ M , the random variable Aj−AM−1 has the same law as the random variable

min(k ≥ 1, ]{1 ≤ i ≤ k, B̃i = 1} = j + 1−M)− j − 1 + M (7)

where (B̃i)i≥0 is a sequence of i.i.d. random variables independent of AM−1, with common
Bernoulli distribution P{B̃i = 0} = P{B̃i = 1} = 1

2
. It is clear that (7) has the same law

as ξ1 + . . . + ξj−M+1.
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We now consider a process Z = (Zn, n ≥ 0) and a family of probabilities (Pz)z≥0

such that, under Pz, the process Z is a Markov chain starting from z, with transition
probabilities: {

Pz{Z0 = z} = 1,
Pz{Zn+1 = k | Zn = j} = P{Aj = k}.

Since the family of probabilities (Pz) depends on the law of the cookie environment (M, p̄),
we should rigourously write P(M,p̄),z instead of Pz. However, when there is no possibility
of confusion, we shall keep using the abbreviated notation. Furthermore, we simply write
P for P0 and E stands for the expectation with respect to P.

Let us now notice that, in view of the previous lemma, Zn under Pz may be interpreted
as the number of particles alive at time n of a branching process with random migration
starting from z, that is a branching process which allows immigration and emigration (see
Vatutin and Zubkov [11] for a survey of these processes). Indeed:

• If Zn = j ≥ M − 1 then, according to Lemma 2.1, Zn+1 has the same law as∑j−M+1
k=1 ξk + AM−1, i.e. M − 1 particles emigrate and the remaining particles

reproduce according to a geometrical law with parameter 1
2
and there is also an

immigration of AM−1 new particles.

• If Zn = j ∈ {0, . . . , M − 2} then Zn+1 has the same law as Aj i.e. all the j particles
emigrate and Aj new particles immigrate.

We can now state the main result of this section:

Proposition 2.2. For each n ∈ N, (Un
n , Un

n−1, . . . , U
n
0 ) under P has the same law as

(Z0, Z1, . . . , Zn) under P.

Proof. The argument is similar to the one given by Kesten et al. in [6]. Recall that Un
i

represents the numbers of jumps of the cookie random walk X from i to i − 1 before
reaching n. Then, conditionally on (Un

n , Un
n−1, . . . , U

n
i+1), the number of jumps Un

i from i
to i − 1 depends only on the number of jumps from i + 1 to i, that is, depends only on
Un

i+1. This shows that (Un
n , Un

n−1, . . . , U
n
0 ) is indeed a Markov process.

By de�nition, Z0 = 0 P-a.s. and Un
n = 0 P-a.s. It remains to compute P{Un

i =
k | Un

i+1 = j}. Note that the number of jumps from i to i − 1 before reaching level n is
equal to the number of jumps from i to i− 1 before reaching i + 1 for the �rst time plus
the sum of the number of jumps from i to i− 1 between two consecutive jumps from i+1
to i which occur before reaching level n. Thus, conditionally on {Un

i+1 = j}, the random
variable Un

i has the same law as the number of failures (i.e. Bk = 0) in the Bernoulli
sequence (B1, B2, B3, . . .) de�ned by (5) before obtaining exactly j + 1 successes. This is
precisely the de�nition of Aj and therefore P{Un

i = k | Un
i+1 = j} = Pj{Z1 = k}.

Since Un
0 is the number of jumps from 0 to −1 of the cookie random walk X before

reaching level n and since we assumed that the cookie random walk X is transient, Un
0

increases almost surely toward the total number U∞
0 of jumps of X from 0 to −1. In

view of the previous proposition, this implies that under P, Zn converges in law toward a
random variable which we denote by Z∞.

Let us also note that Z is an irreducible Markov chain (this is a consequence of part 1
of Lemma 2.1). Since Z converges in law toward a limiting distribution, this shows that
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Z is in fact a positive recurrent Markov chain. In particular, Zn converges in law toward
Z∞ independently of its starting point (i.e. the law of Z∞ is the same under any Px) and
the law of Z∞ is also the unique invariant probability for Z.

Corollary 2.3. Recall that v(M, p̄) denotes the limiting speed of the cookie random walk
X. We have

v(M, p̄) =
1

1 + 2E[Z∞]
(with the convention 0 = 1

+∞).

In particular, the speed of an (M, p̄)-cookie random walk is non zero i.i.f. the limiting
random variable Z∞ of its associated process Z has a �nite expectation.

Proof. Since X is transient, we have the well known equivalence valid for v ∈ [0,∞] :

Xn

n
−→
n→∞

v P-a.s. ⇐⇒ Tn

n
−→
n→∞

1

v
P-a.s. (8)

On the one hand, this equivalence and (4) yield

1

n

n∑

k=0

Un
k −→

n→∞
1

2v(M, p̄)
− 1

2
P-a.s. (9)

On the other hand, making use of an ergodic theorem for the positive recurrent Markov
chains Z with stationary limiting distribution Z∞ (see for instance Theorem 1.10.2 on
p53 of [10]), we �nd that

1

n

n∑
i=1

Zk →
n→∞

E[Z∞] P-a.s. (10)

(note that this result is valid even if E[Z∞] = ∞). Proposition 2.2 implies that the limits
in (9) and (10) are the same. This completes the proof of the corollary.

Remark 2.4. We assumed in the de�nition of an (M, p̄) cookie environment that

pi 6= 1 for all 1 ≤ i ≤ M .

This hypothesis is intended only to ensure that Z, starting from 0, is not almost surely
bounded (for instance, if p1 = 1 then 0 is a absorbing state for Z). More generally, one
may check from the de�nition of the random variables Aj that Z starting from 0 is almost
surely unbounded i.i.f.

]{1 ≤ j ≤ i , pj = 1} ≤ i

2
for all 1 ≤ i ≤ M . (11)

When this condition fails, Z starting from 0 is almost surely bounded by M − 1, thus
E[Z∞] < ∞ and the speed of the associated cookie random walk is strictly positive. Oth-
erwise, when (11) is ful�lled, Z ultimately hits any level x ∈ N with probability 1 and the
proof of Theorem 1.1 below remains valid.
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3 Study of Z∞
We proved in the previous section that the strict positivity of the speed of the cookie
random walk X is equivalent to the existence of a �nite �rst moment for the limiting
distribution of its associated Markov chain Z. We shall now show that, for any cookie
environment (M, p̄) (with α(M, p̄) > 0), we have

E[Z∞]
def
= E(M,p̄)[Z∞] < ∞ ⇐⇒ α(M, p̄) > 1.

This will complete the proof of Theorem 1.1. We start by proving that Z∞ cannot have
moments of any order.

Proposition 3.1. We have
E

[
ZM−1
∞

]
= +∞.

Proof. Let us introduce the �rst return time to 0 for Z:

σ = inf(n ≥ 1 , Zn = 0).

Since Z is a positive recurrent Markov chain, we have 1 ≤ E0[σ] < ∞ and the invariant
probability measure is given for any y ∈ N by

P{Z∞ = y} =
E0

[∑σ−1
k=0 1{Zk=y}

]

E0[σ]
.

A monotone convergence argument yields

E0

[
σ−1∑

k=0

ZM−1
k

]
= E0[σ]E[ZM−1

∞ ] (12)

(where both side of this equality may be in�nite). We can �nd n0 ∈ N∗ such that
P0{Zn0 = M, n0 < σ} > 0 (in fact, since we assume that pi < 1 for all i, we can choose
n0 = 1). Therefore, making use of the Markov property of Z, we �nd that

E0

[
σ−1∑

k=0

ZM−1
k

]
≥ P0{Zn0 = M, n0 < σ}EM

[
σ−1∑

k=0

ZM−1
k

]

= P0{Zn0 = M, n0 < σ}
∞∑

k=0

EM

[
ZM−1

k∧σ

]
. (13)

In view of (12) and (13), we just need to prove that
∞∑

k=0

EM

[
ZM−1

k∧σ

]
= ∞. (14)

We now use a coupling argument. Let again (ξi)i≥1 denote a sequence of i.i.d. geometrical
random variables with parameter 1/2. We de�ne an inhomogeneous Markov chain Z̃ such
that, under Pz:
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• Z̃0 = z.

• Z̃1 has the same law as
∑ eZ0

i=1 ξi.

• For n ≥ 1, Z̃n+1 has the same law as
∑min(0, eZn−(M−1))

i=1 ξi (with the convention∑0
1 = 0).

Thus, Z̃ is a branching process with min(Z̃n,M−1) emigrants at each unit of time, except
at time n = 0 where no emigration occurs.

Recall that Z is a branching process with migration, where at most min(Zn,M − 1)
particles emigrate at each unit of time, and has the same o�spring reproduction law as
Z̃. Therefore, for any z ≥ 0, the process Z̃ under Pz is stochastically dominated by Z
under Pz+M−1 (we need to shift the starting point by M − 1 because Z̃ has no emigration
at time n = 0). Since 0 is an absorbing state for Z̃, this implies that, for all n ≥ 0,

E1[Z̃
M−1
n ] ≤ EM [ZM−1

n∧σ ]. (15)

The process Z̃ belongs to the class of processes studied by Vinokurov in [12]. Moreover,
all the assumptions of Theorem 2 and 3 of [12] are ful�lled (in the notation of [12], we
have θ = M − 1). Therefore, there exist two constants c1, c2 > 0, such that, as n tends to
in�nity,

P1{Z̃n > 0} ∼ c1

nM
and P1{Z̃n > n | Z̃n > 0} ∼ c2.

Thus

E1[Z̃
M−1
n ] = E1[Z̃

M−1
n |Z̃n > 0]P1{Z̃n > 0}

≥ nM−1P1{Z̃n > n | Z̃n > 0}P1{Z̃n > 0} ∼ c1c2

n
. (16)

The combination of (15) and (16) yields (14).

Remark 3.2. In view of the last proposition and Corollary 2.3, we recover the fact that
for M = 2, the speed of the cookie random walk is always zero.

In order to study more precisely the distribution of Z∞, we need the following lemma:

Lemma 3.3. We have

E [AM−1] = 2
M∑
i=1

(1− pi).

Proof. Recall that (Bi)i≥1 denotes a sequence of independent Bernoulli random variables
with distribution given by (5). Let L = ]{1 ≤ i ≤ M, Bi = 1} =

∑M
i=1 Bi, we have

E[L] =
M∑
i=1

pi.

Recall also that AM−1 denotes the number of failures in the sequence (Bi)i≥1 before
obtaining M successes. Furthermore, M − L represents the number of failures in the
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subsequence (Bi)1≤i≤M . So we may rewrite AM−1 in the form

AM−1 = M − L +
(

inf
{

j ≥ 0,

M+j∑
i=M+1

Bi = M − L
}
− (M − L)

)

= inf
{

j ≥ 0,

M+j∑
i=M+1

Bi = M − L
}

(with the convention
∑M

M+1 = 0). Therefore, given L, the random variable AM−1 rep-
resents the number of trials needed to get M − L successes along the unbiased coin
tossing sequence (Bi)i≥M+1. Thus, given L, the random variable AM−1 has a negative
binomial distribution with parameters M − L and p = 1/2. In particular, we have
E[AM−1 | L] = 2(M − L) and we conclude that

E[AM−1] = E[E[AM−1 | L]] = E[2(M − L)] = 2
M∑
i=1

(1− pi).

We now study the law of the limiting distribution Z∞ of the Markov chain Z. This is
done via the study of its probability generating function (p.g.f.)

G(s) = E
[
sZ∞

]
for s ∈ [0, 1].

Lemma 3.4. The p.g.f. G of Z∞ is the unique p.g.f. solution of the following equation

1−G

(
1

2− s

)
= a(s)(1−G(s)) + b(s) for all s ∈ [0, 1], (17)

with
a(s) =

1

(2− s)M−1E [sAM−1 ]
,

and

b(s) = 1− 1

(2− s)M−1E [sAM−1 ]
+

M−2∑

k=0

G(k)(0)

k!

(
E

[
sAk

]

(2− s)M−1E [sAM−1 ]
− 1

(2− s)k

)
.

Proof. The law of Z∞ is a stationary distribution for the Markov chain Z, therefore

G(s) = E
[
EZ∞

[
sZ1

]]
=

∞∑

k=0

P{Z∞ = k}Ek

[
sZ1

]

=
M−2∑

k=0

P{Z∞ = k}Ek

[
sZ1

]
+

∞∑

k=M−1

P{Z∞ = k}Ek

[
sZ1

]
.

By the de�nition of Z, the random variable Z1 under Pk has the same law as Ak under P.
Moreover, according to Lemma 2.1, for k ≥ M − 1, Ak has the same law as AM−1 + ξ1 +
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. . . + ξk−M+1 where (ξi)i≥1 is a sequence of i.i.d. random variables independent of AM−1

and with geometric distribution with parameter 1
2
. Thus,

G(s) =
M−2∑

k=0

P{Z∞ = k}E [
sAk

]
+

∞∑

k=M−1

P{Z∞ = k}E [
sAM−1+ξ1+...+ξk+1−M

]

=
M−2∑

k=0

P{Z∞ = k}E [
sAk

]
+

E
[
sAM−1

]

E [sξ]M−1

∞∑

k=M−1

P{Z∞ = k}E [
sξ

]k

=
M−2∑

k=0

P{Z∞ = k}
(
E

[
sAk

]− E
[
sAM−1

]
E

[
sξ

]k+1−M
)

+
E

[
sAM−1

]

E [sξ]M−1
G

(
E

[
sξ

])
.

Since E
[
sξ

]
= 1

2−s
, and k!P{Z∞ = k} = G(k)(0), we get

G(s) =
M−2∑

k=0

G(k)(0)

k!

(
E

[
sAk

]− E
[
sAM−1

]
(2− s)M−1−k

)
+E

[
sAM−1

]
(2−s)M−1G

(
1

2− s

)
,

from which we deduce that G solves (17).
Furthermore, using the same arguments as above and going backward, we can check

that if some p.g.f. satis�es (17), then the associated probability distribution is station-
ary for the irreductible Markov chain Z. In view of the uniqueness of the stationary
distribution, we conclude that G is indeed the unique p.g.f. satisfying equation (17).

Given two functions f and g, we use the classical notation f(x) = O(g(x)) in the
neighbourhood of zero if |f(x)| ≤ C|g(x)| for some constant C and all |x| small enough.

Lemma 3.5. The functions a and b of Lemma 3.4 are analytic on (0, 2). In particular,
they admit a Taylor expansion of any order near point 1 and, as x goes to 0:

a(1− x) = 1− αx + O(x2),

b(1− x) = O(x).

Proof. Recall the de�nitions of the random variables Ak given in Section 2. Since a
geometric random variable with parameter 1

2
admits exponential moments of order strictly

smaller than 2, it follows that the p.g.f. s 7→ E[sAk ] are strictly positive and analytic on
(0, 2). From the explicit form of the functions a and b given in the previous lemma, we
conclude that these two functions are indeed analytic on (0, 2). A Taylor expansion of a
near 1 gives

a(1− x) = 1− (M − 1− E[AM−1]) x + O(x2) = 1− αx + O(x2), (18)

where we used Lemma 3.3 for the last equality. Since G is a p.g.f. we have G(1) = 1
which, in view of (17), yields b(1) = 0 and therefore b(1− x) = O(x).

The following proposition relies on a careful study of equation (17) and is the key to
the proof of Theorem 1.1.
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Proposition 3.6. Recall that

α =
M∑
i=1

(2pi − 1)− 1 > 0.

The p.g.f. G of Z∞ is such that, as x > 0 goes to 0:

• if 0 < α < 1, then 1−G(1− x) ∼ cxα, for some constant c > 0.
In particular E[Z∞] = +∞.

• if α = 1, then 1−G(1− x) ∼ cx| ln x|, for some constant c > 0.
In particular E[Z∞] = +∞.

• if α > 1, then 1−G(1− x) = b′′(1)
2(α−1)

x + O(x2∧α).

In particular E[Z∞] = b′′(1)
2(α−1)

< +∞.

Proof. Since G is a p.g.f, it is completely monotonic and we just need to prove the propo-
sition along the sequence x = 1

n
with n ∈ N∗. Making use of Lemma 3.4 with s = 1− 1

n
,

we get, for all n ≥ 1

1−G

(
1− 1

n + 1

)
= a

(
1− 1

n

)(
1−G

(
1− 1

n

))
+ b

(
1− 1

n

)
.

Let us de�ne the sequence (un)n≥1 by
{

u1
def
= 1−G(0) = 1−P{Z∞ = 0} > 0,

un
def
= 1−G(1−1/n)Qn−1

i=1 a(1−1/i)
for n ≥ 2.

(19)

We also use the notation
rn

def
=

b(1− 1/n)∏n
i=1 a(1− 1/i)

.

Hence, (un) is a sequence of positive numbers which satis�es the relation

un+1 = un + rn,

thus

un = u1 +
n−1∑
j=1

rj.

This equality may be rewritten

1−G

(
1− 1

n

)
=

n−1∏
i=1

a

(
1− 1

i

) (
1−G(0) +

n−1∑
j=1

rj

)
. (20)

In view of Lemma 3.5, we can write the Taylor expansion of a of order M near 1 in the
form

a(1− x) = 1− αx + a2x
2 + . . . + aMxM + O(xM+1).

12



Using the classical result
n∑

i=1

1

i
= ln n + γ0 + . . . +

γM

nM
+ O

(
1

nM+1

)
,

we deduce that
n∏

i=1

a

(
1− 1

i

)
=

C

nα

(
1 +

a′1
n

+
a′2
n2

+ . . . +
a′M−1

nM−1
+ O

(
1

nM

))
with C > 0. (21)

Lemma 3.5 also states that, when b is not identically 0, there exists a unique k ∈ {1, 2, . . .}
such that

b(1− x) = Dkx
k + O(xk+1), with Dk 6= 0. (22)

If b is identically 0, we use the convention k = +∞. In particular, when k is �nite,
combining (21) and (22) , we deduce that

rn = DkC
−1nα−k + O(nα−k−1). (23)

This implies, whenever α− k > −1 that
n−1∑
j=1

rj =
DkC

−1

α− k + 1
nα−k+1 + O(1 ∨ nα−k). (24)

Let us now assume that k = 1. Combining (20), (21) and (24) we �nd that 1−G(1− 1
n
)

converges towards D1

α
6= 0 as n tends to in�nity but this cannot happen because G is

continuous at 1− with G(1) = 1. Thus, we have shown that in fact
k ≥ 2.

We now consider the three cases α > 1, α = 1, α < 1 separately.

α > 1
We have three sub-cases: either α > k − 1, or α < k − 1, or α = k − 1 with k ≥ 3.
• α > k − 1: Just as before, combining (20), (21) and (24), we now get

1−G

(
1− 1

n

)
=

Dk

(α− k + 1)nk−1
+ O

(
1

nk∧α

)
.

If k were strictly larger than 2, we would have
lim

n→∞
n(1−G(1− 1/n)) = 0

and therefore G′(1) = E[Z∞] = 0 which cannot be true because Z is a positive
random variable which is not equal to zero almost surely. Thus k must be equal to
2 and

1−G

(
1− 1

n

)
=

D2

(α− 1)n
+ O

(
1

n2∧α

)
. (25)

Using the equality D2 = b′′(1)
2

, we conclude that

E[Z∞] =
b′′(1)

2(α− 1)
< +∞.

13



• α < k − 1: We prove that this case never happens. Indeed, in view of (23) we �nd
that ∞∑

j=1

rj < ∞

(this result also trivially holds when k = ∞ since rj is equally zero in this case).
Combining this with (20) and (21) we see that

1−G

(
1− 1

n

)
= O

(
1

nα

)
.

Since α > 1, this implies, just as in the previous case, that E[Z∞] = 0, which is
absurd.

• α = k − 1 and k ≥ 3: Again, we prove that this case is empty. Using (23), we get

rn ∼ DkC
−1

n
.

With the help of (20) and (21), we conclude that

1−G

(
1− 1

n

)
∼ Dk

ln n

nk−1
.

Since k ≥ 3, we again obtain E[Z∞] = 0, which is unacceptable.

Thus, we have completed the proof of the proposition when α > 1 and we proved by the
way that k must be equal to 2 and that b′′(1) > 0.

α = 1
We �rst prove, just as in the previous cases, that k = 2. Let us suppose that k ≥ 3.

In view of Lemma 3.5, we can write the Taylor expansion of b of order M near 1 in the
form

b(1− x) = D3x
3 + . . . + DMxM + O(xM+1) (26)

where Di ∈ R for i ∈ {3, 4, . . . , M}. Combining (21) and (26) we deduce that
n−1∑
j=1

rj = g0 +
g1

n
+

g2

n2
+ . . . +

gM−2

nM−2
+ O

(
1

nM−1

)
. (27)

Therefore, in view of (20), (21) and (27), we get

1−G

(
1− 1

n

)
=

λ1

n
+

λ2

n2
+ . . . +

λM−1

nM−1
+ O

(
1

nM

)
.

Comparing with the Taylor expansion of the p.g.f. G, we conclude that E(ZM−1
∞ ) < ∞

which contradicts Proposition 3.1. Thus, k = 2 and (23) yields

rn ∼ D2C
−1

n
with D2 6= 0. (28)
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In view of (20) and (21), this estimate implies

1−G

(
1− 1

n

)
∼ D2

ln n

n
,

and therefore
E[Z∞] = +∞. (29)

α < 1
Since k ≥ 2, equation (23) yields

∞∑
j=1

rj < ∞

(of course, this is trivially true when k = ∞). Thus, the sequence (un) de�ned by (19)
converges to a constant c1 ≥ 0. Suppose �rst that c1 = 0. In this case, k cannot be
in�nite (because when k = ∞, the sequence (un) is constant and then c1 = u1 > 0). From
(23) we deduce that

un = −
∞∑

j=n

rj ∼ DkC
−1

(k − α− 1)nk−α−1
,

therefore, with the help of (21) we get

1−G

(
1− 1

n

)
= un

n−1∏
i=1

a

(
1− 1

i

)
∼ Dk

(k − α− 1)nk−1
.

Since k ≥ 2, this implies that n(1 − G(1 − 1/n)) converges to a �nite constant and so
E[Z∞] < ∞. We have already noticed that this implies a strictly positive speed for
the cookie random walk in the associated cookie environment (M, p̄). But (by possibly
extending the value of M) we can always construct a cookie environment (M, q̄) such that
p̄ ≤ q̄ and α(q̄) = 1. In view of (29), the associated cookie random walk has zero speed
and this contradicts a monotonicity result of Zerner (c.f. Theorem 17 of [13]). Therefore
c1 cannot be 0 and by (19) and (21), we get

1−G

(
1− 1

n

)
= un

n−1∏
i=1

a

(
1− 1

i

)
∼ c1C

nα
.

Theorem 1.1 is now a direct consequence of the last proposition and Corollary 2.3.
Moreover, in view of the expression of E[Z∞] given in the previous proposition, we get
the following expression for the limiting speed:

Corollary 3.7. For any cookie environnement such that α ≥ 1, we have b′′(1) > 0 and
the speed of the walk is given by the formula

v =
α− 1

α− 1 + b′′(1)
.
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In view of a classical Abelian/Tauberian Theorem (c.f. section XIII.5 of [5]), we also
deduce from Proposition 3.6 the following estimate concerning the tail distribution of Z∞
in the zero speed case:

Corollary 3.8. When α ≤ 1, there exists a constant c > 0 such that

P {Z∞ > n} ∼
n→∞

{
c/nα if 0 < α < 1,
(c ln n)/n if α = 1. (30)

Remark 3.9. Recall that the random variable Z∞ has the same distribution as the total
number of jumps from 0 to −1 for the cookie random walk. We may also relate this quantity
to the total number R of returns to the origin. Indeed, since Un

0 (resp. Un
1 ) stands for the

respective total number of jumps from 0 to −1 (resp. from 1 to 0) before reaching level n,
the total number of returns to the origin before reaching level n is Un

0 + Un
1 which, under

P, has the same distribution as Zn + Zn−1 under P. Therefore, we may express the p.g.f.
H of the random variable R in term of the p.g.f. G of Z∞:

H(s) = E
[
sZ∞EZ∞

[
sZ∞

]]

=
1

a(s)
G

(
s

2− s

)
+

M−2∑

k=0

G(k)(0)

k!
sk

(
E

[
sAk

]− 1

a(s)(2− s)k

)
.

In particular, Proposition 3.6 holds for H and the tail distribution of the total number of
returns to the origin when α ≤ 1 has the same form as in (30).

Remark 3.10. In the particular case M = 2 (there are at most 2 cookies per site), the
only unknown in the de�nition of the function b is G(0). Since we know that b′(1) = 0
( c.f. the beginning of the proof of Proposition 3.6) we can explicitly calculate G(0), that
is the probability that the cookie random walk never jumps from 0 to 1, which is also the
probability that the cookie random walk never hits −1. According to the previous remark,
we can also calculate the probability that the cookie random walk never returns to 0. Hence,
we recover Theorem 18 of [13] in the case of a deterministic cookie environment.

4 Continuity of the speed and di�erentiability at the
critical point

The aim of this section is to prove Theorem 1.2. Recall that Corollary 3.7 states that

v(M, p̄) =

{
0 if α(M, p) ≤ 1,

α−1
α−1+b′′(1)

if α(M, p) > 1,

where b′′(1) stands for the second derivative at point 1 of the function b de�ned in Lemma
3.4. Furthermore, when α(M, p̄) = 1, then b′′(1) is strictly positive (cf. (28)). Hence, in
order to prove Theorem 1.2, we just need to show that b′′(1) = b′′(M,p̄)(1) is a continuous
function of p̄ in Ωu

M . It is also clear from the de�nition of the random variables Ak that
the functions

p̄ → (
E(M,p̄)

[
sAk

])(i)
(1) (i.e. the ith derivative at point 1)
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are continuous in p̄ in Ωu
M for all k ≥ 0 and all i ≥ 0 (they are polynomial functions in

p1, . . . , pM). Therefore, it simply remains to prove that, for all k ≥ 0, the functions

p̄ → P(M,p̄) {Z∞ = k}
are continuous in Ωu

M . The following lemma is based on the monotonicity of the hitting
times of a cookie random walk with respect to the environment.

Lemma 4.1. Let (M, p̄) be a cookie environment such that α(M, p̄) > 0. Then there exist
ε > 0 and f : N 7→ R+ with limn→+∞ f(n) = 0 such that

∀q̄ ∈ B(p̄, ε) ∀j ∈ N ∀n ∈ N |P(M,q̄) {Z∞ = j} − P(M,q̄) {Zn = j} | ≤ f(n),

where

B(p̄, ε) =
{

q̄ = (q1, . . . , qM),
1

2
≤ qi < 1, α(M, q̄) > 0 and

M∑
i=1

|pi − qi| ≤ ε
}

.

Proof. Let us �x (M, p̄) with α(M, p̄) > 0. For ε > 0, de�ne the vector p̄ε = (pε
1, . . . , p

ε
M)

by pε
i = max(1

2
, pi − ε). We can choose ε > 0 such that α(M, p̄ε) > 0. Then, for all

q̄ ∈ B(p̄, ε), we have
p̄ε ≤ q̄ (31)

(where ≤ denotes the canonical partial order on RM). Let us now pick q̄ ∈ B(p̄, ε), j ∈ N
and n ∈ N. Recall that U∞

0 denotes the total number of jumps of the cookie random walk
from 0 to −1 and

P(M,q̄){Z∞ = j} = P(M,q̄){U∞
0 = j} = P(M,q̄){X jumps j times from 0 to -1},

and

P(M,q̄){Zn = j} = P(M,q̄){Un
0 = j}

= P(M,q̄){X jumps j times from 0 to -1 before reaching n}.
Hence

|P(M,q̄){Z∞ = j} − P(M,q̄){Zn = j}| = |P(M,q̄){U∞
0 = j} −P(M,q̄){Un

0 = j}|
≤ P(M,q̄){Un

0 6= U∞
0 }

= P(M,q̄){A}, (32)

where A is the event "X visits − 1 at least once after reaching level n". Recall the nota-
tion ω = ω(i, x)i≥1,x∈Z for a general cookie environment given in the introduction. Let now
ωX,n denote the (random) cookie-environment obtained when the cookie random walk X
hits level n for the �rst time and shifted by n, i.e. for all x ∈ Z and i ≥ 1, if the initial
cookie environment is ω, then

ωX,n(i, x) = ω(j, x + n) where j = i + ]{0 ≤ k < Tn, Xk = x + n}.
With this notation we have

P(M,q̄) {A} = E(M,q̄)

[
PωX,n

{X visits −(n + 1) at least once}] .

17



Besides, X has not eaten any cookie at the sites x ≥ n before time Tn. Thus, the
environment ωX,n satis�es

ωX,n(i, x) = qi, for all x ≥ 0 and i ≥ 1 (with the convention qi = 1
2
for i > M).

Hence, in view of (31), the random cookie environment ωX,n is larger (for the canonical
partial order) than the deterministic environment ωp̄ε de�ned by

{
ωp̄ε(i, x) = 1

2
, for all x < 0 and i ≥ 1,

ωp̄ε(i, x) = pε
i , for all x ≥ 0 and i ≥ 1 (with the convention pε

i = 1
2
for i ≥ M).

Thus, Lemma 15 of [13] yields
PωX,n

{X visits −(n + 1) at least once} ≤ Pωp̄ε{X visits −(n + 1) at least once}
In view of (32) we deduce that

|P(M,q̄){Z∞ = j} − P(M,q̄){Zn = j}| ≤ f(n),

where f(n) = Pωp̄ε{X visits −(n + 1) at least once} does not depend of q̄. It remains to
prove that f(n) tends to 0 as n goes to in�nity. Let us �rst notice that

Pωp̄ε{∀n ≥ 0 Xn ≥ 0} = P(M,p̄ε){∀n ≥ 0 Xn ≥ 0},
since these probabilities depend only on the environments on the half line [0, +∞). Recall
also that the cookie random walk in the environment (M, p̄ε) is transient (we have chosen
ε such that α(M, p̄ε) > 0), thus

P(M,p̄ε){∀n ≥ 0 Xn ≥ 0} = P(M,p̄ε){U∞
0 = 0} = P(M,p̄ε){Z∞ = 0} > 0.

Hence
Pωp̄ε{∀n ≥ 0 Xn ≥ 0} > 0,

which implies
Pωp̄ε{Xn = 0 in�nitely often} < 1,

and a 0-1 law (c.f. Proposition 5 of [13]) yields
Pωp̄ε{Xn = 0 in�nitely often} = Pωp̄ε{Xn ≤ 0 in�nitely often} = 0.

Therefore, limn→∞ f(n) = 0.
Recall that the transition probabilities of the Markov chain Z are given by the law of

the random variables Ak:
P(M,p̄) {Zn+1 = j | Zn = i} = P(M,p̄) {Ai = j} .

It is therefore clear that for each �xed n and each k, the function p̄ → P(M,p̄) {Zn = k} is
continuous in p̄ in Ωu

M . Writing

|P(M,q̄) {Z∞ = k} − P(M,p̄) {Z∞ = k} | ≤ |P(M,q̄) {Z∞ = k} − P(M,q̄) {Zn = k} |
+ |P(M,q̄) {Zn = k} − P(M,p̄) {Zn = k} |+ |P(M,p̄) {Z∞ = k} − P(M,p̄) {Zn = k} |

and in view of the previous lemma, we conclude that for each k the function p̄ →
P(M,p̄) {Z∞ = k} is also continuous in p̄ in Ωu

M , which completes the proof of Theorem
1.2.
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