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Abstract. Let V be a two sided random walk and let X denote a real
valued di�usion process with generator 1

2
eV[x] d

dx

`
e−V[x] d

dx

´
. This pro-

cess is the continuous equivalent of the one dimensional random walk
in random environment with potential V. Hu and Shi (1997) described
the Lévy classes of X in the case where V behaves approximately like
a Brownian motion. In this paper, based on some �ne results on the
�uctuations of random walks and stable processes, we obtain an accu-
rate image of the almost sure limiting behavior of X when V behaves
asymptotically like a stable process. These results also apply for the
corresponding random walk in random environment.

Résumé: Étant donnée une marche aléatoire V, on considère une di�u-
sion aléatoire réelle X de générateur 1

2
eV[x] d

dx

`
e−V[x] d

dx

´
. Ce processus

est l'équivalent continu de la marche aléatoire en milieu aléatoire au plus
proche voisin en dimension 1. Hu et Shi (1997) ont déterminé les classes
de Lévy de X lorsque V se comporte approximativement comme un mou-
vement Brownien. Dans cet article, une étude �ne des �uctuations du
potentiel V nous permet d'obtenir des résultats précis sur le comporte-
ment limite presque-sûre de la di�usion lorsque V est dans le domaine
d'attraction d'une loi stable. Ces résultats se transposent également au
cas discret de la marche aléatoire en milieu aléatoire.
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1. Introduction

Let (Vx, x ∈ R) be a càdlàg, real-valued locally bounded stochastic process
on some probability space (Ω, P) with V0 = 0 almost surely. Let also (Xt)t > 0

be the coordinate process on the space of continuous functions C([0,∞))
equipped with the topology of uniform convergence on compact set and the
associated σ-�eld. For each realization of V, let PV be a probability on
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C([0,∞)) such that X is a di�usion process with X0 = 0 and generator

1
2
eVx

d

dx

(
e−Vx

d

dx

)
.

It is well known in [13] that X may be constructed from a standard Brownian
motion through a change of scale and a change of time. We consider the
annealed probability P on Ω = Ω × C([0,∞)) de�ned as the semi-direct
product P = P×PV. X under P is called a di�usion in the random potential
V. This process was �rst studied by Schumacher [19] and Brox [6] who proved
that, when V is a Brownian motion, Xt/ log2 t converges in law as t goes to
in�nity to some non-degenerate distribution on R. Extension of this result
when V is a stable process may be found in [7, 15, 19]. In this paper, we are
concerned with the case where V is a two sided random walk. More precisely,
(Vx , x ∈ R) satis�es:

V is identically 0 on (−1, 1),
V is �at on (n, n + 1) for all n ∈ Z,
V is right continuous on [0,∞) and left continuous on (−∞, 0],
(Vn+1 − Vn)n∈Z is a sequence of i.i.d. variables under P.

Our goal is to describe the almost sure asymptotics of Xt, sups 6 t Xs and
sups 6 t |Xs|. This has been done by Hu and Shi [12] in the case where V
behaves roughly like a Brownian motion. We will instead consider the more
general setting where a typical step of the random walk is in the domain
of attraction of a stable law. Precisely, we make the following assumption
which is similar to that of Kawazu, Tamura and Tanaka [15].

Assumption 1. There exists a positive sequence (an)n > 0 such that

Vn

an

law−→
n→∞

S

where S is a random variable whose law is strictly stable with index α ∈ (0, 2]
and whose density is everywhere positive on R.

This implies of course that V−n/an converges in law toward −S. It is
known that the norming sequence (an) is regularly varying with index 1/α
and we can without loss of generality assume that (an) is strictly increas-
ing with a1 = 1. We will denote by a (·) a continuous, strictly increasing
interpolation of (an) and a−1 (·) will stand for its inverse. It is to be noted
that a (·) and a−1 (·) are respectively regularly varying with index 1/α and
α. Let p denote the positivity parameter of S and q its negativity parameter,
namely:

p = P (S > 0) = 1−P (S < 0) = 1− q.

The assumption that S has a positive density in the whole of R implies
that p, q ∈ (0, 1). More precisely, for α > 1 it is known in [22] that 1 −
1/α 6 p, q 6 1/α. In any case, we have

0 < αp, αq 6 1.



DIFFUSION IN A RANDOM ENVIRONMENT 3

Note also that the Fourier transform of S is well known to be

E
(
eiλS

)
= e

−γ|λ|α
“
1−i λ

|λ| tan(πα(p− 1
2))

”
(1.1)

where γ is some strictly positive constant. Let us now extend S into a two
sided strictly stable process (Sx , x ∈ R) such that S1 has same law as S. By
two sided, we mean that the processes (St , t > 0) and (−S−t , t > 0) are
independent, both càdlàg, and have the same law. Notice in particular that,
when α = 1, S is a symmetric Cauchy process with drift, whereas for α = 2
we have p = 1/2 and S is a Brownian motion. Furthermore, the extremal
cases αp = 1 (resp. αq = 1) can only happen when α > 1 and are equivalent
to the assumption that S has no positive jumps (resp. no negative jumps).
When S has no positive jumps, it is known that the Fourier transform can
be extended such that

E
(
eλS1

)
= eγ′λα

for all λ > 0 (1.2)

where γ′ is a positive constant that we will assume to be 1 (we can reduce
to this case by changing the norming sequence (an)). Similarly, when S has
no negative jumps, we will assume E (exp(−λS1)) = exp(λα) for all λ > 0.
Let Eα denote the Mittag-Le�er function with parameter α:

Eα(x) =
∞∑

n=0

xn

Γ(αn + 1)
for x ∈ R.

De�ne −ρ1(α) to be the �rst negative root of Eα and −ρ2(α) to be the �rst
negative root of αxE′′

α(x) + (α− 1)E′
α(x). The �rst result of this paper is a

law of the iterated logarithm for the limsup of the di�usion X in the random
environment V.

Theorem 1. We have, almost surely,

lim sup
t→∞

Xt

a−1 (log t) log log log t
=

1
K#

where K# ∈ (0,∞) is a constant that only depends on the limit law S and is
given by

K# = − lim
t→∞

1
t

log P
(

sup
0 6 u 6 v 6 t

(Sv − Su) 6 1
)
.

Furthermore, when S is completely asymmetric, the value of K# is given by

K# =
{

ρ1(α) when S has no positive jumps,
ρ2(α) when S has no negative jumps.

Note that Xt and sups 6 t Xs have the same running maximum, hence
Theorem 1 also holds with sups 6 t Xs in place of Xt. A symmetry argument
yields

lim sup
t→∞

− infs 6 t Xt

a−1 (log t) log log log t
=

1

K̃#
a.s.
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where K̃# = − limt→∞ log P
(
sup0 6 u 6 v 6 t (S−v − S−u) 6 1

)
/t. Hence,

lim sup
t→∞

sups 6 t |Xt|
a−1 (log t) log log log t

=
1

K̃# ∧K#
a.s.

In the case where α = 2, we have Eα(−x) = cos(
√

x) for all x > 0, therefore
K̃# = K# = π2/4, and we recover the law of the iterated logarithm of
Theorem 1.6 of [12].

Let Tn denote the nth strictly descending ladder time of the random walk
V, formally, {

T0 = 0,
Tn+1 = min (k > Tn , Vk < VTn) .

Since V is oscillatory, Tn is �nite for all n. Theorem 4 of [18] states that T1

is in the domain of attraction of a positive stable law with index q. Moreover,
T1 is in the domain of normal attraction of this distribution if and only if

∞∑
n=1

P (Vn < 0)− q

n
< ∞. (1.3)

Let (bn) denote a (strictly increasing) sequence of norming constants for T1

and b (·) will stand for a continuous, strictly increasing interpolation of this
sequence. The function b−1 (·) is therefore regularly varying with index q.
The next theorem characterizes the liminf behavior of sups 6 t Xs.

Theorem 2. For any positive, non-decreasing function f de�ne

J(f) =
∫ ∞ b−1

(
a−1(log t)/f(t)

)
dt

b−1 (a−1 (log t)) t log t
.

We have, almost surely,

lim inf
t→∞

f(t)
a−1(log t)

sup
s 6 t

Xs =
{

0
∞ ⇐⇒ J(f)

{
= ∞
< ∞.

In particular, with probability 1,

lim inf
t→∞

(log log t)β

a−1 (log t)
sup
s 6 t

Xs =
{

0, if β < 1/q,
∞, if β > 1/q.

(1.4)

Notice that (1.3) holds whenever V1 is strictly stable or when E
(
V2

1

)
< ∞

(according to Theorem 1 of [10], p 575). In those cases, V1 is also in the

domain of normal attraction of S so that we can both choose a(x) = x1/α

and b(x) = x1/q and the last theorem is simpli�ed:

lim inf
t→∞

f(t)
(log t)α

sup
s 6 t

Xs =
{

0
∞ ⇐⇒

∫ ∞ dt

f q(t)t log t

{
= ∞
< ∞.

In particular, the liminf for the critical case β = 1/q in (1.4) is in�nite.
We are also interested in the asymptotic behavior of the bilateral supre-

mum sups 6 t |Xs|. We already mentioned that the limsup behavior of this
process may be deduced from Theorem 1. Although we were not able to deal
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with the general case (as it seems that many di�erent behaviors may occur
in the completely asymmetric case, depending on the distribution tail of V1),
we can still obtain, when the limiting process has jumps of both signs, the
following integral test:

Theorem 3. When the limiting stable process S has jumps of both signs, we
have, for any non-decreasing positive function f , almost surely,

lim inf
t→∞

f(t)
a−1 (log t)

sup
s 6 t

|Xs| =
{

0
∞ ⇐⇒

∫ ∞ dt

tf(t)2 log t

{
= ∞
< ∞.

In particular, with probability 1,

lim inf
t→∞

(log log t)β

a−1 (log t)
sup
s 6 t

|Xs| =
{

0, if β 6 1/2,
∞, if β > 1/2.

Notice that in this case, the limiting behavior does not depend on the
symmetry parameter and notice also that this behavior is quite di�erent
from the Brownian case (Theorem 1.7 of [12]). This may be informally
explained from the facts that when the limiting process has jumps of both
signs, typical valleys for the di�usion are much deeper than in the Brownian
case.

Although we are mainly concerned with the almost-sure behavior of X,
our approach also allows us to prove a convergence in law for the supremum
process.

Theorem 4. There exists a non-degenerate random variable Ξ depending
only on the limiting process S such that under the annealed probability P,

sups 6 t Xs

a−1 (log t)
law−→
t→∞

Ξ.

Moreover, when S has no positive jumps the law of Ξ is characterized by its
Laplace transform,

E
(
e−qΞ

)
= Γ (α + 1)

E′
α(q)

Eα(q)
for q > 0,

and in the case where S has no negative jumps, we have

E
(
e−qΞ

)
= (α− 1)

E′
α(q)

αqE′′
α(q) + (α− 1)E′

α(q)
for q > 0.

This paper is organized as follows: in Section 2, we prove sharp results on
the �uctuations of the potential V as well as on the limiting stable process
S. These estimates, which may be of independent interest, ultimately play
an important role in the proof of the main theorems. In Section 3, we reduce
the study of the hitting times of X to the study of some functionals of the
potential process V. This step is similar to [12], namely, we make use of
Laplace's method and the reader may refer to [20] for an overview of the
key ideas. The proofs of the main theorems are given in Section 4. We shall
eventually discuss these results in the last section, in particular, we show
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that Theorems 1 − 4 still hold when V is a strictly stable process. We also
explain how similar results can be obtained for a random walk in a random
environment with an asymptotically stable potential.

2. Fluctuations of V and S

In this section we prove several results about �uctuations of the random
walk V. Some of these estimates will be obtained via the study of the limiting
process S. In the �rst subsection, we recall elementary properties of the stable
process S as well as a result of functional convergence of the random walk
toward the limiting stable process. In the following, for any process Z, we
will use indi�erently the notation Zx or Z(x).

2.1. Preliminaries and functional convergence in D. We introduce the
space D(R+, R) of càdlàg functions Z : R+ → R equipped with the Skorohod
topology. Let θ stand for the shift operator, that is, for any Z ∈ D(R+, R)
and any x0 > 0, we have

((θx0Z)x, x > 0) = (Zx+x0 − Zx0 , x > 0) . (2.1)

Since our processes are double-sided, we will also need the space D(R, R) of
functions f : R → R which are right continuous with left limits on [0,∞)
and left continuous with right limits on (−∞, 0] considered jointly with the
associated Skorohod topology. Recall that S and V have paths on D(R, R).
We will be interested in the following functionals: for any a ∈ R and for any
Z ∈ D(R, R) we de�ne (we give two notations for each de�nition):

Za = F
(1)
a (Z) =

{
supy∈[0,a] Zy, for a > 0,

supy∈[a,0] Zy, for a < 0,

Za = F
(2)
a (Z) =

{
infy∈[0,a] Zy, for a > 0,
infy∈[a,0] Zy, for a < 0,

Z∗
a = F

(3)
a (Z) =

{
supy∈[0,a] |Zy|, for a > 0,

supy∈[a,0] |Zy|, for a < 0,

ZR
a = F

(4)
a (Z) = Za − Za,

Z#
a = F

(5)
a (Z) =

{
sup0 6 y 6 a ZR

y , for a > 0,

supa 6 y 6 0 ZR
y , for a < 0,

σZ(a) = F
(6)
a (Z) =

{
inf (x > 0 , Zx > a) , for a > 0,
inf (x > 0 , Zx 6 a) , for a < 0,

σ̃Z(a) = F
(7)
a (Z) =

{
inf (x > 0 , Z−x > a) , for a > 0,
inf (x > 0 , Z−x 6 a) , for a < 0,

UZ(a) = F
(8)
a (Z) = a− Z(σZ(a)), for a > 0,

ŨZ(a) = F
(9)
a (Z) = a− Z (σ̃Z(a)) , for a > 0,

G̃Z(a) = F
(10)
a (Z) = ŨZ(Za) ∨ Z#

a , for a > 0.
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Let Di(a) for i ∈ {1, · · · , 10} denote the set of discontinuity points in D(R, R)
of F

(i)
a and for v > 1 let V(v) = (Vvx/a(v) , x ∈ R). From a theorem of

Skorohod [21], Assumption 1 implies that (V(v) , v > 1) converges in law
in the Skorohod space towards S as v → ∞. It remains to check that the
previously de�ned functionals have nice continuous properties (with respect

to S) in order to obtain results such as F
(i)
a (V(v)) → F

(i)
a (S) in law as v →∞.

For Z ∈ D(R, R) and a ∈ R, we will say that

Z is oscillating at a− if ∀ε > 0, inf
(a−ε,a)

Z < Za− < sup
(a−ε,a)

Z,

Z is oscillating at a+ if ∀ε > 0, inf
(a,a+ε)

Z < Za+ < sup
(a,a+ε)

Z.

The following lemma collects some easy results about the sample path of S.

Lemma 2.1. We have

(1) sup[0,∞) S = sup(−∞,0] S = ∞ almost surely.

(2) With probability 1, any path of S is such that if S is discontinuous at
a point x, then S is oscillating at x− and x+.

(3) For any �xed a ∈ R, S is almost surely continuous at a and oscillating
at a− and a+.

Proof. (1) and (2) come from Lemma 3.1 of [15], p531. As for (3), it is well
known that S is almost surely continuous at any given point and the fact that
it is oscillating follows from the assumption that |S| is not a subordinator. �

Note that (2) implies that, almost surely, S is continuous at all its local
extrema. (2) also implies that, with probability 1, S attains its bound on
any compact interval. These facts enable us to prove the following:

Proposition 2.2. For any �xed a ∈ R and i ∈ {1, · · · , 10}, we have

P (S ∈ Di(a)) = 0.

Proof. Let a be �xed. The functionals F
(i)
a , i ∈ {1, 2, 3, 4, 5} are continuous

at all Z ∈ D(R, R) such that Z is continuous at point a (refer to Proposition
2.11 on p305 of [14] for further details) and the result follows from (3) of the
previous lemma. It is also easily checked from the de�nition of the Skorohod

topology that the functionals F
(i)
a , i ∈ {6, 8} are continuous at all Z which

have the following properties:

(a) σZ(a) < ∞,
(b) Z is oscillating a σZ(a)+,
(c) Z attains its bounds on any compact interval.

Using again the previous lemma, we see that (a) and (c) hold for almost any
path of S. Notice that, from the Markov property, part (3) of the lemma is
unchanged when a is replaced by an arbitrary stopping time. Hence, (b) is
also true for almost any path of S. The proof for F

(i)
a , i ∈ {7, 9} is of course
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similar. Finally, the result for F
(10)
a may easily be deduced from previous

ones using the independence of (Sx , x > 0) and (S−x , x > 0). �

We will also use the fact that the random variables F
(i)
a have continuous

cumulative functions (except for the degenerated case a = 0).

Proposition 2.3. For all a 6= 0 and b ∈ R and i ∈ {1, · · · , 10}, we have

P
(
F (i)

a (S) = b
)

= 0.

We skip the proof as this may be easily checked from the facts that S has
a continuous density and the assumption that it is not a subordinator.

Finally, throughout the rest of this paper, the notation Ci will always
denote a �nite strictly positive constant depending only on our choice of
P. In the case of a constant depending on some other parameters, these
parameters will appear in the subscript. We will also repeatedly use the
following lemma easily deduced from the Uniform Convergence Theorem for
regularly varying functions ([4], p22) combined with monotonicity property.

Lemma 2.4. Let f : [1,∞) 7→ R+ be a strictly positive non-decreasing
function which is regularly varying at in�nity with index β > 0. Then, for
any ε > 0 there exist C1,ε,f ,C2,ε,f such that for any 1 6 x 6 y,

C1,ε,f

(
x

y

)β+ε

6
f(x)
f(y)

6 C2,ε,f

(
x

y

)β−ε

.

2.2. Supremum of the re�ected process. We now give some bounds and
asymptotics about V#. These estimates which may look quite technical will
play a central role in the proof of Theorem 1. This subsection is devoted to
the proofs of the following three propositions.

Proposition 2.5. We have

lim
x→∞

v/a−1(x)→∞

a−1(x)
v

log P
(
V#

v 6 x
)

= −K#

where K# = − limv→∞
1
v log P

(
S#

v 6 1
)
is strictly positive and �nite.

Proposition 2.6. For all 0 < b < 1, there exists C3,b > 0 such that for all
x large enough (depending on b) and all v > 0,

C3,bP
(
V#

v 6 x
)

6 P
(
V#

v 6 x, Vv 6 bx
)

6 P
(
V#

v 6 x
)

.

Proposition 2.7. There exists C4 > 0 such that for all x large enough and
all v1, v2 > 0,

C4P
(
V#

v1
6 x

)
P
(
V#

v2
6 x

)
6 P

(
V#

v1+v2
6 x

)
.
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Notice that using Proposition 2.6 we deduce that Proposition 2.5 is un-

changed if we replace P(V#
v 6 x) by P(V#

v 6 x , Vv 6 bx) for all b > 0.
The proof of the �rst proposition relies on the following lemma:

Lemma 2.8. There exists a constant K# ∈ (0,∞) such that, for any a, c > 0
and any b > 0,

lim
t→∞

aα

t
log P

(
S#

t 6 a , St 6 − b , St − St 6 c
)

= −K#.

In particular K# = − limv→∞
1
v log(P(S#

v 6 1)).

Proof. Using the scaling property, we only need to prove the lemma in the
case a = 1. For the sake of clarity, let

E1 =
{

S#
t 6 1 , St 6 − b , St − St 6 c

}
,

and let f(t) = log P(S#
t 6 1). Using the Markov property of the stable

process S, we deduce that f(t + s) 6 f(t) + f(s) for any s, t > 0. Since f is
subadditive, elementary analysis shows that the limit K# = − limt→∞ f(t)/t
exists and furthermore K# ∈ (0,∞]. In order to prove that K# < ∞, note

that {S#
t 6 1} ⊃ {S∗t 6 1/2} which implies f(t)/t > log P (S∗t 6 1/2) /t.

Using Proposition 3 of [1], p220, the r.h.s. of this last inequality converges
to some �nite constant when t converges to in�nity. Therefore K# must be
�nite. So we have obtained

lim sup
t→∞

1
t

log P (E1) 6 lim
t→∞

1
t
f (t) 6 −K#.

It remains to prove the lower bound. Let 0 < ε < min (c, 1) and let t > 1.
De�ne

E2 =
{

S#
t−1 6 1− ε

}
,

E3 =
{

(θt−1S)#1 6 ε , (θt−1S)
1

6 − b− 1
}

.

We have E1 ⊃ E2 ∩ E3. Since S has independent increments, E2 and E3 are
independent. Therefore P (E1) > P (E2)P (E3). Furthermore, using scaling,
P(E2) = f ((t− 1)/(1− ε)α). Hence

1
t

log P (E1) >
log P (E3)

t
+

1
t
f

(
t

(1− ε)α

)
, (2.2)

and P(E3) = P(S#
1 6 ε , S1 6 − b− 1) does not depend on t and is not zero

(this is easy to check since S is not a subordinator). Taking the limit in (2.2)
we conclude that

lim inf
t→∞

1
t

log P (E1) > lim
t→∞

1
t
f

(
t

(1− ε)α

)
=

−K#

(1− ε)α
.

�
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Proof of Proposition 2.5. Let us choose ε > 0. The previous lemma and the
scaling property of S# give

K# = − lim
y→∞

1
yα

log P
(

S#
1 <

1
y

)
.

Hence, we can choose y0 > 0 such that log P(S#
1 6 1/y0) 6 − (K# − ε)yα

0 .

Combining results of Proposition 2.2 and 2.3 for the functional F (3), we get

lim
k→∞

log P
(

1
a(k)

V#
k 6

1
y0

)
= log P

(
S#

1 6
1
y0

)
6 −

(
K# − ε

)
yα
0 .

Therefore, for all k large enough,

log P
(

1
a(k)

V#
k 6

1
y0

)
6 −

(
K# − 2ε

)
yα
0 . (2.3)

Let us choose k = [a−1 (xy0)]+1, thus (2.3) holds whenever x is large enough.
Notice that {

V#
v 6 x

}
⊂

[v/k]−1⋂
n=0

{
(θnkV)#k 6 x

}
,

hence, using the independence and stationarity of the increments of the
random walk at integer times, we obtain

P
(
V#

v 6 x
)

6
(
P
(
V#

k 6 x
))[ v

k ]
. (2.4)

Since a(·) is non-decreasing, our choice of k implies x/a(k) 6 1/y0, therefore

P
(
V#

k 6 x
)

6 P
( V#

k

a(k)
6

1
y0

)
.

Combining this inequality with (2.3) and (2.4) yields

log P
(
V#

v 6 x
)

6 −
[v
k

]
yα
0

(
K# − 2ε

)
.

It is easy to check from the regular variation of a−1(·) with index α that
[v/k]yα

0 ∼ v/a−1(x) when x and v/a−1(x) both go to in�nity, hence

lim sup
a−1(x)

v
log P

(
V#

v 6 x
)

6 −K#.

The proof of the lower bound is quite similar yet slightly more technical.
Using Lemma 2.8 and the scaling property, we can �nd y0 > 0 such that

log P
(

S#
1 6

1− ε

y0
, S1 6 − 2ε

y0
, S1 − S1 6

ε

y0

)
> − K#yα

0

(1− 2ε)α
. (2.5)

Let us set

E4 (k) =

{
V#

k

a(k)
6

1− ε

y0
,

Vk

a(k)
6 − 2ε

y0
,

Vk − Vk

a(k)
6

ε

y0

}
.
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Using Proposition 2.2 and 2.3, we check that

lim
k→∞

P (E4 (k)) = P
(

S#
1 6

1− ε

y0
, S1 6 − 2ε

y0
, S1 − S1 6

ε

y0

)
.

Hence for all k large enough, it follows from (2.5) that

log P (E4 (k)) >
−K#yα

0

(1− 3ε)α
. (2.6)

We now choose k = [a−1 (xy0)]. Notice that 1/y0 6 x/a(k) 6 2/y0 for all x
large enough, thus

E4(k) ⊂
{

V#
k 6 (1− ε)x , Vk 6 − εx , Vk − Vk 6 εx

}
.

One may check by induction that{
V#

v 6 x
}

⊃
[v/k]⋂
n=0

{
(θnkV)#k 6 (1− ε)x , (θnkV)

k
6 − εx,

(θnkV)k − (θnkV)
k

6 εx
}

,

hence, using independence and stationarity of the increments of V at integer
times, we get

P
(
V#

v 6 x
)

> P
(
V#

k 6 (1− ε)x , Vk 6 − εx , Vk − Vk 6 εx
)[ v

k ]+1

> P (E4(k))[
v
k ]+1 .

Combining this inequality with (2.6), this shows that for all x large enough,

log P
(
V#

v 6 x
)

>
−K#

(1− 3ε)α

([v
k

]
+ 1
)

yα
0 .

Notice that ([v/k] + 1)yα
0 ∼ v/a−1(x) as x and v/a−1 (x) go to in�nity

simultaneously, which completes the proof. �

Proof of Proposition 2.6. The upper bound is trivial. Let 0 < b < 1, de�ne
v1 = [a−1(x)] and set c = (b− 1)x,{

V#
v 6 x, Vv 6 bx

}
⊃

{
V#

v 6 x, Vv 6 bx, σV(c) 6 v1

}
⊃

{
V#

σV(c) 6 bx, σV(c) 6 v1

}
∩
{(

θσV(c)V
)#
v

6 x
}

,

thus

P
(
V#

v 6 x, Vv 6 bx
)

> P
(
V#

σV(c) 6 bx, σV(c) 6 v1

)
P
(
V#

v 6 x
)

> P
(
V#

v1
6 bx, Vv1

6 c
)
P
(
V#

v 6 x
)

.

Just like in the previous proof, we see that P(V#
v1 6 bx, Vv1

6 c) converges
when x goes to in�nity toward P(S#

1 6 b, S1 6 b − 1) and this quantity is
strictly positive since |S| is not a subordinator. �
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Proof of Proposition 2.7. Notice that{
V#

v1+v2
6 x

}
⊃

{
V#

[v1]+[v2]+2 6 x
}

⊃
{

V1 6 0 , V2 − V1 6 0
}

∩
{

(θ2V)#[v1] 6 x , (θ2V)[v1] − (θ2V)
[v1]

6
x

2

}
∩
{

(θ2+[v1]V)#[v2] 6 x , (θ2+[v1]V)
[v2]

6
x

2

}
.

Using the independence and stationarity of the increments of V at integer

time and setting C5 = P(V1 6 0) > 0, we see that P(V#
v1+v2

6 x) is larger
than

C2
5P
(
V#

[v1] 6 x , V[v1] − V[v1] 6
x

2

)
P
(
V#

[v2] 6 x , V[v2] 6
x

2

)
.

Time reversal of the random walk V shows that

P
(
V#

[v1] 6 x, V[v1] − V[v1] 6 x/2
)

= P
(
V#

[v1] 6 x, V[v1] 6 x/2
)

,

hence, using Proposition 2.6,

P(V#
v1+v2

6 x) > (C3, 1
2
C5)2P

(
V#

[v1] 6 x
)
P
(
V#

[v2] 6 x
)

> (C3, 1
2
C5)2P

(
V#

v1
6 x

)
P
(
V#

v2
6 x

)
.

�

2.3. The case where S is a completely asymmetric stable process.
One may wish to calculate the value of the constant K# that appears in the
last section. Unfortunately, we do not know its value in general. However,
the completely asymmetric case is a particularly nice setting where calcula-
tions may be carried out to their full extend. We now assume throughout
this section that the stable process (Sx , x > 0) either has no positive jumps
hence the exponential moments of S are �nite and (1.2) holds (recall that we
assume γ′ = 1) or S has no negative jumps and E (exp(−λSt)) = exp(tλα)
for all t, λ > 0. For a, b > 0, de�ne the stopping times:

τb = inf(t > 0 , St > b) = σS(b),

τ#
b = inf(t > 0 , S#

t > b) = σS#(b),
τ∗a,b = inf(t > 0 , St not in (−a, b)).

Recall that Eα stands for the Mittag-Le�er function with parameter α.

Proposition 2.9. When S has no positive jumps, we have

E
(
e−qτ#

1

)
=

1
Eα(q)

,

and when S has no negative jumps, we have

E
(
e−qτ#

1

)
= Eα(q)− αq(E′

α(q))2

αqE′′
α(q) + (α− 1)E′

α(q)
.
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This proposition is a particular case of Proposition 2 of [17], p191. Still,
we give here a simpler proof when S is stable using the solution of the two
sided exit problem given by Bertoin [2].

Proof. We suppose that S has no negative jumps. Let η(q) be an exponential
random time of parameter q independent of S. Let also a, b be strictly
positive real numbers such that a+b = 1. We may without loss of generality
assume any path of S attains its bounds on any compact interval and is
continuous at all local extrema (because this happens with probability 1
according to Lemma 2.1). Thus, on the one hand, the event {τ#

1 > η(q)}
contains{

τ∗a,b > η(q)
}
∪
({

τ∗a,b 6 η(q) , Sτ∗a,b
6 − a

}
∩
{

(θτ∗a,b
S)#η(q)−τ∗a,b

< 1
})

.

Using the strong Markov property of S, the lack of memory, and the in-

dependence of the exponential time, it follows that P(τ#
1 > η(q)) is larger

than

P
(
τ∗a,b > η(q)

)
+ P

(
τ∗a,b 6 η(q) , Sτ∗a,b

6 − a
)
P
(
τ#
1 > η(q)

)
,

therefore

P
(
τ#
1 > η(q)

)
>

P
(
τ∗a,b > η(q)

)
1−P

(
τ∗a,b 6 η(q) , Sτ∗a,b

6 − a
) . (2.7)

On the other hand, one may check that the event {τ#
1 > η(q)} is a subset of{

τ∗a,b > η(q)
}
∪
({

τ∗a,b 6 η(q) , Sτ∗a,b
6 − a

}
∩
{

(θτ∗a,b
S)#η(q)−τ∗a,b

< b
})

,

and similarly we deduce

P
(
τ#
b > η(q)

)
6

P
(
τ∗a,b > η(q)

)
1−P

(
τ∗a,b 6 η(q) , Sτ∗a,b

6 − a
) . (2.8)

Obviously τ#
b converges to τ#

1 almost surely as b converges to 1. Combining
this observation with (2.7) and (2.8), we �nd

P
(
τ#
1 > η(q)

)
= lim

b↗1

P
(
τ∗1−b,b > η(q)

)
1−P

(
τ∗1−b,b 6 η(q) , Sτ∗1−b,b

6 b− 1
) . (2.9)

The probabilities of the r.h.s. of this equation have been calculated by
Bertoin [2]:

P
(
τ∗1−b,b > η(q)

)
= 1− Eα(bα) + bα−1E′

α(qbα)
E′

α(q) (Eα(q)− 1) , (2.10)

P
(
τ∗1−b,b 6 η(q) , Sτ∗1−b,b

6 b− 1
)

= bα−1E′
α(qbα)

E′
α(q) . (2.11)
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Taylor expansions of Eα and E′
α near point q enables us to calculate the

limit in (2.9) in term of Eα and its �rst and second derivatives. After a few
lines of elementary calculus, we get

P
(
τ#
1 > η(q)

)
= 1− Eα(q) +

αq(E′
α(q))2

αqE′′
α(q) + (α− 1)E′

α(q)
.

We complete the proof using the well known relation E(exp(−qτ#
1 )) = 1 −

P(τ#
1 > η(q)). The proof in the case where S has no positive jumps is similar

(and the calculation of the limit is even easier). We omit it. �

Corollary 2.10. Recall that −ρ1(α) is the �rst negative root of Eα and
−ρ2(α) is the �rst negative root of αxE′′

α(x) + (α − 1)E′
α(x). The constant

of Proposition 2.5 is given by

K# =
{

ρ1(α) when S has no positive jumps,
ρ2(α) when S has no negative jumps.

Proof. Recall that K# = − limt→∞P(S#
t 6 1)/t. Using the same argument

as in Corollary 1 of [2], we see that K# = ρ1(α) when S has no positive
jumps. Similarly, when S has no negative jumps −K# is equal to the �rst
negative pole of

g(x) =
αx(E′

α(x))2

αxE′′
α(x) + (α− 1)E′

α(x)
= Eα(x)−E

(
e−xτ#

1

)
.

Let −x0 be the �rst negative root of E′
α. Since E′

α(0) > 0, this implies that

Eα is strictly increasing on [−x0, 0]. Notice also that x 7→ −E(exp(−xτ#
1 ))

is increasing on (−K#, 0], thus g(x) is strictly increasing on (−(K#∧x0), 0].
Since g(−x0) = g(0) = 0 (this holds even when −x0 is a zero of multiple
order) we deduce from the monotonicity of g that K# < x0 and this shows
that the �rst negative pole of g is indeed −ρ2(α). �

We conclude this subsection by calculating the Laplace transform of τ#
1 ∧

τb. This will be useful for the determination of the limiting law in the proof
of Theorem 4.

Corollary 2.11. For 0 < b 6 1, when S has no positive jumps

E
(
e−qτ#

1 ∧τb

)
=

Eα(q(1− b)α)
Eα(q)

,

and when S has no negative jumps

E
(
e−qτ#

1 ∧τb

)
= Eα(qbα)− bα−1 αqE′

α(qbα)E′
α(q)

αqE′′
α(q) + (α− 1)E′

α(q)
.

Proof. Let η(q) still denote an exponential time with parameter q indepen-
dent of S. Suppose that S has no negative jumps, using the Markov property
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and the lack of memory of the exponential law, we get

P
(
τ#
1 ∧ τb > η(q)

)
= P

(
τ∗1−b,b 6 η(q), Sτ∗1−b,b

6 b− 1
)
P
(
τ#
1 > η(q)

)
+P

(
τ∗1−b,b > η(q)

)
.

The r.h.s. of the last equality may be calculated explicitly using again (2.10),
(2.11), and Proposition 2.9. Hence, after simpli�cation,

P
(
τ#
1 ∧ τb > η(q)

)
= 1− Eα(qbα) + bα−1 αqE′

α(qbα)E′
α(q)

αqE′′
α(q) + (α− 1)E′

α(q)
.

The no positive jumps case may be treated the same way. �

2.4. The exit problem for the random walk V. Let us de�ne for x, y > 0
the following events:

Λ (x, y) =
{
(Vs)s > 0 hits (y,∞) before it hits (−∞,−x)

}
,

Λ′ (x, y) =
{
(Vs)s > 0 hits [y,∞) before it hits (−∞,−x]

}
,

Λ̃′ (x, y) =
{
(V−s)s > 0 hits (−∞,−y] before it hits [x,∞)

}
.

We are interested in the behavior of the probabilities of these events for large
x, y. In the case of a �xed x, when y goes to in�nity, this study was done
by Bertoin and Doney [3]. Here, we need to study this quantities when both
x and y go to in�nity with the ratio y/x also going to in�nity. We already
de�ned the sequence (Tn)n > 0 of strictly descending ladder times, we now
consider the associated ladder heights:

Hn = −VTn for n > 0.

We will also need the sequence (Mn)n > 1:

Mn = max (Vk + Hn−1 , Tn−1 6 k < Tn) .

Note that the sequence (Tn+1 −Tn,Hn+1 −Hn,Mn)n > 1 is independent
and identically distributed. We know thatT1 is in the domain of attraction of
a positive stable law of index q with norming constants (bn). Now, Corollary
3 of [8] states that P (M1 > x) is regularly varying with index −αq. More
precisely, it gives

P (M1 > x) ∼
x→∞

C6

b−1 (a−1 (x))
. (2.12)

In particular, this shows that M1 is in the domain of attraction of a positive
stable law when αq < 1 and that M1 is relatively stable when αq = 1
(relatively stable means that 1

a(b(n))

∑
k 6 n Mk converges in probability to

some strictly positive constant).
For H1, using Theorem 9 of [18], we see that H1 is in the domain of

attraction of a positive stable law with index αq when αq < 1 and that H1

is relatively stable in the case αq = 1. Furthermore, the lemma of [8], p358



16 ARVIND SINGH

shows that we can choose a (b (n)) as norming constant for H1 in any of
those two cases, thus

Hn

a (b (n))
converges to

{
some constant C7, in probability when αq = 1,
a positive stable law of index αq otherwise.

When αq < 1, this shows that (2.12) holds with H1 in place of M1 (for
a di�erent value of C6). Unfortunately, in the case αq = 1, the relative
stability of H1 does not imply the regular variation of P (H1 > x) (look at
the counter example in [18], p 576). However, we can still prove a smooth
behavior for the associated renewal function

R(x) =
∞∑

n=0

P (Hn 6 x) .

Lemma 2.12. There exists a constant C8 > 0 such that

R (x) ∼
x→∞

C8b
−1
(
a−1 (x)

)
.

Proof. When αq < 1 we mentioned that P (H1 > x) ∼ C9/b−1
(
a−1 (x)

)
where C9 is some strictly positive constant. In this case, the asymptotic
behavior of R follows from the Tauberian Theorem as in the lemma on p446
of [10]. We now consider the case αq = 1. Let L(λ) = E

(
e−λH1

)
stand for

the Laplace transform of H1. We know that

Hn

a (b (n))
Prob.−→
n→∞

C7.

Therefore, for any λ > 0 and when n ranges trough the set of integers, we
have (

L

(
λ

a (b (n))

))n

−→
n→∞

e−C7λ. (2.13)

Since L is continuous at 0 with L(0) = 1, setting λ = 1 and taking the
logarithm in (2.13) give

n

(
1− L

(
1

a (b (n))

))
−→
n→∞

C7. (2.14)

Using the monotonicity of L and a (b (·)), it is easy to check that (2.14) still
holds when n now ranges trough the set of real numbers, thus

1− L

(
1
x

)
∼

x→∞

C7

b−1 (a−1 (x))
. (2.15)

Let us now de�ne R̂(y) =
∫∞
0 e−yxR (dx). The well-known relation R̂ (y) =

1/ (1− L(y)) combined with (2.15) shows that R̂ is regularly varying near 0,
hence we can use Karamata's Tauberian/Abelian Theorem to conclude the
proof. �

Proposition 2.13. There exists C10 such that when x →∞ and y/x →∞,

P (Λ (x, y)) ∼ C10
b−1

(
a−1 (x)

)
b−1 (a−1 (x + y))

.
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This result also holds for P(Λ′ (x, y)) and P(Λ̃′ (x, y)).

Proof. The two processes (Vs)s > 0 and (−V−s)s > 0 have the same law, hence

P(Λ′ (x, y)) = P(Λ̃′ (x, y)). We also have the trivial inclusion Λ (x− 1, y) ⊂
Λ′ (x, y) ⊂ Λ (x, y − 1), so we only need to prove the proposition for Λ (x, y).
The �rst part of the proof is borrowed from Bertoin and Doney [3], p2157.
The probability P(Λ(x, y)) is equal to

P (M1 > y) +
∞∑

k=1

P
(
M1 6 y + H0, · · · ,Mk 6 y + Hk−1,

Hk 6 x,Mk+1 > y + Hk

)
, (2.16)

thus

P (Λ (x, y)) 6 P (M1 > y) +
∞∑

k=1

P (Hk 6 x,Mk+1 > y + Hk)

6 P (M1 > y) +
∞∑

k=1

P (Hk 6 x,Mk+1 > y)

6 P (M1 > y)R(x).

Using (2.12), Lemma 2.12, and the equivalence P(M1 > y) ∼ P(M1 > x+y)
when x and y/x go to in�nity, we obtain the upper bound with C10 = C6C8.
We now prove the result pertaining to the lower bound. Let k0 ∈ N∗. From
(2.16), we see that P(Λ(x, y)) is bigger than

P (M1 > y) +
∞∑

k=1

P (M1 6 y, · · · ,Mk 6 y,Hk 6 x,Mk+1 > x + y)

> P (M1 > x + y)
(
1 +

k0∑
k=1

P (M1 6 y, · · · ,Mk 6 y,Hk 6 x)
)
,

hence

P (Λ (x, y)) > P (M1 > x + y)
(
R (x)−Rk0 (x)−Wk0 (y)

)
, (2.17)

with

Rk0 (x) =
∞∑

k=k0+1

P (Hk 6 x) ,

Wk0 (y) =
k0∑

k=1

P (M1 > y or · · · or Mk > y) .

On the one hand, using (2.12) and Lemma 2.12, for y large enough,

Wk0 (y) 6
K∑

k=1

k0P (M1 > y) 6 k2
0P (M1 > y) 6

C11k
2
0

R (y)
.
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On the other hand,

Rk0 (x) =
∞∑

k=0

P (Hk0+1 + (Hk+k0+1 −Hk0+1 6 x))

6
∞∑

k=0

P (Hk+k0+1 −Hk0+1 6 x)P (Hk0+1 6 x)

6 R (x)P (Hk0 6 x) .

Combining these two bounds with (2.17) yields, for all x, y large enough,

P (Λ (x, y)) > P (M1 > x + y)R (x)
(

1−P (Hk0 6 x)− C11k
2
0

(R (y))2

)
.

It only remains to show that for a good choice of k0 = k0(x, y), we have

P (Hk0 6 x) +
C11k

2
0

(R (y))2
−→

x, y
x
→∞

0.

Let k0 =
[
b−1

(
a−1 (x log (y/x))

)]
. Note that k0 is such that k0 →∞, when

x and y/x go to in�nity simultaneously, and we know that

Hk0

a (b (k0))
law−→

k0→∞
J∞

where J∞ is either a positive stable law (αq < 1) or a strictly positive
constant (αq = 1). In either cases P (J∞ = 0) = 0. Since x/a(b(k0)) → 0
when x and y/x go to in�nity simultaneously, we deduce that

P (Hk0 6 x) = P
(

Hk0

a (b (k0))
6

x

a (b (k0))

)
−→

x, y
x
→∞

0.

Finally, using Lemmas 2.4 and 2.12, we also check that

C11k
2
0

(R (y))2
∼

x, y
x
→∞

C11

C2
8

(
R
(
x log y

x

)
R (y)

)2

−→
x, y

x
→∞

0.

�

2.5. Other estimates. We conclude the section about the �uctuations of
V by collecting several results on the functionals V and V. We start with a
re�ection principle for V.

Lemma 2.14. There exists C12 such that for all v, x > 0,

P
(
Vv > x

)
6 C12P (Vv > x) ,

similarly

P (Vv 6 − x) 6 C12P (Vv 6 − x) .
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Proof. We only need to prove the �rst inequality (the second inequality can
be obtained in the same way, with a possibly enlarged value for C12).

P
(
Vv > x

)
= P (σV(x) 6 [v])

6 P
(
σV(x) 6 [v] , V[v] < x

)
+ P (Vv > x)

6
[v]∑

k=1

P
(
σV(x) = k , V[v] < x

)
+ P (Vv > x) .

From the Markov property, we check that P(σV(x) = k, V[v] < x) is equal to

P (σV(x) = k)
∫

y > x

P
(
V[v]−k < x− y

)
P
(
VσV(x) = dy|σV(x) = k

)
6 P (σV(x) = k)P

(
V[v]−k < 0

)
.

Our assumption on V implies that limn→∞P (Vn < 0) = P (S < 0) = q < 1.
Thus, there exists C13 > 0 such that supn P (Vn < 0) = C13 < 1. Therefore

P
(
Vv > x

)
6 C13

[v]∑
k=1

P (σV(x) = k) + P (Vv > x)

6 C13P (σV(x) 6 v) + P (Vv > x)

6
1

1−C13
P (Vv > x) .

�

We now estimate the large deviations of P (Vv > x). Using the character-
ization of the domains of attraction to a stable law (see Chapter IX, Section
8 of [10]), Assumption 1 implies

a−1(x)P (V1 > x) −→
x→∞

{
C14 > 0 if S has positive jumps,
0 otherwise.

(2.18)

Similarly,

a−1(x)P (V1 < −x) −→
x→∞

{
C15 > 0 if S has negative jumps,
0 otherwise.

(2.19)

Proposition 2.15. There exists C16 > 0 such that for all v > 1 and all
x > 1,

P (Vv > x) 6 C16
v

a−1(x)
. (2.20)

Moreover, if S has positive jumps,

P (Vv > x) ∼
v →∞

a−1(x)
v →∞

vP (V1 > x) ∼
v →∞

a−1(x)
v →∞

C14
v

a−1(x)
. (2.21)

There is of course a similar result for P (Vv < −x).
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Proof. Result (2.21) is already known and is stated in [5], yet we could not
�nd a proof of this result in English. A weaker result is proved by Heyde
[11] but a slight modi�cation of his argument will enable us to prove the
proposition. Let us choose 1/2 < δ < 1 and set z = (x/a(v))δa(v). De�ne
for k > 1,

ζk,z =
{

Vk − Vk−1 if |Vk − Vk−1| 6 z,
0 otherwise.

Let ε > 0 and de�ne

E5 =
{

Vk − Vk−1 > (1− ε)x for at least one k in {1, . . . , [v]}
}

,

E6 =
{

Vk − Vk−1 > z for at least two k's in {1, . . . , [v]}
}

,

E7 =
{

ζ1,z + . . . + ζ[v],z > εx
}

.

We see that {Vv > x} ⊂ E5 ∩ E6 ∩ E7, hence

P (Vv > x) 6 P (E5) + P (E6) + P (E7) . (2.22)

We deal with each term on the r.h.s. of (2.22) separately. Let us choose
C > C14 if S has positive jumps and set C = 1 otherwise. We now assume
that v and a−1(x)/v are very large. According to (2.18) and using the regular
variation of a−1(·), we get

P (E5) 6 vP (V1 > (1− ε)x) 6
C

(1− ε)α

v

a−1(x)
. (2.23)

We now deal with P (E6). Let η > 0. Lemma 2.4 gives for all v and a−1(x)/v
large enough,

va−1(x)
(a−1(z))2

=
a−1

(
a(v) x

a(v)

)
a−1(a(v))

 a−1(a(v))

a−1
(
a(v)

(
x

a(v)

)δ)


2

6

(
x

a(v)

)α+η (a(v)
x

)2δ(α−η)

.

Since δ > 1/2, we can assume η small enough such that 2δ(α−η)−(α+η) > η.
Thus, we have

va−1(x)
(a−1(z))2

6

(
a(v)
x

)η

, (2.24)

therefore, using (2.18) and (2.24), we get

P (E6) 6 v2P (V1 > z)2 6 C
v2

(a−1(z))2
6 C

v

a−1(x)

(
a(v)
x

)η

. (2.25)

Turning our attention to P (E7), we deduce from Tchebychev's inequality
that

P (E7) 6
1

ε2x2
E
(
(ζ1,z + . . . + ζ[v],z)

2
)

6
v

ε2x2
E
(
ζ2
1,z

)
+

v2

ε2x2
E (ζ1,z)

2 .

(2.26)
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Let f(z) = E
(
(ζ1,z)2

)
=
∫ z
−z y2P (V1 ∈ dy). This function is non-decreasing

and non-zero for z large enough. It is also known from the characterization
of the domains of attraction (c.f. (8.14) of [10], p304) that the norming con-
stants (an) are such that nf(an)/a2

n → C17 > 0, hence f(z) ∼ C17z
2/a−1(z)

as z goes to in�nity (f is regularly varying with index 2−α). Therefore, for
v and a−1(x)/v large enough, we have

v

ε2x2
E
(
(ζ1,z)2

)
=

vf(z)
εx2

6 C18,ε
v

a−1(x)
f(z)
f(x)

6 C18,ε
v

a−1(x)
. (2.27)

We can sharpen this estimate when α < 2. Indeed, in this case, f is regularly
varying with index 2 − α > 0. Thus, using Lemma 2.4 and setting η′ =
(1− δ)(2− α)/2,

f(z)
f(x)

6
( z

x

)(2−α)/2
=
(

a(v)(x/a(v))δ

x

)(2−α)/2

=
(

a(v)
x

)η′

.

When α < 2, we therefore obtain

v

ε2x2
E ((ζ1,z) 6 C18,ε

v

a−1(x)

(
a(v)
x

)η′

. (2.28)

Let g(z) = E (ζ1,z) =
∫ z
−z yP (V1 ∈ dy). Since V1 is in the domain of

attraction of a stable law, it is known that the centering constants c(n)
such that Vn/a(n) − c(n) converge to a stable law may be chosen to be
c(n) = ng(a(n))/a(n) (see [10], p305), but the main assumption of this pa-
per states that the sequence c(n) may also be chosen to be identically 0.
This implies in particular that the sequence ng(a(n))/a(n) is bounded. So
we deduce that there exists C19 > 0 such that

|g(z)| 6 C19
z

a−1(z)
for all z > 1.

Using this inequality, we get for v and a−1(x)/v large enough,

v2

ε2x2
E (ζ1,z)

2 6 C20,ε
v2z2

x2(a−1(z))2

= C20,ε
v

a−1(x)
va−1(x)
(a−1(z))2

( z

x

)2

6 C20,ε
v

a−1(x)
va−1(x)
(a−1(z))2

6 C20,ε
v

a−1(x)

(
a(v)
x

)η

, (2.29)

where we used (2.24) for the last inequality. Putting the pieces together,
(2.22)-(2.23)-(2.25)-(2.26)-(2.27) and (2.29) yield (2.20). Moreover, when S
has positive jumps, we have α < 2, hence we can use (2.28) instead of (2.27)



22 ARVIND SINGH

and we deduce that

lim sup
v →∞

a−1(x)
v →∞

a−1(x)P (Vv > x)
v

6 C14.

It remains to prove that the lower bound holds. Assume that S has positive
jumps and notice that the event {Vv > x} contains

[v]−1⋂
k=0

{
V∗k 6 εx , Vk+1 − Vk > (1 + 2ε)x , (θk+1V)∗[v]−k−1 6 εx

}
.

Moreover, the events of the last formula are disjoints. The independence and
the stationarity of the increments of the random walk V yield

P (Vv > x) >
[v]−1∑
k=0

P
(
V∗k 6 εx

)
P
(
V1 > (1 + 2ε)x

)
P
(
V∗[v]−k−1 6 εx

)
> [v]P

(
V∗v 6 εx

)2
P
(
V1 > (1 + 2ε)x

)
.

From (2.18) and the regular variation of a−1(·) we see that

[v]P (V1 > (1 + 2ε)x) ∼ C14v

(1 + 2ε)αa−1(x)

as v and a−1(x)/v both go to in�nity. We also know from the results of
Section 2.1 that V∗v/a(v) converges in law towards S∗1, therefore

lim
v →∞

a−1(x)
v →∞

P
(
V∗v 6 εx

)
= lim

v →∞
a−1(x)

v →∞

P
(

V∗v
a(v)

6 ε
x

a(v)

)
= 1.

We conclude that

lim inf
v →∞

a−1(x)
v →∞

a−1(x)P (Vv > x)
v

>
C14

(1 + 2ε)α
.

�

Corollary 2.16. By possibly extending the value of C16, the equation (2.20)

also holds with Vv, −Vv, V#
v and V∗v in place of Vv.

Proof. The results for Vv and −Vv are straightforward using Lemma 2.14.

As for V∗ and V#, simply notice that {V#
v > 2x} ⊂ {V∗v > x} ⊂ {Vv > x}∪

{−Vv > x}. �

Corollary 2.17. For any 0 < δ < α, we have

lim
v→∞

E

((
Vv

a(v)

)δ
)

= E
((

S1

)δ)
and lim

v→∞
E

(∣∣∣∣ Vv

a(v)

∣∣∣∣δ
)

= E
(
(−S1)

δ
)

.
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Proof. It follows from the last corollary and the regular variation of a−1(·)
with index α that for any 0 < δ < α,

sup
v > 1

E

((
Vv

a(v)

)δ
)

< ∞.

The family
(
(Vv/a(v))δ, v > 1

)
is therefore uniformly integrable for all 0 <

δ < α. We also know that Vv/a(v) converges in law toward S1 as v goes to
in�nity. These two facts combined yield the �rst assertion. The proof of the
second part of the corollary is similar. �

Proposition 2.18. For all 0 < δ < q (recall that q is the negativity param-
eter of S) there exists C21,δ such that, for all v, x > 1,

P (−Vv 6 x) 6 C21,δ

(
a−1(x)

v

)δ

.

We have a similar result for P
(
Vv 6 x

)
when changing the condition δ < q

by δ < p.

Proof. We only prove the result for Vv. By possibly extending the value of
C21,δ, it su�ces to prove the inequality for x and v/a−1(x) large enough.
Let us choose δ′ such that δ < δ′ < q < 1 and notice that for any y > 0,

{−Vv 6 x} ⊂ Λ(x, y) ∪ ({−Vv 6 x} ∩ Λ(x, y)c)

⊂ Λ(x, y) ∪
{

V#
v 6 x + y

}
,

thus

P (−Vv 6 x) 6 P (Λ (x, y)) + P
(
V#

v 6 x + y
)

. (2.30)

On the one hand, for x and y/x large enough, using Proposition 2.13 and
Lemma 2.4, we get

P (Λ (x, y)) 6 C22
b−1

(
a−1(x)

)
b−1 (a−1(x + y))

6 C23,δ′

(
a−1(x)

a−1(x + y)

)δ′

. (2.31)

On the other hand, for x+y and v/a−1(x+y) large enough, using Proposition
2.5, we obtain

P
(
V#

v 6 x + y
)

6 exp
(
−K#

2
v

a−1(x + y)

)
. (2.32)
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Let us choose y = a
(

K#v
2 log(v/a−1(x))

)
− x. It is easy to check that (2.31) and

(2.32) hold whenever x and v/a−1(x) are large enough, thus, (2.30) yields

P (−Vv 6 x) 6 C23,δ′

(
2

K#

)δ′ (a−1(x)
v

(
log

v

a−1(x)

))δ′

+
a−1(x)

v

6 C24,δ′

(
a−1(x)

v

)δ

.

�

3. Behavior of X

In this section, we now study the di�usion X in the random potential
V. We will see that the behavior of this process depends strongly on the
environment. In order to do so, we will adapt the ideas of Hu and Shi [12]
to our setting, in particular, we will show that Lemma 4.1 and Lemma 4.2
of [12] still hold with a slight modi�cation.

Recall the well known representation of X (c.f. [6, 12, 13]) which states
that we can construct X from a Brownian motion through a (random) change
of scale and a (random) change of time, hence we will assume that X has
the form:

Xt = A−1
(
BT−1(t)

)
(3.1)

where B is a standard Brownian motion independent of V and where A−1

and T−1 are the respective inverses of

A (x) =
∫ x

0
eVydy for x ∈ R,

T (t) =
∫ t

0
e
−2VA−1(Bs)ds for t > 0.

Note that our assumption on V implies with probability 1 that A is an
increasing homeomorphism on R and that T is an increasing homeomorphism
on R+, thus A−1 and T−1 are well de�ned. Let v > 0 and recall the de�nition
of σ given in Section 2.1. Using (3.1), we have

σX(v) = T (σB (A(v))) .

Let (L(t, x), t > 0, x ∈ R) stand for the bi-continuous version of the local
time process of B. The last equality may be rewritten:

σX(v) =
∫ σB(A(v))

0
e
−2VA−1(Bs)ds

=
∫ A(v)

−∞
e
−2VA−1(x)L(σB(A(v)), x)dx

=
∫ v

−∞
e−VyL(σB(A(v)), A(y))dy
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where we have used the change of variable x = A(y). Let us now de�ne I1

and I2,

I1(v) =
∫ v

0
e−VyL(σB(A(v)), A(y))dy, (3.2)

I2(v) =
∫ ∞

0
e−V−yL(σB(A(v)), A(−y))dy. (3.3)

Using the de�nition of σX , we get{
Xt > v

}
= {I1(v) + I2(v) 6 t} . (3.4)

The next two propositions show the connection between V and X. These
estimates will enable us to reduce the study of the limiting behavior of X
to the study of some functionals of the potential V. The streamline of the
proofs is the same as that of Lemmas 4.1 and 4.2 of [12] and one should refer
to the proof of these two lemmas for further details.

Proposition 3.1. There exists C25 such that for all v large enough

V#

v− 1
2

− (log v)4 6 log I1(v) 6 V#
v + (log v)4 on E8(v),

where E8(v) is a measurable set such that

P (E8(v)c) 6 C25e
−(log v)2 .

Proposition 3.2. There exists C26 such that for all v large enough

log I2(v) 6 ŨV
(
Vv + (log v)4

)
on E9(v),

log I2(v) > ŨV

(
Vv− 1

2
− (log v)4

)
on E9(v) ∩

{
Vv− 1

2
> (log v)4

}
,

where Ũ was de�ned in Section 2.1 and where E9(v) is a measurable set such
that

P (E9(v)c) 6 C26e
−(log v)2 .

Proof of Proposition 3.1. For v > 0, let R2 be de�ned as:

R2(t) =
L (σB(A(v)), A(v)− tA(v))

A(v)
for 0 6 t 6 1.

Let R be the positive root of R2. Just as in [12], p1498, we see that, using
Ray-Knight Theorem and the scaling property of the Brownian motion, for
any �xed v the process (R(t), 0 6 t 6 1) has the law of a two dimensional
Bessel process starting from 0. Moreover, R is independent of V. We can
now rewrite (3.2) as

I1(v) = A(v)
∫ v

0
e−VsR2

(
A(v)− A(s)

A(v)

)
ds.

Let us de�ne

E10 =

{
sup

0<t 6 1

R(t)√
t log(8/t)

6
√

v

}
.



26 ARVIND SINGH

Using Lemma 6.1 p1497 of [12], we get P (Ec
10) 6 C27e

−v/2. On E10, we have

I1(v) 6 v

∫ v

0
e−Vs (A(v)− A(s)) log

(
8A(v)

A(v)− A(s)

)
ds,

and for all s 6 v

e−Vs (A(v)− A(s)) =
∫ v

s
eVy−Vsdy 6 veV#

v .

This implies

I1(v) 6 v2eV#
v

∫ v

0
log
(

8A(v)
A(v)− A(s)

)
ds. (3.5)

We also have

A(v) =
∫ v

0
eVsds 6 veVv and A(v)− A(s) =

∫ v

s
eVydy > (v − s)eVv ,

thus ∫ v

0
log
(

8A(v)
A(v)− A(s)

)
ds 6 v

(
Vv − Vv

)
+
∫ v

0
log
(

8v

v − s

)
ds

6 v
(
Vv − Vv + 1 + log(8)

)
.

Combining this with (3.5) yields log(I1(v)) 6 V#
v + log

(
Vv − Vv

)
+ 4 log(v)

for all v large enough. We now de�ne E11 =
{
log
(
Vv − Vv

)
6 log3(v)

}
. On

E10 ∩ E11, for all v large enough, we get the upper bound,

log(I1(v)) 6 V#
v + log4(v).

Notice that {Vv−Vv > a} ⊂ {V∗v > a/2}. Thus, using Corollary 2.16 and the
regular variation of a−1(·), it is easily checked that P (Ec

11) 6 exp(− log2(v))
for any v large enough. We now prove the existence of the lower bound. For
the sake of clarity, we will use the notation l = log(v) and δ = exp(−l2).
For v > 1/2, there exist two integers 0 6 k− 6 k+ 6 v − 1

2 such that

V#

v− 1
2

= Vk+ − Vk− . Let us de�ne the sets:

E12 =

{
inf

k− 6 s 6 k−+ 1
2

R
(

A(v)− A(s)
A(v)

)
> δ

√
A(v)− A(k−)

A(v)

}
,

E13 =
{

V#

v− 1
2

> 3l2
}

.

Using again Lemma 6.1 p1497 of [12] combined with the independence of R
and V, we get

P ((E12 ∩ E13)c) 6 P (Ec
13) + 2δ + 2E

(
e−

δ2

2
J(v)1E13

)
, (3.6)

where J is given by

J(v) =
A(v)− A(k−)

A
(
k− + 1

2

)
− A(k−)

.
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On the one hand, we have

A(v)− A(k−) =
∫ v

k−
eVsds >

∫ k++ 1
2

k+

eVsds =
1
2
eVk+ .

On the other hand, since k− is an integer and V is �at on [k−, k− + 1), we
also have

A
(

k− +
1
2

)
− A(k−) =

∫ k−+ 1
2

k−
eVsds =

1
2
eVk− .

This implies J(v) > exp(V#
v−1/2). Using this inequality combined with (3.6),

we get

P ((E12 ∩ E13)c) 6 P (Ec
13) + 2δ + 2 exp(−δ2 exp(3l2)/2).

Hence, we have P ((E12 ∩ E13)c) 6 P (Ec
13)+3 exp(−l2) for all v large enough.

Using Proposition 2.5, it is easily seen thatP (Ec
13) 6 e−l2 for all large enough

v's. Let us �nally set E8 = E10 ∩ E11 ∩ E12 ∩ E13. We have proved that there
exists C25 > 0 such that P (Ec

8) 6 C25 exp(−l2). Notice that

I1(v) = A(v)
∫ v

0
e−VsR2

(
A(v)− A(s)

A(v)

)
ds

> A(v)e−Vk−

∫ k−+ 1
4

k−
R2

(
A(v)− A(s)

A(v)

)
ds,

therefore, on E8,

I1(v) > δ2e−Vk−

∫ k−+ 1
4

k−
(A(v)− A(s)) ds,

but for all s such that k− 6 s 6 k− + 1
4 we also have

A(v)−A(s) > A(v)−A
(

k− +
1
4

)
=
∫ v

k−+ 1
4

eVydy >
∫ k++ 1

2

k++ 1
4

eVydy =
1
4
eVk+ ,

hence ∫ k−+ 1
4

k−
(A(v)− A(s)) ds >

1
16

eVk+ .

We �nally get

I1(v) >
δ2

16
e

V#

v− 1
2 on E8.

We conclude the proof of the proposition by taking the logarithm. �

Proof of Proposition 3.2. For v > 0, we de�ne the process Z by

Z(t) =
L (σB (A(v)) ,−tA(v))

A(v)
for t > 0.

Using Ray-Knight Theorem and the scaling property of the Brownian mo-
tion, we see that for any �xed v the process Z has the law of a squared Bessel



28 ARVIND SINGH

process of dimension 0 such that Z(0) has an exponential distribution with
mean 2. Moreover, Z is independent of V. We can now rewrite (3.3):

I2(v) = A(v)
∫ ∞

0
e−V−sZ

(
−A(−s)

A(v)

)
ds.

We know that 0 is an absorbing state for Z. Let ζ = inf (s > 0 , Zs = 0) be
the absorption time of Z and let us also de�ne

ζ(v) = inf
(

s > 0 , Z
(
−A(−s)

A(v)

)
= 0
)

.

We can now write

I2(v) = A(v)
∫ ζ(v)

0
e−V−sZ

(
−A(−s)

A(v)

)
ds.

We keep the notation l = log(v), note that A(v) =
∫ v
0 eVsds 6 exp(Vv + l),

therefore

I2(v) 6 eVv+lζ(v) sup
0 6 s 6 ζ(v)

(
e−V−s

)
sup
s > 0

Z(s)

6 ζ(v) sup
s > 0

Z(s)el+V(v)−V(−ζ(v)).

Let us de�ne E14 = {sups > 0Z(s) 6 exp(l2)}. Using Lemma 7.1, p1501 of

[12], we get P(Ec
14) 6 4 exp(−l2). Thus, on E14, we have

I2(v) 6 ζ(v)e2l2+V(v)−V(−ζ(v)). (3.7)

Let E15 =
{
ζ(v) 6 σ̃V

(
Vv + l4

)
+ 1

2

}
and notice that for all a > 0,

{ζ(v) > a} =
{
−A(−a)

A(v)
< ζ

}
.

Therefore

P (Ec
15) = P

(
−A

(
−σ̃V

(
Vv + l4

)
− 1

2

)
A(v)

< ζ

)
,

but

−A
(
−σ̃V(Vv + l4)− 1

2

)
>
∫ −eσV(Vv+l4)

−eσV(Vv+l4)− 1
2

eVsds >
1
2
eVv+l4 ,

and we have already seen that Av 6 exp(Vv + l). Combining this two
inequalities yields for all v large enough,

−A
(
−σ̃V(Vv + l4)− 1

2

)
A(v)

> el3 ,

hence

P (Ec
15) 6 P

(
ζ > el3

)
6 e−l3 ,
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where we have used Lemma 7.1 on p1501 of [12] for the last inequality. On
E14 ∩ E15, for v large enough, we deduce from (3.7) that

I2(v) 6 ζ(v)e2l2+V(v)−V(−eσV(Vv+l4)+ 1
2
).

But V(v)−V(−σ̃V
(
Vv + l4

)
+ 1

2) = ŨV(Vv + l4)− l4 (recall that V is �at on
(−n− 1,−n] , n ∈ N). Therefore, on E14 ∩ E15,

I2(v) 6 ζ(v)e−l3+eUV(Vv+l4).

Let E16 = {σ̃V(Vv + l4) + 1
2 6 exp(l3)}. On E17 = E14 ∩ E15 ∩ E16, we have

ζ(v) 6 exp(l3). Hence, on E17 and for all v large enough,

log (I2(v)) 6 ŨV
(
Vv + log4 v

)
.

This gives the upper bound on E17. Let us check that

P (Ec
16) 6 C28 exp(−l2). (3.8)

We have P(Ec
16) 6 P

(
σ̃V(Vv + l4) > exp(l3)/2

)
, thus

P (Ec
16) 6 P

(
V(−1

2
el3) 6 2V(v)

)
+ P

(
V(−1

2
el3) 6 2l4

)
.

We also have

P
(

V(−1
2
el3) 6 2V(v)

)
6 P

(
V(−1

2
el3) 6 el5/2

)
+ P

(
V(v) >

1
2
el5/2

)
.

Using Corollary 2.16 and the regular variation of a−1(·), for all v large
enough,

P
(

V(v) >
1
2
el5/2

)
6 e−l2 .

Recall that (V(x), x > 0) and (−V(−x), x > 0) have the same law, thus
Proposition 2.18 yields

P
(

V(−1
2
el3) 6 2l4

)
6 P

(
V(−1

2
el3) 6 el5/2

)
6 e−l2 .

These inequalities give P (Ec
16) 6 3e−l2 , hence P (Ec

17) 6 8e−l2 . We now
prove the lower bound. Notice that

A(v) >
∫ σV(V(v− 1

2
))+ 1

2

σV(V(v− 1
2
))

eVsds =
1
2
eV(v− 1

2
), (3.9)

and for all x 6 σ̃V(Vv− 1
2
− l4) 6 σ̃V(Vv),

−A(−x) =
∫ 0

−x
eV(s)ds 6 eV(v− 1

2
)−l4 σ̃V(Vv). (3.10)

Thus, for all x 6 σ̃V(V(v − 1
2) − l4) we have −A−x/Av 6 exp(−l4)σ̃V(Vv).

Let E18 = {σ̃V(Vv) 6 exp(l3)}. As for the estimate of P (Ec
16), it is easily

checked that for all v large enough, P (Ec
18) 6 3 exp(−l2). Moreover, on the
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set E18, combining (3.9) and (3.10), we have −A(−x)/A(v) 6 e−
1
2
l4 for all

0 6 x 6 σ̃V(V(v − 1
2)− l4). Let us now de�ne

E19 =

{
inf

0 6 s 6 e−
1
2 l4
Z(s) > e−l2

}
.

Using Lemma 7.1 on p1501 of [12], we see that P(Ec
19) 6 2e−l2 . Recall that

I2(v) = A(v)
∫ ∞

0
e−V−sZ

(
−A(−s)

A(v)

)
ds

> A(v)
∫ eσV(V(v− 1

2
)−l4)

0
e−V−sZ

(
−A(−s)

A(v)

)
ds,

therefore, on E20 = E18 ∩ E19,

I2(v) > σ̃V

(
V
(
v − 1

2
)
− l4

)
A(v)e−V(−eσV(V(v− 1

2
)−l4))−l2 .

Using (3.9) again, on E20,

I2(v) >
1
2
σ̃V

(
V
(
v − 1

2
)
− l4

)
eV(v− 1

2
)−V(−eσV(V(v− 1

2
)−l4))−l2

>
1
2
σ̃V

(
V
(
v − 1

2
)
− l4

)
e

eUV(V(v− 1
2
)−l4)+l4−l2 .

Notice that on {V
(
v− 1/2

)
> l4}, we have σ̃V(V(v− 1/2)− l4) > 1 (because

V is identically 0 on (−1, 0]). This implies that on E20 ∩ {V(v − 1/2) > l4},

I2(v) > e
eUV

“
V
(
v− 1

2

)
−l4

”
,

which yields the lower bound by taking the logarithm. Finally, let E9 =
E20 ∩ E17, we have

P (Ec
9) 6 P (Ec

17) + P (Ec
20) 6 13e−(log v)2

for all large enough v's and the upper bound holds on E9 as well as the lower
bound on E9 ∩ {V

(
v − 1/2

)
> l4}. �

4. Proof of the main theorems

4.1. Proof of Theorem 1. We �rst state two lemmas before we give the
proof of the theorem.

Lemma 4.1. For any c0 > 0, we have

lim sup
t→∞

log P
(
Xt > c0a

−1 (log t) log log log t
)

log log log t
6 − c0K

#,

where K# was de�ned in Proposition 2.5.
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Proof. Let v = c0a
−1 (log t) log log log t, using (3.4) and Proposition 3.1 we

get for all t large enough,

P
(
Xt > v

)
6 P (I1(v) 6 t)

6 P
(

V#

v− 1
2

6 log t + (log v)4
)

+ C25 exp
(
−(log v)2

)
.

Using Proposition 2.5, for any ε > 0 and for all t large enough (depending
on ε), we obtain

P
(

V#

v− 1
2

6 log t + (log v)4
)

6 exp
(
−(K# − ε)

v − 1/2
a−1 (log t + (log v)4)

)
6 exp

(
−c0(K# − 2ε) log log log t

)
where we used the regular variation of a−1(·) to check that a−1(log t +
(log v)4) ∼ a−1(log t). Therefore, for all t large enough,

P
(
Xt > v

)
6 exp

(
−c0(K# − 2ε) log log log t

)
+ exp

(
−(log v)2

)
6 2 exp

(
−c0(K# − 2ε) log log log t

)
.

�

Lemma 4.2. For any c0 > 0 and for all t large enough (depending on c0)
we have {

Xt > v
}

⊃
{

V#
v 6 log t−

√
log t , Vv 6

log t

5

}
∩
{

ŨV

(
log t

4

)
6

log t

2

}
∩ E21(v)

where v = c0a
−1(log t) log log log t and where E21(v) is a measurable set such

that

P (Ec
21(v)) 6 C29e

−(log v)2 .

Proof. Using (3.4) combined with Proposition 3.1 and 3.2, for t su�ciently
large, {

Xt > v
}

= {I1(v) + I2(v) 6 t}

⊃
{

eV#
v +(log v)4 + e

eUV(Vv+(log v)4) 6 t
}
∩ E21(v)

with E21(v) = E8(v)∩E9(v), thus P (Ec
21(v)) 6 C29e

−(log v)2 . Notice also that{
V#

v 6 log t−
√

log t
}
⊂
{

V#
v + log4 v 6 log

t

2

}
.

Hence,
{
Xt > v

}
contains{

V#
v 6 log t−

√
log t

}
∩
{

ŨV
(
Vv + (log v)4

)
6 log

(
t

2

)}
∩ E21(v). (4.1)
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We also have
{

Vv 6 log t
5

}
⊂
{

Vv + (log v)4 6 log t
4

}
, therefore{

Vv 6
log t

5
, ŨV

(
log t

4

)
6

log t

2

}
⊂
{

ŨV
(
Vv + (log v)4

)
6

log t

2

}
.

This inclusion combined with (4.1) completes the proof. �

Proof of Theorem 1. As we already mentioned in the introduction, X and
X have the same upper function so we only need to prove the theorem for
X. Let us choose K such that K < K# and ε > 0. De�ne the sequence
ti = exp(exp(εi)). We also use the notation f(x) = a−1(log x) log log log x.
Using regular variation of a(·) we easily check that f(ti)/f(ti+1) converges
to exp(−αε). Thus, for all i large enough

P
(

Xti+1 >
f(ti)
K

)
6 P

(
Xti+1 >

f(ti+1)
e2εK

)
.

Using Lemma 4.1, we get

lim sup
i→∞

1
log(ε(i + 1))

log
(
P
(

Xti+1 >
f(ti)
K

))
6 − K#

e2εK
.

Since K < K#, we can choose ε small enough such that K#/(K exp(2ε)) < 1
and we deduce from the last inequality that the sum

∑
P(Xti+1 > f(ti)/K)

converges. Using Borel-Cantelli's Lemma, with probability 1, for all i large
enough Xti+1 6 f(ti)/K. For t ∈ [ti, ti+1], using monotonicity of f and X,

Xt 6 Xti+1 6
f(ti)
K

6
f(t)
K

.

This holds for all K < K#. Hence, we proved that

lim sup
t→∞

Xt

f(t)
6

1
K#

a.s.

We now prove the lower bound. Choose K > K# and change the sequence
(ti) for ti = exp(exp i). From Lemma 4.2, for i large enough,{

Xti >
f(ti)
K

}
⊃ E21(f(ti)/K) ∩ E22(i)

where E21 was de�ned in Lemma 4.2 and where E22(i) = E23(i)∩E24(i)∩E25(i)
with

E23(i) =
{

ŨV
(
ei/4

)
6 ei/2

}
,

E24(i) =
{

V#
f(ti)/K 6 ei − ei/2

}
,

E25(i) =
{
Vf(ti)/K 6 ei/5

}
.

Moreover,
∑

P(Ec
21(f(ti)/K)) < ∞. So it only remains to prove that the

events E22(i) happen in�nitely often almost surely. It follows from the results

of Section 2.1 that limi→∞P(E23(i)) = P(ŨS(1/4) 6 1/2) and it is clear that
this quantity is not 0. Since E24(i)∩E25(i) and E23(i) are independent events
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P(E22(i)) > C30P(E24(i) ∩ E25(i)) for all i large enough. Thus, we deduce
from Proposition 2.6 that for all large enough i's, we have

C31P (E24(i)) 6 P (E22(i)) 6 P (E24(i)) . (4.2)

We now use Proposition 2.5 to check that

log (P (E24(i))) ∼
i→∞

−K#

K

f(ti)
a−1

(
ei − ei/2

) ∼
i→∞

−K#

K
log i, (4.3)

where we used the regular variation of a(·) for the last equivalence. In
particular, combining this with (4.2) and the fact that K#/K < 1, we see
that

∑
i P(E22(i)) = ∞. We now estimate P(E22(i) ∩ E22(j)) for i large

enough and for j > i.

E22(i) ∩ E22(j) ⊂ E24(i) ∩ E24(j)

⊂ E24(i) ∩
{(

θf(ti)/KV
)#
f(tj)/K−f(ti)/K

6 ej − ej/2
}

.

Hence, from the independence and the stationarity of the increments of V
(at integer times), combined with Proposition 2.7, for all i large enough (i.e.
all j large enough), we get

P (E22(i) ∩ E22(j)) 6 P (E24(i))P
(
V#

f(tj)/K−f(ti)/K 6 ej − ej/2
)

6 C32
P (E24(i))P (E24(j))

P
(
V#

f(ti)/K 6 ej − ej/2
) .

Using Lemma 2.4, one may check after a few lines of calculus that for all i
su�ciently large, exp(j)− exp(j/2) > a−1(f(ti)/K) whenever j − i > log i,
thus

P
(
V#

f(ti)/K 6 ej − ej/2
)

> P

 V#
f(ti)/K

a (f(ti)/K)
6 1

 .

Since the r.h.s. of the last inequality converges to P(S#
1 6 1) 6= 0 as i goes

to in�nity, we deduce that for all i large enough and all j − i > log i,

P
(
V#

f(ti)/K 6 ej − ej/2
)

> C33 > 0.

Finally, for all i large enough and for all j > i,

P (E22(i) ∩ E22(j)) 6

{
P (E22(i)) , if 0 6 j − i < log i,
C34P (E22(i))P (E24(j)) , if j − i > log i.

(4.4)
Combining (4.2),(4.3) and (4.4), we see that

lim inf
n→∞

∑
i,j 6 n

P (E22(i) ∩ E22(j))
/( ∑

i 6 n

P (E22(i))
)2

6 C35.
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The Borel-Cantelli Lemma of [16] yields P (E22(i) i.o.) > 1/C35. We now use
a classical 0-1 argument (compare with [12], p1511 for details) to conclude
that P (E22(i) i.o.) = 1. Hence, with probability 1,

lim sup
t→∞

Xt

f(t)
>

1
K#

.

Moreover, the value of K# when the process V is completely asymmetric
was calculated in Corollary 2.10. �

4.2. Proof of Theorem 2.

Lemma 4.3. Let ρ > 0, for all t large enough (depending on ρ) and all
1 6 λ 6 (log log t)ρ, we have

P
(

Xt <
a−1(log t)

λ

)
6 C36

b−1(a−1(log t)/λ)
b−1(a−1(log t))

.

Proof. We use the notation v = a−1(log t)/λ, the bounds on λ give

a−1(log t)
(log log t)ρ

6 v 6 a−1(log t).

We assume that t is very large, hence v is also large. From (3.4) combined
with Proposition 3.1 and Proposition 3.2, we deduce that

P
(
Xt < v

)
6 P

(
I1(v) >

t

2

)
+ P

(
I2(v) >

t

2

)
6 P

(
V#

v > log
t

2
− (log v)4

)
+P

(
ŨV(Vv + (log v)4) > log

t

2

)
+ C37e

−(log v)2 .

Remind that b−1(·) is regularly varying with index q < 1. Therefore, using
Corollary 2.16 and Lemma 2.4,

P
(

V#
v > log

t

2
− (log v)4

)
6 P

(
V#

v >
1
2

log t

)
6 C38

v

a−1 (log t)

6 C39
b−1(v)

b−1(a−1(log t))
.

It is also easy to check from the bounds on v and the regular variations of
a−1(·) and b−1(·) that

e−(log v)2 6
b−1(v)

b−1 (a−1(log t))
.
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We still have to prove a similar bound for P(ŨV(Vv + (log v)4) > log(t/2)).
Notice that for any y > x > 0, {ŨV(x) > y} = Λ̃′(x, y − x). Hence, using
Proposition 2.13 and the independence of (Vx)x > 0 and (V−x)x > 0, we get

P
(

ŨV(Vv + (log v)4) > log
t

2

)
6 C40E

(
b−1(a−1(Vv + (log v)4))

b−1(a−1(log t
2))

)
6 C40

b−1(v)
b−1(a−1(log t

2))
E
(

b−1(a−1(Vv + (log v)4))
b−1(a−1(a(v)))

)
. (4.5)

Let us pick ε > 0. We now use Lemma 2.4 for the regularly varying function
b−1(a−1(·)) to check that (4.5) is smaller than

C41,ε
b−1(v)

b−1(a−1(log t
2))

E

((
Vv + (log v)4

a(v)

)αq+ε

+ 1

)
.

Finally, since q < 1, we can choose ε small enough such that αq + ε < α,
therefore Corollary 2.17 implies

E

((
Vv + (log v)4

a(v)

)αq+ε
)

6 E

((
Vv

a(v)
+ 1
)αq+ε

)
6 C42,ε.

We conclude the proof noticing that b−1(a−1(log t
2)) ∼ b−1(a−1(log t)). �

Lemma 4.4. Let ρ > 0, for all t large enough (depending on ρ) and for all
1 6 λ 6 (log log t)ρ, we have{

Xt <
a−1(log t)

λ

}
⊃
{

ŨV(a(v)) > log t
}
∩
{
Vv/2 > 2a(v)

}
∩ E9(v),

with v = a−1(log t)/λ, and where E9(v) was de�ned in Proposition 3.2 and
satis�es

P(E9(v)c) 6 C26e
−(log v)2 .

Proof. Recall that Relation (3.4) gives {Xt < v} = {I1(v) + I2(v) > t} and
notice that I1(v) > 0 for all v > 0, thus, {Xt < v} ⊃ {I2(v) > t}. We now
use Proposition 3.2 to see that for all t large enough (i.e. v large enough),
the event {Xt < v} contains{

ŨV(Vv− 1
2
− (log v)4) > log t

}
∩
{

Vv− 1
2

> (log v)4
}
∩ E9(v)

⊃
{

ŨV(Vv/2 − a(v)) > log t
}
∩
{
Vv/2 > 2a(v)

}
∩ E9(v)

⊃
{

ŨV(a(v)) > log t
}
∩
{
Vv/2 > 2a(v)

}
∩ E9(v),

where we used the fact that x 7→ ŨV(x) is a non-decreasing function and the
trivial inequalities Vv/2 6 Vv−1/2 and (log v)4 6 a(v) which hold for all large
enough v's. �
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Proof of Theorem 2. For any positive non-decreasing function f , recall that

J(f) =
∫ ∞ b−1(a−1(log t)/f(t))dt

b−1(a−1(log t))t log t

(we do not specify the lower bound for the integral since we are only con-
cerned with the convergence of J(f) at in�nity).

Let us �rst prove the theorem when J(f) < ∞. Since f is non-decreasing,
it is clear that f(t) →∞ as t →∞. Thus, f(t) > e2α for all t large enough.

Let f0(t) = (log log t)2/q, we have J(f0) < ∞. It is known that we may
assume without loss of generality that

f(t) 6 f0(t) = (log log t)2/q for all large t (4.6)

(compare with the argument given in the beginning of the proof of Theorem
1 in [9]). Let us set ti = exp(exp i). Since a−1(·) is regularly varying with
index α, for all i large enough, we have

a−1(log ti+1) 6 e2αa−1(log ti). (4.7)

Hence, Lemma 4.3 yields, i still being very large,

P
(

Xti <
a−1(log ti+1)

f(ti)

)
6 P

(
Xti <

a−1(log ti)
e−2αf(ti)

)
6 C36

b−1(e2αa−1(log ti)/f(ti))
b−1(a−1(log ti))

6 C43
b−1(a−1(log ti−1)/f(ti))

b−1(a−1(log ti))

6 C43

∫ ti

ti−1

b−1(a−1(log t)/f(t))dt

b−1(a−1(log t))t log t
,

where we used again (4.7) and the regular variation of b−1 for the third
inequality and the monotonicity of a−1,b−1 and f for the last inequality.
Since J(f) < ∞, we conclude that

∑
i P(Xti < a−1(log ti+1)/f(ti)) < ∞

and Borel-Cantelli's Lemma implies that, almost surely,

Xti >
a−1(log ti+1)

f(ti)
for all i large enough.

But for ti 6 t 6 ti+1, we have a−1(log ti+1)/f(ti) > a−1(log t)/f(t) and
Xt > Xti , therefore, with probability 1,

lim inf
t→∞

f(t)
a−1(log t)

Xt > 1 a.s. (4.8)

Changing f for Cf for any C > 0 does not alter the convergence of J(f).
Thus, the lim inf in (4.8) is in fact in�nite.

We now prove the second part of the theorem. Let f be a positive, non-
decreasing function such that J(f) = ∞. Again, we may without loss of
generality assume that (4.6) holds (compare with the argument given in the
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proof of Theorem 3 in [9]). Moreover, notice that the theorem is straight-
forward for any bounded function f provided that we prove the theorem for
at least one function h going to in�nity with J(h) = ∞ (we may choose for

example h(t) = (log log t)1/(2q)). Thus, we can also assume that f(t) → ∞
as t → ∞. We use the notation vi = a−1(log ti)/f(ti). Our assumptions on
f yield the following estimates:

a−1(log ti)
(log log ti)2/q

6 vi 6 a−1(log ti) for i large enough, (4.9)

and
lim
i→∞

vi = ∞, lim
i→∞

vi

a−1(log ti)
= 0. (4.10)

From now on, we assume that i is very large. Using Lemma 4.4, we get{
Xti 6

a−1(log ti)
f(ti)

}
⊃ E9(vi) ∩ E26(i),

where E26(i) = E27(i) ∩ E28(i) with

E27(i) = {ŨV(a(vi)) > log(ti)},
E28(i) = {Vvi/2 > 2a(vi)}.

Since P(E9(vi)c) 6 C26 exp(− log2 vi), it is easy to check from (4.9) that∑
i P(E9(vi)c) < ∞. So it only remains to prove that P(E26(i) i.o.) = 1.

Since vi →∞ as i →∞, results of Section 2.1 imply that

lim
i→∞

P(E28(i)) = P(S1/2 > 2) > 0.

Therefore, the independence of E27(i) and E28(i) yields

C43P (E27(i)) 6 P (E26(i)) 6 P (E27(i)) . (4.11)

Recall that {ŨV(a(vi)) > log(ti)} = Λ̃′(a(vi), log(ti) − a(vi)). Keeping in
mind (4.10), we can estimate P (E27(i)) using Proposition 2.13:

C44
b−1(vi)

b−1(a−1(log ti))
6 P (E27(i)) 6 C45

b−1(vi)
b−1(a−1(log ti))

. (4.12)

Combining the inequalities (4.11) and (4.12), the assumption that J(f) = ∞
implies ∑

i

P(E26(i)) = ∞.

We now estimate P(E26(i) ∩ E26(j)). Let g(i) = log(ti)− a(vi). It is easy to
check from (4.10) that g is ultimately increasing. Let us pick j > i. We can
rewrite

E27(i) ∩ E27(j) = Λ̃′ (a(vi), g(i)) ∩ Λ̃′ (a(vi), g(j)) .

There are two cases (which are not disjoint):

(1) (V−n)n > 0 hits (−∞,−g(j)] before hitting [a(vi),∞). Using Propo-
sition 2.13, we can check that the probability of this case is less than
C46b

−1(vi)/b−1(a−1(log tj)).
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(2) (V−n)n > 0 hits (−∞,−g(i)] before hitting [a(vi),∞) (i.e. E27(i)
happens) and also the shifted random walk (V−eσV(a(vi))−n)n > 0 hits
(−∞,−g(j)] before hitting [a(vj),+∞) (the probability of this event
is clearly smaller than P(E27(j))). Using the Markov property for
the random walk (V−n)n > 0 we conclude that the probability of this
case is smaller than P(E27(i))P(E27(j)).

Combining (1) and (2) we deduce that P(E27(i) ∩ E27(j)) is smaller than

P (E27(i))P (E27(j)) + C46
b−1(vi)

b−1(a−1(log tj))

6 P (E27(i))P (E27(j)) +
C46

C44
P (E27(i))

b−1(a−1(log ti))
b−1(a−1(log tj))

,

where we used (4.12) for the second inequality. Finally, using Lemma 2.4
and (4.11), we conclude that for all i large enough and all j > i,

P (E26(i) ∩ E26(j)) 6 P (E27(i) ∩ E27(j))

6 C47

(
P (E26(i))P (E26(j)) + P (E26(i)) e−C48(j−i)

)
,

hence

lim inf
n→∞

∑
i,j 6 n

P (E26(i) ∩ E26(j))
/( ∑

i 6 n

P (E26(i))
)2

6 C47.

Just like in the proof of Theorem 1, we apply the Borel-Cantelli Lemma of
[16] and a standard 0-1 argument to conclude that P(E26(i) i.o.) = 1. Since
this result still holds when changing f for Cf for any C > 0, we have proved
that, with probability 1,

lim inf
t→∞

Xt

f(t)
= 0.

�

4.3. Proof of Theorem 3. Just like the previous two theorems, the proof
is based on the following two lemmas.

Lemma 4.5. Let ρ > 0, for all t large enough and all 1 6 λ 6 (log log t)ρ

we have

P
(

X∗
t <

a−1(log t)
λ

)
6

C49

λ2
.

Proof. We use the notation v = a−1(log t)/λ. Let Y = −X, it is clear
from a symmetry argument that Y is a di�usion in the "reversed" random
environment W = (V−x, x ∈ R). Let us notice that

P (X∗
t < v) = P

(
Xt < v , Y t < v

)
6 P

(
Xt < v , Vv 6 V−v

)
+ P

(
Y t < v , Wv 6 W−v

)
.
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Let us also note that all the assumptions we made on V also hold for W.
Hence, we only need to prove the upper bound for the �rst member on the
r.h.s. of the last inequality. According to (3.4){

Xt < v
}

= {I1(v) + I2(v) > t} ,

thus,

P
(
Xt < v , Vv 6 V−v

)
6 P

(
1
4

log t 6 Vv 6 V−v

)
(4.13)

+P
(

I1(v) >
t

2
, Vv 6

log t

4

)
(4.14)

+P
(

I2(v) >
t

2
, Vv 6 V−v, Vv 6

log t

4

)
. (4.15)

We deal with each term separately. First, using independence of (Vx)x > 0

and (V−x)x > 0 we see that (4.13) is smaller than

P
(

Vv >
1
4

log t

)
P
(

V−v >
1
4

log t

)
6

C49

λ2
,

where we used Corollary 2.16 for the last inequality. We now turn our
attention to (4.14). Using Proposition 3.1, we check that for t large enough,
this probability is smaller than

P
(

V#
v > log

t

2
− log4 v , Vv 6

1
4

log t

)
+ C25e

− log2 v.

For t large enough, using the Markov property,

P
(

V#
v > log

t

2
− log4 v , Vv 6

log t

4

)
6 P

(
V#

v >
log t

2
, Vv 6

log t

4

)
6 P

(
σV

(
− log t

4

)
6 v,

(
θ
σV(− log t

4
)
V
)#

v
>

log t

2

)
6 P

(
Vv 6 − log t

4

)
P
(

V#
v >

log t

2

)
6

C50

λ2
,

where we used again Corollary 2.16 for the last line. It is also clear from

our bounds on λ that e− log2 v 6 1/λ2 for all t large enough. This gives
the desired bound for (4.14). It remains to prove the existence of a similar
inequality for (4.15). We �rst use Proposition 3.2 to see that, for all t large
enough, (4.15) is smaller than

P
(
ŨV(Vv + log4 v) > log

t

2
, Vv 6 V−v , Vv 6

1
4

log t
)

+ C26e
− log2 v.
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We can rewrite:{
ŨV(Vv + log4 v) > log

t

2
, Vv 6 V−v , Vv 6

1
4

log t
}

=
{

σ̃V

(
Vv + log4 v − log

t

2

)
< σ̃V

(
Vv + log4 v

)
,

σ̃V(Vv) 6 v , Vv 6
1
4

log t
}

⊂
{

σ̃V

(
− log t

2

)
< σ̃V

(
Vv + log4 v

)
, σ̃V(Vv) 6 v

}
⊂
{

σ̃V

(
− log t

2

)
< σ̃V(Vv) 6 v

}
∪
{

σ̃V(Vv) < σ̃V

(
− log t

2

)
< σ̃V

(
Vv + log4 v

)}
.

Notice that on the event {σ̃V(−(log t)/2) < σ̃V(Vv) 6 v}, the process
(V−x)x > 0 hits (−∞,−(log t/2)] before time v, and then hits [0,∞), again
before time v. The Markov property with the stopping time σ̃V(−(log t)/2)
and Corollary 2.16 yield

P
(

σ̃V

(
− log t

2

)
< σ̃V(Vv) 6 v

)
6 P

(
V−v 6 − log t

2

)
P
(

V−v >
log t

2

)
6

C51

λ2
.

It is also easy to check from the Markov property of (V−x)x > 0 applied
to the stopping time σ̃V(Vv) that the probability of the event {σ̃V(Vv) <
σ̃V(−(log t)/2) < σ̃V

(
Vv + log4 v

)
} is smaller than the probability that the

random walk (V−x)x > 0 hits (−∞,−(log t)/2] before it hits [log4 v,∞). Us-
ing the estimate for the exit problem (Proposition 2.13) and the regular
variation of b−1(a−1(·)), for t large enough, we obtain

P
(

σ̃V(Vv) < σ̃V

(
− log t

2

)
< σ̃V

(
Vv + log4 v

))
6 C52

b−1
(
a−1

(
(log v)4

))
b−1

(
a−1

(
log t
2

)) 6
1
λ2

,

so we conclude that (4.15) is smaller than C53/λ2. �

Lemma 4.6. Let ρ > 0, for all t large enough and all 1 6 λ 6 (log log t)ρ,
we have{

X∗
t <

a−1(log t)
λ

}
⊃
{

Vv− 1
2

> 2 log t , V−v+ 1
2

> 2 log t
}
∩ E29(v),

with the notation v = a−1(log t)/λ and where P (E29(v)c) is a measurable set
such that

P (E29(v)c) 6 C54e
− log2 v.
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Proof. Recall that X is given by the formula

Xt = A−1
(
BT−1(t)

)
,

where B is a Brownian motion independent of V. Let B̃ = −B and let L̃

denote the bi-continuous version of the local time process of B̃. Recall also
that W stands for the reversed process (V−x, x ∈ R). In the beginning of
Section 3, we proved that

σX(v) = I1(v) + I2(v) for all v > 0. (4.16)

It is easily checked, using similar arguments, that

σX(−v) = Ĩ1(v) + Ĩ2(v) for all v > 0, (4.17)

with

Ĩ1(v) =
∫ v

0
e−Wy L̃(σ eB(Ã(v)), Ã(y))dy,

Ĩ2(v) =
∫ ∞

0
e−W−y L̃(σ eB(Ã(v)), Ã(−y))dy,

and where

Ã(x) =
∫ x

0
eWydy.

Thus, Ĩ1 and Ĩ2 are given by the same formulas as I1 and I2 by simply

changing the process B for B̃ and changing V for W. Notice that B̃ is again
a Brownian motion independent of W and that W ful�lls all the assumptions

we made on V. Therefore, Propositions 3.1 and 3.2 also hold for Ĩ1 and

Ĩ2 with W instead of V (with di�erent events and di�erent values of the
constants). In particular, we deduce that for all v large enough

log Ĩ1(v) > V#
−v+1/2 − (log v)4 on E30(v), (4.18)

where E30(v) is a measurable set such that P(Ec
30(v)) 6 C55 exp(− log2 v).

We also know from Proposition 3.1 that

log I1(v) > V#
v−1/2 − (log v)4 on E8(v). (4.19)

Let E29(v) = E8(v) ∩ E30(v), then P (Ec
29(v)) 6 C54 exp

(
− log2 v

)
. Combin-

ing (4.16),(4.17),(4.18) and (4.19), we get{
X∗

t < v
}

=
{
σX(v) > t

}
∩
{
σX(−v) > t

}
⊃

{
I1(v) > t

}
∩
{
Ĩ1(v) > t

}
⊃

{
V#

v−1/2 > log t + log4 v
}

∩
{
V#
−v+1/2 > log t + log4 v

}
∩ E29(v)

⊃
{
V#

v−1/2 > 2 log t
}
∩
{
V#
−v+1/2 > 2 log t

}
∩ E29(v)

⊃
{
Vv−1/2 > 2 log t

}
∩
{
V−v+1/2 > 2 log t

}
∩ E29(v).

�
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Proof of Theorem 3. This theorem is an easy consequence (using similar
technics as in the proof of Theorem 2) of the last two lemmas and of Propo-
sition 2.15 (when the limiting process has jumps of both signs). We feel free
to omit it. �

4.4. Proof of Theorem 4.

Proposition 4.7. We have

1
a(v)

(
log σX(v)− V#

v ∨ ŨV(Vv)
)

Prob.−→
v→∞

0.

The proof of this Proposition is very similar to that of Proposition 11.1 of
[12] using the estimates for I1 and I2 obtained in Propositions 3.1 and 3.2,
we therefore skip the details.

Proof of Theorem 4. Let λ > 0 and let v be a large number,

P
(

Xv

a−1(log v)
> λ

)
= P

(
log σX(λa−1(log v)) 6 log v

)
= P

(
log σX(x)

c(x)
6

1
λ1/α

)
,

with the change of variable x = λa−1(log v) and where

c(x) = λ1/αa(x/λ) ∼
x→∞

a(x). (4.20)

Results of Section 2.1 ensure that (V#
x ∨ ŨV(Vx))/a(x) converges in law as

x →∞ towards S#
1 ∨ŨS(S1) whose cumulative function is continuous. Hence,

it follows from Proposition 4.7 and from (4.20) that

lim
v→∞

P
(

Xv

a−1(log v)
> λ

)
= P

(
S#

1 ∨ ŨS(S1) 6
1

λ1/α

)
.

We have proved the convergence in law of Xv/a−1(log v) towards the non-

degenerate random variable Ξ = (S#
1 ∨ ŨS(S1))−α. Let us calculate the

Laplace transform of this law when S is completely asymmetric. Recall the

notation τ#
x and τx de�ned in Section 2.3. Let also r1 be the stopping time:

r1 = inf (x > 0 , (S−t)t > 0 hits (−∞,−(1− x)) before it hits (x,∞)) .

From the scaling property of S,

P
(
(S#

1 ∨ ŨS(S1))−α 6 λ
)

= P
(
S#

λ ∨ ŨS(Sλ) > 1
)

= P
(
τ#
1 ∧ τr1 6 λ

)
,

therefore Ξ and τ#
1 ∧ τr1 have the same law. Let us �rst assume that S has

no positive jumps and recall that (−S−t , t > 0) and (St , t > 0) have the
same law. It follows from the well known solution of the exit problem for a
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completely asymmetric Levy process via its scale function W (c.f. [1] , p194)
that

P (r1 > x) = P ((S−t)t > 0 hits (x,∞) before it hits (−∞,−(1− x)))
= 1−P ((St)t > 0 hits (1− x,∞) before it hits (−∞,−x))

= 1− W (x)
W (1)

,

and it is known that in our case W (x) = xα−1/Γ(α). Hence, the density of
r1 is

P (r1 ∈ dx) =
α− 1
x2−α

dx for x ∈ (0, 1).

Using Corollary 2.11 and the independence of (St)t > 0 and (S−t)t > 0, we
have, for q > 0,

E
(
e−qτ#

1 ∧τr1

)
=

∫ 1

0
E
(
e−qτ#

1 ∧τx

) α− 1
x2−α

dx

=
α− 1
Eα(q)

∫ 1

0

Eα(q(1− x)α)
x2−α

dx

=
α− 1
Eα(q)

∞∑
n=0

qn

Γ(1 + αn)

∫ 1

0

(1− x)αn

x2−α
dx,

but
1

Γ(1 + αn)

∫ 1

0

(1− x)αn

x2−α
dx =

Γ(α− 1)
Γ(α(n + 1))

,

hence

E
(
e−qτ#

1 ∧τr1

)
=

Γ(α)
Eα(q)

∞∑
n=0

qn

Γ(α(n + 1))

= Γ(α + 1)
E′

α(q)
Eα(q)

.

We now assume that S has no negative jumps. Just like in the previous
case, we can calculate the density of r1 from the scale function and we �nd
P(r1 ∈ dx) = (α − 1)/(1 − x)2−α for x ∈ (0, 1). Thus, using Corollary 2.11
we get

E
(
e−qτ#

1 ∧τr1

)
=

∫ 1

0
E
(
e−qτ#

1 ∧τx

) α− 1
x2−α

dx

= (α− 1)
∫ 1

0

Eα(qxα)
(1− x)2−α

dx

− E′
α(q)α(α− 1)q

αqE′′
α(q) + (α− 1)E′

α(q)

∫ 1

0

xα−1E′
α(qxα)

(1− x)2−α
dx.

We already calculated the �rst integral:∫ 1

0

Eα(qxα)
(1− x)2−α

dx =
∫ 1

0

Eα(q(1− y)α)
y2−α

dy =
Γ(α + 1)

α− 1
E′

α(q).
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As for the second integral,∫ 1

0

xα−1E′
α(qxα)

(1− x)2−α
dx =

∞∑
n=0

(n + 1)qn

Γ(α(n + 1) + 1)

∫ 1

0

xα(n+1)−1

(1− x)2−α
dx,

and it is known that∫ 1

0

xα(n+1)−1

(1− x)2−α
dx =

Γ(α(n + 1))Γ(α− 1)
Γ(α(n + 2)− 1)

,

hence∫ 1

0

xα−1E′
α(qxα)

(1− x)2−α
dx

=
Γ(α− 1)

α

∞∑
n=0

qn

Γ(α(n + 2)− 1)

= Γ(α− 1)
∞∑

n=0

(n + 2)(α(n + 2)− 1)qn

Γ(α(n + 2) + 1)

= Γ(α− 1)

(
α

∞∑
n=0

(n + 1)(n + 2)qn

Γ(α(n + 2) + 1)
+ (α− 1)

∞∑
n=0

(n + 2)qn

Γ(α(n + 2) + 1)

)

=
Γ(α− 1)

q

(
qαE′′

α(q) + (α− 1)E′
α(q)− α− 1

Γ(α + 1)

)
.

Putting the pieces together, we conclude that

E
(
e−qτ#

1 ∧τr1

)
=

(α− 1)E′
α(q)

αqE′′
α(q) + (α− 1)E′

α(q)
.

�

5. Comments

5.1. The case where V is a stable process. In the whole paper, we
assumed V to be a random walk in the domain of attraction of a stable
process S. Let us now assume that V itself is a strictly stable process (such
that |V| is not a subordinator) and let us explain why Theorems 1 − 4 still
hold in this case. It is clear that all the results dealing with the �uctuations
of V remain unchanged (in fact, they even take a nicer form since we can
now choose a(x) = xα and b(x) = xq). Notice also that we did not use the
fact that V was a random walk in the proofs of the theorems in Section 4.
Indeed, the only time we really used the assumption that V was �at on the
intervals (n, n + 1) , n ∈ Z was in the proofs of Propositions 3.1 and 3.2 (we
needed to make sure that V spends �enough� time around its local extremas).
Looking closely at those two proofs, we see that they will still hold if we can
show that there exists a measurable event E31(v) such that:

(a) there exists C56 such that P (E31(v)c) 6 C56 exp(− log2 v).
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(b) On E31(v), any path of V is such that for all x ∈ [−σ̃V(Vv+log4 v), v],
we have |Vy − Vx| 6 1 either for all y in [x, x + exp(− log3 v)] or for
all y in the interval [x− exp(− log3 v), x].

Let us quickly explain how we can construct this event. De�ne the sequence
of random variables (γn)n∈Z:

γ0 = 0,
γn+1 = inf(t > γn , |Vt − Vγn | > 1

2) for n > 0,
γ−n−1 = inf(t < γ−n , |Vt − Vγ−n | > 1

2) for n > 0.

Let us set

E32(v) =
{

γi+1 − γi > 2e− log3 v for all −e
1
2

log3 v 6 i 6 e
1
2

log3 v
}

,

E33(v) =
{

γ
−[e

1
2 log3 v ]

> elog5/2 v , γ
[e

1
2 log3 v ]

> elog5/2 v
}

,

E34(v) =
{

σ̃V(Vv + log4 v) 6 elog5/2 v
}

,

E31(v) = E32(v) ∩ E33(v) ∩ E34(v).

It is clear that (b) holds for E31. We now assume that v is very large. We
have

P (E32(v)c) 6 2e
1
2

log3 vP
(
γ1 6 2e− log3 v

)
6 C57e

− 1
2

log3 v,

where we used the relation P(γ1 6 x) = P(V∗x > 1
2) and Corollary 2.16 for

the last inequality. Using Cramer's large deviation theorem, it is easy to
check that P (E33(v)c) 6 e−v (in fact, we can obtain a much better bound).

We also have P(E34(v)c) 6 3e− log2 v (compare with the proof of the inequal-
ity (3.8) for details). Thus, (a) holds.

5.2. Non-symmetric environments. In the whole paper, in order to avoid
even more complicated notations, we assumed that the processes (Vx , x > 0)
and (−V−x , x 6 0) have the same law. However it is easy to see that this
assumption can be relaxed. Indeed, we may swap Assumption 1 for the
following assumption.

Assumption 2. (Vn)n > 0 and (V−n)n > 0 are independent random walks
and there exists a positive sequence (an)n > 0 such that

Vn

an

law−→
n→∞

S1 and
−V−n

an

law−→
n→∞

S2,

where S1 and S2 are random variables whose laws are strictly stable with
respective parameters (α, p1) and (α, p2) and whose densities are everywhere
positive on R.

It is crucial to assume that the norming sequence (an) may be chosen to
be the same for both random walk (in order to keep the results of functional
convergence of Section 2.1) but the positivity parameters p1 and p2 need not
be the same. Theorem 1-4 must be adapted in consequences. For example,
Theorem 1 now takes the form:
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Theorem 5. Under the annealed probability P, almost surely,

lim sup
t→∞

Xt

a−1 (log t) log log log t
=

1
K#,1

,

where K#,1 depends only on S1 and is given by

K#,1 = − lim
t→∞

1
t

log P
(

sup
0 6 u 6 v 6 t

(
S1

v − S1
u

)
6 1
)

.

Furthermore, when S1 is completely asymmetric, K#,1 is given by

K#,1 =
{

ρ1(α) when S1 has no positive jumps,
ρ2(α) when S1 has no negative jumps.

Let now (Tn) stand for the sequence of strictly ascending ladder indices
of the random walk (V−x)x > 0:{

T0 = 0,
Tn+1 = min (k > Tn , V−k > V−Tn) .

Hence, T1 is in the domain of attraction of a positive stable law with index
p2 and we choose b(·) to be a continuous positive increasing function such
that (b(n))n > 1 is a norming sequence for T1. Theorem 2 now takes the
form:

Theorem 6. For any positive, non-decreasing function f de�ne

K(f) =
∫ ∞ b−1

(
a−1(log t)/f(t)

)
dt

b−1 (a−1 (log t)) t log t
.

We have, almost surely,

lim inf
t→∞

f(t)
a−1(log t)

sup
s 6 t

Xs =
{

0
∞ ⇐⇒ K(f)

{
= ∞
< ∞.

In particular, with probability 1,

lim inf
t→∞

(log log t)β

a−1 (log t)
sup
s 6 t

Xs =
{

0, if β < 1/p2,
∞, if β > 1/p2.

(5.1)

Theorems 3 and 4 must be adapted similarly. Notice that like in Theorem
4, we can again calculate the Laplace transform of the limiting law when S1

and S2 have both completely asymmetric laws.

5.3. Random walk in random environment. Let us recall the connec-
tion between the di�usion in random potential and the model of Sinai's
random walk in random environment. Let ω = (ωi)i∈Z be an i.i.d. family
of random variables in (0, 1) and de�ne for each realization of this family a
Markov chain (Zn)n > 0 by Z0 = 0 and

P (Zn+1 = Zn + e | Zn = x, (ωi)i∈Z) =
{

ωx if e = 1,
1− ωx if e = −1.

(Zn) is a random walk in the random environment ω. We now de�ne the
associated two-sided random walk (Vn)n∈Z by V0 = 0 and Vn+1 − Vn =
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log ((1− ωn)/ωn) for all n ∈ Z. Let X still denote the random di�usion in
the random potential V. The following result from Schumacher [19] relates
the two processes X and Z.

Proposition 5.1. De�ne the sequence (µn)n > 0 by{
µ0 = 0,
µn+1 = inf

(
t > µn , |Xµn+1 −Xµn | = 1

)
.

Under the annealed probability P, the sequence (µn+1−µn)n > 0 is i.i.d. and
µ1 is distributed as the �rst hitting time of 1 of a re�ected standard Brownian
motion. Moreover, for each realization of the environment ω, the processes
(Xµn)n > 0 and (Zn)n > 0 have the same law.

Using this proposition, we can easily adapt Theorem 1-4 for the random
walk in random environment Z in the case where V1 = log ((1− ω0)/ω0)
satis�es Assumption 1 (see Section 10 of [12] for details). For example,
Theorem 3 for Z takes the form:

Theorem 7. When S has jumps of both signs, we have, with probability 1,
for any non-decreasing positive sequence (cn)n > 0,

lim inf
n→∞

cn

a−1 (log n)
sup
k 6 n

|Zk| =
{

0
∞ ⇐⇒

∑
n > 2

1
(cn)2n log n

{
= ∞
< ∞.

In particular, almost surely,

lim inf
n→∞

(log log n)β

a−1 (log n)
sup
k 6 n

|Zk| =
{

0, if β 6 1/2,
∞, if β > 1/2.
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